
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Computer Science Theses & Dissertations Computer Science 

Spring 2016 

Scripts in a Frame: A Framework for Archiving Deferred Scripts in a Frame: A Framework for Archiving Deferred 

Representations Representations 

Justin F. Brunelle 
Old Dominion University, jbrunelle008@gmail.com 

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds 

 Part of the Computer Sciences Commons, and the Library and Information Science Commons 

Recommended Citation Recommended Citation 
Brunelle, Justin F.. "Scripts in a Frame: A Framework for Archiving Deferred Representations" (2016). 
Doctor of Philosophy (PhD), Dissertation, Computer Science, Old Dominion University, DOI: 10.25777/
k8px-z178 
https://digitalcommons.odu.edu/computerscience_etds/10 

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It 
has been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of 
ODU Digital Commons. For more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/10?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


SCRIPTS IN A FRAME:

A FRAMEWORK FOR ARCHIVING DEFERRED

REPRESENTATIONS

by

Justin F. Brunelle
B.S. May 2008, Old Dominion University
M.S. May 2010, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2016

Approved by:

Dr. Michael L. Nelson (Director)

Dr. Michele C. Weigle (Member)

Dr. Elizabeth J. Vincelette (Member)

Dr. Irwin B. Levinstein (Member)



ABSTRACT

SCRIPTS IN A FRAME:
A FRAMEWORK FOR ARCHIVING DEFERRED

REPRESENTATIONS

Justin F. Brunelle
Old Dominion University, 2016
Director: Dr. Michael L. Nelson

Web archives provide a view of the Web as seen by Web crawlers. Because
of rapid advancements and adoption of client-side technologies like JavaScript and
Ajax, coupled with the inability of crawlers to execute these technologies effectively,
Web resources become harder to archive as they become more interactive. At Web
scale, we cannot capture client-side representations using the current state-of-the-
art toolsets because of the migration from Web pages to Web applications. Web
applications increasingly rely on JavaScript and other client-side programming lan-
guages to load embedded resources and change client-side state. We demonstrate that
Web crawlers and other automatic archival tools are unable to archive the resulting
JavaScript-dependent representations (what we term deferred representations), re-
sulting in missing or incorrect content in the archives and the general inability to
replay the archived resource as it existed at the time of capture.

Building on prior studies on Web archiving, client-side monitoring of events and
embedded resources, and studies of the Web, we establish an understanding of the
trends contributing to the increasing unarchivability of deferred representations. We
show that JavaScript leads to lower-quality mementos (archived Web resources) due
to the archival difficulties it introduces. We measure the historical impact of Java-
Script on mementos, demonstrating that the increased adoption of JavaScript and
Ajax correlates with the increase in missing embedded resources. To measure mem-
ento and archive quality, we propose and evaluate a metric to assess memento quality
closer to Web users’ perception.

We propose a two-tiered crawling approach that enables crawlers to capture em-
bedded resources dependent upon JavaScript. Measuring the performance benefits
between crawl approaches, we propose a classification method that mitigates the



performance impacts of the two-tiered crawling approach, and we measure the fron-
tier size improvements observed with the two-tiered approach. Using the two-tiered
crawling approach, we measure the number of client-side states associated with each
URI-R and propose a mechanism for storing the mementos of deferred representa-
tions.

In short, this dissertation details a body of work that explores the following: why
JavaScript and deferred representations are difficult to archive (establishing the term
deferred representation to describe JavaScript dependent representations); the extent
to which JavaScript impacts archivability along with its impact on current archival
tools; a metric for measuring the quality of mementos, which we use to describe the
impact of JavaScript on archival quality; the performance trade-offs between tradi-
tional archival tools and technologies that better archive JavaScript; and a two-tiered
crawling approach for discovering and archiving currently unarchivable descendants
(representations generated by client-side user events) of deferred representations to
mitigate the impact of JavaScript on our archives.

In summary, what we archive is increasingly different from what we as interactive
users experience. Using the approaches detailed in this dissertation, archives can
create mementos closer to what users experience rather than archiving the crawlers’
experiences on the Web.
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CHAPTER 1

INTRODUCTION

The Web has become an ubiquitous utility. Once a network tethered to a desktop
machine, the Web is now accessible via mobile devices and is part of everyday life.
With the increasing ubiquity of the Web, users demand increasing responsiveness and
personalization, causing Web resources to change more frequently. Web resources
that change more frequently are shown to be more popular [3]. As a result of this
frequent change, Web pages are ephemeral, and new versions of pages overwrite
prior versions, effectively removing them from Web history unless otherwise stored
or archived.

How well can we archive the Web? This is a question that is becoming more
important and more difficult to answer. Additionally, this question has significant
impact on Web users [178, 184] and commercial and government compliance [204,
203, 285]. As the Web increases in importance and prevalence, the importance of
Web archiving also increases. Our modern social discourse ubiquitously involves the
Web. Any future discussion of the early 21st century will have to involve the Web
and Web archives.

The same technologies that enable interactive, personalized, and appealing con-
tent for Web users make archiving more impactful since users are placing expanded
emphasis on this content and using it as an increasingly important information
medium. Ironically, the technologies that are accelerating the importance of Web
archiving also make it more difficult to capture Web content. We will discuss how
these technologies operate and why they are increasing archival difficulty.

To discuss the technologies, Web content, and difficulties we will solve in the
work discussed in this dissertation, we will use Memento Framework terminology to
establish a common vocabulary. Memento [292] is a framework that allows Web users
to browse in the temporal dimension by aggregating the offerings of Web archives at
a single point of access. Original (or live Web) resources are identified by URI-Rs1,
and archived versions of URI-Rs are called mementos and are identified by URI-Ms.

1URIs, or Universal Resource Identifiers [37], are a generic form of URLs, or Universal Resource
Locators.
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Memento TimeMaps are machine-readable lists of mementos (at the level of single-
archives or aggregation-of-archives) sorted by archival date, or memento-datetime.

To begin, we discuss the importance of the Web archives and the societal impact
archives have on our understanding of world events (Section 1.1). We do this using
analogies from Lanier’s You Are Not A Gadget [161] and examples from the archives’
capture of the September 11th, 2001, terrorist attacks. Next, we will discuss the Stop
Online Piracy Act (SOPA) protests of 2012 (Section 1.2). While we remember the
SOPA protests and the associated pages on the Web, the archives do not. That is,
the archives did not adequately capture the pages protesting SOPA. If we – as Web
users – remember SOPA but archives do not, it raises the question: “What else have
we forgotten that the archives have also forgotten?”

1.1 YOU ARE NOT A GADGET

The September 11 attacks (also referred to as September 11, September
11th, or 9/11) were a series of four coordinated terrorist attacks launched
by the Islamic terrorist group al-Qaeda upon the United States in New
York City and the Washington, D.C. metropolitan area on Tuesday,
September 11, 2001. .... In total, almost 3,000 people died in the attacks,
including the 227 civilians and 19 hijackers aboard the four planes. It
also was the deadliest incident for firefighters in the history of the United
States. .... The United States responded to the attacks by launching the
War on Terror and invading Afghanistan to depose the Taliban, which
had harbored al-Qaeda.

The above recount is one record of the September 11th attacks as quoted from
Wikipedia2 in 2015, well after the attacks occurred. The New York Times published
an article detailing the attacks as new reports were available in 2001. Figure 1 is
a static representation – or memento – of an image of the newspaper. The Web
archives contain an interactive record of the Web page as it existed in 2001; this is
a much more emotive recount of the events than the Wikipedia article. We find the
first CNN.com record of the terrorist attacks in Figure 2(a). On this page, a Web
user can click on the first link, showing the plane hitting the first tower in Figure
2(b). The user can navigate to President George W. Bush vowing to find and bring

2http://en.wikipedia.org/wiki/September_11_attacks
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FIG. 1: New York Times article on the September 11th attacks.
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(a) CNN.com’s first memento of the
September 11th terror attacks.

(b) The first plane is shown hitting a
tower in this September 11th memento.

(c) George W. Bush’s response to the at-
tacks on September 11th, 2011.

(d) This September 12th, 2011 memento
shows the aftermath of the attacks.

FIG. 2: September 11th mementos invoke a different experience than Wikipedia.

to justice those responsible for the attacks in Figure 2(c). We follow the report
through the next morning, with continuing reports from Figure 2(d). This is only
one experience we can have using the archives.

Our experiences differ based on which versions of the records we view. The
archives are emotive and interactive, allowing the user to explore avenues of the
account, constructing new or different experiences from the narrative. The New
York Times article is interactively limited but emotive, and the Wikipedia article is
factual and from a neutral point of view. My experience differs from those of others
viewing the article. For example, Keith Reck was in the Pentagon during the attack
[284] and his experiences when viewing these mementos are different than mine,
because I learned of the attacks while in a programming class, safe from immediate
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danger. Without these mementos, we have no interactive and emotive record of the
attacks.

Current mementos of events of similar magnitude, such as the Arab Spring, exist,
but are not always exactly how they looked when they were shared. Fellow Web Sci-
ence and Digital Libraries (WS-DL)3 research laboratory student Hany SalahEldeen4

shared news of the revolution on his Facebook page, shown in Figure 3(a), but this
resource is not available in the archives, as shown in Figure 3(b). His commentary
and interactions – the first- and second-person account of history – are missing from
current Internet memory. The screenshot in Figure 3(a) only exists because we un-
derstood the importance of SalahEldeen’s commentary and manually captured the
image. However, there is no record of the interaction in the public archives.

Other historical events have been effectively captured in the archives, such as the
MH17 crash [165]5. This is evidence that otherwise would be lost were it not for the
presence of the Internet Archive.

Jaron Lanier’s book You Are Not A Gadget [161] discusses the impacts of tech-
nology on our daily lives and on society as a whole, and his discussions are applicable
when understanding how different versions of Web resources change in meaning. He
focuses on Web services and technologies and how they impact the way we think,
use technology as a tool, and influence the experiences we have, just as emotions,
experiences, and collective information change based on how we view mementos of
the September 11th attacks.

A writer like me might choose to publish a book on paper, not only
because it is the only way to get decently paid at the moment, but also
because the reader then gets the whole book at once, and just might read
it as a whole.

When you come upon a video clip or picture of stretch of writing that
has been made available in the Web 2.0 manner, you almost never have
access to the history of the locality in which it was perceived to have
meaning by the anonymous person who left it there. A song might have

3http://ws-dl.blogspot.com
4http://www.cs.odu.edu/~hany/
5Coincidentally, during the authoring process of this dissertation on March 22, 2015, the original

New Yorker article returned an HTTP 502 error, making it unreadable (and potentially uncitable)
without access to the Internet Archive’s memento of the page at URI-M http://web.archive.
org/web/20150321182718/http://www.newyorker.com/magazine/2015/01/26/cobweb.
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(a) SalahEldeen shares news of the Egyptian Revolution on Facebook.

(b) SalahEldeen’s shared news is not available in the archives.

FIG. 3: Hany SalahEldeen’s Facebook page is not represented (i.e., not archived at
all due to Facebook’s use of the robots.txt protocol) in the archives.
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been tender, or brave, or redemptive in context, but those qualities will
usually be lost. [161]

Lanier’s commentary on an author’s choice of publication medium applies to
content authors on the Web; the original information authored on the Web is just
as important as traditional publication media. However, the content and published
work does not exist in isolation, but exists with surrounding context.

Even if a video of a song is seen a million times, it becomes just one dot
in a vast pointillist spew of similar songs when it is robbed of its moti-
vating context. Numerical popularity doesn’t correlate with intensity of
connection in the cloud. ... Context has always been part of expression,
because expression becomes meaningless if the context becomes arbitrary.
You could come up with an invented language in which the letters that
compose the words to John Lennon’s ‘Imagine’ instead spell out the in-
structions for cleaning a refrigerator. Meaning is only ever meaning in
context. [161]

Lanier mentions that the context of a Web page is dependent upon the medium,
environment, and surrounding influences to create the meaning6. In this dissertation,
we are attempting to capture this context within a static and stateless environment,
using only the factors influencing the representation Web users see. Additionally,
the pages without context are meaningless and exist as mere small nodes as opposed
to the higher-order understanding or impact of a page when viewed with context.
Lanier goes on to say:

The distinction between first-order expression and derivative... First-
order expression is when someone presents...new in the world. Second-
order expression is made of fragmentary reactions to first-order expres-
sion. [161]

This shows the need to construct pages and their content based on partial captures
(i.e., the interactive CNN.com memento composed of aggregate interactions and en-
vironmental conditions with the URI-M). Lanier explains that there are forms of
expression in which someone constructs a new, unique idea – a new concept. We

6Lanier also alludes to deferred representations (discussed in depth in Chapter 2).
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can equate a new form of expression to the first, live publication of a Web page –
this is the author’s unique, original idea being presented to the world. Lanier refers
to this as first-order expression. Figure 3(a) shows the shared first-order expression
in SalahEldeen’s post; the video that SalahEldeen shares is a first-order expression
created by the author, rather than by SalahEldeen.

Second-order expression is constructed from select components of the original
ideas. Along with the video he shared, SalahEldeen provides his commentary about
the first-order expression in Figure 3(a). In aggregate, we have additional infor-
mation regarding the first-order expression through the accompanying commentary.
This aggregate information is important to understanding the context in which Web
resources are shared and viewed – independently, the video or SalahEldeen’s com-
mentary may provide a different expression than the resources in tandem.

Deferred representations (discussed further in Chapter 2) are second-order ex-
pressions because they are composed of the original resource and are modified by
user interaction, client-side events, and other inputs beyond those which the archives
and crawlers can observe or represent. These second-order expressions are missing
from the archives.

We aim to mitigate the challenges with archiving second-order expressions – we
hypothesize that we can capture second-order expressions in ways currently prohib-
ited by the capability gap between archival tools and Web application and browser
technologies. Users can experience a content author’s first- and second-order expres-
sion, but the archives can only archive a subset of first- and second-order environment
and associated expression. We propose a framework to allow archives to capture first-
and second-order expressions.

We present Lanier’s view on information and expression as a metaphor for the
evolution of information on a Web page. Content authors create information – or
representations – and that information can exist independently or in aggregate of
additional context information, similar to a representation as it exists when first
presented to a user (first-order expression) versus when it has been acted upon by
environment variables or other client-side events (second-order expression). In this
dissertation, we present a method for crawlers to archive the second-order expressions
that are currently unarchivable at Web scale.
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1.2 #SOPABLACKOUT: A CASE STUDY

In an attempt to limit online piracy and theft of intellectual property, the U.S.
Government proposed the SOPA [310]. This act was widely unpopular. On January
18, 2012, many prominent websites organized a world-wide blackout of their websites
in protest of SOPA [86, 229].

While the attempted passing of SOPA may end up being a mere footnote in his-
tory, the overwhelming protest in response is significant. This event is an important
observance and should be represented in our Web archives. However, some methods
of implementing the protest (such as JavaScript and Ajax [103, 180], discussed fur-
ther in Chapter 2, Section 2.2.3) made some sites’ demonstrations unarchiveable by
archival services and tools at the time. We examine the Washington, D.C. Craigslist
site and the English Wikipedia page as case studies. We took screenshots of the live
protests during the protest on January 18, 2012. We took the screenshots of the
mementos on November 27, 2013.

1.2.1 CRAIGSLIST

Craigslist7 put up a splash page in protest of SOPA that would only provide
access to the site through a link that appears after a timeout (Figure 4). In order to
preserve the SOPA splash page on the Craigslist site, we submitted the URI-R for
the Washington D.C. Craigslist page (http://washingtondc.craigslist.org) to
WebCite [85], a page-at-a-time archival service, producing a memento for the SOPA
screen (URI-M 1 in Table 1), shown in Figure 5(a).

At the bottom of the SOPA splash page, there is a countdown from 10 to 1, and
then the page provides a link to enter the site. This behavior is shown in a YouTube
video at http://www.youtube.com/watch?v=QZhUN1WI6ZQ. The countdown oper-
ates properly in the memento, providing an accurate capture of the resource as it
existed on January 18, 2012, because the JavaScript enabling the countdown was
properly archived.

The countdown behavior is archived along with the page content and is available
when users view the memento. However, the link that appears at the bottom of
the screen directs the user to the live version of Craigslist. Notice that the live
Craigslist page has no reference to the SOPA protest (Figure 5(b)). Since WebCite

7http://craigslist.org/
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FIG. 4: A screenshot of the SOPA blackout on the Washington D.C. Craigslist site.
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(a) The WebCite memento of the SOPA
blackout on the Washington D.C. Craigslist
site.

(b) The link presented after the countdown
dereferences to a live WebCite resource.

(c) The Internet Archive memento of the
SOPA blackout on the Washington D.C.
Craigslist site.

(d) The link presented after the countdown
dereferences to a memento of the Craigslist
page during the protest.

FIG. 5: Mementos of the craigslist.org protest of SOPA contain evidence of the
protest and their associated targets.
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is a page-at-a-time archival service, it only archives the initial representation and
all embedded resources, meaning the linked Craigslist protest page is missed during
archiving because it did not exist until JavaScript inserted it into the representation
after the 10 second countdown after the initial page load.

TABLE 1: Replay behavior of mementos of the Craigslist SOPA protest.
ID URI-M Memento-Datetime Accuracy of Replay
1 http://www.webcitation.

org/64momE9I1
January 18, 2012 Properly archived

protest page but redi-
rects to live Craigslist
page

2 http://web.archive.
org/web/20120118050348/
http://washingtondc.
craigslist.org/

January 18, 2012 Properly archived
protest page and
redirects to archived
Craigslist page (URI-
M 4)

3 http://wayback.
archive-it.org/all/
20120119183432/http:
//washingtondc.
craigslist.org/

January 18, 2012 Properly archived
protest page and
redirects to archived
Craigslist page (ID 4
in this table)

4 http://web.archive.
org/web/20120120201008/
http://washingtondc.
craigslist.org/h

January 20, 2012 Properly archived
Craigslist page (albeit
a day later than
the actual protest,
but with identical
content)

The Internet Archive [205, 287] contains a memento of the Craigslist page on
January 18, 2012 (URI-M 2 in Table 1), as shown in Figure 5(c). The Archive-It
service also has a memento of the protest at URI-M 3 in Table 1.

The Internet Archive memento has the same splash page and countdown as the
WebCite memento. The link on the Internet Archive memento leads to a memento
of the Craigslist page (at URI-M 4 and Figure 5(d)) rather than the live version,
albeit with archival timestamps one day and 13 hours, 30 minutes, and 44 seconds
apart (2012-01-20 18:34:32 vs 2012-01-18 05:03:48).

The Internet Archive converts embedded links to be relative to the archive rather
than target the live Web. Because the Internet Archive also archived the linked page,
the user receives the proper memento with a note embedded in the HTML protesting
SOPA when clicking on the link.
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The Craigslist protest was readily archived by WebCite, Archive-It, and the In-
ternet Archive. Policies within each archival institution impacted how the Craigslist
homepage (past the protest splash screen) is referenced and accessed by archive users.
This differs from the Wikipedia protest, which was not readily archived.

1.2.2 WIKIPEDIA

Wikipedia8 displayed a splash screen protesting SOPA blocking access to all con-
tent on the site (Figure 6(a)). A URI-R replicating the protest page is still available
live on Wikipedia as of October 27, 2015, at http://en.wikipedia.org/?banner=
blackout (Figure 6(b)).

On January 18, 2012, we submitted the page to the WebCite archival service
to produce a memento (URI-M 1 in Table 2) that did not capture the splash page
(Figure 7(a)). Instead, the memento shows only the content meant to be hidden by
the splash page.

TABLE 2: Replay behavior of mementos of the Wikipedia SOPA protest.
ID URI-M Memento-Datetime Accuracy of Replay
1 http://webcitation.

org/query?id=
1326888962288259

January 18, 2012 No splash page cap-
tured

2 http://web.archive.
org/web/20120118110520/
http://en.wikipedia.
org/wiki/Main_Page

January 18, 2012 Splash page captured,
but not loaded in the
memento

3 http://wayback.
archive-it.org/all/
20120118184432/http:
//en.wikipedia.org/
wiki/Main_Page

January 18, 2012 Splash page captured,
but not loaded in the
memento

4 http://web.archive.org/
web/20120118165255/
http://upload.
wikimedia.org/
wikipedia/commons/9/98/
WP_SOPA_Splash_Full.jpg

January 18, 2012 Memento of the splash
page

The mementos captured by Heritrix and presented through the Internet Archive’s
Wayback Machine (URI-M 2 in Table 2 and Figure 7(b)) and Archive-It (URI-M 3

8http://www.wikipedia.org/



14

(a) A screenshot of the Wikipedia SOPA protest taken during the protest
in 2012.

(b) A screenshot of the live recreation of the blackout page.

FIG. 6: Screenshots of the live versions of the Wikipedia blackout in protest of SOPA.
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(a) The WebCite memento of the SOPA
blackout on the Wikipedia site.

(b) The Internet Archive memento of the
SOPA blackout on the Wikipedia site.

(c) The Archive-It memento of the SOPA
blackout on the Wikipedia site.

FIG. 7: Mementos of the Wikipedia.org protest of SOPA do not show the blackout
splash page.
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and Figure 7(c)) are also missing the SOPA splash page.
The blackout image is available in the Internet Archive, but the mementos in

the Wayback Machine do not attempt to load it (URI-M 4) because the method of
loading the splash page – JavaScript – causes crawlers and archival services to miss
the splash page. As a result, the archives do not contain an accurate depiction of
the protest by Wikipedia.

We have presented two different uses of JavaScript by two different Web sites and
its impact on the archivability (or, the ease of archiving a resource) of their SOPA
protests. The Craigslist mementos provide depictions of the SOPA protest, although
the archives may be missing associated content (i.e., second-order expression) due
to policy differences and intended use. The Wikipedia mementos do not provide
an accurate memento of the protest because they rely on JavaScript to display the
splash page. While the examples in Section 1.1 were adequately archived in 2001, the
examples in this section from 2012 show inadequacies arising in archival attempts.
This is because the archives are attempting to archive 2012 content with tools tailored
for the Web of 2001. Without a change to current archival frameworks, important
Web pages like these will continue to be improperly archived by archival institutions.

1.3 MODERN WEB ARCHIVING

The importance of Web archiving is increasing, as is the average Web user’s
general awareness of archival efforts [178] (as evidenced by recent articles in The
New Yorker [165], The Christian Science Monitor [44], NPR [306], and The Atlantic
[158]). Users are browsing specialized archives (such as the September 11th archive
[283]) and interacting with the Internet Archive. The capture and archive of Web
resources is important for historical purposes and records management compliance,
capturing information that would otherwise be lost due to the ephemeral nature of
the Web [204, 203, 285, 165].

Archives currently hold a version of the Web from the point of view of the crawlers,
not the way it is experienced by users. Crawlers are responsible for discovering and
capturing Web content. As we explore in this dissertation, crawlers are not capable
of uncovering all content because much of it is only accessible when interacting with
content using methods crawlers cannot perform.

Web crawlers operate by starting with a finite set of seed URI-Rs in a frontier – or
list of crawl targets – and add to the frontier by extracting embedded resources and
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URI-Rs in the representations returned upon dereferencing the URI-R. This allows
archival crawlers to discover embedded resources as well as new URI-Rs to crawl.
Crawlers request a page and archive the response. This pattern is fundamentally
different from how users interact with the Web, which goes beyond requesting a page
and consuming the response to interacting with, altering, and constantly consuming
the intermediate content.

The state-of-the-art crawlers, archival tools, and “major players” involved with
Web archiving include the Internet Archive’s Heritrix crawler [264, 201], WebCite,
the wget application [104], WARCreate [142, 149], WAIL [143], Archive.is [18]9, We-
brecorder.io [156], py-wayback [105], and many more. These tools are effective when
capturing single-state Web content such as HyperText Mark-up Language (HTML).
However, rapid advances in Web technologies (such as JavaScript, HTML5, Flash,
SilverLight, DHTML, and other embedded media) are transitioning Web pages (pri-
marily composed of HTML) toward Web applications or Rich Internet Applications
(RIAs) (composed mainly of JavaScript or other client-side technologies delivered
in an HTML container). Web applications are not readily archived. Web applica-
tions are tailored to users and depend on multi-state, personalized content, session
data, and user interactions to render a final representation. This topic is discussed
in depth in Section 2.3. Web applications are designed to provide content based on
user interactions and can exist in many states based on the context or environment
variables and user interactions performed.

As previously mentioned (Section 1.2), current archival tools were developed to
archive Web pages – just like the Web as it existed in 2001. These tools perform
adequately on HTML-based pages. The tools have not advanced at the same pace as
the current JavaScript-based pages that exist in the current Web, and technologies
such as JavaScript make archiving Web applications in 2015 difficult with the tools of
2001. The expected advancement of the technologies enabling Web applications will
continue to create archival challenges for crawlers without a strategy for adapting to
current and expected technological challenges.

Web pages are increasingly utilizing external data and resources to generate the
content provided to a user. When loaded into the page via JavaScript, such data
is not accessible to crawlers. Resources that operate as Web applications (such as

9During the authoring of this dissertation, the name and URI of this service changed between
Archive.is to Archive.today and back to Archive.is. As such there may be inconsistencies in the
naming conventions in the cited resources and documents.
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(a) A tweet about the importance of accessibility on the Web from multiple
clients.

(b) A tweet about Tim Bernes-Lee mentioning the detrimental impact of
JavaScript on the Web.

FIG. 8: Tweets showing the increasing understanding of archival challenges and need
for paradigm shifts in archiving.

social media sites) that are generated by technologies such as JavaScript are typically
difficult – or impossible – for crawlers to capture properly, including for archival
purposes. As a result, many historically significant artifacts are being lost because
of the ephemeral nature of Web data [254, 21, 52].

Even those artifacts we currently view as ephemeral and largely unimportant
have significant cultural and historical value. Advertisements embedded in Web
pages may seem unworthy of archival efforts, but vintage ads – by today’s standards
– are considered valuable for cultural analysis as well as informational importance.
For example, an analysis of cigarette ads from the 1920s shows a change in the health
perception of cigarettes over time [304], and an investigation of ads from the 1800s
through the 1980s shows the evolution of consumer behavior [114].

Current Web archives contain the view of the Web from the point of view of
Web crawlers. Web crawlers and Web users experience the Web differently; the gen-
eral use-case for crawlers involves dereferencing a URI and capturing the payload
returned (e.g., HTML Document Object Model (DOM)), while Web users use Web
browsers to dereference the URI, render the payload returned, and interact with a
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representation10. Web crawlers experience the Web spatially (navigating between
different URIs) and temporally (experienced at different times), while users experi-
ence the Web with the added dimension of environment variables, interactivity, and
with stateful client-side representations in the browsing experience.

Web technologies are used to improve or enhance the user’s experience, but
crawlers have not kept up with changing Web technologies to effectively archive
interactive, deferred representations that users experience and have come to expect.
Such Web applications rely on data and environmental variables (such as user in-
teractions, GeoIP, or composite data) to construct state transitions on the client
and reach a final representation; crawlers cannot replicate this behavior (described
in Figure 8(a)). In short, Web crawlers do not have the ability to archive deferred
representations (that is, representations constructed by JavaScript; we discuss this
concept in depth in Chapter 2) automatically and at Web scale.

1.4 RESEARCH QUESTIONS

Our goal is to address the divide between what Web users see and what crawlers
can archive by mitigating the impact of client-side technologies on archivability. In
this dissertation, we define a framework for identifying, recording, and archiving the
user experience and context of Web pages. We establish a foundational understanding
of the archival challenges created by JavaScript11 and other client-side technologies
as well as the extent to which these technologies impact the archives. We propose a
framework for mitigating the negative impact of JavaScript on the archives, measure
the performance of the framework, and provide an analysis of the improvement that
the archives can expect if implementing this framework.

Our proposed framework will improve automatic Web archiving by memory insti-
tutions like the Internet Archive, as well as improve information retrieval efforts by
automatically detecting and uncovering deferred representations. This will mitigate
the impact of JavaScript on the Web archives.

The research in this dissertation addresses the following questions to understand
the current challenges and to better construct a framework to solve them:

10We discuss dereferencing URIs in Section 2.1 and the process of using a crawler to archive the
Web in Section 3.1.

11We discuss JavaScript in Section 2.2.3.
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1. To what extent does JavaScript impact archival tools?

Before discussing a framework for archiving deferred representations, we
measure the correlation between the increased historical adoption of Java-
Script as a method of loading embedded resources and missing embedded
resources in the Internet Archive. We also measure how JavaScript im-
pacts the wget, WebCite, and Heritrix archival tools. In short, we provide
evidence of the extent of archival challenges JavaScript creates as well as
detail the impact it has on archival tools (Chapter 5).

2. How do we measure memento quality?

We show that the simple calculation of the proportion of missing to suc-
cesfully dereferenced embedded resources in a memento does not match
Web users’ perception of memento quality. To resolve this discrepency,
we identified a more effective measurement of memento damage that more
closely aligns with users’ perception of quality. With this work (Chap-
ter 6), we provide an improved method of evaluating memento quality.
We also identify leakage and treat leaked embedded resources as missing
since they are not archived and lead to temporal inconsistencies. We also
show that mementos of deferred representations have lower quality than
mementos of nondeferred representations.

3. How can we crawl, archive, and play back deferred representations?

We propose and measure a two-tiered approach for crawling deferred rep-
resentations using Heritrix and PhantomJS (Chapter 7). We measure the
performance impacts and improved crawler frontier size of the two-tiered
approach. We also investigate methods of reducing crawler overhead by
classifying deferred representations based on their DOM and only crawl-
ing deferred representations with slower but more accurate technologies
such as PhantomJS. We propose a framework of methods for discover-
ing and archiving client-side states in deferred representations (which we
term descendants) by mapping interactive DOM elements to client-side
state within representations, enabling crawler interaction with the rep-
resentations, and understanding how to archive and replay the resulting
descendants.
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By answering these three research questions, we can mitigate the impact of Java-
Script on archive quality and improve archival strategies to move closer to archiving
the Web that users experience rather than the Web that crawlers experience.

1.5 DISSERTATION ROADMAP

Before discussing our specific work toward establishing the framework, we explore
the evolution of Web technologies (e.g., from HTML to JavaScript) and the operation
of the Web (Chapter 2), and discuss the work performed by prior researchers that
provided the foundation for our work (Chapter 3). We also discuss our preliminary
work toward understanding the challenges that arise when the deferred representa-
tions (defined in Section 2.2.3) are archived by automatic crawlers and are replayed
incorrectly as mementos, and the important history that is being lost as a result of
the continued adoption of JavaScript (Chapter 4).

Our work toward establishing a framework to help improve the ability of Web
archives to capture and store Web pages begins with an analysis of how today’s Web
crawlers are failing to archive Web pages that rely on JavaScript. We discuss the
archival challenges introduced by JavaScript and measure the correlation between
the completeness of Web archives and the adoption rate of JavaScript. Through this
analysis, we establish and measure a major challenge facing today’s Web archives
(Chapter 5), as well as answer Research Question 1 by measuring the impact of
JavaScript on Web crawlers.

With the extent of the problem measured, we construct a method of quanti-
tatively measuring the quality of an archived page and, therefore, the collections
within an archive to answer Research Question 2. We compare our methodology
to the qualitative and quantitative metrics used by archives during their quality as-
surance evaluations, and show that our measurement more closely aligns with what
Web users consider to be higher quality. We also demonstrate that archived Web
pages that leverage and rely on JavaScript have more damage (i.e., are of a lower
quality) than those that do not rely on JavaScript, further establishing the need for
an archival framework to crawl and archive Web pages that use JavaScript (Chapter
6).

To begin the discussion of our proposed framework, we propose incorporating
new technologies called headless browsers into the archival workflow to mitigate the
impact of technologies such as JavaScript on the automatic archival crawlers. We
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measure the performance (i.e., run-time and ability to archive JavaScript-dependent
Web pages) of a traditional Web crawler as-is and compare it to its performance (i.e.,
discovered frontier size) when incorporating the headless browser. We also propose
a classification method to limit the use of the headless browser to only the archival
targets for which it is needed. We also measure the amount of interaction within a
Web page that is currently invisible to the archival crawlers and propose a method
of interacting with and archiving the resulting discovered states of Web pages. We
show that this improves archival coverage and completeness and partially answers
Research Question 3 (Chapter 7).

Finally, we tie these areas of research together with a two-tiered crawling approach
that mitigates the impact of JavaScript on the archives (Chapter 7.2), completing our
answer to Research Question 3. We discuss its proposed operation and impact on the
archives and conclude with a summary of our findings, future work, contributions,
and conclusions (Chapter 8).
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CHAPTER 2

BACKGROUND

In this chapter, we briefly introduce a set of topics and concepts necessary to
fully understand the preliminary work and proposed framework. This section should
be read as a primer to the background information needed to discuss the framework
and how it was conceived.

2.1 WEB ARCHITECTURE

Tim Berners-Lee’s Web [34] revolves around client-server interactions. His con-
tributions made global and distributed access of content possible. His contributions
eventually evolved from a read/write model (similar to a file system) to the protocols
that are observed today in the World Wide Web (WWW). It is necessary to discuss
standard client-server interactions in order to understand how these interactions are
manipulated to get static and dynamic content and why some of these resources are
more easily archived and shared than others.

The overarching purpose of a client-server transaction is to allow a user to request
that a server transmit data across a computer network. The most common client-
server relationships exist in the context of the WWW over the HyperText Transfer
Protocol (HTTP) [93]. This is not the only client-server system, but, for the purposes
of this dissertation, we will almost exclusively refer to the specific communication
between clients and servers over HTTP. Traditionally, human Web users interact
with the Web through a Web browser such as Internet Explorer [198], curl [277],
Firefox [95], or Chrome [109]. These interfaces provide a mechanism for graphically
interacting with the Web by generating the requests and handling the responses to
and from Web servers, essentially making them a wrapper for HTTP transactions
and obfuscating the transaction from users. The representation is rendered from
machine-readable code (such as HTML) into a form consumable by the human users.
A local tool to access servers and therefore Web content is referred to as a client (or
user-agent in HTTP). The client-server interaction is incredibly powerful due to the
flexibility of the parameters – or header fields [93] – that are allowed and handled in
each message.
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FIG. 9: An example from W3C of the URI-representation-resource relationship [135].

Universal Resource Identifiers (URIs) identify Web resources [298, 35, 38, 36]. A
user-agent can dereference a URI [298] to receive a representation of the resource
identified by its URI. In an example from the World Wide Web Consortium (W3C)
[135] in Figure 9, we see that the Oaxaca weather report (the resource) is identified
by its URI, and its state at the time of dereferencing its URI is represented by a
document in XHTML markup (the representation).

When the URI is dereferenced, the representation is returned to the user-agent
(e.g., a browser). This representation could be, for example, HTML, PDF, a Mi-
crosoft Office Document, or multiple formats may be available simultaneously. The
user-agent conveys the user’s preferences to the server and allows the server to take
these preferences into consideration to provide the most appropriate representation
of a resource to the requester [297].

HTTP defines a set of “methods” for client-server interaction. The HTTP GET
method is used to retrieve representations of resources. To retrieve representations
of Web resources, a client issues a GET request to the server for a particular resource
identified by a URI. An example HTTP Request is provided in Figure 10. As observed
in this transaction, the client issued a GET request (using HTTP 1.1) to the server,
and the server responded with a 200 OK response and content. The response from



25

1 GET / HTTP/1.1
2 Host: www.justinfbrunelle.com
3 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:26.0)
4 Gecko/20100101 Firefox/26.0
5 Accept: text/html,application/xhtml+xml,application/xml;
6 q=0.9,*/*;q=0.8
7 Accept-Language: en-US,en;q=0.5
8 Accept-Encoding: gzip, deflate
9 DNT: 1

10 Connection: keep-alive

FIG. 10: A HTTP GET Request for http://www.justinfbrunelle.com as captured
by Mozilla FireFox.

the server is provided in Figure 11.
There are several potential header strings that the client may provide, such

as user-agent (which declares the browser or browser-equivalent the requester
is using to perform the communication; Line 3, Figure 10), accept-language

(which sets the preferred language for the representation; Line 5, Figure 10), and
if-modified-since (which specifies a threshold condition under which the content
is or is not returned; not shown in Figure 10). The server receives these values and de-
termines what representation to return. The server responds to a HTTP request with
a code specifying the status of the request (i.e., 200 OK for successful requests (Line
1, Figure 11) or 404 – Not Found when the requested resource is not available),
accompanying headers, and returned representation. Server responses can include
headers such as last-modified (the last time the entity was changed on the server;
not shown in Figure 11). Entity headers describe the entity such as content-length
(the size of the transferred entity; Line 5, Figure 11) or content-encoding (the
encoding/compression method used to encode the entity; not shown in Figure 11).
Entity headers can be provided in either the request (when the client is sending an
entity) or response header (when the client is receiving an entity).

Berners-Lee defined time-generic resources as those that will evolve and change
over time [35]. Time-specific resources are resources whose state does not change.

Representations correspond to the state of a resource. If a resource changes state,
the representation changes to reflect to new state (shown in Figure 9). Dereferencing
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1 HTTP/1.1 200 OK
2 Date: Mon, 30 Dec 2013 15:57:27 GMT
3 Server: Apache
4 Accept-Ranges: bytes
5 Content-Length: 1737
6 Keep-Alive: timeout=15, max=100
7 Connection: Keep-Alive
8 Content-Type: text/html
9

10

11 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
12 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
13 <html>
14 ....
15 </html>

FIG. 11: The HTTP Response for http://www.justinfbrunelle.com as captured
by Mozilla FireFox.

a URI is a stateless transaction that returns a representation of a resource at a point
in time. That is, the same resource can be accessed by different platforms (e.g.,
mobile, desktop) or environments (e.g., preferred English language, preferred French
language, preferred MIME-type), and the appropriate representation is returned.
This is a process called content negotiation (see Section 14 of RFC 2616 [93], in which
multiple kinds of content negotiation are defined). In short, content negotiation is an
agreement between a resource provider (e.g., server) and requesting user (user-agent)
to return the “best” possible representation of a resource1. In content negotiation,
the server will interpret the user-agent field (and various other Accept headers) in
the HTTP header and provide the best (or desired) representation, accordingly; this
is a server-side activity, not a decision made by the client2.

Recent technologies (described in more detail in Section 2.2) have enabled rep-
resentations to change outside of the bounds of content negotiation such that repre-
sentations change based on client-side events occurring after the initial HTTP GET

1The principles of content negotiation relate well to Lanier’s notion of context.
2RFC 2616 also defines client-driven content negotiation such as prompted actions by the user

(e.g., “Select preferred language”).
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transaction performed when dereferencing the URI; the server no longer has com-
plete knowledge of the representation seen by the user at the time of dereferencing.
These technologies allow for personalization and for stateful client-side representa-
tions to become more like Web applications. The migration from Web resources to
Web applications is the foundational challenge we address in this dissertation (listed
as Research Question 3 in Section 1.4): how can the archives adapt their approach to
archiving to better archive Web applications that leverage client-side technologies?

2.2 FROM HTML TO RICH INTERNET APPLICATIONS

The evolution from static Web pages to Web applications has made the Web
resources capable of being more personalized and dynamic. Web users have come
to expect Web pages to provide personalized and interactive representations [30]. It
has also changed the nature of the client-server interactions discussed in Section 2.1.
This section briefly describes how these Web technologies have evolved.

2.2.1 HTML

Traditional Web development is done using HTML, which was the de facto lan-
guage of Web representations during the development and growth of the WWW.
HTML, a markup language (as the name suggests), exists in a static format in which
the HTML page is a representation of a resource that the browser renders. Markup
in a Web page can include colors, images, text size and format. Images, Cascad-
ing Style Sheets (CSS), and other Web native resources can be included in pages
to enrich the user’s experience, and we refer to these as embedded resources. Pages
written in the same HTML result in identical DOMs. The HTML DOM is the tree
representation of the tag elements in a page’s HTML. An example DOM is listed in
Figure 12(b) for the code listed in Figure 12(a).

The user-agent (e.g., Mozilla Firefox and Google Chrome browsers) renders the
DOM visually for the user. This DOM changes neither in value nor representation
during the session. Upon calling a new page, the browser interprets the representation
to display the new DOM. It is clear that the representation and content only changes
when a content author changes the DOM delivered from the server. This ensures that
user interactions remain constant when accessing representations by URI. Effectively,
the same HTML, image, stylesheet, and other documents combine for the same
representation between user accesses.
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(a) The HTML code for the default
page.

(b) An example HTML DOM for a de-
fault page

FIG. 12: The DOM is a tree representation of the HTML.

The single-state nature of HTML lends itself well to caching, assuming the re-
source does not change state. Because the content is static and only requires the
DOM to render the representation, the browser can faithfully cache the page con-
tents and present the cached copy to the user; the DOM, embedded resources, and
URI are necessary to provide an accurate cached reproduction of the page. Similarly,
Web crawlers can easily reach and extract the content from the page, placing it on
the surface Web [32]. HTML-only resources are indexable by search engines and
can be archived with extremely high fidelity due to their consistent single state in
time. It is (relatively) trivial to record the state of an HTML-only page because the
representation does not change after it is dereferenced by the client. These points
should be intuitive, but they are important to establish for reference and comparison
in future sections of this dissertation.

2.2.2 REST PRINCIPLES

The concept of Representational State Transfer (REST) was proposed by Roy
Fielding in his dissertation [94]. His propositions include a method of referencing re-
sources as concepts and allow the server and client to negotiate on the representation.
REST allows resources to exist independently of their representations. Essentially, a
URI should identify a particular resource. Requesting and dereferencing a different
URI is a stateless activity, meaning dereferencing a URI depends only on the HTTP
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request (including the target URI) and not client state. As such, dereferencing the
same URI with the same HTTP request and environment variables (such as those
that will lead to content negotiations) at the same time from two separate user-agents
should provide the same representation.

REST also relies on the URI to provide any information the resource needs to
generate the desired state or representation. That is, the client should not need to
store any state or data in order to provide a representation. Further, this assumes
a representation of a resource can be cached by URI, or even stored “offline.” The
state displayed is in the perpetual now. For example, we can provide an identifier of
Justin F. Brunelle’s homepage http://www.justinfbrunelle.com/ that is always
current at dereference time and provides a representation of Justin’s homepage. The
browser and server negotiated on the format of HTML for this representation.

REST and RPC/SOAP are two competing models. Remote Procedure Calls
(RPCs) in Simple Object Access Protocol (SOAP) [299] use HTTP to perform actions
on behalf of a client. However, RPCs communicate system state and environment
features through the payload – or envelope – of the HTTP request. This could be a
POST with associated XML information that is sent to the server by the requesting
user [270]. In RPC, users reference resources to perform actions rather than using
HTTP to perform actions on the resources themselves.

2.2.3 JAVASCRIPT AND AJAX

HTML alone is insufficient for providing the functionality and interactivity that
modern Web users have come to expect [111]. Web documents have migrated from
static, single state documents to dynamic RIAs. By incorporating JavaScript, pages
are becoming more like desktop applications than their single-state, HTML-only pre-
decessors. JavaScript is a programming language that enables client-side state tran-
sitions and multi-state representations dependent upon external resources or user in-
teractions [98]. Client-side scripting languages run on the client (e.g., in the browser)
and can change, add, and request new content after the original representation is de-
livered by the server. Such technologies and languages have emerged and are now
essential to increase the functionality and capabilities of client-side Web pages.

JavaScript is a client-side programming language that enables scripting-style and
object-oriented programming from within an HTML page. JavaScript can be embed-
ded in HTML pages using the <script language="JavaScript"> tag. JavaScript
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FIG. 13: Normal request-response interaction between client and server for a resource
R.

can exist embedded in the page as well as be loaded from an external file. The
embedded code has nearly limitless capabilities; JavaScript can communicate with
servers, the browser, redirect to or call other URIs, interact with the server- and
client-side data (including cookies and session information), and interact with the
DOM. JavaScript uses an asynchronous, event-driven operation style; code and func-
tions are executed at the occurrence of events. The source of these events can vary,
including the invocation by user or server actions. Embedded code can also execute
when a page loads or a server issues a command.

Normal browsing sessions occur as depicted in Figure 13. The browser issues an
HTTP request for a resource, and the server provides the resource to the browser.
The browser then renders the representation. However, when requesting an interac-
tive resource, the browsing session will make an initial HTTP request for the main
content, followed by several requests for embedded resources. The page is then ren-
dered in the browser. Then, the JavaScript embedded in the page makes additional
requests to (or passes and receives data to and from) the server for additional content
using a technology called Ajax3, which is a set of interconnected technologies first
introduced in 2005 and achieves what was previously known as Dynamic HTML.
This content is only retrieved after the main page content is rendered. Figure 14
illustrates this alternate sequence.

JavaScript is interpreted by a JavaScript engine embedded in the Web browser.
3For the purposes of this dissertation, we refer primarily to JavaScript with the understanding

that Ajax may be responsible for initiating requests for embedded resources.
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FIG. 14: Request-response interactions between client and server and page and server
for resource R and embedded content.
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Extending the previous example of a local page (Figure 12(b)), we provide an example
DOM with embedded JavaScript (Figure 15(a)). When the JavaScript runs on the
client (Figure 15(c)), an event fires on the client and can execute a change of the
DOM. The event and associated changes are outlined in a red rectangle.

JavaScript can redirect the browser to new URIs, resize the window, and control
the browser’s appearance and capabilities (such as menus, URL bar, and printing
capabilities). More importantly, JavaScript has the capability to modify the local
DOM. This can include anything from reading, validating, or modifying user input
into the local DOM elements and forms to adding style sheets to directly modify-
ing the DOM. JavaScript can add, remove, and change existing HTML elements.
This allows an event (triggered automatically or by user action) that will change the
representation content, or meaning, of the loaded client-side page. The interaction
between the user and the client-side resource is made possible by Ajax. Ajax allows
client-side Web resources to interact with a server to request data after an initial
load of the HTML enabling communication and data transfer to and from the server
through the HttpRequest and HttpResponse objects. These objects allow the data
necessary for the application to run to be delivered by the server at run-time to the
client incrementally. As such, the URI for the page can lead to different representa-
tions dependent upon user interactions, data from the server, or session data.

In an Ajax application, the process of displaying content begins just as a normal
Web interaction: the page is loaded and the content is printed to the screen for the
user. In addition to the static content, the JavaScript code is loaded. Additional
events may be fired as a result of page loads or user interactions (See Figure 16 to see
the sequence of events). These events may use Ajax to request and receive additional
resources from the server. The representation is returned by the server and handled
by client-side JavaScript code. There are benefits and drawbacks of utilizing Ajax.
The user will gain interactivity through this method – as well as the ability to stream
data in the background – but will lose traditional use of the back button and URI to
identify the page state. Similarly, users cannot bookmark representations that result
from such events. These events create a potentially infinite number of client-side
states that we refer to as descendants (discussed further in Chapter 7). Crawlers and
archivists cannot feasibly capture each state using current Web-scale archival tools.

Figure 17 outlines the role Ajax plays in loading a resource like Google Maps.
When a crawler fetches a Web page (1), it waits for the page and all of the embedded
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(a) The example DOM, with embedded
JavaScript

(b) The DOM of a page before the embedded
client-side JavaScript code executes.

(c) The DOM for the default page after
the JavaScript has executed.

(d) The DOM of a page after the embedded client-
side JavaScript code executes changing the text
within a DIV and include a new span element.

FIG. 15: JavaScript can interact with the local DOM when executed.



34

FIG. 16: Events occur on the client, and can cause JavaScript to execute and modify
the client-side DOM.

resources to load to consider it fully rendered. At this point, the crawler preserves
(2) all of the content on the Web page (A). After the page has loaded, the page can
request further resources (3), even without user interaction. The resource is then
returned to the Web page to be rendered (4), producing the final intended result
(Ab). Because the crawler preserved the page prior to the page being fully loaded,
the secondary content is not preserved and the archived version of the Web page is
not complete.

This can result in a large number of states that the client-side representation can
take, introduced below; note that the DOM is not final until rendering occurs. We
take the example of Google Maps [110]. Google Maps can take on several represen-
tations (i.e., have multiple descendants) based on user interactions, such as zooming
or navigating, or data from the server, such as traffic data. For example, we can
modify the route from MITRE’s Langley site in Hampton, VA, to the Headquarters
in McLean, VA, during a client-side session. This modification is identified by the
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FIG. 17: Ajax interactions modify the DOM after the original page load.

same URI for each descendant, as seen in Figures 18(a) and 18(b). Without equip-
ping archives with the capability to differentiate between the descendants, collisions
in the archives may occur [145].

Web users expect the increasing functionality from Web resources that is offered
by technologies such as JavaScript and Ajax. Social networking sites, such as Face-
book and Twitter, are prime examples of sites that personalize content through Ajax
after an initial page load. These sites are difficult to share across users and browsing
sessions due to their stateful construction and our inability to adequately represent
(or index) the state using current URI parameters.

To accurately discuss the target of this proposal, we define deferred representa-
tions as representations of resources that use JavaScript and other client-side tech-
nologies to load embedded resources or fully construct a representation and, there-
fore, have low archivability. Deferred refers to the final representation that is not
fully realized and constructed until after the client loads the page and executes the
client-side code. The client will render the representation, which is dependent upon
environment variables (e.g., the user-agent), as well as user interactions and events
that occur within the representation on the client. The final representation is de-
ferred until after the user-agent, environment variables, JavaScript, and user events
complete their influence on the resource. From this point forward, we will refer to
representations dependent upon these factors as deferred representations. Descen-
dants are the newly constructed representations that change as a result of Ajax and
JavaScript. Descendants are more formally defined in Chapter 7.
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(a) The original route from Hampton to McLean, as suggested by Google Maps

(b) A modified route from Hampton to Virginia, resulting from user interactions during
the same session

FIG. 18: Google Maps is a Web application that changes as a result of user interac-
tions. Changes are outlined in red annotations. Note that the URI does not change
as a result of the interactions.
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2.2.4 PROGRESSION OF WEB LANGUAGES

Programmatically constructed Web pages are not a new concept. However, the
difficulty of archiving programmatically constructed Web pages has increased with
the movement of the representation construction from the server to the client.

Web servers deliver representations of Web resources to a requesting user-agent.
Traditionally, the resource exists as a document on the server and the document is
delivered as-is by the server to the client. Server-side programming languages (e.g.,
the PHP language4) can build a representation based on available parameters, server-
side data (e.g., a database), or the current state of the server. In the case of PHP, the
page is constructed on the server in its entirety before transmission to the client and,
only after construction, is delivered to the client. We refer to these representations as
server-side dynamic because they can be constructed on-demand at the server before
sending the representation to the user-agent. Representations can also be delivered by
the server to the client and then change or be constructed on the client using scripting
languages like JavaScript. Once the client renders the representation, the scripting
language will execute, potentially causing the representation to morph on the client
with or without subsequent requests to a server for additional representations. We
refer to these representations as client-side dynamic because they can be constructed
at render time on the client. Both of these classifications of dynamic representations
allow for personalized content (e.g., “Welcome, Justin” or layout preferences).

The two design paradigms can be embodied and compared by the LAMP5 (Linux
Apache MySQL PHP) stack vs the MEAN6 (MongoDB Express AngularJS Node.js)
stack. The LAMP stack places the responsibility of constructing a representation
on the server using a combination of the Apache server using PHP to build a repre-
sentation with the help of a MySQL database, while MEAN shifts the responsibility
of constructing a representation to JavaScript and the client using a combination of
Node.js on the server and AngularJS on the client. This shift in design paradigm is
made possible by the adoption of client-side JavaScript and also embodies the shift
in reliance from server-side to client-side technologies to build representations. The
disconnect between the types of dynamism and personalization in Web resources
makes discussing the nature of change and content generation difficult. However,

4http://php.net/
5http://en.wikipedia.org/wiki/LAMP_(software_bundle)
6http://mean.io/#!/



38

the client-side dynamism enabled by JavaScript is a primary archival challenge as
JavaScript’s adoption increases in prevalence.

As noted by David Rosenthal in his blog [245], HTML5 allows Web pages to be
deployed with a programming language instead of a markup language. For exam-
ple, multimedia can be delivered from containers within a page instead of having
to be loaded from JavaScript. While JavaScript can load entities external to the
client, HTML5 selects what representation to provide based on the entities on the
client or information in local storage (this storage is inaccessible to today’s archival
tools). JavaScript and Ajax had previously been the only technologies available that
enabled run-time loading of content or inclusion of multimedia resources; HTML5
provides these functionalities natively. As Web browsers begin to adopt HTML5, the
prevalence of the unarchivable representations will increase [246], but the features of
HTML5 make traditional archival methods insufficient for accurate archiving.

HTML5 is the next approved iteration of the HTML standard. HTML5 builds in
dynamic behavior natively that has been traditionally provided by Flash, JavaScript,
and other scripting and multimedia technologies. That is, the DOM can be designed
to change upon user interactions rather than be acted upon by an external script
or allowing for external content to be loaded into the client-side DOM without the
use of embedded or external scripts [25]. Specifically, HTML5 can access client-
side databases and even allow user interactions with 3D visualizations. HTML5 has
the ability to record and read client-side state [300]. However, this can only be
performed when the code understands how to do so; the client must render the state,
not dereference it.

Extending the example in Figure 15, we take the same DOM in Figure 19 and
show the code and associated impact on the DOM. In this example, HTML5 reads
markup from local storage and modifies the DOM to reflect the storage contents.

HTML5 is also implementing features that allow client-side state to be shared
and captured through the history application programming interface (API) [33]. The
history API uses JavaScript to establish client-side state and save the state in local
storage. The API allows the client to specify a desired state in the HTTP request
header.

Just as the mobile computing field began with personal digital assistants (PDAs)
and other limited-capability devices, HTML began as a very basic method of rep-
resenting Web resources. As mobile computing advanced, features that were once
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(a) The example DOM in HTML5. (b) The HTML5 markup of the page.

FIG. 19: Extending the example in Figure 15, HTML5 can read from load storage
and modify the DOM.

provided as external and separate services (GPS, Web browsing, telecommunica-
tions and WiFi, etc.) became native to the devices as users demanded more of
them [17, 269]. Similarly, as users expect more personalization of their Web content,
HTML is progressing to meet those demands with native multimedia, client-side
control of the DOM, and multi-state client-side representations. Mobile devices are
advancing beyond the traditional PDAs, smart phones, and tablets to wearable and
embedded devices. Similar to the advancement from limited functionality devices to
highly functional, highly personalized devices, we can expect HTML to continue its
advancement beyond HTML5, continuing the trend of personalized Web resources.
As such, archival methods and frameworks must adapt with the technology to remain
able to effectively archive resources.

2.3 TRENDING TOWARD THE DYNAMIC WEB

As the Web becomes more dynamic, archivists are realizing the importance of
evolving to overcome this added challenge to Web archiving. In a workshop focused
on current and future archiving to keep up with change with the Web, the Interna-
tional Internet Preservation Consortium (IIPC) discussed the evolution of the Web
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FIG. 20: Resources are using more JavaScript to load embedded resources over time
(Figure from [52]).

[9]. As the Web evolves, archivists need to develop new tools and technologies to
modernize the archival process and keep up with the changing Web [228]. Archivists
and digital librarians have discussed the impact of the evolving Web on archiving, as
well as the trends influencing the future difficulties archivists will need to overcome.

Representations that are dependent upon JavaScript and user interaction are
increasing in prevalence and archival impact. In a previous work [52], we observed
the embedded resources loaded from a set of mementos from 2005-2012 to determine
how many resources are being loaded from JavaScript. As shown in Figure 20,
more resources are using JavaScript to load embedded resources over time. In 2005,
39.7% of mementos in our collection used JavaScript to load at least one embedded
resource; this trend increases to 54.5% of the collection using JavaScript to load at
least one embedded memento in 2012. That is an increase of 14.7% of resources using
JavaScript between 2005 and 2012.
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A more fundamental change in Web language is also occurring. Rosenthal men-
tioned that HTML5 (discussed in detail in Section 2.2.4) is changing the native
language of the Web from HTML to JavaScript [245]. This is a movement from
single-state content to a program delivered in the same container. The Web is mi-
grating toward more complex, more interactive resources reliant on their environmen-
tal context and representations with a movement away from documents constructed
with HTML in favor of programmatic JavaScript-enabled applications. Similar pro-
gressions have occurred in the history of Computer Science, such as the progression
from vacuum tubes to microprocessors and the reliance on mainframes or supercom-
puters to the prevalence of personal computers. As Rosenthal notes, the migration
from documents described by HTML to applications developed with programming
languages is making preservation of the Web more difficult because crawlers are be-
coming less effective at collecting representations of resources; a representation may
no longer be discoverable by crawlers through the sole action of following links but
only by initiating events and changing environmental perspective.

2.4 HASHBANG URIS

HashBang URIs are a method intended to allow client-side representations to
be identifiable and sharable [281]. HashBang URIs identify client-side state in the
URI. That is, they specify the information needed to dereference (and render) the
target representation. However, Web pages began using Hashbang URIs in 2011
and their use has tapered over the years; they are still important to understand as
part of previously popular methods of identifying client-side representation state.
Traditionally, hash URIs, or fragments, are used to identify a part of a retrieved
document or identify an offset to be applied by the user-agent, the nature of which
is determined by the document’s MIME type. To represent the state of a Web
application, HashBang (#!) URIs identify a representation of a resource generated
by JavaScript. An example HashBang URI used by Jeni Tennison [281] is

http://lifehacker.com/#!5770791/top-10-tips-and-tricks-for-making-

your-work-life-better

and uses the HashBang to give JavaScript a parameter

5770791/top-10-tips-and-tricks-for-making-

your-work-life-better
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indicating that it should redirect the browser to the proper resource. The client
will read the hash portion of the URI and either redirect the client to the proper
resource or use the provided information to generate the representation by changing
the client-side state. This is in direct contrast to a URI specifying a server-side state
through traditional parameters:

http://lifehacker.com/?_

escaped_fragment_=5770791/top-10-tips-and-tricks

-for-making-your-work-life-better

The server reads the parameters specified after the ? and generates (or chooses)
the representation during the dereferencing process. The client does not process
these parameters when constructing the representation since the client can rely on
the server to provide the state.

Without the HashBang URI the browser would provide the following data in a
POST to http://lifehacker.com/index.php?_actn_=ajax_post [301]:

op=ajax_post

refId=5770791

formToken=d26bd943151005152e6e0991764e6c09

HashBang URIs are Google’s convention for standardizing the mapping of client-
side state in the URI. URIs follow the syntax defined in RFC 3986 [38]. Google’s
HashBang allows state to be communicated when dereferencing a URI with a rep-
resentation dependent upon client-side code. However, this relies on the client-side
code to understand how to interpret the URI when a request is received. HashBang
URIs can identify subsets of Web documents, identify the state and the representa-
tion of a resource, and also capture the state generated from user interaction and
streamed content. If the resource follows Google’s proposal [108], the Website also
commits to making that content available through an equivalent base URI with an
_escaped_fragment_ parameter (e.g.,

?_escaped_fragment_=5770791/

top-10-tips-and-tricks-for-making-your-work-life-better

as shown previously).
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HashBang URIs allow servers to cache content, crawlers to index content, and
users to utilize the back button, bookmark features, and represent the client-side
state in the URI. Additionally, since each state can be modeled with a different URI,
the back button and bookmarking becomes relevant in the discussion of navigating
content in a Web composed of stateful, deferred representations. State can conceiv-
ably be shared between users using a HashBang URI. However, this assumes the
data that has generated the document remains constant, as well as the client’s un-
derstanding of how to interpret the HashBang part of the URI. These assumptions
restrict the usage of the documents to only the systems in which all participants
understand the implementations.

Despite the HashBang URI advancement in state representation, there are still
issues in the reading and archiving of content represented by HashBang URIs. The
content is still JavaScript-dependent, and the resulting representations are often de-
ferred. The browser relies on JavaScript and similar technologies to generate the rep-
resentations in accordance with the HashBang URI. Additionally, HashBang URIs
are not widely implemented by popular sites. Screen scraping and other methods of
interpreting content are unsuitable for gathering the expected static content normally
provided by Web pages.

2.5 TRENDS IN WEB ARCHIVING

Whether considering the Web viewed from mobile devices or the linked data Web,
it is evident that there is more than “one Web” that needs to be archived. As we have
mentioned in this dissertation, a key challenge in today’s Web archiving is replaying
representations that users experience rather than the representation given to crawlers
when URI-Rs are dereferenced. However, the nature of Web archiving – a crawler
or other agent capturing representations and storing them out of their native, live
environment (what Lanier refers to as a first-order expression (Section 1.1)) – can
remove the linkages that exist on the live Web. Not only do multiple Web archives
exist with varying focuses or specializations, but there are also different types of
“Webs” that exist within the live Web (e.g., the mobile and linked data Webs) that
have linkages that are lost during archiving. These linkages establish the context of
a resource, and are important to second-order expressions.

The Memento Framework (Section 2.5.1) more closely integrates the archived and
live Webs to help users discover, navigate to, and browse mementos based on their
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live Web counterparts. Memento provides a tighter coupling of the live and archived
Webs, as well as links the known Memento-compliant archives together.

Similarly, linkages between desktop versions of pages (i.e., the representations
users see when visiting a page on a traditional browser) and their mobile versions
(i.e., the representations users see when visiting a page on a smaller-form device,
such as a smart phone) exist on the live Web but might be either not discoverable
by crawlers or lost during archiving. Archivists are placing an increased emphasis
on archiving the mobile Web and maintaining the linkages between the desktop and
mobile Webs in the archives (Section 2.5.2). Linkages and relationships between
information resources may change over time, and Memento helps establish temporal
linkages between the resources [294, 290].

Memento and the ongoing efforts to archive the mobile and linked data Webs are
indicative of a trend in Web archiving to provide better tools to Web users as well
as to increase the ease-of-discovery and coverage of mementos in the archives [8].

2.5.1 MEMENTO

The Memento Framework [292, 206, 294, 293] enables Web browsing and navi-
gation in the temporal dimension by aggregating the mementos of a resource from
known archives. Live Web resources exist in the perpetual now, meaning changes to
resources overwrite older versions. Memento bridges the gap between the live and
archived Webs through content-negotiation and links. The accept-datetime HTTP
header enables temporal content-negotiation and allows Memento-compliant servers
to return a memento with the desired memento-datetime (the archival time). In
other words, Memento allows the client to request a prior version of a resource.

In Chapter 1, we defined the terms original resource, memento, and TimeMap
(identified by URI-R, URI-M, and URI-T, respectively). Original resources are the
live Web versions of a resource, and a memento is the archived version of a live Web
resource. A TimeMap is a machine-readable list of URI-Ms of a URI-R and are
available for specific archives (e.g., all mementos of a resource from only the Internet
Archive) and all archives (e.g., all mementos of a resource from all known archives).

Figure 21 illustrates the Memento Framework. Memento-compliant URI-Rs will
return an HTTP Link Header to its TimeGate (identified by URI-G) when deref-
erenced. The TimeGate negotiates the correct memento to return if provided an
accept-datetime header.
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FIG. 21: The Memento Framework enables temporal browsing and aggregates the
holdings of multiple archives. This image is available as part of the Memento Frame-
work Introduction [289].

When URI-Ms are dereferenced, they return HTTP headers with links to their
previous and next mementos (if they exist) as well as their URI-R. These linkages
enable navigation and browsing in the temporal dimension. The TimeGate also
returns a URI-T for the URI-R, providing a temporally sorted list (from oldest to
newest) of URI-Ms of the URI-R. A TimeMap is useful for quickly accessing all
known mementos of a URI-R.

Several tools leverage the Memento Framework to allow more readily accessible
temporal navigation to users via their browsers (i.e., user-agents). MementoFox is
a Mozilla Firefox add-on that uses TimeGates to allow temporal browsing from the
browser [255]. A similar add-on exists for Google Chrome [260] and mobile iOS and
Android devices [288]. Mink, a Google Chrome add-on, helps better integrate the live
and archived Webs by using Memento to find mementos of original resources being
accessed by the Chrome Browser [147]. While other memento browsers leverage
TimeGates, Mink uses TimeMaps to augment live Web browsing by alerting the
user of existing mementos. MobileMink provides the same functionality for Android
devices but also identifies mobile and desktop URI-Rs for the resource and merges the
TimeMaps of both, presenting the integrated TimeMap to the user [137]. MobileMink
also allows users to push resources into the archives to improve the coverage of
mobile sites. AlSum’s mCURL tool provides native Memento features using the
curl command [10]. Each of these tools are examples of software making use of the
Memento Framework to more closely link the past and present Webs.
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2.5.2 ARCHIVING MORE THAN JUST THE DESKTOP WEB

The Web that humans most commonly experience is not the only Web that exists
and should be archived. As an example, we consider the mobile and linked data Webs
in addition to the traditional desktop Web. Each of these types of Webs (linked data,
mobile, and desktop) has a different coverage in the archives despite their importance
to the Web user’s browsing experience.

The Personalized Web

The IIPC has held entire workshops dedicated to the discussion of problems and
potential solutions to the movement towards unarchivable content [247, 211]. The
“classical model of Web archiving” fails when targeting resources whose representa-
tions are dependent upon JavaScript (deferred representations) or user interaction
(descendants). Archives’ policy of indexing on only memento-datetime and URI-R
is also making archiving difficult because resource state on the client is not reliably
identified due to the influence of environment variables and user interaction on the
end representation [211, 145]. To resolve these issues, classical crawlers must improve
to allow the capture of these dynamic technologies and resources. One potential solu-
tion is to capture user experiences as images under the notion that something highly
representative at low-fidelity is better than missing content. However, this leaves
much to be desired when information mining and session replay are of great value to
the archives but come with a large amount of storage overhead and burden on the
archives [11].

These trends culminate in a culture change: user-experience is no longer limited
to stateless client and server interactions, but now also involves client-side state.
Rosenthal mentions [245] that the user-experience is not preservable (long term)
because it exists externally of the client – the representation requires client-side
execution to change the representation state. For example, the Wayback Machine
(the Internet Archive’s replay service, defined in Section 3.1) would need to be re-
engineered to recreate a user’s browsing session on a particular resource. Bjarne
Andersen from the Netarchive.dk explained further that “dynamic” sites (i.e., those
that update on the client) are often missed by archival crawlers and create problems
for recreating user experiences [163].
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What we archive is increasingly different from what we as interactive users expe-
rience. We will explore Figure 22 – multiple snapshots of President Barack Obama’s
Facebook page (live as of May 11th, 2011 and as a memento) – as an example. As a
logged-in and authenticated user, I viewed Obama’s Facebook page (Figure 22(a)),
but received a different representation when I have logged out of my account (Figure
22(b)). This is one example of a stateful client-side representation; my representation
changed based on the parameters available (in this case, my authentication status) on
the client7. Crawlers do not authenticate to Facebook before attempting to archive
the resource, and we would suspect that the representation in Figure 22(b) would be
in the archives (note that Archive-It has enlisted the help of Umbra to crawl a small
subset of pre-defined domains such as Facebook that are not satisfactorally archived
using Heritrix [235]). However, the Internet Archive could not capture a memento of
the page due to the robots.txt protocol (Figure 22(c)) [241, 278]. The WebCite mem-
ento (Figure 22(d)) is also inadequately archived because the Facebook servers were
unable (or unwilling) to return a representation suitable for the WebCite user-agent.

This example highlights the differences in user experiences and their lack of ad-
equate capture by the archives. Our primary focus in this work is to provide the
framework that enables user experiences to exist in the archives.

The Mobile Web

Crawlers traditionally and overwhelmingly use a desktop user-agent string when
crawling and archiving the Web. As a result, crawlers frequently miss mobile versions
of pages, and the mobile Web continues to be less prominent in the archives. This
phenomenon persists even as mobile devices grow in power, use, and ubiquity and
the mobile Web continues to grow and become more prevalent [302]. Because of their
prevalence on the Web, it is increasingly important to archive mobile resources and
representations. However, because mobile resources are not always directly linked
from their desktop counterparts, it is difficult for crawlers to find pages in the mobile
Web [136].

Even if the mobile resources are discoverable, crawlers may not be able to reliably
archive the mobile representations; some Web resources offer different representations

7This behavior also exists on pre-JavaScript resources – authentication is not a new challenge
for archivists. However, this behavior does illustrate the increasing personalization and difference
between representations (first- and second-order expressions) Web users see and what crawlers are
able to archive.
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(a) The representation of Obama’s facebook
page when I am recognized as an authenti-
cated user

(b) The representation of Obama’s Facebook
page when I have logged out of my account.

(c) Facebook’s robots.txt file prevented the
Internet Archive from procuring a memento
of Obama’s Facebook page.

(d) The WebCite memento of Obama’s Face-
book page is missing because of a server’s in-
ability to return a representation to the pro-
vided client.

FIG. 22: President Obama’s Facebook page (as observed 2011-05-11) changes based
on client-side parameters and is not adequately archived.
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to different users based on the user-agent string in the HTTP headers or other
environmental factors. Web crawlers capturing content for the archives may receive
different representations based on the crawl environment.

Servers often provide lighter-weight representations to mobile user-agents and
the larger, full-feature versions to desktop user-agents. This allows mobile devices
to more easily and more quickly browse the Web. With the increasing prevalence
of mobile browsers (50% - 68% of sites have mobile versions [258, 185, 137]), it is
important to capture these mobile representations of resources. Content viewed from
a mobile browser is often different than content viewed from a traditional desktop
browser [136, 286, 145]. Some clients use Ajax and other widget technology to create
context-aware mobile services, which may modify elements of the representation to
accommodate device limitations like screen size [164]. This activity further segments
what content is provided to clients [302].

Mobile pages often contain links to additional resources instead of embedded text
and often reduce the number of images embedded in the page [136]. For example,
the mobile version of http://espn.go.com/ contains a section on ESPN Videos,
while the desktop version does not. To quantify the differences, the desktop version
contains 201 URI-Rs, while the mobile version contains only 58 URI-Rs (the two sets
of links are mutually exclusive). A user may view news articles or other content on
a mobile device and be unable to recall the article in the archives. To capture and
record the complete set of content at http://espn.go.com, each of these different
representations, both mobile and desktop representations need to not only be stored
in the archives but also linked to each other. Each of these environments will provide
a different experience, and the aggregate of desktop and mobile viewing can improve
the available resources for reconstruction.

We discuss our preliminary work with the mobile Web in Section 4.4 and provide
examples in Figure 49.

The Linked Data Web

Linked data refers to machine-readable information resources (e.g., formatted as
XML, JSON, or RDF) that connect other data and resources or enrich and annotate
resources on the Web [160, 291]. These information resources traditionally operate
in the background, opaquely to human users and only used by machines.

Linked data provides machine-readable metadata that is preserved along with the
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1 $ curl -I https://en.wikipedia.org/wiki/Stop_Online_Piracy_Act
2 HTTP/1.1 200 OK
3 Server: nginx/1.9.2
4 Date: Tue, 14 Jul 2015 00:01:34 GMT
5 Content-Type: text/html; charset=UTF-8
6 Connection: keep-alive
7 X-Content-Type-Options: nosniff
8 X-Powered-By: HHVM/3.6.1
9 Content-language: en

10 X-UA-Compatible: IE=Edge
11 Vary: Accept-Encoding,Cookie
12 Last-Modified: Sun, 12 Jul 2015 14:45:11 GMT
13 X-Varnish: 753875825 749624149, 1725229408 1553107569
14 Via: 1.1 varnish, 1.1 varnish
15 Age: 73395
16 X-Cache: cp1052 hit (1), cp1053 frontend hit (28)
17 Strict-Transport-Security: max-age=31536000
18 Cache-Control: private, s-maxage=0, max-age=0, must-revalidate
19 Set-Cookie: GeoIP=US:VA:Suffolk:36.8742:-76.5613:v4; Path=/;
20 Domain=.wikipedia.org
21 X-Analytics: page_id=33629639;ns=0;https=1
22 Set-Cookie: WMF-Last-Access=14-Jul-2015;Path=/;HttpOnly;
23 Expires=Sat, 15 Aug 2015 00:00:00 GMT

FIG. 23: HTTP Response for the Wikipedia SOPA page.

resources to which the data links. Resources with such metadata can facilitate auto-
matic discovery of other resources or link them within the archives. However, these
information resources are not as prevalently represented in the archives, despite the
important linkages they create in the live Web between resources. Without archiving
the linked data Web, we lose linkages that exist between information resources on
the live Web that are essential to the context and understanding of the resource.

We will take the SOPA Wikipedia page (URI-R https://en.wikipedia.org/

wiki/Stop_Online_Piracy_Act) as an example (first discussed in Section 1.2). We
can dereference the URI-R to get the desktop version of the SOPA Wikipedia Page
(Figure 23).

DBPedia offers structured data about Wikipedia articles. If we dereference
the DBPedia SOPA URI-R http://dbpedia.org/resource/Stop_Online_Piracy_
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Act, we receive an HTTP 303 redirecting us to a DBPedia page (URI-R http:

//dbpedia.org/page/Stop_Online_Piracy_Act, an HTML page meant for hu-
mans), indicating that our original resource has no representation to return and
instead we should visit the other page (Figure 24).

When we follow the redirect, we see the link header indicating an alternate Web
document (URI-R http://dbpedia.org/data/Stop_Online_Piracy_Act.rdf, an
RDF page meant for robots) about the DBPedia SOPA page. This page returns
additional link headers with further resources (and so on until we run out of related
documents)8 (Figures 25 and 26).

The linked nature of these resources makes discovery easier. However, the archival
coverage of each layer is not equal. As an example metric, we consider the cardi-
nality of each of these resources’ TimeMaps (i.e., the number of mementos in each
TimeMap). We see an example of the discrepancy in the Internet Archive TimeMaps
for Wikipedia versus DBPedia (Figure 27). We requested the TimeMaps of each of
the aforementioned URI-Rs and counted the number of mementos in each TimeMap.
The results are summarized in Table 3.

URI-R |TimeMap|
https://en.wikipedia.org/wiki/Stop_Online_Piracy_Act 539
http://dbpedia.org/resource/Stop_Online_Piracy_Act 1
http://dbpedia.org/page/Stop_Online_Piracy_Act 1
http://dbpedia.org/data/Stop_Online_Piracy_Act.rdf 0
http://dbpedia.org/data/Stop_Online_Piracy_Act.xml 0

TABLE 3: The cardinality of the TimeMaps varies between the Desktop and Linked
Data Webs (TimeMaps retrieved 2015-07-14).

While the Web that humans most frequently experience is comparatively well-
archived, the mobile Web (which is increasing in popularity) and the linked data Web
(which supports the semantic Web) are disproportionately not archived in regular
Web archives like the Internet Archive.

8Note that the Link header refers to the URI-G http://mementoarchive.lanl.gov/dbpedia/
timegate/http://dbpedia.org/page/Stop_Online_Piracy_Act which refers to a TimeGate
for an archive that Los Alamos National Laboratory is operating on behalf of DBPe-
dia to help address the problem with the header of the TimeGate’s HTTP response of
the URI-G http://mementoarchive.lanl.gov/dbpedia/timegate/http://dbpedia.org/data/
Stop_Online_Piracy_Act.xml.
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1 $ curl -IL http://dbpedia.org/resource/Stop_Online_Piracy_Act
2 HTTP/1.1 303 See Other
3 Date: Tue, 14 Jul 2015 00:02:32 GMT
4 Content-Type: text/html; charset=UTF-8
5 Content-Length: 0
6 Connection: keep-alive
7 Server: Virtuoso/07.20.3214 (Linux) i686-generic-linux-
8 glibc212-64 VDB
9 Location: http://dbpedia.org/page/Stop_Online_Piracy_Act

10 Expires: Tue, 21 Jul 2015 00:02:32 GMT
11 Cache-Control: max-age=604800
12

13 HTTP/1.1 200 OK
14 Date: Tue, 14 Jul 2015 00:02:33 GMT
15 Content-Type: text/html; charset=UTF-8
16 Content-Length: 70502
17 Connection: keep-alive
18 Vary: Accept-Encoding
19 Server: Virtuoso/07.20.3214 (Linux) i686-generic-linux-
20 glibc212-64 VDB
21 Expires: Tue, 21 Jul 2015 00:02:33 GMT
22 Link: <http://dbpedia.org/data/Stop_Online_Piracy_Act.rdf>;
23 rel="alternate"; type="application/rdf+xml";
24 title="Structured Descriptor Document (RDF/XML format)",
25 <http://dbpedia.org/data/Stop_Online_Piracy_Act.n3>;
26 rel="alternate"; type="text/n3"; title="Structured
27 Descriptor Document (N3/Turtle format)",
28 <http://dbpedia.org/data/Stop_Online_Piracy_Act.json>;
29 ...
30 <http://mementoarchive.lanl.gov/dbpedia/timegate/
31 http://dbpedia.org/
32 page/Stop_Online_Piracy_Act>; rel="timegate"
33 Cache-Control: max-age=604800
34 Accept-Ranges: bytes

FIG. 24: An HTTP 303 redirect for the DBPedia resource.
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1 $ curl -I http://dbpedia.org/data/Stop_Online_Piracy_Act.rdf
2 HTTP/1.1 200 OK
3 Date: Tue, 14 Jul 2015 00:00:59 GMT
4 Content-Type: application/rdf+xml; charset=UTF-8
5 Content-Length: 46701
6 Connection: keep-alive
7 Vary: Accept-Encoding
8 Server: Virtuoso/07.20.3214 (Linux) i686-generic-linux-
9 glibc212-64 VDB

10 Expires: Tue, 21 Jul 2015 00:00:59 GMT
11 Link: <http://dbpedia.org/data/Stop_Online_Piracy_Act.xml>;
12 rel="alternate"; type="application/rdf+xml";
13 title="Structured Descriptor Document (RDF/XML format)",
14 ...
15 <http://mementoarchive.lanl.gov/dbpedia/timegate/
16 http://dbpedia.org/
17 data/Stop_Online_Piracy_Act.rdf>; rel="timegate"
18 X-SPARQL-default-graph: http://dbpedia.org
19 Cache-Control: max-age=604800
20 Accept-Ranges: bytes

FIG. 25: Further information resources are provided in the Link header.
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1 $ curl -I http://dbpedia.org/data/Stop_Online_Piracy_Act.xml
2 HTTP/1.1 200 OK
3 Date: Tue, 14 Jul 2015 00:03:17 GMT
4 Content-Type: application/rdf+xml; charset=UTF-8
5 Content-Length: 46701
6 Connection: keep-alive
7 Vary: Accept-Encoding
8 Server: Virtuoso/07.20.3214 (Linux) i686-generic-linux-
9 glibc212-64 VDB

10 Expires: Tue, 21 Jul 2015 00:03:17 GMT
11 Link: <http://dbpedia.org/data/Stop_Online_Piracy_Act.n3>;
12 rel="alternate"; type="text/n3"; title="Structured
13 Descriptor Document (N3/Turtle format)",
14 ...
15 <http://mementoarchive.lanl.gov/dbpedia/timegate/
16 http://dbpedia.org/
17 data/Stop_Online_Piracy_Act.xml>; rel="timegate"
18 X-SPARQL-default-graph: http://dbpedia.org
19 Cache-Control: max-age=604800
20 Accept-Ranges: bytes

FIG. 26: Following the Link header leads to new information resources in new Link
headers.

(a) The Internet Archive TimeMap of the
Wikipedia SOPA page.

(b) The Internet Archive TimeMap of the
DBPedia SOPA page.

FIG. 27: The Internet Archive TimeMap cardinality is much smaller for the Linked
Data Web.
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FIG. 28: Smaller, focused snapshots, in aggregate, form a complete picture [75]. This
Hockney joiner is called “Yosemite.”

2.6 DAVID HOCKNEY’S JOINERS

David Hockney is one of the 20th century’s most influential artists [311]. Hockney
created a series of works referred to as “joiners” which are collages of photographs
or images (Figures 28 and 29). The smaller pictures combined to create a larger,
higher-order image. These “joiners” created a complete view of a scene from smaller,
more specified views. While the individual pictures exist in a context of their own,
they are not limited by their original format (e.g., Polaroid snapshot) and can be
aggregated to construct a more meaningful, more substantial view.

Hockney’s joiner art is a metaphor for mementos. Archives can capture small,
specified views of Web resources. These captures identify the representation of a
resource at a specified time and in a specified environment and, more specifically, in
the crawler’s environment. Current technologies cannot capture multiple snapshots
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FIG. 29: David Hockney’s “joiners” are single images that, together, create a larger
image [199]. This joiner, constructed in Hockney’s style, is by Jordan Mills.

of the same resource from a user’s perspective; they are limited to the crawler’s per-
spective. We need to provide crawlers the ability to discover deferred representations
or context dependent representations. Combined, the snapshots of the resource taken
by the archives and the snapshots from contributing users provide a full picture of
the resource. Since resources with deferred representations change based on context
and client-side interactions or events, the only way to gain a full view of a resource
is from simulating or initiating the client-side code execution.

Archive-captured snapshots can also be considered equivalent to video game
“walk-throughs” that are seen on the Web [208] (more specifically, on YouTube [314]).
Each walk-through illustrates a single user’s experience with the game for a specific
level, task, or accomplishment. Given enough walk-throughs, the entire gameplay
can be experienced by aggregating – or joining – multiple user experiences captured
from distributed contributions. It is important to note that this is fundamentally
different than emulation which executes legacy code and is instead the recreation
of user interactions and experiences with the code. In Hockney’s art, there must
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be sufficient snapshots to gain a view of the entire resource9. To gather a complete
view of a resource, multiple user experiences must be captured and entered into the
archives. These user experiences, each composite mementos on their own, represent
a single environmental capture – one image in a Hockney joiner. In aggregate, an
entire resource experience can be realized as aggregates of snapshots in time. This
can be equated to the archival equivalent of pre-caching due to the goal of discovering
resources that will be needed when users interact with a memento before the user
interacts with the representation.

Joiners are a metaphor for deferred representations with descendants: archived
versions of a resource that are composed of different views of the same memento
listed in aggregation. More specifically, we aim to construct new views (not previously
captured) of the original resource from a variety of mementos by recognizing deferred
representations and pre-caching all potentially embedded resources.

2.7 SUMMARY

In this chapter, we have presented a high level overview of the Web, Web archiv-
ing, and a metaphor for information construction. A common understanding of how
information is represented on the Web, as well as the make-up of the Web (e.g.,
HTML versus JavaScript), is an essential prerequisite of our discussion on how the
change from Web pages to Web applications has made archiving more difficult. We
have also presented an overview of the trends in modern Web archiving to demon-
strate the current successes and short-comings of the Web archiving community’s
efforts to archive at Web scale.

Using this common set of knowledge, we will discuss the prior research that
we leveraged during our research into creating a proposed framework for archiving
deferred representations.

9Using software to create aggregate images from smaller images is not a new concept. Adobe [4],
Hugin [129], and PTgui [230] comprise a small subset of the software solutions available to create
panoramic images from a set of smaller snapshots.
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CHAPTER 3

RELATED WORK

In this chapter, we discuss the previous research that has established the ground-
work for archiving deferred representations. We begin with an exploration and study
of existing archival systems and tools to understand current archival efforts, elab-
orating on their purpose, strengths, and potential weaknesses (Section 3.1). We
then discuss the challenges associated with archiving the Web, including change-rate
studies, “deep” Web discovery and archival efforts, and the different types of Webs
that archives target and the unique archival challenges with each (Section 3.2). We
also discuss the aspects of client-side representations that may make them difficult
to archive, including the role of JavaScript and Ajax in constructing representations
(Section 3.3). With an understanding of current archival efforts and challenges, we
discuss various approaches to assessing memento quality (Section 3.4).

Other research that has not necessarily been performed with Web archiving in
mind has contributed to our work archiving deferred representations. We discuss
how Web content is traditionally cached and how Ajax and JavaScript caching is
performed for browser and Web application performance boosts (Section 3.5). Fur-
ther work has been performed in the client-side testing and Web security domains
to monitor client-side Web applications, including detecting malware, error tracking,
and understanding users’ client-side interactions (Section 3.6). Other works have
focused on replaying browser navigation paths and client-side sessions (Section 3.7).
Web user sessions are traditionally unique and not shareable, but prior works have
identified tools and methods of sharing a user’s browsing stream.

3.1 ARCHIVAL EFFORTS AND TOOLS

Traditional Web archiving efforts have used automated crawlers to find and cap-
ture content on the Web [205, 287]. For example, the Heritrix Web Crawler [201, 264]
is the Internet Archive’s primary crawler tool [205]. Heritrix is an open-source tool
that crawls a set of provided URI-Rs (called a seed list) and can be configured to
crawl into the broader Web. The crawler captures the representation and all of the
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requisite resources and stores them in Web ARChive (WARC) files which are then
ingested and viewed through the Wayback Machine [287]. Mementos load embedded
resources from the Wayback Machine. Using the Wayback Machine in Proxy mode
can help mitigate leakage (a phenomenon that occurs when live Web representations
are loaded into mementos via JavaScript and Ajax) by directing all HTTP requests
to be relative to the archive [84, 236].

Prior to Heritrix3, versions of Heritrix had limited support for JavaScript. The
crawler’s parsing engine attempted to detect URIs in scripts, fetch the scripts and
recursively repeat this process with the intention of ensuring maximum coverage of
the archive creation process. We explore using PhantomJS and Heritrix together in
a two-tiered archival framework in Chapter 7 and show that incorporating Phan-
tomJS [226], a headless WebKit (the layout engine used by Google Chrome, Apple
Safari, etc.), into the Heritrix crawl workflow significantly reduces crawl speed [57].
PhantomJS has a JavaScript API that runs from the command line. It implements
headless browsing, which loads the entire page using WebKit. PhantomJS also of-
fers screen capture, network monitoring, and page automation. This advancement
greatly increases the potential for accurate JavaScript processing and the likelihood
that all resources required to replay a Web page are captured by a crawler [47], but
it was not suitable for Web-scale crawls due to performance issues.

Due to its expansive size, the entire Web cannot be archived in its entirety by these
automated crawlers [26]. With deferred representations increasing in prevalence,
tools such as Heritrix are becoming ineffective [52]. As deferred representations
increase in prevalence and popularity, the efforts to capture the content omitted
from resources with deferred representations improve. For example, even though it
does not execute JavaScript, Heritrix version 3.1.41 does peek into the embedded
JavaScript code to extract links where possible [71, 133] (as does Google’s crawler
[46]).

Archive-It [42], a subscription-based service that allows customers to build col-
lections of pages in an archive, uses Umbra to handle the archiving of a manually
defined list of URI-Rs with deferred representations [235] to mitigate the impact of
the increasingly popular practice of using JavaScript and Ajax to load embedded
resources.

1The latest version of Heritrix, v3.1.4, is currently in production [249] at Internet Archive.



60

The wget application [104] downloads a target resource and offers flags for down-
loading representation dependencies and embedded resources. However, wget does
not handle deferred representations at all since it does not have a JavaScript engine,
causing it to miss resources that are not directly and explicitly referenced in the
DOM.

PrEV is a digital library that offers a preservation explorer for Web content [73],
similar to Heritrix and the Wayback Machine. It identifies the practice of archiving
user-generated resources and content as especially difficult due to the inability to do
so automatically and the frequent change rate of such representations and data.

Pandora, Australia’s national archive, has attempted to archive Flash resources
that exist in YouTube [314] or other multimedia content [72]. When crawling to
gather resources for a collection on a recent election, Pandora was able to extract the
URIs for the embedded dynamic content and retrieve the embedded Flash resources
for archiving. The target resource is downloaded along with the embedded videos.
However, these videos are self-contained multimedia, are only played on the client,
and do not change as a result of user interaction. TubeKit is another YouTube
crawling toolkit [259]. Everlast [13] is a framework that focuses on improving the
user-centric features of archives to increase their usability and value (e.g., adding
distributed text search).

PageFreezer [223], Kapow [138], Hanzo [122], and Fetch [91] are for-profit com-
panies that provide capture of Web resources – including those with deferred rep-
resentations – as a service. These companies offer data extraction and crawling of
deferred representations through human-assisted capture and data formatting. All
three services advertise the ability to extract data from social media sites, as well.

Transactional archiving also offers a method of archiving resources and data
needed in deferred representations. The first attempts at transactional archiving
(pageVault [97] and ttApache [83]) captured all representations returned to users
from a server equipped with the necessary software. These transactional archives
operated under the premise “if a user never saw the representation, was it worth
archiving?”, and similarly, “shouldn’t all versions of a representation seen by users
be archived?” However, they lacked the ability to capture deferred representations
and associated post-load resources. The SiteStory Transactional Web Archive [256]
can capture Ajax-requested resources and associated data for replay in a deferred
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representation. These transactional archives do not significantly impact the perfor-
mance of a server [56]. During the SiteStory unveiling at the 2012 IIPC Future of the
Web Workshop [211], the attendees concluded that a client-side transactional archive
would help alleviate current archiving challenges.

WebCite [85] is an on-line, on-demand archival tool that offers real-time archiving
of content. When WebCite archives a URI-R, it opaquely rewrites embedded URI-Rs
to URI-Ms but does not maintain the original URI-R in the HTTP response headers
or in the HTML (as does the Internet Archive). The embedded resources’ URI-Rs
are not required for WebCite’s page-at-a-time archival practices to be successful. For
example (Figure 31), when WebCite archives a URI-R, the embedded image iden-
tified by a URI-R is rewritten to point to a URI-M. For example, when WebCite
archives the URI-R

http://www.cs.odu.edu/

the embedded link to the URI-R

http://www.cs.odu.edu/files/logo-cs.gif

is changed to

http://www.webcitation.org/getfile.php?fileid=

441da589db4d846925155555e687cb9aacf5627d

in the memento at URI-M

http://www.webcitation.org/64ta04WpM.

Archive.is also opaquely rewrites URI-Rs to URI-Ms. Archive.is [18], like WebCite,
is one of many page-at-a-time archival services that provides on-demand snapshots
of a Web page and is Memento-compliant [207]. It creates an image of the page
(for permanent, low-fidelity capture) and captures the HTML and associated em-
bedded content in their native formats. Archive.is renders the representation, in-
cluding content loaded from JavaScript, using headless browsing, a method that
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renders a representation and executes client-side events before capturing the final
representation. More impressively, it statically archives content like live Twitter
feeds instead of allowing the live Web to leak into the mementos – content that
WebCite is unable to archive. Neither Flash nor client-side events are captured by
Archive.is. We take the example of http://archive.is/jL9F7 (Figure 30), a mem-
ento of http://jcdl2013.sched.org/. The live resource displays tooltips over the
schedule items, while the memento does not provide this functionality [209].

The Internet Archive also offers a “Save Page Now” feature [250] as of Oc-
tober 2013, which is similar to page-at-a-time archival services like WebCite and
Archive.is. The Internet Archive rewrites the URI-Rs of embedded resources and
links (i.e., anchor tags) to URI-Ms, but also preserves the original semantics and
context of the live Web page, and the Wayback Machine provides an option to
add “id_” to a URI-M after the memento datetime part of the URI-M (e.g.,
http://Web.archive.org/web/20090617194641id_/http://www.cnn.com/) to re-
ceive the original representation of a memento as it existed at archive time without
the URIs rewritten. Additionally, the URI-Ms preserve the original URI-R and mem-
ento datetime, allowing us – as humans – to recognize the original URI-R.

Mat Kelly has created several personal archiving tools that focus on user-
controlled archiving rather than the automated crawlers. WARCreate [142, 149]
allows WARC files to be created based on a representation in the browser (even
those reached through technologies that normally lead to deferred representations);
that is, a user can interact with a representation and create a WARC of the current
state of the representation. Mink [147] is a browser add-on that uses the Memento
Framework to alert the user if a URI-R does not exist in the known archives and
allows the user to submit the URI-R to Archive.is and the Internet Archive’s Save
Page Now service. Mobile Mink [137] is an Android application developed by Jor-
dan et al. that implements Mink’s functionality on Android mobile devices, helping
merge the Mobile and Desktop Webs and increase the archives’ coverage of mobile
resources. Kelly also developed WAIL [143] as a suite of tools to make Heritrix and
the Wayback Machine easy to deploy and use by individuals.

The Smithsonian’s blog offers tips on designing archivable resources and how to
use ArchiveFacebook to archive a subset of one’s social Web presence [76]. Archive-
Facebook [101] is a Mozilla Firefox add-on that captures the user’s Facebook profile
and information in its native format with all embedded resources and content but is
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(a) The live resource provides on-hover tooltips.

(b) The Archive.is memento does not offer the tool-tip functionality.

FIG. 30: While Archive.is offers a high quality memento, some functionality is miss-
ing because the JavaScript is removed during archiving. This and URI rewriting
leads to a paradox: archives have to transform HTML in order to “preserve” it.
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FIG. 31: URI re-writing in WebCite converts embedded URI-Rs to URI-Ms.
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suitable for personal archiving only [118]; it cannot be used in larger shared archives.
In addition, Kelly et al. have studied mechanisms for merging private and public
archives [149, 147, 143, 142].

WebRecorder.io allows users to record a browsing session and store the recorded
content in a WARC or ARC file. These files can be uploaded to an institutional
archive (e.g., the Internet Archive) or played back on a user’s local Wayback Machine
installation. Browsertrix [155] uses Selenium to run automation tools to load Web
resources directly in the browser. This process allows embedded resources and client-
side scripts to be loaded and executed organically. This places the responsibility of
evolving with Web technologies on the browser rather than on the archival client.
Note that the approach used by Browsertrix andWebRecorder.io (i.e., using Selenium
and replaying recorded interactions) is the opposite approach we use in our framework
(Chapter 7).

WARCreate, WebRecorder.io, and Browsertrix are examples of client-side and
personal archival tools which are focused on individual users’ observed representa-
tions rather than a Web-scale, automatic archival framework. Our research focuses
on mitigating the impact of deferred representations at Web scale using institutional
archiving tools but uses the tools as templates for larger-scale archiving.

Google – an example of a large-scale crawler – is crawling deferred representations
that are identified by URIs provided by developers. The developers can create a
representation that they feel encompasses their resources. The URI should include
the HashBang attribute (Section 2.4) so that the Google crawlers can locate and crawl
the page, and also retrieve the client-side state [46, 107, 174, 119]. This effectively
provides a deferred representation in static form for a crawler to discover and index.
Similarly, Google has proposed a headless browsing solution to query, interact, and
render the content of the page for crawling purposes [106].

The CRAWLJax software package [191] attempts to discover all possible states
of an Ajax application in order to crawl and index deferred representations. Because
Google does not crawl all JavaScript code (partly due to security concerns), this
research is an attempt to index these deferred representations. CRAWLJax creates a
list of all possible states by examining any user interaction that is possible on a page.
It then stores the resulting DOM at each state to allow for crawling. A byproduct of
this solution is a history for Ajax applications in which the user can move backwards
through the state tree. Mesbah et al. [192] identify browser cookies and HTTP 404s
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as problems they have encountered when trying to recreate states for a resource.
Similarly, the crawled pages are not sharable without special software installed on
the user’s machine. Duda’s work with AJAXSearch [82] takes a similar approach by
generating all possible states of a deferred representation and capturing the generated
content. Benjamin [30] has taken the approach of providing a canonical method of
crawling RIAs for search indexing purposes.

Archival – and other Web-scale – tools have evolved over time to adapt to a
changing Web. However, JavaScript and particularly representations with extensive
interactivity and descendants remains a challenge for archival tools.

3.2 ARCHIVAL CHALLENGES: THE DEEP, HIDDEN, AND
EPHEMERAL WEB

Web archiving is an eternal battle to capture Web content before it changes or
disappears forever [43, 179, 26]. The Web not only changes frequently and at varying
intervals, but also changes in different ways such as wholesale changes or appended
content [3, 100, 92, 168, 240, 27, 28, 81, 280]. Many of the changes on the Web
are lost [22]. Weiss [307] and Lawrence et al. [162] estimated the lifetime of a page
is between 75 and 100 days. Other work from researchers at Los Alamos National
Laboratory has shown that 38% of Web pages are missing or no longer on topic after
5 years [239].

Ainsworth et al. measured the archival coverage of resources sampled from a
variety of sources [5] and found that archival coverage varies depending on the sample
source. For example, URIs shortened by Bitly users were less frequently archived than
those indexed by other services like DMOZ. In a follow-on experiment, SalahEldeen
studied the decay of shared data on Twitter [252] and found that up to 11% of
content shared over Twitter disappears after 1 year, and 25% disappears after 2 years.
SalahEldeen also showed that mementos disappear from the archives, and content
that was observed as missing can reappear in the future [254, 55]. These studies
highlight the ephemeral nature of shared content and demonstrate that shared links
are often not archived.

However, updates to Web resources may be missed by crawlers; the resources may
not be missing as in SalahEldeen’s and Ainsworth’s studies, but instead the crawler
may miss updates between visits to the URI-R. Cho studied how the Web is changing,
and how crawlers can adapt crawl policies to maintain the latest versions of evolving
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resources [65, 66] and found that – counter to intuition – archives can maintain
the most current mementos by archiving resources that do not change frequently.
Olston created a recrawl strategy for pages based on content change frequency [218].
Koehler also studied Web page change frequency over a 4-year period [153], finding
that older pages change less frequently than younger pages. Radinsky and Bennett
studied the change frequency of resources and predicted their future updates [233],
showing that past frequency is the best method for predicting future change. Manku
et al. created a fuzzy matching algorithm for near duplicate detection during Web
crawls [176]. Each of these studies provides insight into how Web resources evolve
and how crawlers can adapt to keep up with the changing Web.

Several works have attempted to estimate the size of the “deep Web.” In 2001,
Bergman estimated the size of the deep Web is 500 times the size of the surface Web
[32], which has been estimated at over 11.5 billion pages [115]. McCown et al. mea-
sured that 21% of a collection of 3.3 million URI-Rs advertised by the repositories
using OAI-PMH were not indexed by crawlers [183]. This work demonstrates that
search engines were not indexing URI-Rs that were known and advertised by the
repositories (and therefore, not “deep” URI-Rs in the sense that they are not dis-
coverable by Web crawlers). Ast extended Bergman’s work by proposing approaches
using a conventional Web crawler (i.e., one not used for preservation) to capture
content not linked to by individual URIs [19].

Past works have focused on crawling and discovering deep Web resources. He
et al. worked to sample and index the deep Web [125]. Yeye utilized server query
logs and URL templates to discover deep content [126]. This prototype successfully
collected the RIAs and associated states. Likarish and Jung crawled the deep Web
to create a collection of malicious JavaScript using Heritrix and comparing captured
scripts to blacklisted content [167]. Ntoulas et al. captured the textual hidden Web
with a guess-and-check method of supplying server- and client-side parameters [214].

What we have defined as deferred representations are classified by many as deep
Web content [32, 175] due to their inability to be automatically crawled. Deferred
representations are not necessarily part of the deep Web because they cannot be
discovered, but instead end up classified as deep Web resources because they require
interaction not supported by automated crawlers (e.g., authentication past a login
wall [141]). However, even if archived, deferred representations often lead to leakage
[54, 209]. Bossetta and Segesten performed a study on linking between sites and
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political parties, but they concluded that their study was incorrect because some of
the sites constructed links and URIs in JavaScript [40]; the Issuecrawler2 tool they
used does not execute JavaScript. Bossetta and Segesten have identified crawlers
that do not run JavaScript as a critical limitation to Web studies and recommend a
crawling approach that can execute JavaScript to increase the fidelity of studies such
as theirs. Our proposed framework focuses on executing JavaScript as an answer to
this recommendation.

Mesbah et al. have performed several experiments regarding crawling and in-
dexing deferred representations of resources [195, 191, 190]. These works have fo-
cused mainly on search engine indexing and automatic testing [194, 193] rather than
archiving, but serve to illustrate the pervasive problem of deferred representations.
Dincturk et al. constructed a model for crawling RIAs by discovering all possible
client-side states and identifying the simplest possible state machine to represent the
states [80, 58, 79]. We adapt the Dincturk et al. Hypercube model for use in our
two-tiered framework for crawling deferred representations (Chapter 7).

Raghavan et al. discussed the inclusion of deferred representations in the deep
Web [234]. They utilize human-assisted crawling and caching to capture client-side
content. Their method can differentiate between mobile content and content loaded
by a browser, opening a new capability and market for archiving. However, this
method does not capture the content or data passed to and from the server to gener-
ate the deferred representations, and cannot replay client-side events to reconstruct
descendants.

Similarly, Fleiss performed an analysis of how client-side dynamism is impact-
ing search engines, specifically due to the popularity and lack of crawlability [99].
His work mentions that resources such as content management systems (CMS) are
producing good, sometimes viral, content, but they do not have cool URIs and are
asynchronous; data is constantly flowing to and from a single, self contained resource
as opposed to the traditional model of data only flowing when a resource is loaded
(i.e., what we refer to as deferred representations). Search engines are not suited
to crawling and caching these deferred representations. Even more problematic are
resources such as Second Life [169], which is an example of applications that exist
for the sole purpose of interaction. A game walk-though approach would be a more
effective method of archiving an application such as Second Life, which is highly

2http://www.govcom.org/
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dependent upon user interaction.
Our approaches in this dissertation help uncover a previously unarchivable portion

of the deep Web. By understanding the challenges faced by prior efforts, we adapt
our approach to mitigate the archival challenges introduced by JavaScript.

3.3 WHAT MAKES A REPRESENTATION?

As we discuss the capture and replay of client-side code and representations, it is
important to discuss how these representations are constructed and the technologies
that influence representations for the benefit of the user and at the expense of Web
archiving.

Bucy demonstrated the relationships between page complexity and site traffic
showing that popular pages are more complex [59]. Push/pull technologies were
essential for a movement from HTML to a Java platform. Complexity in Bucy’s
study refers to the number of links and ads within the content of a page. Bucy
finds that 40% of sites have ads, 79% use frames, 33% have dynamic content, and
15% have video. Ihm and Pai showed that this trend has lasted into 2011, and
that much of the newly introduced complexities such as Flash cannot be adequately
cached [130]. Ha and James found that of the links in a page, most come from the
host domain [117]. Our previous work (focused on using Flash movies to enhance
Intelligent Tutoring Systems) shows that Flash movies can initiate client-side events
or make use of JavaScript and Ajax [53, 49]. Flash is being increasingly disallowed
by browsers [244].

Of particular importance to our work is a deep understanding of Ajax and its
impact on client-side representations [319]. The first large-scale implementation of
Ajax was in Google Maps in 2005, but Ajax was officially added as a standard in
2006 [309]. Mesbah et al. have worked to enable RESTful Ajax applications, such
as the use of stateful servers [192]. Pierce et al. utilized microformats, Atom feeds,
and other exploitations of the Web 2.0 to make Ajax representations more persistent
[227].

There are several efforts aimed at identifying unique representations that result
from modern client-side technologies. These efforts focus on HashBang URIs [301,
281, 108] (as discussed in Section 2.4), which represent client-side state. HTML5
also offers client-side storage to specify and store the client-side state [279]. Google
provides client-side state storage that enables back-button functionality by keeping
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a stack of state changes [212, 265, 266].
As mentioned in Section 2.2.3, Ajax has enabled the creation and popularity

of personalized and deferred representations [15, 221]. Its shortcomings are well
understood [70], and attempts have been made to solve issues with asynchronous
communication [210]. Doloto [172], for example, introduces blocking loads to ensure
synchronous communication in Ajax to prevent unnecessary load on the network
infrastructure by loading unneeded content.

Other works focus on extracting and visualizing behavior on the client. Chung
and Periera created representations of Timed Petri Nets using SMIL [69]. Similar
to SMIL, Puerta and Eisenstein established a model for representing interaction
data on the client [231]. Webquilt [128, 127, 305] is a framework for capturing
user interactions during a browsing session and subsequently visualizing the user’s
experience. Webquilt creates this functionality with a proxy logger, action inferencer,
graph merger, graph layout, and visualization components.

Extracting the code that runs in RIAs [177] helps map functionality to code
blocks. Browser fingerprinting is an emerging area of study. This is an effort to
identify the user-agent being used by the Web user for tracking and user experience
purposes [1]. Each of these efforts helps draw conclusions from browsing context.

Gyllstrom et al. studied the impact of JavaScript on representations over time
with specific attention to the types of representation changes that JavaScript per-
forms [116]. Their work measured the amount of JavaScript that resources implement
over time, showing a continual increase since 1996. Their work also focuses on DOM
changes and associate representation modification, while our work focuses on client-
side state changes and embedded resources.

Each of these works studies the impact of JavaScript on representation and re-
source state and how the representations can be captured, cached, and replayed. We
leverage these works to understand the types of challenges JavaScript introduces, as
well as build on past attempts to mitigate these challenges.

3.4 MEASURING ARCHIVE QUALITY

Archivists use archival quality measurements to understand how well they are
archiving their target resources. Many approaches to measuring archival quality
are used by researchers and archivists. For example, Spaniol measured the quality
of Web archives based on matching crawler strategies with resource change rates
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[275, 274, 77]. Gray and Martin created a framework for high quality mementos
and assessing memento quality by measuring the missing embedded resources [113].
These studies focused on memento completeness and site coverage.

Kelly et al. studied the factors influencing archivability, including accessibility
standards and their impact on memento completeness [146]. Using the archives, Kelly
demonstrated that movement away from accessibility standards to heavier reliance
on JavaScript has led to reduced archivability. Kelly et al. also created an Acid
Test utility to evaluate mementos created by archival tools and services for archival
accuracy [148].

Other efforts have focused on standards as they relate to archivability. Banos
et al. created Archiveready3 to evaluate expected archival success based on adher-
ence to standards for the purpose of assigning a resource archivability score [21, 20].
Archiveready provides an interpretation and numerical measure of archivability. The
Archiveready service analyzes compliance to standards, number of externally hosted
resources, and format of the resource HTML and CSS to establish an archivability
measure.

The PRISM project [150] assessed the practices threatening the preservation of
Web resources as they relate to accessibility (such as not using modern Web archiving
tools and proper replay services or having out of date software). Virtual Remote
Control [186] created a framework for identifying archival targets and managing at-
risk resources. Each of these efforts assesses an impact on archive quality.

However, standards and mere completeness are misleading measures of human-
perceived quality. Fersini et al. studied the importance of information blocks of a
rendered Web page, finding that blocks with more images are more important [90].
Singh et al. found that multimedia within a page is essential for user understanding
[267]. Ye et al. found that the information blocks close to the center of the viewport
contain important information, while “noise” – or unimportant content – occurs on
the fringes or edges of the page [312]. Kohlschütter et al. also found that important
content was located in the center of pages [154]. Centrality is a way for authors to
convey importance of information to their users. For example, images in the center
of the viewport are more important or contribute more to the users’ understanding
of a page than those positions on the fringes or outside the viewport of a page. These
works establish a relative importance of embedded resources and content based on

3http://archiveready.com/
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where in the viewport the resource or content appears, and results in a foundation
for our measurement of the quality of mementos.

Zhang et al. studied human perception and human ability to recognize differences
in images effectively determining human perception limitations for images at the pixel
level [316]. Similarly, Rademacher et al. used human perception to identify the visual
factors that distinguished computer generated images from photographs [232]. Song
et al. outlined an algorithm for determining the importance of sections of Web pages
based on their content, size, and position [273]. These works establish methods of
human-assessed quality; our prior works (Chapter 6) use similar methods of human
evaluations of memento quality.

Ainsworth et al. used a different approach to measuring memento quality by
looking at the temporal coherence of mementos and a browsing session within the
archives would temporally drift (i.e., a memento-datetime would not stay rooted)
during walks through the archives [7]. Additionally, Ainsworth et al. found that em-
bedded resources would have memento datetimes different than the root memento,
leading to temporal violations and – as a result – the archives provide a memento of
a resource that never existed, or are prima facie violative. As such, Ainsworth et al.
defined a memento quality measure beyond a simple boolean notion of whether an
embedded resource returns an HTTP 200, but instead consider the memento date-
time of the embedded resource and identify temporal violations within the archives.
Rather than assigning a quality measure according to temporal drift, we assign value
according to the perceived importance of the embedded resource (Chapter 6).

McCown performed several comprehensive studies involving reconstructing Web
pages from the archives’ offerings [184, 182]. He created the Warrick program [181]
to reconstruct missing Web sites using Web respositories. To measure Warrick’s
performance, McCown created a method for evaluating the quality of a reconstructed
site according to how much of the site was missed during reconstruction. At the time
of McCown’s work, the archival landscape was much different than the landscape at
the authoring of this dissertation. Search engine caches were available for Web site
recovery, and the Internet Archive was the only major archive from which mementos
could be recovered. Additionally, the Internet Archive had a six month quarantine
period before the mementos would be made available, and the Memento Framework
was not yet defined. McCown’s work measured quality according to the completeness
of a recovery of an entire Web site rather than a Web page. McCown measured
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FIG. 32: Brewster Kahle tweeted that the Internet Archive’s Wayback Machine
contains roughly 479 billion pages (2014-05-27).

quality by identifying recoveries that missed resources, that found new resources, and
successful recoveries that were known and expected to be recovered by the service.

Of the archivists that conduct quality assurance and were surveyed by Reyes et
al. [238], 100% use a manual process. The Internet Archive alone boasts 479+ bil-
lion Web pages in its archive at the time of authoring this dissertation (Figure 32),
which is far larger than can be evaluated through human methods. An algorithm to
automatically assess human perception of archived page quality would significantly
decrease the necessary human involvement in the quality assurance process, poten-
tially increasing the accuracy while reducing the cost of quality assurance efforts.
Towards this goal, we investigated the impact of missing embedded resources on
users’ perceived utility of Web resources, quantifying the impact of missing embed-
ded resources in mementos [51, 50].

By measuring memento quality, we can better assess the success of our archival
approaches and identify areas in which we should improve.

3.5 CACHING JAVASCRIPT-DEPENDENT REPRESENTATIONS

Caching information on the Web is not a new realm of study [303, 318, 268,
217, 55], but capturing client-side interactions and data transactions is more recent.
Resources have been traditionally composed by reusing cached or stored content,
similar to our research goals of archiving deferred representations (Research Question
3 in Chapter 1). Several research efforts have focused on caching the data that is
transmitted to the client from the server by intercepting and analyzing the Ajax calls
to and from the client. ActiveCache is a project that attempts to cache the server-
side data that is sent to the client as a result of Ajax calls [60]. The goal of the
project is to reduce the amount of traffic between the client and server. The software
uses delta compression, which will add data to a cache entry if it adds data and will
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only ask for the data from the server that is missing from the request. MapJAX
has similar goals, but provides shared data structures with the server for the user
to implement [202]. This obfuscates the process of requesting and interpreting the
Ajax data and allows the developers to assume the data is all local. The data that
is transmitted from the server is cached and some is even prefetched to distribute
the latencies of data transfer across the entire interaction interval. MapJAX was
implemented in a mapping application, similar to Google Maps [110].

AjaxScope, also developed by Kiciman and Livshits from Microsoft, is designed
to reduce the overhead of transmitting data from the server [151]. AjaxScope is a
proxy that rewrites the client-side JavaScript to reduce the overhead of consistently
communicating with the server. It also monitors the traffic sent to and from the client
by the server to allow developers to analyze the amount of performed interactions.
Kiciman and Livshits propose a caching mechanism for the data transmitted to the
client from the server. They hypothesize this will reduce the response time when
requesting data. However, archiving the Ajax transactions is outside the scope of
the AjaxScope research. Kiciman and Livshits note that the high volume of differing
data may induce thrashing in the cache. This project illustrates the growing need to
monitor user interactions on the client, and the ability to store the data that is sent
to the client for the purpose of performance improvement.

Sivasubramanian has developed a solution centered around caching content gen-
erated dynamically on the server [268]. The major contribution of this research is
a recommendation to only cache content based on data needs and load considera-
tions, such as the caching used for distribution by Content Delivery Networks. Karri
implemented a method of caching dynamically loaded DOM elements in a Firefox
cache [140]. This work demonstrates that resources can be reused when composing
higher-order resources. Olston investigated the synchronization of distributed caches
[219]. This synchronization uses the resource change rate to establish update policies
in the cache.

Squid [308] is a widely deployed application that exploits a browser’s ability to
cache external JavaScript pages to load User Interface (UI) elements more efficiently
[140]. The project is primarily known as a cache and reverse proxy, but also transfers
dynamically generated elements into JavaScript to allow the browser to cache the
rendered elements for quicker load times. Similarly, HTML5 can be used by Cartagen
to render data as a map on the client browser [41]. The map tiles are cached on the



75

client-side for quicker rendering. SyncKit has the same goals of caching client-side
data transfers and interactions [31]. These interactions can be reused to generate
other resources. HTML5 provides a relational database for the client, and SyncKit
stores server-side data (based on last-modified HTTP headers) in the client-side
database to alleviate the server processing and delivery times. However, this method
must be implemented by developers. DBProxy archives only the raw data being
transmitted by the server to the client [12]. These approaches to caching show
the interest, need, and current capabilities to archive server-side data and dynamic
content.

Another Microsoft project aimed at replaying JavaScript interactions for debug-
ging purposes is Gulfstream [171]. Gulfstream stores content offline, allowing inter-
actions to be replayed within the code for debugging. Further, the authors find that
the updates done to the content of the page is minimal, and the error is negligible
for most interactions if a cached version of the data is transmitted instead of a fresh
version. Gulfstream also calculates deltas in the data to only load the necessary data
when it is requested.

While these efforts focus on caching for performance and debugging, our research
focuses on archiving in the context of an entire representation (first- and second-order
expression). Without establishing context, the independent embedded resources can-
not contribute to the quality of the memento.

3.6 MONITORING THE CLIENT FOR DEBUGGING AND
SECURITY

The majority of past research in capturing deferred representations from the client
has been focused on the debugging or security of Web applications. Since JavaScript
and Ajax applications are stateful while HTTP is stateless (see Section 2.2.3), it is
difficult for application developers to determine the failure points of applications and
replicate the errors for debugging purposes. Additionally, JavaScript applications
have been traditionally viewed as security threats [315, 121, 167, 78, 237, 196]. To
evaluate the security of such applications, researchers have analyzed the potential
states of JavaScript applications to determine if they contain a security violation.

Client-side monitoring is studied to understand user actions and tendencies with
the goal of improving Web users’ experiences [88, 200, 276]. Mobasher et al. [200]
specifically identify the goals of client-side monitoring as: not interfering with normal
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browsing; data should be collected with respect to specific users; developers should
be able to determine the granularity of collected data; and a framework should be
extensible enough to monitor a variety of client-side applications and activities.

Fenstermacher and Ginsburg also note that the majority of Web mined data
resides on servers and that data native to the client is not captured by crawlers [89].
To begin recording user interactions with client-side representations, the authors
developed an Internet Explorer framework for modeling and capturing client-side
events. Their work is an early, yet limited, effort to capture data residing on the client
– interactions such as Web form submissions are missed. Understanding and modeling
user behavior can help uncover client-side states and events to more thoroughly test,
debug, and interact with a page.

3.6.1 DETECTING MALWARE

Malware detection is done by monitoring client-side code, a shared goal of our
research. Sabre is a system that monitors user interaction with Web forms – a
subset of interaction missed by Fenstermacher and Ginsburg’s work – and JavaScript-
enabled elements of a representation. Sabre alerts the user if there is an unsafe
interaction with possibly sensitive information [78]. It analyzes the data sent to
the user, and notifies the user if the data looks sensitive or malicious. This research
targets mostly browser extensions and add-ons, but supports the efforts of monitoring
and analyzing the data being transmitted from the server to the user.

Similar efforts have attempted alternate methods of detecting malware or cor-
rupted data [315, 121, 167] by monitoring DOM changes, XPCOM communication,
JavaScript activity and events, and all data transmitted to and from the server. Oth-
ers [62] go as far as offering proxies that allow the captured interactions to replay on
the client.

BrowserShield and other solutions [237, 78] shift their focus to the code being
loaded by the application on the client and the information being transmitted from
the client. Much of the code that loads during run-time will make or be the target
of Ajax calls, access data in cookies, or perform local captures of client interactions
(such as form entry). BrowserShield relies on an external server to validate the
findings of the client-side application.

Ripley [157] also makes use of a server to monitor the client and all user inter-
actions to ensure client-side applications are secure by capturing user interactions
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and replaying them in a controlled environment. This helps identify the security
vulnerabilities in an application. The captured representations and interactions are
modified by Ripley significantly to ensure proper execution.

3.6.2 DEBUGGING AND ERROR TRACKING

There have been a plethora of efforts to automatically test and recognize bugs in
client-side Web applications in an effort to test and debug Web applications similar
to methods for traditionally testing standalone applications.

Choudhary and Orso monitored JavaScript code and detected failures [67, 68].
They have also experimented with monitoring worker threads in HTML5. Mesbah
has been active in testing Ajax applications; Atusa is a JavaScript integrity check-
ing tool that monitors client-side JavaScript errors [194]. Atusa establishes a test
suite and monitors the DOM for validity (but has trouble with the back button on
browsers). Some of the failures detected by Atusa include load failures for embed-
ded content requested by Ajax. Zheng et al. tracked bugs that occur due to the
asynchronous nature of Ajax [317].

Mugshot is a tool developed by Microsoft Research’s Mickens et al. for debugging
Web applications [197]. Mugshot allows developers to replay state changes of a Web
application. The author of the Web application can include an external JavaScript
file that will gather and log diagnostics about the state progression and interactions
of the application from the user’s machine, and replay the interaction on another
machine. However, if there is embedded content (such as a frame) or other embedded
media included on the page, the JavaScript must be included in those resources in
order to capture user interactions with them, as well. The external JavaScript file
allows the replay to run without an add-on, but with solely JavaScript. The authors
describe the replay as a “VCR”-like interaction and play back. Mugshot listens
for user interactions (such as button clicks) and state changes of the application,
including DOM events and interrupts. This system provides for none of archiving,
sharing via URI, and composing resources and is meant only as a developer tool.
Ripley performs the same state monitoring task on the server [157]. The server
recreates the interactions of users in order to automatically test each state of the
software.

Rumadai is an Integrated Development Environment (IDE) tool that records and
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replays client-side events triggered by Web sites and dynamic content [313]. Java-
Script is injected into the client-side code to monitor the events and play them back
for testing purposes. The Ajax requests and responses are cached at the client,
meaning they are overwritten and never captured for long-term storage. Embedded
content is stored as byte-streams to ensure they exist locally and are not dependent
on an external server. WaRR is a Web application Recorder and Replayer for Web
applications [14]. WaRR is a standalone tool that allows developers to test client-
side user events. However, the tool only records a subset of user events (keystrokes,
dragging, mouse clicks). It has been tested for Google Sites, GMail, Yahoo Authen-
tication, and Google Docs.

3.6.3 USER INTERACTIONS

Simulating user interaction is essential to debugging and automatically testing
Web applications. Understanding user interactions helps determine what elements
of Web pages will modify the DOM or initiate Ajax requests for new, post-load
resources. Like those discussed in Section 3.7, researchers have developed tools record
interactions and the resulting DOM changes that occur or Ajax that is sent and
requested from the client and server [24].

Bartoli et al. recorded and replayed navigations on Ajax-heavy resources [23].
The utility records interactions and replays the trace in an effort to test user inter-
faces. Their goal was to overcome the difficulties in automated testing and program-
matic interaction with client-side interfaces introduced by Ajax.

Similarly, FireCrystal identifies the interactive portions of a page and shows the
associated code [220]. It also records any events that occur within the code and
interactive elements and identify any DOM changes that result from these events.
This solution cannot work with Flash or other compiled languages on the client.

Rather than record interactions, Gorniak worked to predict future user actions by
observing past interactions by other users [112]. This work modeled users as agents
based on their interactions and clients based on potential state transitions. The
agents would make the next most probable state transition, indicating what action
the user is expected to take.

Leveraging user interaction patterns, Palmieri et al. generated agents to collect
hidden Web pages by identifying navigation elements from current selections [159].
They represented the navigation patterns from these agents as a directed graph and
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would train the agents to interact with navigation elements. This includes forms,
which would be filled out based on repository attributes. Drop-down menus would
be randomly selected by the agents to spawn new pages. This method generated
80% of all potential pages.

The efforts in debugging and monitoring the security of deferred representations
proves particularly useful for our research, serving as the basis for our approach with
identifying client-side states during our proposed archival framework. We build on
these efforts to construct an approach for monitoring and replaying client-side state
in an archive rather than on the live Web (Section 7.2).

3.7 SESSION REPLAY AND SHARING

Capturing and mining data from Web user sessions is important for usability
studies, surf patterns, and behavior models [123, 124]. The capture of such client-
side activity is increasingly important for automated crawling, capture of client-side
content, and archiving of user experiences (i.e., second-order expression). In concept,
these tools that enable session capture and replay are similar to the archives’ goals
of uncovering and storing a representation. We work to take the ideas behind these
efforts and tools and adapt them to meet the archives’ needs. As the Web continues
to cultivate resources that change on the client and as a result of user interaction,
archives need to archive the associated representations. There have been several
attempts at providing solutions to subsets of the problem.

While they focus on archiving simulations rather than Web resources, Thain et
al. [282, 188, 187] created tools and a framework for storing the context under which
a simulation is run for reproduceable experiments. Their work stores the inputs,
outputs, code, data, and context (just as we aim to do with deferred representations)
to help future researchers re-run, or replay, simulations.

Webtour [257] is a system that records and replays multimedia annotations on
Web documents. The purpose of Webtour is to provide asynchronous co-browsing of
content. The recordable and replayable events on the client include mouse activities,
audio/video activity, and hyperlink traversals, each of which is stored in a remote
database. Special software is required to replay the interaction – the content captured
is not native to the Web even though they are identified by a URI. That is, the
recording sessions require specialized software before the interactions can be replayed,
and the software identifies which stream of interactions to replay with a URI pointing



80

to the replay script.
Nino et al. have extensively investigated capture and replay of navigation sessions

[213]. Their work began with capturing HTTP headers and the initial DOM using
a Firefox add-on. Subsequent changes to the DOM were not captured, but instead
the HTTP headers were replayed in an attempt to recreate the client-side activity of
the page. This work lead to CARENA, a tool to capture and replay Web navigation
sessions. These replays were aimed at measuring latency for benchmarking purposes.
The client-side headers were stored as XML and were replayed to simulate the real-
time load of images, stylesheets, and other embedded content. Sessions exclude user
activity; they are also recorded, then loaded to replay the content.

Similar to capturing and replaying client-side state, Total Recall [225] is a solution
that allows for back and forward button clicks in Ajax applications. To provide
this capability, the entire client-side DOM is written to cache, and custom back and
forward buttons are provided as part of a Mozilla add-on to allow the user to navigate
back and forth between states. However, a wholesale state change is possible in this
model. This project also mentions that tabbed browsing can play a large factor in
state.

ActionShot is another VCR-like add-on for browsers that automatically records
user interactions for data mining, study, and replay [166]. This solution specializes
in capturing client-side activity at fine-grained levels, such as click locations, targets,
and resulting events.

Koala is a solution in which human-written natural language scripts can be played
to automate processes in Web applications [170]. This project is meant to facilitate
often-used user interactions for user convenience. However, the scripts must be down-
loaded and played from a wiki.

Memex is a system that records user interactions with Web pages [61]. It aims to
develop a series of clickstreams for groups of similar interests. The system archives a
search query from the user and also archives the sequence of pages a user visits. The
system can allow for private and public browsing streams, and public streams can
be shared with users. The Memex paper introduces a notion of public and private
browsing, and sharing the user’s activity stream.

Lowet’s research [173] provides a way for distributed users to view deferred rep-
resentations through a browser add-on. The events and DOM changes at each client
are shared across the network to synchronize each users’s view. Lowet mentions this
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is like planning a trip from two different computers with Google Maps. The solution
relies on a master-slave relationship between clients to participate and only stores the
page’s DOM, not the representation or any composite resources. Rodriquez provided
a similar solution in which users can access content simultaneously on the Web [243].
The Dandelion system provides a method of collaboratively editing wiki resources
[63]. These solutions are examples of live composition.

Instead of simultaneous interaction, Eyebrowse is a tool to share browsing trails
– a social network for sharing resources that are visited in the pursuit of a target
piece of information. This becomes important for information sharing and informa-
tion transfer. However, there is no URI for sharing an interaction stream, and the
browsing has no context. The interactions are simply a series of URIs that are listed
by URI and title.

Rather than an interaction stream, Walden’s Paths [39, 262, 139, 263, 222, 102, 74]
is a research effort to establish a customized, guided tour of the Web for sharing and
reuse. The tool, aimed at students in educational settings, provides a linear browsing
path for Web users to follow, explore, deviate from, and ultimately return to the
specified path.

The notion of spatial navigation between sites is not new. Temporal navigation
is a bit harder to comprehend, and is gaining traction in the research community.
Work has been done by several researchers to visualize temporal data [272, 96]. Other
works dealing have modeled and recorded temporal sequences of communication with
respect to wall-clock time [216, 261, 29].

Song et al. provided a service for capturing and sharing the state of a resource
[271]. The model for this work begins with interacting with a page on one machine
and offers the ability to move to another machine but load the state of the resource
from the first machine. To establish the client-side state, the cookies, JavaScript
events, DOM and other aspects are captured and recorded on the client. The state
snapshots are then shared over a server and loaded on the other client. This process
uses URL rewriting on external resources to ensure they remain consistent when
sharing the session. There are some shortcomings with this approach. For example,
JavaScript variables may contribute to the client-side state, and will be reinitialized
when loading the representation on another client. Also, some features of a page,
such as embedded content, may expire or be unavailable on subsequent loads. An
approach focused more on archiving is necessary to achieve a fully sharable session.
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Related to the idea of sharing an interactive session, our approach proposes a
method of archiving the end result of an interactive session as opposed to the inter-
mediary interactions, themselves.

3.8 SUMMARY

In this chapter, we have presented an overview of the current landscape of Web
archiving, along with a discussion of the perennial challenges associated with Web-
scale archiving and crawling. The principles upon which we build in later chapters
are not limited to Web archiving; we leverage prior research in the areas of search
engine crawling, Web user modeling, malware detection, and client-side automated
testing to construct our proposed framework for archiving deferred representations.
With a common knowledge of the current archival tools and the current state of
archiving, we proceed with a discussion and proposed solution to the challenges of
archiving deferred representations in the next chapters.
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CHAPTER 4

UNDERSTANDING THE CHALLENGES OF

ARCHIVING JAVASCRIPT

With a common understanding of the underlying technical foundations and an
introduction to the difficulty archiving deferred representations, we describe in detail
our efforts toward mitigating the challenges caused by JavaScript, and a framework
for archiving deferred representations for researchers to use moving forward. In this
chapter, we identify more specific and technical challenges that JavaScript introduces
for the archives. In Section 4.1, we revisit the SOPA protests introduced in Chapter
1. We show that even JavaScript designed to help link rot causes archival challenges
(Section 4.2). Section 4.3 discusses leakage of the live Web into the archives and
the role JavaScript plays in the phenomenon. In Section 4.4 we describe, through
example and investigation, our prior work identifying potential failures of current
archival indexing systems. These sections elaborate on the challenges introduced
by JavaScript and provide an initial foundation on which we build our framework
(described in Chapters 5 - 7).

4.1 REVISITING THE #SOPABLACKOUT: TECHNICAL DETAILS

With an established common understanding of the background information and
detailed workings of archiving, JavaScript, Ajax, and HTTP, we will revisit the SOPA
Blackout Case Study introduced in Section 1.2. In this finer-grained discussion, we
investigate how and why JavaScript and Ajax make the representations of the protest
unarchivable.

4.1.1 CRAIGSLIST: REVISITED

As mentioned in Section 1.2.1, Craigslist protested SOPA by providing a count-
down at the bottom of a splash page. This countdown used JavaScript embedded
in the HTML to countdown and fade in (shown in the code in Figure 33) a link to
enter the site.
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1 <script type="text/javascript">
2 var obj1 = document.getElementById("fade1");
3 obj1.style.display = "none";
4

5 window.onload = function() {
6 startCountDown(10, 1000, myFunction);
7 }
8

9 function startCountDown(i, p, f) {
10 var pause = p;
11 var fn = f;
12 var countDownObj = document.getElementById("countdown");
13 countDownObj.count = function(i) {
14 countDownObj.innerHTML = i;
15 if (i == 0) {
16 fn();
17 return;
18 }
19 setTimeout(function() {
20 countDownObj.count(i - 1);
21 }, pause);
22 }
23 countDownObj.count(i);
24 }
25

26 function myFunction() {
27 var countDownObj = document.getElementById("countdown");
28 countDownObj.style.display = "none";
29 $("div:hidden:first").fadeIn(3000, function () {
30 $("span").fadeIn(100);
31 });
32 }
33 </script>

FIG. 33: The JavaScript embedded in the HTML provides the countdown function-
ality.
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The countdown behavior is archived along with the page content because the
JavaScript code creating the countdown is archived by Heritrix and is available when
the memento’s onload event fires on the client and subsequent startCountDown code
is executed. However, the link that JavaScript embeds in the DOM and appears at
the bottom of the screen dereferences to the live version of Craigslist. Notice that
the live Craigslist page has no reference to the SOPA protest (Figure 5(b), Section
1.2). Since WebCite (which created the mementos in Figures 5(a) and 5(b)) is a
page-at-a-time archival service, it only archives the initial representation and all
embedded resources, meaning the the linked Craigslist protest page is missed during
archiving. While not a deferred representation, the run-time addition of the URI-R
makes archiving the representation, as well as the target of the link, impossible with
an automatic, web-scale archiving tool.

4.1.2 WIKIPEDIA: REVISITED

As mentioned in Section 1.2.2, Wikipedia protested SOPA by covering their con-
tent with a splash page. The mementos of the Wikipedia protest do not have an
accurate representation of the protest and are missing the splash page that is loaded
via JavaScript, making the Wikipedia site during the SOPA protest a deferred rep-
resentation.

Recall that Wikipedia maintains a live version of the protest splash page. To
investigate the cause of the missing splash page further, we requested (on November
27, 2013) that WebCite archive the current version of the Wikipedia blackout page.
This memento does not capture the splash page, either.

When looking through the client-side HTML of the Wikipedia mementos we ref-
erence, there is no mention of the splash page protesting SOPA. The common Web
user may recognize that clicking the browser’s “Stop” button prevents the splash
page from appearing. We hypothesize (and show) that JavaScript is responsible for
loading the splash page. JavaScript loads the image needed for the splash page as
a result of an onload event on the client. Since the archiving tools have no way of
executing the event, they have no way of discovering and archiving the image.

When we load the live blackout resource, we see that there are several files loaded
by Wikipedia. Some of the JavaScript files return a 403 Forbidden response since
they are blocked by the Wikipedia robots.txt file (Figure 34).

Specifically, the robots.txt file preventing these resources from being archived is
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FIG. 34: Google Chrome’s developer console showing the resources requested
by http://web.archive.org/web/20130824022954/http://en.wikipedia.org/
?banner=blackout and their associated response codes.
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1 GET /w/index.php?title=Special%3ABannerLoader&banner=blackout
2 &campaign=none&uselang=en&
3 db=enwiki&project=wikipedia&country=US&device=desktop
4 HTTP/1.1
5 Host: meta.wikimedia.org
6 Connection: keep-alive
7 Cache-Control: max-age=0
8 Accept: */*
9 User-Agent: Mozilla/5.0 (X11; Linux i686)

10 AppleWebKit/537.36 (KHTML, like Gecko)
11 Chrome/29.0.1547.76 Safari/537.36
12 Referer: http://en.wikipedia.org/?banner=blackout
13 Accept-Encoding: gzip,deflate,sdch
14 Accept-Language: en-US,en;q=0.8

FIG. 35: An HTTP Request for the blackout banner.

http://bits.wikimedia.org/robots.txt. The robots.txt file is archived, as well,
at http://web.archive.org/web/*/http://bits.wikimedia.org/robots.txt1.

We will look at one specific HTTP request for a PHP page with embedded Java-
Script in Figure 35. This JavaScript contains code defining a function that adds CSS
to the page, overlaying an image as a splash page and overlays the associated text
on the image, shown in Figure 362.

Without the execution of the insertBanner function, the archival tools will not
know to archive the image of the splash page (WP_SOPA_Splash_Full.jpg) or the
overlayed text. In this example, Wikimedia is constructing the URI of the image and
using Ajax to request the splash page resource (Figure 37), making this a deferred
representation.

The blackout image is available in the Internet Archive (as a memento of the
currently available blackout image), but the mementos in the Wayback Machine
do not attempt to load it3. Without the execution of the client-side JavaScript
and subsequent capture of the splash screen, the SOPA blackout protest is neither
discovered nor recorded by the archival service.

1For reference, Sun et al. provided a study of the robots.txt protocol [278].
2I have added the line breaks for readability.
3URI-M http://web.archive.org/web/20120118165255/http://upload.wikimedia.org/

wikipedia/commons/9/98/WP_SOPA_Splash_Full.jpg
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1 mw.centralNotice.insertBanner(
2 {"bannerName":"blackout","bannerHtml":"
3 \u003Cstyle\u003E
4 #mw-sopaOverlay {
5 /* Opera Mini doens’t like position
6 absolute */
7 /* iOS doesn’t like position fixed */
8 top: 0;
9 left: 0;

10 width: 100%;
11 height: 100%;
12 z-index: 500;
13 color: #dedede;
14 background: black url(//upload.wikimedia.org/
15 wikipedia/commons/9/
16 98/WP_SOPA_Splash_Full.jpg)
17 ...
18 id=\"mw-sopaHeadline\"\u003EImagine a World
19 \u003Cbr /\u003EWithout Free Knowledge
20 \u003C/div\u003E’);
21 \tvar intro = $(’\u003Cdiv id=\"mw-sopaText\"
22 \u003E\u003Cp\u003EFor over a decade, we
23 have spent millions of hours building the
24 largest encyclopedia in human history.
25 Right now, the U.S. Congress is considering
26 legislation that could fatally damage the
27 free and open Internet. For 24 hours, to
28 raise awareness, we are blacking out Wikipedia.
29 ...

FIG. 36: The JSON object that identifies the blackout page background image.
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1 var scriptUrl=mw.config.get
2 (’wgCentralBannerDispatcher’)+’?’+
3 $.param(bannerDispatchQuery);
4

5 $.ajax(
6 {
7 url:scriptUrl,
8 dataType:’script’,
9 cache:true

10 });
11

12 insertBanner:function(bannerJson)
13 {
14 window.insertBanner(bannerJson);
15 }
16

FIG. 37: The JavaScript that constructs the banner URI and uses Ajax to request
the blackout banner.

We have previously demonstrated that JavaScript in mementos can lead to leak-
age [54]. We also showed that JavaScript can also make access to mementos from the
live Web easier but ironically makes archiving those resources harder (Section 4.2),
an example of how technologies intended to improve a user’s browsing experience
can actually be more difficult, if not impossible, to archive.

In addition to our investigation, Jackson of the UK Web Archive has outlined
difficulties and potential approaches for archiving JavaScript-focused Web applica-
tions using the Wikipedia SOPA protest as an example [134]. In his analysis of the
difficulties automatic crawlers have when capturing this protest, Jackson discusses
the need to archive Web applications and discusses the need to use PhantomJS (or
a similar technology) to uncover run-time URIs to be added to the crawl frontier.

Wikipedia’s and Craigslist’s SOPA protests are prime examples of an historical
event that has not been properly archived because the archival targets have deferred
representations. To prevent further historical loss, we recommend that automatic
web crawlers and specialist archives use a two-tiered crawling approach to more
accurately archive deferred representations.
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4.2 JAVASCRIPT AND MEMENTOS OF MEMENTOS

On February 2, 2015, Voorburg announced the JavaScript utility robustify.js [47,
295, 296]. The robustify.js code, when embedded in the HTML of a Web page, helps
address the challenge of link rot by detecting when a clicked link will return an HTTP
404 and uses the Memento Time Travel Service4 to discover mementos of the URI-R.
Robustify.js assigns an onclick event to each anchor tag in the HTML. When the
event occurs, robustify.js makes an Ajax call to a service to test the HTTP response
code of the target URI. When an HTTP 404 response code is detected by robustify.js,
it uses Ajax to make a call to a remote server, uses the Memento Time Travel Service
to find mementos of the URI-R, and uses a JavaScript alert to let the user know that
JavaScript will redirect the user to the memento.

Our studies show that JavaScript makes preservation more difficult [52], but ro-
bustify.js is a useful utility that is easily implemented to solve an important challenge
(link rot). Along this thought process, we wanted to see how a tool like robustify.js
would behave when archived.

We constructed two very simple test pages, both of which include links to Voor-
burg’s missing page5.

1. http://www.cs.odu.edu/~jbrunelle/wsdl/unrobustifyTest.html
which does not use robustify.js

2. http://www.cs.odu.edu/~jbrunelle/wsdl/robustifyTest.html
which does use robustify.js

In robustifyTest.html, when the user clicks on the link to http://www.dds.nl/
~krantb/stellingen/, an HTTP GET request is issued by robustify.js to an API
that returns an existing memento of the page (Figure 38).

The resulting JSON is used by robustify.js to redirect the user to the memento

http://web.archive.org/web/19990830104212/http:

//www.dds.nl/~krantb/stellingen/

as expected.
4http://timetravel.mementoweb.org/
5http://www.dds.nl/~krantb/stellingen/
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1 GET /services/statuscode.php?url=
2 http%3A%2F%2Fwww.dds.nl%2F~krantb
3 %2Fstellingen%2F HTTP/1.1
4 Host: digitopia.nl
5 Connection: keep-alive
6 Origin: http://www.cs.odu.edu
7 User-Agent: Mozilla/5.0 (iPhone; CPU
8 iPhone OS 8_0 like Mac OS X)
9 AppleWebKit/600.1.3 (KHTML, like Gecko)

10 Version/8.0 Mobile/12A4345d Safari/600.1.4
11 Accept: */*
12 Referer: http://www.cs.odu.edu/~jbrunelle/
13 wsdl/robustifyTest.html
14 Accept-Encoding: gzip, deflate, sdch
15 Accept-Language: en-US,en;q=0.8
16

17 HTTP/1.1 200 OK
18 Server: nginx/1.1.19
19 Date: Fri, 06 Feb 2015 21:47:51 GMT
20 Content-Type: application/json; charset=UTF-8
21 Transfer-Encoding: chunked
22 Connection: keep-alive
23 X-Powered-By: PHP/5.3.10-1ubuntu3.15
24 Access-Control-Allow-Origin: *

FIG. 38: HTTP headers of the robustify JavaScript.
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Given this success, we wanted to understand how our test pages would behave
in the archives. We also included a link to the stellingen memento in our test page
before archiving to understand how a URI-M would behave in the archives. We used
the Internet Archive’s Save Page Now feature to create the mementos at URI-Ms

http://web.archive.org/web/20150206214019/http://www.cs.odu.edu/

~jbrunelle/wsdl/robustifyTest.html

and

http://web.archive.org/web/20150206215522/http://www.cs.odu.edu/

~jbrunelle/wsdl/unrobustifyTest.html

The Internet Archive re-wrote the embedded links to be relative to the archive in the
memento during replay, converting

http://www.dds.nl/~krantb/stellingen/

to

http://web.archive.org/web/20150206214019/http:

//www.dds.nl/~krantb/stellingen/

Upon further investigation, we noticed that robustify.js does not issue onclick
events to anchor tags linking to pages within the same TLD as the host page. An
onclick event is not assigned to any embedded anchor tags because all of the links
point to within the Internet Archive, the host TLD. Due to this design decision,
robustify.js is never invoked when within the archive6.

When clicking on the URI-M, the 2015-02-06 memento does not exist, so the
Internet Archive redirects the user to the closest memento

6This was fixed by Voorburg after our initial work (and released on the robustify GitHub,
https://github.com/renevoorburg/robustify.js?files=1, but the original problem illustrates
a potential issue with JavaScript in the archives and unintended side effects, even in tools meant to
aid in preservation.
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http://web.archive.org/web/19990830104212/http:

//www.dds.nl/~krantb/stellingen/

The user, when clicking the link, is redirected to the 1999 memento by the Way-
back Machine, because the Wayback Machine understands how to redirect the user
from the 2015 URI-M for a memento that does not exist to the 1999 URI-M for a
memento that does exist. If the Internet Archive had no memento for

http://www.dds.nl/~krantb/stellingen/

the user would simply receive a 404 and not have the benefit of robustify.js using the
Memento Time Travel service to search additional archives.

The robustify.js file is archived at URI-M

http://web.archive.org/web/20150206214020js_/http:

//digitopia.nl/js/robustify-min.js

but its embedded URI-Rs are re-written by the Internet Archive. The original, live
Web JavaScript has URI templates embedded in the code that are completed at run
time by inserting the “yyymmddhhmmss” and “url” variable strings into the URI-R:

archive:"http://timetravel.mementoweb.org/memento/{yyyymmddhhmmss}/

{url}",statusservice:"http://digitopia.nl/services/statuscode.php

?url={url}"

These templates are rewritten during playback to be relative to the Internet
Archive:

archive:"/web/20150206214020/http://timetravel.mementoweb.org/memento/

{yyyymmddhhmmss}/{url}",statusservice:"/web/20150206214020/

http://digitopia.nl/services/statuscode.php?url={url}"

Because the robustify.js is modified during archiving, we wanted to understand the
impact of including the URI-M of robustify.js
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http://web.archive.org/web/20150206214020js_/http:

//digitopia.nl/js/robustify-min.js

in our test page

http://www.cs.odu.edu/~jbrunelle/wsdl/test-r.html

In this scenario, the JavaScript attempts to execute when the user clicks on the
page’s links, but the re-written URIs point to

/web/20150206214020/http://digitopia.nl/services/statuscode.php?

url=http%3A%2F%2Fwww.dds.nl%2F~krantb%2Fstellingen%2

since test-r.html exists on www.cs.odu.edu, the links are relative to www.cs.odu.edu
instead of archive.org.

Instead of issuing an HTTP GET for

http://digitopia.nl/services/statuscode.php?url=http%3A%2F%2Fwww.dds.

nl%2F~krantb%2Fstellingen%2F

robustify.js issues an HTTP GET for

http://www.cs.odu.edu/web/20150206214020/http:

//digitopia.nl/services/statuscode.php?url=http%3A%2F%2Fwww.dds.nl%

2F~krantb%2Fstellingen%2F

which returns an HTTP 404 when dereferenced. The robustify.js script does not
handle the HTTP 404 response when looking for its service, and throws an exception
in this scenario. Note that the memento that references the URI-M of robustify.js
does not throw an exception because the robustify.js script does not make a call to
digitopia.nl/services/.

In our test mementos, the Internet Archive also re-writes the URI-M

http://web.archive.org/web/19990830104212/http:

//www.dds.nl/~krantb/stellingen/
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to

http://web.archive.org/web/20150206214019/http://web.archive.org/web/

19990830104212/http://www.dds.nl/~krantb/stellingen/.

This memento of a memento (Figure 39) does not exist. Clicking on the appar-
ent memento of a memento link causes the user to be told by the Internet Archive
that the page is available to be archived.

We also created an Archive.is memento of our robustifyTest.html page at URI-M

https://archive.is/l9j3O

In this memento, the functionality of the robustify script is removed because Ar-
chive.is strips out all embedded JavaScript in mementos, redirecting the user to

http://www.dds.nl/~krantb/stellingen/

which results in an HTTP 404 response from the live Web. The link to the In-
ternet Archive memento is re-written to

https://archive.is/o/l9j3O/http://www.dds.nl/~krantb/stellingen/

which results in a redirect (via a refresh) to

http://www.dds.nl/~krantb/stellingen/

which results in an HTTP 404 response from the live Web, just as before. Archive.is
uses this redirect approach as standard operating procedure. However, Archive.is
re-writes all links to URI-Ms back to their respective URI-Rs.

This is a different path to a broken URI-M than the Internet Archive takes, but
results in a broken URI-M, nonetheless. Note that Archive.is simply removes the
robustify.js file from the memento, not only removing the functionality, but also
removing any trace that it was present in the original page.
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FIG. 39: This memento of a memento does not exist, but references a URI-M as a
live-Web URI-R.
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In an odd turn of events, our investigation into whether a JavaScript tool would
behave properly in the archives has also identified a problem with URI-Ms in the
archives. If Web content authors continue to utilize JavaScript to re-write URI-Rs
to URI-Ms in an effort to mitigate link rot or utilize tools to help discover mementos
of defunct links, there is a potential that the archives that utilize the Wayback
Machine for memento replay may see additional challenges of this nature arising. This
demonstrates that even JavaScript tools that are designed to improve preservation
can cause issues with memento replay.

4.3 ZOMBIES IN THE ARCHIVES

Leakage occurs when mementos include current, live Web content. We refer to
mementos that allow the live Web to “leak” into archived pages as zombies [54, 209].
Zombies are caused by deferred representations in the archives. When leakage occurs,
a memento that should only load embedded mementos from the archives instead
loads a live resource from the Web. That is to say, these resources are expected to
be archived (“dead”) but still reach into the current Web, just as cinematic zombies
reach out to the living world from the grave.

A zombie’s reach into the live Web is caused by URIs that are not correctly
rewritten back into an archive. JavaScript is often unaware of the memento or Web
archive in which it exists, resulting in JavaScript constructing URIs that point to the
live Web from within a memento. When a memento is accessed by a user, embedded
JavaScript will run and may attempt to dereference a URI-R constructed at run time.
The archive is not able to rewrite the JavaScript-created URI-R to a URI-M because
it did not discover it at crawl time. This results in the memento not pulling from
the archives but “reaching out” (zombie-style) from the archive to the live Web7.
When a zombie pulls live resources into a memento, two possible outcomes occur.
First, the memento may be incomplete if the live resource is not available (missing an
embedded resource). Second, the memento may be incorrect if a live Web resource
with a last-modified date later than a memento’s memento-datetime is loaded into a
memento, causing a temporal violation. Ainsworth et al. refer to this as prima facie
violative [6].

We examine two humorous examples of the juxtaposition of past and present
7This is prevented in the Wayback Machine by using proxy mode, but can still lead to missing

embedded resources.
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content in the archives. While our past work has focused on leakage in general
(Chapter 5), these examples focus only on the leakage of advertisements into me-
mentos. Advertisements capture cultural norms and are important for studies of
popular culture and opinion. As such, they are important to archivists and – while
potentially annoying to today’s Web users – are valuable to future researchers.

In our first example, we look at a memento of CNN.com (Figure 40). We can ob-
serve a memento from the Wayback Machine at URI-M http://web.archive.org/

web/20080916123132/http://www.cnn.com/ which includes embedded JavaScript
that pulls advertisements from the then live Web. This memento from September
16, 2008, includes links to articles about the 2008 presidential race between McCain-
Palin and Obama-Biden. However, we observed this memento (and took the screen-
shot provided in Figure 41) on September 28, 2012, during the 2012 presidential
race between Romney-Ryan and Obama-Biden. The advertisement in Figure 40 is
a zombie resource that promotes the 2012 presidential debate between Romney and
Obama. This temporal violation seems to provide a prophetic look at the 2012 pres-
idential candidates in a 2008 memento. The live CNN.com homepage representation
from September 28, 2012 gives the same advertisement as the archived version (as
seen in Figure 41).

In a second example, we examine a memento of the IMDB movie database
site. We observed the July 28, 2011, memento of the IMDB homepage at http://
web.archive.org/web/20110728165802/http://www.imdb.com/ (Figure 42). This
memento advertises the movie Cowboys and Aliens. This movie is set to start “to-
morrow” according to the text in our observed July 28, 2011, memento. Additionally,
we see the current feature movie is Captain America.

According to the IMDB site as observed live on September 28, 2012 (Figure 43),
Cowboys and Aliens was released in 2011 (Figure 43(a)), and Captain America was
released in 2011 (Figure 43(b)), in keeping with our observed memento. However,
the ad included on the IMDB memento promotes the movie “Won’t Back Down.”
According to IMDB, this movie was not released until 2012 (Figure 43(c)). Again,
we can observe a memento with reference to present-day events through leakage.

We monitored the HTTP traffic to validate that these live ads are indeed leaking
into our mementos. In our investigation of the HTTP requests made when loading the
mementos, we found evidence of the reach into the live Web. We stored all HTTP
headers generated when a user browses the memento into a text file for analysis.
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FIG. 40: A temporal inconsistency is shown in the 2008 memento of CNN.com from
the Wayback Machine at URI-M http://web.archive.org/web/20080916123132/
http://www.cnn.com/.

FIG. 41: A temporally correct snapshot of a live CNN.com site



100

FIG. 42: A 2011 memento of IMDB.com from the Wayback Machine at URI-M
http://web.archive.org/web/20110728165802/http://www.imdb.com/

(a) Cowboys and Aliens was released in
2011

(b) Captain American was released in
2011

(c) Won’t Back Down is scheduled to be
released in 2012

FIG. 43: Another example of temporal inconsistencies from leakage in IMDB.com
shows that leakage occurs in the archives.
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1 $ grep Host: headers.txt | grep -v archive.org
2 Host: ocsp.incommon.org
3 Host: ocsp.usertrust.com
4 Host: exchange.cs.odu.edu
5 Host: ad.doubleclick.net
6 Host: ad.doubleclick.net
7 Host: ad.doubleclick.net
8 Host: ia.media-imdb.com
9 Host: core.insightexpressai.com

10 Host: ad.doubleclick.net
11 Host: ia.media-imdb.com
12 Host: core.insightexpressai.com
13 Host: ad.doubleclick.net
14 Host: ad.doubleclick.net
15 Host: ia.media-imdb.com
16 Host: ad.doubleclick.net

FIG. 44: Live Web resources are requested when viewing a CNN.com memento from
the Internet Archive.

Since the target memento is archived in the Internet Archive, the requests should be
to other resources within the archive.org domain. However, we observe requests for
live Web resources in Figure 44. These requests from archives into the live Web are
initiated by embedded JavaScript (Figure 45).

The Internet Archive is not the only archive at which we find leakage. We found an
example in a WebCite memento of CNN.com archive on 2012-09-09 (Figure 46 and at
URI-M http://webcitation.org/6AYT4UFVf). The “Popular on Facebook” section
of the page has activity from two of my “facebook friends” as shown in the 2012-10-01
screenshot in Figure 47. One friend shared the “10 questions for Obama to answer”
page which was published on October 1, 2012 and is shown below. My “friend”
should not have been able to share a page that has not yet been published (2012-
09-09 occurs before 2012-10-01), demonstrating leakage in the WebCite memento of
CNN.com.

Such occurrences of leakage and zombie resources are not uncommon in today’s
archives. Current Web technologies such as JavaScript make an unchanging capture
difficult in the modern Web. However, it is useful for us as Web users and Web
scientists to understand that zombies do exist in our archives.
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1 <iframe src="http://www.imdb.com/images/
2 SF99c7f777fc74f1d954417f99b985a4af/a/
3 ifb/doubleclick/expand.html#imdb2.consumer
4 .homepage/;
5 tile=5;
6 sz=1008x60,1008x66,7x1;
7 p=ns;
8 ct=com;
9 [PASEGMENTS];

10 u=[CLIENT_SIDE_ORD];
11 ord=[CLIENT_SIDE_ORD]?"
12 ...
13 onload="ad_utils.on_ad_load(this)">
14 </iframe>

FIG. 45: Embedded JavaScript (i.e., the scripts in a frame) is responsible for the
leakage.

FIG. 46: WebCite memento of CNN.com with leakage.
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FIG. 47: Live CNN.com resource containing the shared article.

4.4 MULTIPLE REPRESENTATIONS

Representations of resources can differ greatly depending on several factors [145].
For example, some sites have deferred representations, and others attempt to provide
alternate representations by interpreting the user-agent portion of the HTTP GET
headers through content negotiation, or provide representations based on session or
user data (second-order expression based on context).

To test the behavior of these alternate representations in the archives, we archived
URI-Rs using a mobile device’s user-agent string and a desktop user-agent string
and dereferenced the URI-Ms of the resulting mementos using both a desktop and
mobile device (and, therefore, user-agent strings) to understand how the repre-
sentations would be viewed by the devices. Additionally, we show that there is a
potential for mobile-desktop memento collisions in the archives.

As an example, we study [145] the live front page resource identified by the URI-
R http://www.cnn.com/. We ran a pair of limited crawls of the CNN.com front
page with Heritrix 3.1 and then accessed the mementos captured by Heritrix via
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the Wayback Machine with a desktop Mac and an Android phone. The first crawl
captured the CNN.com front page and specified a desktop version of the Mozilla
browser as the user-agent in the header string, as seen in Figure 48(a). We viewed
the resulting memento in a local installation of the Wayback Machine (Figures 49(a)
and 49(c)).

The second crawl captured the CNN.com front page and specified an iPhone ver-
sion of the Mozilla browser as the user-agent string in the header, as shown in
Figure 48(b). The resulting memento, as viewed in the Wayback Machine, is shown
in Figures 49(b) and 49(d). The mobile and desktop representations differ in the
archives, but a user of the Wayback Machine may not understand how these repre-
sentations are generated since they are identified by the same URI-R. Additionally,
the linkage between the mobile and desktop version exists on the live Web (e.g., via
content negotiation) but disappears when archived. Similar behavior may exist for
user interactions or client-side events; descendants (discussed further in Section 7.6)
are identified by the same URI-R and could, therefore, lead to a URI-M collision.
Descendants are client-side states reached through user-interactions or other client-
side event that change the state of the representation. In this example, we observe
mobile versus desktop user-agents, but the same archival anomalies presented in this
section occur with descendants.

These examples illustrate the potential for collisions within the archives [145].
Collisions may occur when the same URI-R is archived at the same datetime but
have different – potentially deferred – representations. If the mobile and desktop
versions of the page are crawled by Heritrix at the same datetime, the URI-Ms in the
Wayback Machine would be indistinguishable. The live Web version of CNN.com is
identified by http://www.cnn.com/ regardless of the user-agent string and result-
ing representation. Today, it is impossible to predict whether http://web.archive.
org/\{MEMENTODATETIME\}/http://www.cnn.com/ will dereference to the mobile or
the desktop version.

These collisions are not limited to mere changes in representation. User-agent

changes can reveal different content in resources. For example, the representations
for the same MySpace page (Figure 50) differ based on the user-agent string used in
the HTTP access. The age and location of the user are not displayed in the desktop
representation in Figure 50(a), but are revealed when accessed from a mobile device,
such as in Figure 50(b).
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(a) HTTP GET request from Heritrix with the desktop Mozilla user-agent.

(b) HTTP GET request from Heritrix with the iPhone Mozilla user-agent.

FIG. 48: WARC Record headers for the same resource accessed using different
user-agent strings.



106

(a) The CNN.com memento when
crawled by Heritrix with a desktop
Mozilla user-agent accessed from a
Mac.

(b) The CNN.com memento when
crawled by Heritrix with an iPhone
Mozilla user-agent accessed from a
Mac.

(c) The CNN.com memento when
crawled by Heritrix with a desktop
Mozilla user-agent accessed from an
Android Phone.

(d) The CNN.com memento when
crawled by Heritrix with an iPhone
Mozilla user-agent accessed from an
Android phone.

FIG. 49: Mementos differ based on the parameters influencing the representations
at crawl/capture time and the devices used to access the mementos.
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(a) A desktop version of a private Myspace page.

(b) The same private Myspace page, viewed with a mobile browser.

FIG. 50: Resources return different representations based on the environment.
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The granularity of URI-Ms makes differentiating between representations impos-
sible with the current configurations in the archives. Additionally, users cannot refer-
ence mementos by user-agent or other environment variables because they are not
part of the archives’ indexing strategy. Temporal data alone is no longer sufficient to
describe a memento; environmental variables must also be recorded and presented to
the user, allowing the user to navigate between multiple dimensions or descendants
of a representation (we propose using the JSON metadata in WARCs proposed by
the IIPC as presented in Chapter 7). Users can then decide whether browsing on
the temporal dimension or the environmental parameters is more suitable for their
goals.

In previous work [145], we proposed a set of examples that outline the increasing
potential for collisions in the archives and a set of potential solutions. The results of
the study demonstrated the increasing gap between the archives and live resources;
live resources are increasingly impacted by the browsing paths, interactions, and
environment variables, while the archives continue to capture content via singleton,
HTTP-based, stateless transactions.

These collisions can potentially occur with deferred representations. If client-
side code is executed, a descendants of the same resource will collide with other
descendant in the archives since they are both identified by the same URI-R and
potentially the same URI-M. To rectify this issue, WARCs and WARC replay tools
should adopt a method of identifying mementos with features in addition to archive
datetime.

4.5 SUMMARY

In this section, we identify several examples in which JavaScript causes archival
anomalies or short-comings. It is important to demonstrate why and how JavaScript
creates additional archival challenges, and so we present observations of the results
of JavaScript in the archives. These examples motivate the rest of this dissertation
and are indicative of the importance of this research.

With a discussion of the challenges with archiving JavaScript in this chapter, we
next begin to answer Research Question 1 by discussing the impact of JavaScript on
the archives and measuring the increasing prevalence of JavaScript in the archives
(Chapter 5). We also show that JavaScript-dependent embedded resources correlate
to missing embedded resources in mementos, leading to lower quality mementos.
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We address Research Question 2 in Chapter 6, discussing our work toward es-
tablishing an algorithm for automatically assessing the quality of mementos. In our
work, we show that this algorithm provides a damage metric that is closer to human
assessment of memento quality than the simple calculation of percent of embedded
resources missing. We use this algorithm to evaluate the human assessed impact
of JavaScript on memento quality showing that deferred representations have lower
quality.

We discuss our work in answering Research Question 3 in Chapter 7. The most
important contribution of this dissertation is the recommended framework for archiv-
ing the currently hard-to-archive deferred representations. Through understanding
the extent and source of the challenges introduced by JavaScript and establishing
that adoption is increasing, we show that a framework for archiving deferred repre-
sentations is necessary to mitigate the impacts of JavaScript on the archives. First,
we show that headless browsing clients and traditional crawlers have very different
performance characteristics, with PhantomJS creating a 1.8 times larger frontier but
running 12.12 times slower than Heritrix when comparing crawls of identical URI-Rs.
After understanding the performance trade-off between PhantomJS and Heritrix, we
discuss the number of client-side states (that we define as descendants) that may
exist in a representation as a result of user interactions, and discuss the extent to
which crawlers must interact with a representation to create the largest possible fron-
tier. We show that there are two levels of descendants that lead to 15.6 times more
URI-Rs in the crawl frontier, 70.9% of which are discovered via onclick events.
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CHAPTER 5

MEASURING JAVASCRIPT IN THE ARCHIVES

The ease of archiving a Web page, called the archivability of the page, is impacted
by the previously mentioned migration from Web pages to Web applications. We dis-
cuss how client-side technologies impact archivability in Section 2.2. Many culturally
significant artifacts (such as Google Maps, shown in Figure 51 or the SOPA examples
in Sections 1.2 and 4.1 [45]) are unable to be unarchived by today’s crawl methods.
Even if resources are archived, they sometimes become prima facie violative because
JavaScript may load content from the live Web (referred to as the live Web “leaking”
into the archive, introduced in Section 4.3 [54] and discussed in more detail in Section
5.5) instead of only loading temporally appropriate content.

In this chapter, we answer Research Question 1: To what extent does Java-
Script impact archival tools? We studied the impact of JavaScript on the archives
[52] as a way to measure the extent of the problem created by the increasing adoption
of JavaScript by Web pages. First, we studied live resources and mementos to pro-
vide insight into what makes a resource archivable. We used Heritrix, WebCite, and
wget to capture a set of resources shared via Twitter and a set of Archive-It curated
resources with the intent to determine how well each tool archives the resources1.
We compared these tools and collections by analyzing the resulting mementos and
discuss the results to show that Twitter resources are less archivable than Archive-It
resources, and Heritrix is the best archival tool of the three observed (note that we
compare the performance of PhantomJS and Heritrix in Chapter 7).

We studied how archivability has changed over time as a result of JavaScript adop-
tion [52]. We studied the mementos of the URI-Rs in our collections for completeness
and investigated the cause of missing embedded resources. We showed that resources
are becoming less archivable over time and memento incompleteness correlates to the
adoption of JavaScript. In short, we provided insight into how well archival tools
have performed in the past, and measured the role JavaScript has played in reducing
archival coverage.

1Dataset available at https://github.com/jbrunelle/DataSets/blob/master/jsDataSet.
txt.
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5.1 MOTIVATING EXAMPLE

Google Maps is an example of a resource with a deferred representation in which
memento incompleteness is easy to observe. Figure 51(a) shows the live page, contain-
ing multiple interactive UI elements. The map in the middle is draggable, allowing
the user to pan, click, and zoom. A memento from April 30, 2012, of this page in Fig-
ure 51(c) is missing UI elements and functionality (circled), and the interaction (e.g.,
panning and zooming) does not function. This is because the embedded resources
are loaded by JavaScript as a result of user interaction which automatic crawlers
such as Heritrix cannot perform and therefore do not discover. Figure 51(b) shows
an archived (December 1, 2012) version that gives the façade of functionality when,
in fact, resources on the live Web are leaking into the representation.

Figures 53 - 56 are examples of archival tools failing, at various levels of sever-
ity, to properly archive a resource because its representation uses JavaScript to load
embedded resources. We archived versions of the resources in Figures 5.1, 53, and
55 with wget, WebCite2, and Heritrix and compared the resulting archived repre-
sentation to the live representation of the resource. For the wget capture, we show
the replay of the memento stored on localhost both with and without access to
the Internet. Viewing the resource without Internet connectivity ensures that only
content that is locally archived is loaded into the resource (i.e., no leakage of the live
Web into the memento). This simulates the absence of the live Web version of the
resource.

Figure 5.1 shows a resource perfectly archived by the archival tools we examined.
There is no leakage from the live Web and all requisite embedded resources are
captured by each tool. There is no JavaScript in this page, and the resources loaded
into the page all originate from the archive (i.e., no leakage exists). This is considered
the best-case archival scenario.

Figures 53 and 54 demonstrate a memento that is not perfectly archived but is
“good enough.” All of the “important” content – the content contributing to human
understanding of the page3 – was captured; however, there were slight representation
and stylistic issues. As an example, we have added red circles in Figures 53 and
54 to highlight changes in content availability. The live representation (Figure 53)

2Archive.is was not available for testing at the time of this experiment, and is therefore omitted
from this evaluation.

3We explore human understanding of Web page quality in Chapter 6.
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(a) Live version (b) Archived Dec. 1, 2012

(c) Archived Apr. 30, 2012

FIG. 51: Google Maps as it exists live and as a memento.
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FIG. 52: The live version of http://www.albop.com/main.html (from the Archive-
It collection) is perfectly archived using Heritrix, wget, and WebCite.

has links and icons for sharing the resource over social media services, as well as a
Facebook “Like” icon. The social media links disappear in the mementos (Figure
54), and the Facebook “Like” icon disappears in the localhost without access to
the Internet (Figure 54(a)) and WebCite (Figure 54(c)) versions. This issue with the
representation is caused by leakage from the live Web into our archive. Leakage is
evidenced by the memento with Internet connectivity having the “Like” icon, while
the memento without Internet connectivity does not, because the JavaScript that
loads the icon requests it from the live Web. This means yesterday’s HTML page
has today’s “Like” icon and is prima facie violative [7]. In this case there is likely
no problem, but this temporal inconsistency could be unacceptable in other cases
(e.g., legal scenarios). Additionally, the WebCite memento (Figure 54(c)) is missing
a stylesheet, causing the background to be a dark red instead of the tan color of the
other mementos and live version. This URI-R and its deferred representation is an
example of leakage from the live Web and of the problems introduced by Ajax in a
memento.

The example in Figures 55 and 56 is poorly archived by most of the tools we
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FIG. 53: Live version of http://www.desbarresmanor.com/daytouring/history.
html from the Twitter collection.

(a) Localhost ver-
sion captured with
wget, with access to
the Internet.

(b) Localhost ver-
sion captured with
wget, without ac-
cess to the Internet.

(c) WebCite
version.

(d) Wayback ver-
sion.

FIG. 54: As shown by these mementos, the site http://www.desbarresmanor.com/
daytouring/history.html is mostly archived with minor content leakage.
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FIG. 55: Live version of http://perezhilton.com/
2009-06-11-world-premiere-gaga-manson from the Twitter collection.
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used. The reader can see that the live and the localhost version with access to
the Internet (Figure 56(a)) are nearly identical, with the only difference being a
missing banner at the top of the page. When observing the localhost version
without access to the Internet (Figure 56(b)), there are many more missing embedded
resources. The missing content highlights the fact that a large number of files are
not actually archived and cannot be loaded without the live Web leaking into the
memento because the archival tools cannot find them during the archival process.
The WebCite (Figure 56(c)) capture seems to be loaded properly. However, there is a
significant amount of leakage including many of the JavaScript files that load content
and several of the image files being imported into this page. The Wayback memento
(Figure 56(d)) makes several requests for content that was not captured (as noted by
the “Resource not in archive” messages), and the content on the page, particularly
the deferred content, was corrupted during the archival process and displays as code.
The resource consists almost entirely of JavaScript that loads content into the page
at run-time, resulting in the reliance on leakage to load the requisite resources.

5.2 EXPERIMENT DESIGN

Given the aforementioned archival challenges, this experiment’s first goal is to
observe how well current Web capture and archival tools can archive content and
to identify characteristics of resources that are difficult to archive (i.e., have low
archivability). Specifically, we study the completeness of the mementos captured by
these tools and the impact that JavaScript has on archivability. We studied two sets
of URI-Rs with respect to archivability; the first is a set of Bitlys (shortened URI-
Rs shared in tweets) taken from Twitter, and the second is a set of human-curated
URI-Rs from Archive-It.

We captured each set of resources with a set of archival tools, observed in their
archived state, and each of the mementos is compared to the live gold standard
version for completeness and to determine archivability. The Web page in its live,
native environment is considered the best version possible or the best an archival
tool can expect to achieve; if an archival tool replicates the live environment, it has
perfectly captured and archived that resource. The first goal of our experiment is to
compare each of the tools to one another, and each of the datasets are compared and
contrasted.

The second goal of our experiment is to study the evolution of archivability over
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(a) Localhost version captured with
wget, with access to the Internet.

(b) Localhost version captured with
wget, without access to the Internet.

(c) WebCite version. (d) Wayback version.

FIG. 56: As shown by these mementos, the site http://perezhilton.com/
2009-06-11-world-premiere-gaga-manson is extremely difficult to archive.
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time to determine the past and current trends as it relates to JavaScript’s adoption.
We observed the effects of JavaScript on archivability over time by loading mementos
from the Internet Archive with PhantomJS and recording the HTTP response codes
of the embedded resources. We determined whether the mementos were loaded from
HTML or JavaScript. From this, we analyze, in depth, the nature of the memento
and its archivability over time.

5.2.1 DATASETS

This experiment utilizes two different datasets presented for comparison. The
first dataset, the Twitter set, consists of Bitly URIs shared over Twitter. Shortened
URIs are popular among social network services and the resources to which they
redirect vary in expected life span [16]. The second dataset, the Archive-It set, was
sampled from Archive-It collections. Archive-It collections are created and curated
by human archivists often corresponding to a certain event (e.g., National September
11 Memorial Museum) or a specific set of Web sites with a common theme (e.g., City
of San Francisco). The Twitter and Archive-It sets are made up of fundamentally
different resources, as shown in Tables 5 and 6; the differences are investigated in
this section. There is no overlap between the two sets.

We discarded non-HTML representations (i.e., binary MIME-types such as JPEG
and PDF) from both sets. The purpose of this study is to observe how well the
embedded resources are converted from live to archived. Non-HTML representations
do not contribute to this study and are assumed to be perfectly archived by all tools.

Twitter

We collected the Twitter URI-Rs through the Twitter Garden Hose4 in October,
2012. This set consists of 1,000 URI-Rs and represents resources that Twitter users
thought to be important enough to share with others on social media but which
have not necessarily been actively archived. With the non-HTML representations
removed, the Twitter set has 901 URIs.

4https://dev.twitter.com/docs/streaming-apis/streams/public; this service is no longer
available.
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Archive-It

The Archive-It set consists of the entire set of URI-Rs belonging to the collec-
tions listed on the first page of collections at Archive-It.org5 as of October 2012.
This resulted in 2,093 URI-Rs that represent a collection of previously archived and
human-curated URIs. To make the datasets equal in size, we randomly sampled
1,000 URIs from the set of 2,093. As shown in Table 5, the Archive-It set has a
lower proportion of non-HTML content than the Twitter set. With the non-HTML
representations removed from the randomly sampled set of 1,000 this collection has
960 URIs.

TABLE 4: Example URIs
URI De-
limiter

Example URI

URI Fragment # http://www.example.com/
index.html#fragment

URI Parameter ? http://www.example.com/
index.php?key1=value1

HashBang URI #! http://www.example.com/
index.php#!state1

Collection Differences

In addition to the different collection sources, the datasets also differ in the server-
side and client-side values passed to the resource via URI as parameters and frag-
ments, respectively. URI fragments (first row of Table 4) identify a point or portion
of content within the representation and are processed by the client (after the HTTP
response), rather than the server when dereferencing the URI. Instead, they are an
offset applied to the representation returned by the server and depend on file type,
such as a tag within the HTML or a specific second in an audio file. Server-side
parameters (second row of Table 4) identify values for use in constructing the repre-
sentation (used on the server before the HTTP response) using key-value pairs and
are used by the server when dereferencing the URI.

The Twitter set has more URIs containing fragments than the Archive-It set. Ad-
ditionally, there are far more URIs with parameters in the Twitter set. Our complex-
ity measure (to be defined in Section 5.4.1) has UCT witter=1.76 and UCT witterS

=0.312,
5http://www.archive-it.org/explore/?show=Collections
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meaning there are nearly 2 URI parameters in the Twitter data set for each URI, while
the complexity of Archive-It URI-Rs has UCArchive−It=0.16, UCArchive−ItS

=0.174
meaning they are mostly without parameters. Note that only 3 URIs from the Twit-
ter data set had both parameters and fragment identifiers (0.3% of the collection).
Only 2 URIs from the Archive-It data set had both parameters and fragment iden-
tifiers (0.2% of the collection).

Additionally, 93.1% of URIs in the Archive-It set are the websites top level URI-R,
whereas (in an aesthetically pleasing coincidence) 93.1% of the Twitter set is several
levels away – leaf pages or deep links – from each site’s respective top level URI-R.
We explore URI depth further in Section 5.4. The Twitter set contains slightly more
client-side content than the Archive-It set, as suggested by the features of each set’s
URIs. Twitter URIs have more client-side parameters as observed by the 0.6% more
fragments than the Archive-It set. These fragments specify client-side parameters
that are presumably used for client-side processing. There are also 2 hash-bang
URIs (third row in Table 4) in the Twitter set and 5 in the Archive-It set.

The HTML of each set is measured and compared using several different metrics,
to be discussed in Section 5.4. Each set consists mostly of representations containing
JavaScript (98.7% and 97.1% of the Twitter and Archive-It sets, respectively, contain
JavaScript)6.

TABLE 5: Content Features of Each Collection
Collection Statistical Breakdown of Content

PDF Images Other
Content

HTML HTML
Content
containing
JavaScript

Twitter
n=901

0.3% 1.3% 3.7% 84.8% 98.7%

Archive-It
n=960

4.4% 0.6% 1.3% 93.7% 97.1%

Table 6 shows the occurrences of the .com, .edu., .org, and .gov TLDs, but does
not elaborate on the “Other Domains”. The “Other Domains” include .tv or .im, as
in these URIs:

http://www.geekbrief.tv/best-ad-from-microsoft-ever
6To identify a representation as containing JavaScript, we did a boolean search for <script>

tags within the representations.
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TABLE 6: URI Features of Each Collection
Collection Statistical Breakdown of URIs

COM EDU ORG GOV Other
Do-
mains

With
Frag-
ments

With
Pa-
rame-
ters

TLDs

Twitter 81.6% 0.3% 3.5% 0.2% 14.1% 1.4% 30.5% 6.9%
Archive-It 47.9% 7.7% 10.9% 12.7% 20.6% 0.8% 41.2% 93.1%

http://tr.im/lPRA#user1244749838078

Governmental Web sites comprise 57.6% (533 URI-Rs) of the Archive-It col-
lection. Governmental URIs are not limited to the .gov domain (such as http:

//www.ethics.alabama.gov) but can include other suffixes (such as http://ali.

state.al.us/). The Twitter collection only has three government-owned sites (0.3%
of the collection). Governmental Websites are mandated to conform to Web accessi-
bility standards for content, whereas commercial Websites do not have this restric-
tion. The government and non-government sites perform nearly identically in our
content measurements – differing only by a maximum of 6% across all metrics and
a Chi-square test provided a p=0.22 showing no statistical significance across our
measurements – so we have opted to measure the collections in their entirety instead
of measuring only the government and non-government URIs independently.

5.3 ARCHIVING THE RESOURCES

We archived each URI from each dataset with a suite of tools, including sub-
mitting them to WebCite, and accessed the resulting mementos on localhost after
being captured with wget, archived with Heritrix 3.0.1, and, to establish a baseline,
viewed in its native live Web environment.

We detail the methods used to archive the resources in the dataset and view
the resulting mementos. We measure leakage in the mementos (Section 5.5), which
only occurs when replaying the mementos in a client, and not during the archival
process. Because a primary goal of Research Question 1 is to establish the impact of
JavaScript on mementos created by the tools, we classify the mementos according to
the environment in which they are viewed. That is, we label the mementos created by
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Heritrix as “Wayback” mementos because the mementos are viewed via the Wayback
Machine. Similarly, we label the WebCite mementos (viewed in a client through
the WebCite Web service), live (live Web resources viewed through a client), and
localhost mementos (archived with wget and viewed through a client from the
localhost server on which the resources are stored).

We loaded the Twitter and Archive-It live Web resources using PhantomJS to
establish the baseline to which all our mementos were compared. Note that the tools
we investigated do not employ PhantomJS or other headless browsing techniques
during archiving.

Using PhantomJS, we downloaded each resulting representation in its native for-
mat (such as HTML) and generated a PNG screenshot of the representation. We
also captured and logged the HTTP response codes generated during the dereference
and viewing the representation of each URI. These logs establish a set of resources
required to view the page and also to identify whether or not the tool was successful
in capturing all necessary resources to create a complete memento. We compared
the HTTP response logs from a memento to the response logs from the live Web to
establish the degree of completeness of the memento.

We installed a local version of Heritrix 3.0.1 and used it to crawl each of the URIs
in this study. We installed an instance of the Wayback Machine v1.4 on localhost

so we could view the mementos in the resulting WARC files. Mementos should load
embedded resources from the local instance of the Wayback Machine. In a scenario
such as this, the proxy mode is normally run with the Wayback Machine to prevent
leakage but was omitted from this experiment since we were monitoring header values
for leakage at load time, and this Wayback instance was limited to a target crawl.

We used the wget application to archive resources from the live Web on the
localhost machine. Our goal was to make sure the entire site was captured, com-
plete with requisite resources and converting the links to be relative to the local
directory. We used the following command to download the content:

wget -k -p -E -H -w 10 -o ./logs/$i.log $toGet

This command captures the HTTP headers in the ./logs/$i.log file (where $i
is the identifier for the log file), and captures the target site $toGet. The locally
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captured content can then be viewed from localhost and measured against the
native, live Web version of the resource.

5.4 RESOURCE METRICS

We measure resource complexity based on the HTML representation and the URI
identifying the resource to determine if complexity correlates with archivability.

5.4.1 URI COMPLEXITY

We measured the complexity of a URI through the depth (URI’s number of levels
down – or distance – from the TLD), the number of client-side parameters, and
the number of server-side parameters. The client- and server-side parameters are
measured by Equation 1. We take the arithmetic mean of the sum of these measures
to give a URI complexity measure (UC ) as noted in Equation 2.

F = max(|client-side parameters|, |server-side parameters|) (1)

UC = |Depth|+ F

2 (2)

For example, a URI such as

http://www.tennessee.gov/ecd/

from the Archive-It collection has a complexity of 0.5. The depth is 1 (/ecd/), and
there are no server- or client-side parameters. Alternatively, a URI such as

http://edition.cnn.com/2009/SPORT/football/06/11/ronaldo.real.madrid.

manchester/index.html?eref=edition

from the Twitter collection has a complexity of 3.5. The depth is 6 (/2009/SPORT/
football/06/11/ronaldo.real.madrid.manchester/), there is one server-side pa-
rameter but no client-side parameter (max(1, 0) = 1), which totals to 7/2 = 3.5. The
URI
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http://www.tridentgum.com/#/tridentcares4kids/

has a client-side parameter that does not have a corresponding anchor in the HTML
(max(1, 0) = 1) and has a complexity of 3/2 = 1.5.

5.4.2 CONTENT COMPLEXITY

We measure content complexity in many different ways (e.g., number of HTML
tags or presence of multimedia). This experiment focuses on JavaScript, since we
have empirical evidence that JavaScript is the major contributor to missing embedded
resources in mementos. Content complexity in this experiment is measured as the
number of <script> tags loading JavaScript files or code segments, defined as CC
in Equation 3. Intuition suggests that the more JavaScript embedded in a page, the
more likely it will change the DOM or embedded resources, and the more difficult
it is to archive. Our previous attempts at assessing content complexity focused on
lines of JavaScript, but this metric was misleading (for example, due to minimized
files or from including external libraries like jQuery), so we opted instead for a count
of <script> tags.

CC =
∑

script tags ∈ HTML (3)

5.5 REQUESTS FROM HTML AND JAVASCRIPT

We compare the number of requests for resources referenced in the HTML DOM
to the number of requests coming from run-time sources on the client, such as Java-
Script. We compared the URI-Ms referenced in the HTML and CSS, and the requests
observed by PhantomJS. Requests for URI-Ms referenced directly in the represen-
tation are classified as HTML-loaded resources, while those not referenced in the
HTML have been loaded at run-time by JavaScript. We define JavaScript-loaded re-
sources according to Equation 4 and use this method of measurement when referring
to the number of resources loaded by JavaScript versus HTML.

JS Resources = Resources Loaded− Resources in HTML and CSS (4)
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5.6 RESOURCE SET ANALYSIS

The nature of the resources in each set is fundamentally different. We analyzed
the complexities of the two datasets.

5.6.1 URI COMPLEXITY

The URI-Rs shared over Twitter tend to be deep links, with many layers of sepa-
ration between the TLD and the shared URI-R. Additionally, the Twitter URIs tend
to have client- or server-side parameters, which are assumed to identify a specific
set of information or a special representation of the resource for the users’ follow-
ers. Alternatively, the Archive-It collection, which has seed URIs chosen by human
curators, tends to be made of more TLDs and have fewer parameters and fragments.

The UC (Equation 2) of the Twitter collection is 0.377 with UCS = 0.311. The
Archive-It collection has a UC=0.166 with UCS = 0.234. The Archive-It collection is
a lower UC than the Twitter collection (as seen in Figure 57), supporting the theory
that the human-curated Archive-It collection deals more with higher-level URI-Rs
than the shared links of Twitter.

5.6.2 CONTENT COMPLEXITY

The Twitter set has a CC=4.78 with CCS = 16.23. The Archive-It set has
CC=2.16 with CCS = 6.87. The Archive-It set has, on average, approximately half
as many <script> tags as the Twitter set and a CCS that is half that of the Twitter
set (as shown in Figure 58).

We created a list of resources loaded from HTML, CSS ,and JavaScript and
show the comparison of the number of JavaScript and HTML requested resources’
archival success by set and archival tool in Figure 59. As expected, the CC measure
correlates with the number of JavaScript requests to external resources. By taking
the average across all environments, we found that the Twitter set resources load
16.3% of their embedded resources through JavaScript (presumably Ajax), whereas
18.7% of embedded resources are loaded via JavaScript in the Archive-It set. This
is contrary to our hypothesis that increased CC will produce more resource requests
from JavaScript – the Twitter set, which has more embedded JavaScript (CC=4.78),
makes fewer HTTP GET requests using JavaScript than the seemingly less complex
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FIG. 57: URI Complexity measure (UC).

FIG. 58: CC of the HTML.
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FIG. 59: Percentage of resource requests from JavaScript show patterns similar to
CC.

Archive-It set (CC=2.16). As discussed in Section 5.9, the nature of JavaScript-
loaded resources reduces archivability.

5.7 ARCHIVING EXPERIMENT DISCUSSION

In this study, a perfectly archived resource has all of its embedded resources
copied into the archive environment and is independent from the live environment.
That is, the set of all embedded URI-Rs in the live Web matches the set of embed-
ded URI-Ms. Failure to satisfy this capture will result in missing embedded resources
(i.e., 400- and 500-classes of HTTP resonses) or leakage (discussed in Section 4.3).
As such, the archivability of a resource is measured by the number of embedded
resources that archival tools can capture.
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5.8 MISSING EMBEDDED RESOURCES

We analyzed the archival success rate of each archival tool and each collection with
several metrics. Most important is the number of embedded resources missing from
the mementos (i.e., the completeness). The average number of missing embedded
resources is expressed as the percentage of HTTP non-200 responses returned when
dereferencing the embedded URI (300- and 100-style redirects are omitted from this
calculation). These averages for each collection and tool are shown in Figure 60.
Each bar represents a collection and an environment. The bars representing the live
environments establish the gold standard, or “best case,” archival goal. Live resources
are not perfect – they sometimes include resources that are unavailable – and thus
do not receive 200 responses for 100% of their requests. However, they do establish
a ceiling of possible performance. The live resources in the Archive-It set receive
an HTTP 200 response for 93.5% of all requests for embedded resources and live
resources in the Twitter set receive an HTTP 200 response for 87.1% of all requests
for embedded resources.

There is a clear difference between the archival tools used and the number of
embedded resources successfully loaded in mementos – only 69.1% of the URI-Ms of
embedded resources in mementos were successful.

We can demonstrate trends when analyzing the statistics in further depth. The
resources in the Twitter collection, on average across all archived environments, pro-
duced 38.2% more HTTP non-200 response (i.e., 400- and 500- class HTTP responses)
as mementos than the live state, meaning we were unable to archive 38.2% of the
embedded resources in the Twitter set. The Archive-It set fares slightly better, with
37.7% more HTTP non-200 responses in their archived state. However, the WebCite
results show the greatest difference between the Twitter and Archive-It sets (59.7%
HTTP 200 responses vs. 42.8% 200 responses, respectively). If this difference is
excluded, the Archive-It set performs better with only a reduction of 30.9% HTTP
200 responses, as compared to the Twitter collection’s 36.5% reduction.

5.9 LEAKAGE

As we have previously mentioned (Section 4.3) number of HTTP requests of
mementos for embedded resources differ from that of the live environment. The
WebCite, wget, and Wayback tools reduce the number of HTTP requests to different
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FIG. 60: The HTTP 200 response codes for embedded resources.
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domains in order to change all of the requests to TLDs external to the archive (i.e.,
leakage) to requests for mementos within the archive. Resources referenced in HTML
should be rewritten to reference a URI-M instead of a URI-R. Failure by the archive
to rewrite the URI-R to a URI-M will result in a reference to an external domain
when the memento is loaded (i.e., via leakage). Archival services cannot always
predict at crawl time what embedded resources will be loaded (such as when loaded
via JavaScript) or are unable to perform a rewrite of a URI-R constructed at run-time
to a URI-M, resulting in leakage.

The proportion of requests to live TLDs (i.e., TLDs external from the archive)
decreases when an archival tool captures the embedded resources and rewrites them
local to the archive. Compared to the live Web, the number of requests to exter-
nal domains (and therefore leakage) in the Twitter sets decreases by 43.2%, 22.5%,
and 71.2% for the WebCite, wget, and Wayback tools, respectively. The Archive-It
domain observes decreases of external requests of 32.3%, 1.5%, and 42.6% for the
WebCite, wget, and Wayback tools, respectively. This shows that the archival tool
affects the number of external HTML requests, with the wget tool doing the least
to mitigate leakage and the Wayback Machine limiting leakage the most (note that
this experiment did not use the Wayback Machine with proxy mode enabled). As
shown by Figure 61, each archival tool impacts the target location of the requests
for content the same way for each collection.

As in Section 5.4.2, we averaged across all environments shown in Figure 61 and
found that 62.0% of Twitter resources loaded by HTML come from the archive’s TLD,
while 38.0% come from an external source. This is roughly similar to the Archive-It
set, which loads 74.7% from the host TLD and 25.3% from external TLDs. This
analysis of resource requests shows that JavaScript and HTML make requests for
content in similar patterns, with the ratio of local versus external content following
the same pattern. Additionally, the increased JavaScript requests to external content
increases the opportunity for leakage and therefore decreases the archivability of a
resource.

The number of JavaScript requests to archived vs. external (i.e., archived versus
live) resources are similar to that of the HTML requests (Figure 59). The Twitter
set gets 52.2% of its JavaScript-requested resources from external domains, while the
Archive-It set gets 70.1% of its JavaScript-requested resources from external Web
domains, suggesting that JavaScript is a source of leakage. As compared to the live
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FIG. 61: Percentage of resource requests going to remote hosts from both HTML
and JavaScript.
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Web, we observed a reduction of external requests for resources in the Twitter set by
42.8%, 9.8%, and 78.0%, respectively. The Archive-It set’s capture by the WebCite,
wget, and Wayback tools reduced the number of JavaScript requests to external
Web domains by 33.5%, 0.6%, and 48.0%, respectively. Again, this shows that the
wget tool does little to mitigate leakage, and the Wayback Machine performs best by
reducing requests to the live Web. Heritrix provides the most complete collection and
performs the best in this analysis. Since Heritrix peeks into the JavaScript to extract
URI-Rs, it can limit leakage by anticipating JavaScript requests from mementos.

The percentage of external requests is highest in mementos captured using Web-
Cite with 14.6% of all resource requests resulting in leakage. This holds true regard-
less of dataset. The wget mementos are second highest with 14.2% of all resource
requests resulting in leakage. The Wayback mementos experience the least leakage
with only 7.1% of all resources requests resulting in leakage.

The Twitter set observes the most leakage (as seen in Figure 61). When the
Twitter resources were captured with the wget, WebCite, and Heritrix tools, the
leakage observed is (on average) 49.9%, 8.6%, and 1.3%, respectively. The Archive-
It set only sees an average leakage rate of 44.1%, 4.7%, and 1.9% for each tool.

As shown, the Archive-It set is more easily archived, results in more complete
mementos, and has fewer instances of leakage than the Twitter set. The Archive-It
set has many resources that are perfectly archived. The Twitter set only had 4.2% of
the resources that were perfectly archived by each tool, while 34.2% of the Archive-It
set was perfectly archived by each tool. This shows that the Archive-It set is much
more archivable than the Twitter set. The resources shared over Twitter were much
more difficult to capture than the content human curators identify as historically
or socially important. Twitter-shared resources are important enough to share with
online acquaintances but cannot be effectively captured with current technologies. As
shown, the Twitter set contained more JavaScript than the Archive-It set. As such,
we conclude that resources relying on JavaScript to render a final representation are
less archivable than representations made of purely HTML.

5.10 IMPACT OF ACCESSIBILITY

Many factors can impact archivability. As we have shown, current tools can cap-
ture Archive-It resources more completely than Twitter resources. The composition
of the collections may impact this behavior. For example, the Archive-It set contains
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more government-owned URI-Rs. Government URIs are often perfectly archived,
with 85 of the 124 government URIs in our set being perfectly archived (68.5%).
This shows that government URIs are more frequently perfectly archived than the
rest of the mementos measured (the entire Archive-It collection was archived perfectly
34.2% of the time).

Section 508 [2] is a set of recommendations to be followed by government site own-
ers and provides suggestions on how websites should be designed by content authors
to be considered accessible. Also, the W3C through the Web Content Accessibility
Guidelines (WCAG) gives concrete ways for developers to evaluate their pages to
make them more accessible [64]. Hackett et al. detail the accessibility of archives
on a pre-Ajax corpus (from 2002) and enumerate specific features that make a page
accessible in the legal sense [118]. Much of this information is beyond the scope of
this study (e.g., animated GIFs). Other efforts were made by Parmanto and Zheng
following the document’s release on a metric to evaluate Web accessibility [224], but
also fail to consider an asynchronous Web, which was less prevalent at the time.

All United States government sites are advised to comply with Section 508. These
mandates guide content authors by limiting embedded programming languages and
deferred representations. It stands to reason that pages adhering to Section 508 are
easier for tools like Heritrix to capture in their entirety, which may influence the
archivability of the Archive-It set.

In much of the same way that accessibility guidelines encourage content to be
accessible to the end-user, complying with the guidelines also facilitates accessibility
of the content (displayed by default or as the result of a JavaScript invocation) to
the user-agent. Conventional Web browsers (e.g., Google Chrome, Mozilla Firefox)
are capable of retaining this content in memory, even if not displayed. Contrary to
modern browsers, archival crawlers like Heritrix are not equipped with the capability
to execute client-side code to access, process, and capture deferred representations
that use potentially inaccessible (according to WCAG) features.

Conventional Web browsers are usually the first to adopt new technologies that
may introduce features that reduce archivability. Today, these features often are
implemented using JavaScript and often disregard accessibility standards in favor
of enticing users with more personalized and interactive representations. Because
deferred representations are not accessible in their entirety to archival crawlers, re-
quiring content on the Web to be more accessible would limit the impact of deferred



134

representations and newer browser features on the archives. Additionally, avoiding
deferred representations will reduce the ability for Web resources to provide per-
sonalized and interactive content to users, presumably resulting in a less appealing
representation.

5.11 MEASURING ARCHIVABILITY IN THE INTERNET
ARCHIVE

We investigate the archivability of resources in our Twitter and Archive-It datasets
over time by looking at the mementos in the Internet Archive. In effect, this is a
black-box assessment of archiving by examining the output of the archival process
over time. Because application technologies have increased in prevalence over time,
we expect to see memento completeness decrease as time progresses. (We explore the
value of measuring archive quality using memento completeness versus a more robust
weighted metric in Chapter 6, but rely on the more simplistic measure of memento
completeness for the purposes of this discussion.)

When considering the age and longevity of resources in the archives, it is useful
to understand how the collections differ in age. We used the Carbon Dating service
[251, 253, 215] to estimate the age of the URI-Rs in our collections. The results are
presented in Figure 62. The carbon dating service was unable to reliably determine
a creation date for 35.5% of our collection, so the sample size in this graph has been
reduced to include only the URI-Rs with reliably determined creation dates. Note
that the Archive-It set is evenly distributed over time, while the Twitter resources are
younger. This is intuitively satisfying given the different purposes of the Archive-It
and Twitter services.

To increase the heterogeneity of our dataset (mitigating the impact of accessibility
standards and the age of URI-Rs), from here on we will combine the Twitter and
Archive-It data sets.

To empirically observe the change in archivability over time of each of the URI-Rs
in our collections, we acquired the TimeMap of each URI-R from the Internet Archive
to produce output like Figure 63. We captured screen shots and HTTP requests for
one memento per year of each URI-R in our collections in an effort to analyze the
results of archival efforts performed in the past.
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FIG. 62: The Twitter collection (n=596) is, on average, younger than the Archive-It
collection (n=590).

The http://www.doc.alabama.gov/ resource (CC = 0.43) appears to be per-
fectly archived throughout time in the Internet Archive. This holds true when access-
ing the mementos with and without JavaScript enabled. The mementos are visible
in Figure 64. All mementos from 2007-2013 neither request a resource nor receive a
non-200 HTTP response through JavaScript with the exception of a single memento
with an archival date time of October 21, 2011, that requests and misses six resources
via JavaScript.

The http://www.cmt.com/ resource (CC = 0.87) varies in archivability (seen in
Figure 65), with an increase in missing resources over time. The mementos from
2009-2013 (Figures 65(l)-65(p)) are missing almost all central article and image con-
tent; this is when CMT.com implemented content loading through jQuery and Ajax,
resulting in an average of 9.7% of all URI-Ms requested to be missed because of Java-
Script. CMT.com’s addition of Ajax and associated technologies drastically increased
the feature gap between the resource and the crawlers performing the archiving, while
the doc.alabama.gov site limits its use of JavaScript and is more complete over time.
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<http:///www.doc.alabama.gov/>; rel="original",
<http://web.archive.org/web/timemap/link/
http:///www.doc.alabama.gov/>;
rel="self"; type="application/link-format";
from="Mon, 08 Jan 2007 17:48:19 GMT";
until="Sun, 28 Jul 2013 15:16:29 GMT",
<http://web.archive.org/web/http:///www.doc.alabama.gov/>;
rel="timegate",
<http://web.archive.org/web/20070108174819/
http://www.doc.alabama.gov/>;

rel="first memento"; datetime="Mon, 08 Jan 2007 17:48:19 GMT",
<http://web.archive.org/web/20070113182156/
http://www.doc.alabama.gov/>;
rel="memento"; datetime="Sat, 13 Jan 2007 18:21:56 GMT",
<http://web.archive.org/web/20070118175605/
http://www.doc.alabama.gov/>;

rel="memento"; datetime="Thu, 18 Jan 2007 17:56:05 GMT",
<http://web.archive.org/web/20070123202638/
http://www.doc.alabama.gov/>;

rel="memento"; datetime="Tue, 23 Jan 2007 20:26:38 GMT",
<http://web.archive.org/web/20070519200310/
http://www.doc.alabama.gov/>;

rel="memento"; datetime="Sat, 19 May 2007 20:03:10 GMT",
<http://web.archive.org/web/20070617053244/
http://www.doc.alabama.gov/>;

rel="memento"; datetime="Sun, 17 Jun 2007 05:32:44 GMT",
<http://web.archive.org/web/20070621140945/
http://www.doc.alabama.gov/>;

rel="memento"; datetime="Thu, 21 Jun 2007 14:09:45 GMT",

FIG. 63: An abbreviated TimeMap for http://www.doc.alabama.gov/.
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(a) 2007 (b) 2008 (c) 2009 (d) 2010

(e) 2011 (f) 2012 (g) 2013

FIG. 64: The http://www.doc.alabama.gov/ mementos are perfectly archived
through time since they limit their reliance on JavaScript to load embedded resources.
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(a) 1996 (b) 1997 (c) 1998 (d) 1999 (e) 2002 (f) 2003

(g) 2004 (h) 2005 (i) 2006 (j) 2007 (k) 2008 (l) 2009

(m) 2010 (n) 2011 (o) 2012 (p) 2013

FIG. 65: CMT.com over time. Changes in design and thus the technologies used are
easily observable after mementos archived in 2009-2013 (Figures 65(l)-65(p)), which
is when jQuery is introduced into the page and used to load embedded resources.
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5.12 CHALLENGES IN MEASURING PAST PERFORMANCE

In our research, we have omitted calculating CC and other archivability metrics
from mementos in our collections because we do not have the corresponding URI-R
from which to compute a baseline. Several scenarios could take place that impact
our archivability metrics:

• mementos may have been damaged (missing embedded resources) after the
archival process due to implementations of the robots protocol (eliminating
mementos from external domains) or limited by policy (such as the case with
Archive-It);

• inavailability of embedded resources due to server-side failures or transient
errors in the archives [55];

• embedded resources may not have been available to the crawler at archive time.

Without an understanding of the state of the live resource at archive time, we cannot
accurately assign CC to the mementos.

While calculating archivability metrics, we must also consider the practices used
by each archival tool. For example, the Wayback Machine inserts additional Java-
Script and other content to generate the banner and headers to appear in the me-
mentos. Other archival services have similar practices for which we must account.
It becomes difficult to measure the original resource when HTML is modified after
archiving and during the dereferencing of mementos. This after-archiving injection
and loading of scripts and other embedded resources by the archives will impact the
calculations we have performed in this research (e.g., CC). The live resources may
have also been bound to different standards, and we have no a priori knowledge of
these standards or their implementations. As such, we have omitted these metrics
and measurements.

We instead investigate the availability of embedded resources within our collec-
tion over time. The completeness of the memento as it existed at observation time
and the source of the embedded resources (either from the HTML or JavaScript) pro-
vide a measurement of how JavaScript impacts memento archivability. We loaded
all URI-Ms listed in the Internet Archive TimeMaps of URI-Rs in our collection
and recorded the resources loaded along with their HTTP response codes. We also
recorded the origin of the request; specifically, we note whether the resources were
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FIG. 66: Resources are using more JavaScript to load embedded resources over time.

loaded because of inclusion in the HTML or as a request from JavaScript. We did not
track availability of each embedded resource within a URI-M over time during this
experiment, but rather considered just the response codes generated from individual
URI-M accesses.

5.13 THE IMPACT OF JAVASCRIPT ON MEMENTO
COMPLETENESS

We observed the embedded resources loaded from each memento in our collection
from 2005-2012 to determine how many resources are being loaded from JavaScript.
As shown in Figure 66, more resources are using JavaScript to load embedded re-
sources over time. In 2005, 39.7% of our collection uses JavaScript to load at least
one embedded resource, and continues to increase to 54.5% of the collection using
JavaScript to load at least one embedded resource in 2012. That is an increase of
14.7% of resources using JavaScript between 2005 and 2012.

These resources are not only increasingly using JavaScript, but also rely more
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heavily relying on JavaScript to load embedded resources. In Figure 67(a), we plot
the percent of requests that come from JavaScript from each URI-M in blue as well
as a fitted curve in black. Mementos load 24.5% of all embedded resources through
JavaScript in 2005, and 36.5% in 2012, for an increase of 12.0% in seven years. As
shown in Figure 67(b), yearly averages also increase from 2005 to 2012. Over our
seven year window, mementos load 37.7% of all resources via JavaScript (σ = 23.6%).

These increases show that resources are loading a higher proportion of their em-
bedded resources by JavaScript instead of HTML (potentially to provide a more per-
sonalized experience to the users). These embedded resources are loaded at run-time
by JavaScript instead of when viewed on the client. Embedded resources loaded by
JavaScript are harder for Heritrix to archive (since their URI-Rs may not be known
during crawl-time), and result in missing content when accessing the mementos from
the Wayback Machine.

As we discussed in Section 5.8, not all resources are loaded properly when
archived. JavaScript is responsible for an increasing proportion of missing embedded
resources (Figure 68). We observed that JavaScript accounts for 39.9% of all missing
embedded resources in 2005, but is responsible for 73.1% of all missing embedded
resources in 2012. A more detailed analysis is provided in the box plots of Figure
68(b) with the missing resources binned according the memento archive year. Box
plots provide the calculated 25th percentile as the bottom of the box, the 50th per-
centile as the horizontal line within the box, and the 75th percentile as the top line
of the box. The “whiskers” establish the lower and upper bounds of the data. The
dots (for example, those in the box plot of 2008 in Figure 68(b)) in a box plot are
outliers in the data.

JavaScript is responsible for 52.7% of all missing embedded resources from 2005 to
2012 (σ = 28.9) which is 33.2% more missing resources in 2012 than in 2005, showing
JavaScript is responsible for an increasing proportion of the embedded resources
unsuccessfully loaded by mementos. JavaScript is increasingly requesting mementos
that are not in the archives and is responsible for attempting to load over half of
all missing resources in our collection. This suggests that an increasing utilization
of mementos to load embedded resources via JavaScript, and increasing failures to
archive those resources will result in further reduction in memento completeness.

Over time, mementos are increasingly constructed with embedded resources and
are requesting and missing an increasing number of embedded resources to render a
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(a) More embedded resources are being loaded via Java-
Script over time.

(b) On average, resources are increasingly being loaded by
JavaScript per year.

FIG. 67: JavaScript is responsible for loading an increasing proportion of mementos
over time.
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(a) JavaScript is responsible for an increasing proportion of
missing embedded resources over time.

(b) Mementos are binned by archive year to provide a yearly
summary of archive performance.

FIG. 68: JavaScript is responsible for an increasing proportion of missing resources.
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FIG. 69: Number of requests per memento by archive year.

final representation. Table 7 and Figure 69 provide the number of successfully deref-
erenced URI-Ms, unsuccessful dereferences originating in HTML, and unsuccessful
dereferences originating from JavaScript for each memento for each year.

TABLE 7: Number of requests per memento by archive year.
Request Type 2005 2006 2007 2008 2009 2010 2011 2012

JavaScript Misses: 1.7 2.3 2.1 2.3 3.3 3.5 5.8 4.9
HTML Misses: 0.9 1.9 1.3 1.5 1.5 2.3 3.0 2.3
All HTTP 200s: 19.4 21.7 30.8 45.1 31.1 30.6 29.8 38.1

While it is uninteresting that more total attempted dereferences result in more
successful and more failed dereferences, the breakdown of how the failed dereferences
were loaded provides insight into the source of reduced memento completeness. As
the number of requested resources increases, the number of resources unsuccessfully
loaded by HTML increases, and the number of unsuccessfully loaded JavaScript
resources increases, as well. However, the JavaScript requested resources increase
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FIG. 70: Percent of missing resources from JavaScript by year.

at a higher rate (∆HT ML = 1.4 requests vs ∆JavaScript = 3.2 requests from 2005 to
2012). This suggests that resources will continue to unsuccessfully load embedded
resources via JavaScript as time progresses.

The collections are not dominated by either perfect (0% missing resources from
JavaScript) mementos or completely JavaScript reliant (100% missing resources from
JavaScript) as shown in Figure 70. The 0% and 100% mementos are approximately
equal to each other for every year, meaning the statistics reflect the performance
of those resources that load at least (but limited to) a portion of their embedded
resources from JavaScript.

As we have hypothesized, an increasing number of requests originating from Java-
Script will result in an increased proportion of missing embedded resources. We show
the number of requests from JavaScript and the resulting proportion of missing me-
mentos for each URI-M in our collection in Figure 71. The fitted line in black shows
the correlation between the two statistics. As the number of requests from Java-
Script increases, the number of missing embedded resources increases. This trend
is supported by a moderate Kendall Tau-b correlation with τ = 0.36 and p < 0.01.
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FIG. 71: As JavaScript is relied on more heavily to load embedded resources, more
resources are missed.

This correlation suggests that the current trend of relying increasingly on JavaScript
to load embedded resources will result in a higher proportion of missing embedded
resources and reduced memento completeness.

5.14 SUMMARY OF FINDINGS

We began this chapter with the hypothesis that increasing reliance on JavaScript
results in an increase in missing embedded resources in our archives. From the graphs
in Figures 66-71 we present four findings en route to confirming our hypothesis.

1. More resources are using JavaScript over time, and mementos use JavaScript
more heavily to load embedded resources as time progresses;

2. JavaScript is responsible for an increasing proportion of missing embedded
resources in the archives;

3. The number of missing resources loaded by JavaScript is increasing at a higher
rate than the number of missing embedded resources loaded by HTML over
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time; and

4. The proportion of missing embedded resources is moderately correlated to the
number of resources loaded from JavaScript.

These findings support our hypothesis and suggest that increased JavaScript in
the archives will result in decreased memento completeness. As time progresses, an
increasing number of resources will rely more heavily on JavaScript, resulting in more
missed content in the archives. Based on these findings, we recommend that crawlers
adapt to archive embedded JavaScript to increase the completeness of mementos.
We recommend a two-tiered crawling approach to mitigate this trend, as presented
in Chapter 7.

5.15 CONTRIBUTION TO RESEARCH QUESTION 1

The answer to Research Question 1: To what extent does JavaScript impact
archival tools? is predicated upon a measurement of the impact of JavaScript on
the current state-of-the-art archival tools, and therefore the impact of JavaScript on
our archives.

This work observed a set of URI-Rs shared over Twitter and a set of URI-Rs
previously archived by Archive-It. The Twitter URI-Rs are twice as complex as the
Archive-It URI-Rs; the Archive-It URI-Rs are closer to TLDs (UCArchive−It=0.166,
UCT witter=0.377). The representations of Twitter resources contain twice as much
JavaScript as the Archive-It set (CCArchive−It=2.16, CCT witter=4.78). The shared
Twitter resources are more difficult to archive and experience much more leakage
(between 0.6% if using Heritrix to 5.8% more if using wget) than their Archive-It
counterparts. Only 4.2% of the Twitter collection was perfectly archived by the
archival tools in our experiment, while 34.2% of the Archive-It set was perfectly
archived by each tool. This shows that the resources that human archivists actively
curate and archive are easier to capture with today’s tools than URI-Rs being shared
over Twitter.

The archivability of websites is changing over time because of an increasing re-
liance on JavaScript to load resources. JavaScript is responsible for 33.2% more
missing resources in 2012 than in 2005, meaning that JavaScript is responsible for an
increasing proportion of the embedded resources unsuccessfully loaded by memen-
tos. JavaScript is also responsible for 52.7% of all missing content in our collection.
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This trend is expected to increase as time progresses since the number of embed-
ded resources loaded via JavaScript is moderately correlated to the proportion of
missing embedded resources. This supports our theory that as resources continue to
more heavily utilize and rely on JavaScript to load resources, the completeness of
mementos will decrease.

With this work, we show that JavaScript negatively impacts the archives. De-
ferred representations are hard to archive, have increased leakage, and the problem
is trending toward an increasingly prevalent challenge. Archival tools would benefit
from mitigating the impact of JavaScript through new crawl techniques or policies.
We explore metrics, including completeness, for quantifying how well a memento
is archived in the next chapter to better quantify the perceived archivability of a
memento.
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CHAPTER 6

MEASURING ARCHIVE QUALITY

In the previous chapter, we showed that JavaScript has a negative impact on
the archives, causing the archives to miss many embedded resources when archiving
resources. Research Question 2 asks how we can automatically determine the quality
of a memento given the missing embedded resources.

Embedded resources have varying importance to the utility of a memento to Web
users. Large images are often more important to a memento’s utility than small
images. Similarly, style sheets that format visible content are more important to the
representation of the page than style sheets without significant formatting respon-
sibilities. In our work to answer Research Question 2, we provide a mechanism to
assess the impact of missing embedded resources in the archives based on a weighted
value, improving upon the existing, näive metric of counting missing embedded re-
sources [50, 51]. A simple measure of the percentage of missing embedded resources
is misleading because embedded resources have varying utility and importance to the
user’s understanding of the page.

With archives growing to very large scales, automatic assessment of archive qual-
ity is essential; humans would require a massive amount of time and labor to complete
an assessment. However, current automated methods are not accurate reflections of
user interpretation of quality.

In order to sufficiently answer Research Question 2: How do we measure mem-
ento quality?, we achieved three goals. First, we wanted to understand how missing
embedded resources impact Web user perception of memento quality or satisfaction
(i.e., the utility of mementos). Using an algorithm to measure embedded resource
importance, we determined whether an important embedded resource of the mem-
ento is missing (e.g., a main image or video essential to the user’s understanding of
the page), or if the missing embedded resource contributes little to the memento’s
utility for the user (such as a spacer image or small logo). We proposed a method of
weighting embedded resources in a memento according to importance. We showed
that this is an improved damage rating over an unweighted count of missing embed-
ded resources. We used Amazon’s Mechanical Turk [152] to compare our algorithm
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(a) All three of the em-
bedded images are in-
cluded in m0 and iden-
tified by the red arrows
(Mm=0.17 ).

(b) We removed the
large, central image
(that is the main con-
tent of the page) from
m1, identified by the red
arrow (Mm=0.24 ).

(c) We removed the
XKCD logo and banner
of comics from m2,
identified by the red
arrows (Mm=0.29 ).

FIG. 72: The XKCD example demonstrates that embedded resources have varying
human-perceived importance to their page.

to Web users’ notion of damage and to show an improvement over the unweighted
count of missing embedded resources.

Second, we used our algorithm to assess the damage of mementos in the Internet
Archive and WebCite. We compared the proportion of missing embedded resources
to all requested resources (Mm) with our weighted calculation of damage (Dm).

Third, we measured damage in the Internet Archive and WebCite over time using
Dm. We describe how this algorithm can be used for future enhancements of the Her-
itrix crawler and Internet Archive’s archival processes. We also discuss the impacts
of JavaScript on archive quality, using WebCite as the target of our discussion and
compare WebCite’s memento quality to mementos created by Archive.is.

6.1 MOTIVATING EXAMPLES

We use the XKCDWeb page as an example of a resource with embedded resources
of differing importance. We captured the XKCD URI-R using the wget command1

and manually inflicted damage on a local memento of http://www.xkcd.com/ by
1We executed the wget command with parameters as follows: wget -E -H -k -K -p http:

//www.xkcd.com/
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(a) This memento (URI-M http://web.archive.org/web/
20110116022653/http://www.cityofmoorhead.com/flood/?)
is missing two style sheets which changes the entire appearance
and utility of the memento (Mm=0.38 ).

(b) Meanwhile, this memento (URI-M http://web.archive.
org/web/20060102083228/http://www.ascc.edu/) is missing
two style sheets (along with two images) but does not appear
damaged (Mm=0.20 ).

FIG. 73: Mementos have different meanings and usefulness depending on which
embedded resources are missing from the memento (and the proportion of missing
resources, Mm).
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removing embedded images. We used PhantomJS to dereference the local URI-M
and take a PNG snapshot of the representation and recorded the resulting HTTP
response headers of the embedded resources. We created three mementos of the
URI-R: one duplicating its live Web counterpart (m0), one with the central comic
image removed (m1), and one with two logo images removed (m2). The snapshots
taken by PhantomJS are provided in Figures 72(a), 72(b), and 72(c). As shown in
the captions, the proportion of embedded missing resources (Mm) varies among the
mementos.

When we performed this test, the live XKCD site was missing two embedded
cascading style sheets (or simply “style sheets”), as arem0, m1, andm2 since they are
copies of the live site. We verified that our mementom0 has aMm value identical to its
live Web counterpart – the live resource and m0 are both missing the same embedded
resources (Mm=0.17). In Figure 72(a), m0 has multiple embedded resources, but we
focus on the three identified by the red arrows: the XKCD logo, the main comic
image, and the banner of comics. The central image is most important to the utility
of the page – without the main comic image, the user does not obtain the information
from the page that the author intended (Figure 72(b)). The logo and banner are not
essential to the user’s understanding of the XKCD content (Figure 72(c)).

CSS files also differ in importance. Some style sheets are responsible for format-
ting small portions of a page, while others are responsible for placing images and
other content or even organizing the entire page for the user. Figure 73(a) shows
a memento of a URI-R that is missing a single style sheet. This style sheet is re-
sponsible for a large amount of information in the representation and without it, the
meaning and utility of the memento changes. Figure 73(b) shows a memento that
is properly styled but is missing two style sheets that are not responsible for the
majority of the content organization.

As we have discussed, the percentage of successfully dereferenced embedded re-
sources is not the only factor in determining memento quality. In support of that
principle, we refer to Figure 73(b) in which Mm=0.2 (6/30). However, it appears
to be well-preserved. In our XKCD example, Figure 72(c) is missing two images
(Mm=0.24) yet maintains more important embedded mementos than Figure 72(b)
(Mm=0.29). These examples support the motivation of our research by demon-
strating that unweighted percentages (i.e., Mm) are insufficient to assess perceived
memento damage.
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6.2 USERS’ PERCEPTION OF DAMAGE

As archivists, our perception of damage differs from that of more “traditional”
Web users. As such, we needed to enlist the help of more traditional Web users to
assess damage. To determine if Mm (percent missing) is a good estimate of human
perception of damage, we used Amazon’s Mechanical Turk to measure Web user
agreement with Mm.

To ensure that Mechanical Turk workers (or more colloquially, “turkers”) could
evaluate damage, we presented turkers with pairs of mementos – one of which was
not damaged and the other that had a varying level of damage – and asked them to
select the memento they preferred to keep if given a choice between the two.

We captured 11 hand-selected URI-Rs (Table 1) on a local server (similar to
the process in Section 5) and created five versions of the mementos for each URI-
R. We manually damaged the mementos to create the five categories of damage
by removing an embedded resource. For the category missing image, we removed
a prominent image (empirically identified as important) from the memento. For
the category missing css, we removed a prominent CSS file to cause formatting
issues in the memento; we empirically selected the CSS file to remove based on the
greatest human-perceived detrimental impact to the page layout. We also created
the categories missing all images (we removed every embedded image), missing all
resources (we removed all embedded resources), and original (the URI-M was a direct
copy of the live resource) and measured theMm of each URI-M in each category. We
refer to a memento from any of these categories as m1 and the original as m0. These
categories created several degrees of damage through a variety of missing embedded
resources for identical URI-Rs at an identical time point to provide a wide spectrum
of mementos to be evaluated by turkers.

With the goal of determining whether or not turkers can recognize damage in
a memento, we presented the turkers with a m1 and its m0 counterpart (that is, a
“damaged” and its ground-truth memento) and asked the turkers, “We saved two
pages for you. For which page did we do a better job?” (Figure 74). For each URI-
R, a pair of mementos consisting of m0 and one of the four categories of m1 were
evaluated by five turkers for a total of 280 evaluations.

We show the judgement splits from the turker evaluations in Table 9. The judge-
ment splits refer to the number of turkers that selected the correct-incorrect version.
For example, a 0-5 split means all five turkers selected the m1 memento (an incorrect
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Mm

URI-R m0 missing
image

missing
css

missing
all
images

missing
all

http://www.cs.odu.edu/
~mln/

0.14 0.43 0.29 0.43 0.43

http://activehistory.
ca/2013/06/
myspace-is-cool-again-too
-bad-they-destroyed-
history-along-the-way/
comment-page-1/

0.0 0.32 0.32 0.57 0.85

http://www.albop.com/ 0.0 0.13 0.0 0.50 0.50
http://www.cs.odu.edu/ 0.10 0.13 0.11 0.82 0.81
http://ws-dl.
blogspot.com/2013/08/
2013-07-26-web-archiving-
and-digital.html

0.07 0.08 0.08 0.13 0.14

http://www.cnn.com/2013/
08/19/tech/social-media/
zuckerberg-facebook-hack/

0.19 0.22 0.28 0.46 0.57

http://xkcd.com/ 0.14 0.38 0.31 0.53 0.54
http://www.mozilla.org/ 0.80 0.80 0.80 0.877 0.89
http://www.ehow.com/ 0.05 0.05 0.06 0.11 0.33
http://google.com/ 0.0 0.0 0.0 0.0 1.0
http://php.net/ 0.32 0.33 0.33 0.37 0.37

TABLE 8: The 11 URI-Rs used to create the manually damaged dataset. Mm values
are provided for each m1.
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FIG. 74: We asked the turkers to select the less damaged of two mementos. The two
versions of the page are accessible in separate tabs.
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∆Mm Splits
5-0 4-1 3-2 2-3 1-4 0-5 Total

1.0 0.00
0.9 0.00
0.8 4 0.07
0.7 0.00
0.6 0.00
0.5 1 1 0.04
0.4 0.00
0.3 15 5 0.36
0.2 2 0.04
0.1 5 4 4 2 1 0.29
0.0 5 3 1 3 0.22

Total 0.58 0.23 0.09 0.09 0.00 0.02 1.0

TABLE 9: The turkers selected m0 as the preferred memento 81% of the time, and
more consistently for larger ∆Mm values.

Turker Mm

Assesment Select m0 Select m1
m0 44 0
m1 11 0

TABLE 10: Confusion matrix of the turker assessments of the m0 vs m1 comparison
test.

selection), a 5-0 split means all five turkers selected the m0 memento (the correct
selection), and a 3-2 split means three turkers selected the m0 memento and two se-
lected the m1 memento (a correct selection by the majority, but still a split decision
among the turkers). For the purposes of Research Question 2, we consider only 5-0
and 4-1 splits as agreement with Mm and all other splits as disagreement. ∆Mm

refers to the delta between Mm0 and Mm1 .
The turkers selected m0 as the preferred option (less damaged memento) 81% of

the time (226/280). As ∆Mm grows, turker agreement is more consistent.
Regardless of ∆Mm, 81% of the evaluations agreed withMm as a suitable damage

metric (5-0 and 4-1 splits). Turkers were unsure about the damage (3-2 and 2-3
splits) 18% of the time and incorrectly identified damage only once. The average
∆Mm for the unsure selections was < 0.01, and the only 0-5 split had a ∆Mm of



157

0.014, suggesting that confusion or disagreement occurs more often when the damage
delta is smaller (i.e., the mementos are too similar to differentiate between).

Confusion matrices provide a consolidated view of an algorithm’s performance.
The top left quadrant shows the number of true positives, the top right shows the
number of false negatives, the bottom left shows false positives, and the bottom right
shows true negatives. The algorithm’s accuracy (Equation 5) and harmonic mean
(also called F-measure, or F1 Score, Equation 6) are calculated using a confusion
matrix. A harmonic mean provides an average (in this case, of the algorithm’s
success rate) and is sensitive to small values and outliers. Accuracy is defined as
the number of correctly classified instances divided by the test set size (Equation 5).
F-Measure goes beyond accuracy to consider the harmonic mean of precision and
recall (defined in Equation 6).

Accuracy = True Positives + True Negatives
Number of Classifications (5)

F-Measure = 2× Precision× Recall
Precision + Recall (6)

From the confusion matrix (Table 10), we can calculate F1=0.88 and accu-
racy=0.80 for m0 vs m1. Turker agreement does not match Mm 100% of the time
with the m0 vs m1 test because of phenomena with aesthetics and human perception.
Also, m0 is often incomplete (with Mm0 > 0 e.g., php.net in Table 8).

6.3 EVALUATING ORGANIC DAMAGE

Turkers identified m0 in the m0 vs m1 in a large majority (81%) of the com-
parisons. As a result, the turkers have shown that they can identify a damaged
memento when presented a damaged and undamaged memento. Because they can
identify damage in mementos, we felt comfortable using turkers to evaluate our mea-
sured damage of mementos found in the Internet Archive.

This experiment uses the same set of 2,000 URI-Rs as in Section 5 and our
previous work [52] as sampled from Twitter and Archive-It. Using these two sets of
URI-Rs, we measured the damage of one memento per year from the Internet Archive
TimeMap of each of the 1,861 URI-Rs, resulting in 45,341 URI-Ms. We randomly
selected a subset of 100 URI-Ms from this set. Similar to the evaluation in Section
6.2, we gave turkers two mementos (we will generalize these to m2 and m3) from
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∆Mm Splits
5-0 4-1 3-2 2-3 1-4 0-5 Total

1.0 1 0.01
0.9 0.00
0.8 0.00
0.7 1 0.01
0.6 1 0.01
0.5 0.00
0.4 1 0.01
0.3 1 3 4 1 2 0.11
0.2 5 6 5 12 9 0.37
0.1 4 5 10 11 15 3 0.48
0.0 0.00

Total 0.05 0.12 0.19 0.20 0.30 0.14 1.0

TABLE 11: The turker evaluations of the m2 vs m3 comparisons when using Mm as
a damage measurement.

consecutive years from the same TimeMap and asked the turkers to select the less
damaged memento (“We saved two pages for you. For which page did we do a better
job?”) as shown in Figure 74. Because m2 and m3 are observed from the Internet
Archive, neither is considered a ground-truth. We measured Mm of mementos in
the Internet Archive and compared it to the turker perception of the utility of the
mementos.

Contrary to the test in Section 6.2, as ∆Mm grows, the turkers are not as over-
whelmingly effective at selecting the less damaged memento (the splits are shown in
Table 11). The turkers only agree with Mm 12% of the time (5-0 and 4-1 splits) and
completely disagree with Mm (1-4 and 0-5 splits) 44% of the time. This discrepancy
demonstrates that turker assessment of damage does not matchMm. Additionally, we
see that the turkers performed well when comparing m0 vs m1 (original vs damaged)
but struggle to compare m2 vs m3 (damaged vs damaged).

From the confusion matrix (Table 12), we can calculate the accuracy of turker
selections of m2 vs m3 agreement with Mm is 0.46 with F1=0.55. In a Receiver
Operating Characteristic (ROC) curve [87], we calculated the Area Under the ROC
Curve (AUC) for the results of the turker evaluations ofm2 vsm3 againstMm and the
results of the manually damaged m0 vs m1 test (as the optimal performance). The
AUC of Mm is lower (AUC=0.472) than random (AUC=0.500) as shown in Table
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Turker Mm

Assesment Select m2 Select m3
m2 29 24
m3 23 24

TABLE 12: Confusion matrix of the turker assessments of the m2 vs m3 comparison
test against Mm.

Damage Calculation AUC F1 Accuracy
Mm 0.472 0.55 0.46
Mm0 0.789 0.88 0.80

TABLE 13: When compared to random, Mm performs worse than random selection
and is worse than the optimal performance of m0 vs m1.

13, meaning that Mm performed worse than random for matching turker perception
of damage and far worse than the optimal performance (AUC=0.789), a further
indicator that Mm is not a suitable metric for measuring memento damage.

6.4 CALCULATING MEMENTO DAMAGE

With Mm not matching Web users’ perception of damage, we propose a new
algorithm for assessing memento damage. Our proposed algorithm is based on the
file type, size, and location of the embedded resource.

6.4.1 DEFINING DM

We define Dm as the damage rating, or cumulative damage, of a memento m in
Equation 7. Dm is a normalized value ranging from [0, 1]. We calculate the potential
damage of a memento and the actual damage of a memento and express the damage
rating as the ratio of actual to potential damage. Notionally, potential damage is
the cumulative importance of all embedded resources in the memento (i.e., those
that could potentially be missing), while actual damage is only the importance of
those embedded resources that are unsuccessfully dereferenced, or missing. That
is, actual damage is the cumulative weighted importance of the embedded resources
missing from a memento m, while the potential damage is the weighted importance
of embedded resources both present and missing in a memento m. Actual damage is
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the damage done to a page while the potential damage is the damage that would be
measured if all embedded resources were missing.

Dm = Dmactual

Dmpotential

(7)

To determine potential and actual damage, we first define the set of all embedded
resources R and the set of all missing resources Rr in Equation 8.

R = {All embedded resources requested}

Rr = {All missing embedded resources}

Rr ⊆ R

(8)

6.4.2 WEIGHTING EMBEDDED RESOURCES

We calculate the importance of each embedded resource in the set R. The sum
of each embedded resource is the potential damage Dmpotential

(Equation 9). Impor-
tant resources are assigned additional weights to increase their relative value over
unimportant resources (Equations 11 - 12).

Dmpotential
=

∑n[I,MM ]
i=1 D[I|MM ](i)

n[I|MM ]
+

∑nC
i=1 DC(i)
nC

∀{I=Images, MM=Multimedia, C=CSS}

n ∈ R

(9)

Actual damage (Dmactual
, defined in Equation 10) is identical to Dmpotential

except
it is computed using only the missing embedded resource set Rr.

Dmactual
=

∑n[I,MM ]
i=1 D[I,MM ](i)

n[I|MM ]
+

∑nC
i=1 DC(i)
nC

∀{I=Images, MM=Multimedia, C=CSS}

n ∈ Rr

(10)

In Mm, all embedded resources are treated as equal. The potential damage is
therefore the number of embedded resources, and the actual damage is the number
of missing embedded resources. Mm is the unweighted ratio of missing embedded
resources to total embedded resources.
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We assign additional weights to important embedded resources at the expense of
less important mementos. When a weight w is given to an embedded resource, all n
embedded resources lose w

n
importance, which redistributes the importance between

embedded resources while keeping the sum of all importance constant.

6.4.3 IMAGE DAMAGE CALCULATION

Images receive weights for image size and centrality (Equation 11). We use the
pixel area (width × height) of the image as specified in the HTML and the page size
along with a weight for horizontal and vertical central dividing line overlap by the
image. This gives a weighted measure of the proportion of a page the image occupies
and how central the image is in the viewport. For example, we can extract the width
and height of the missing embedded resource “IMAGE.png” from this HTML

<img src="IMAGE.png" height="42" width="42">

but not this HTML

<img src="IMAGE.png">.

D[I|MM ] = 1 + width× height
Page Size (pixels) + whorizontal

+ wvertical

whorizontal =

 0.25 image overlaps horizontal center
0 otherwise

wvertical =

 0.25 image overlaps vertical center
0 otherwise

(11)

Embedded multimedia importance (DMM) is calculated identically to image im-
portance DI , and we represent both in the same equation D[I|MM ]. Because size and
centrality determine multimedia importance, we omit audio and other non-visual
multimedia resources. We also classify Flash movies as multimedia.

6.4.4 STYLE SHEET DAMAGE CALCULATION

Equation 12 outlines the damage from missing style sheets, including a factor for
a style threshold wstyle and a threshold for non-matching CSS tags in the DOM wtags.
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DC = 1 + wstyle + wtags

wstyle =

 0.50 >75% content in left two thirds
0 otherwise

wtags =

 0.50 tags in DOM but not CSS
0 otherwise

(12)

Traditional Web design (and particularly design supported by style sheets) evenly
distributes content across each of the vertical thirds of a page. Our intuition is that
an important style sheet, when missing, will shift content to the left of the page
rather than center content in the viewport. To identify this phenomenon, we divide
the PNG snapshot of a memento into vertical thirds and measure the amount of
content in each third. If a style sheet is missing and content appears to be shifted
to primarily the left two-thirds, we assume the missing style sheet was important to
the distribution of content on the page.

When detecting content in the PNG snapshot, we use remaining CSS markup and
files and the HTML to determine the background color of the page. For each pixel in
the PNG, we measure the number of background and non-background colored pixels,
with content being the number of non-background colored pixels. The proportion of
non-background colored pixels in each vertical third gives us the amount of content
in each partition.

The style threshold to identify an important style sheet is determined as follows:

1. Determine the background color

2. Render a PNG snapshot of the page

3. Divide the PNG into equal vertical third partitions

4. Calculate the number of pixels of the non-background color in each third for
the viewport only (we used a 1024x768 viewport) and entire page

5. If ≤75% of the non-background colored pixels are in the left two thirds of the
viewport, set wstyle = 0 in Equation 12 (CSS file does not receive a weight)

6. If >75% of the non-background colored pixels are in the left two thirds of the
viewport and a style sheet is missing, set wstyle = 0.5 in Equation 12 (CSS file
does receive a weight)
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For example, we created two mementos of the URI-R http://www.pilotonline.

com/ on a local server, one as it appears live (with all style sheets – Figure 75(a)) and
the other with its style sheets removed (Figure 75(b)). The vertical partitions extend
from the top of the PNG snapshot to the bottom. The percent of non-background
color pixels in the viewports of our mementos are shown in their respective thirds
in Figure 74. Notice that the non-background pixels (text, images, etc.) shift left
when the CSS is missing. Intuitively, information is not meant to be displayed like
the representation in Figure 75(b).

When we consider content outside of the viewport (Figures 76(a) and 76(b)), we
see the same shift of content to the left when style sheets are missing. However, the
distribution of content in Figure 76(b) is more evenly distributed because the content
has shifted down and fills out the middle and right vertical partitions more than in
Figure 75(b). This is an indicator that the style sheets missing in Figures 75(b) and
76(b) were important.

Along with the style threshold, the presence of tags on the page without a match-
ing style suggests that the missing CSS contained the referenced formatting. If such
tags exist without a matching style, wtags = 0.5 in Equation 12.

6.4.5 THE DM ALGORITHM

Embedded multimedia, images, and style sheets do not account for the entirety
of a page’s importance and usefulness. We assume that text, as defined by the
DOM and included on the page, is available regardless of archival success (Mm) and
therefore does not contribute to the damage calculation.

In summary, Equations 7 - 12 are used to compute Dm:

1. Load URI-M with PhantomJS

2. Find Potential Damage Dmpotential
(Equation 9)

(a) Determine CSS importance DC (Equation 12)

(b) Determine Multimedia importance DMM (Equation 11)

(c) Determine Image importance DI (Equation 11)

3. Determine proportion of unsuccessfully dereferenced embedded resources Mm

(Equation 8)
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(a) We calculated that the non-background color is more
evenly distributed between the three vertical partitions of
the Pilot Online page with its style sheet included than when
it is missing.

(b) We calculated that the non-background color is most
prevalent in the left-most vertical partition of the viewport
of the Pilot Online page when it is missing its style sheet.

FIG. 75: Missing style sheets causes content to shift left. We show the percent of
content in the vertical partitions of the viewport.
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(a) When considering the entire page,
the content of the page is distributed
33% in the left, 26% in the middle, and
41% in the right partitions when the
style sheet is present.

(b) When considering the entire page,
the content of the page is distributed
84% in the left, 15% in the middle, and
1% in the right partitions when the style
sheet is missing.

FIG. 76: Missing style sheets causes content to shift left.We show the percent of
content in the vertical partitions of the page.
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Figure Dm Mm Human Assessment
72(a) 0.09 0.17 Acceptable
72(b) 0.41 0.24 Damaged
72(c) 0.36 0.29 Acceptable
73(a) 0.59 0.38 Damaged
73(b) <0.01 0.20 Acceptable

TABLE 14: Dm vs Mm for the images in Figures 72 and 73. Note Mm > Dm in 2 of
5 cases.

4. Find Actual Damage Dmactual
(same as Step 3, but with only those URI-Ms

unsuccessfully dereferenced)

5. Determine total damage Dm=[0,1] (Equation 10)

With Dm defined, we revisit the examples presented in Section 6.1. The values
for Dm and Mm are listed in Table 14. Note that the Dm ratings are closer to our
empirical human assessment of memento quality than the proportion of the embedded
resources that are missing.

6.4.6 LIMITATIONS OF DM CALCULATION

Not all pages and page construction methods can be evaluated by Dm. An edge
case not handled by this algorithm is any page constructed with iframes. Our algo-
rithm uses JavaScript to determine the rendered location of embedded multimedia
and images. When the embedded media is in a page embedded within another page,
our algorithm does not provide the accurate rendered location. For this reason, we
exclude iframes from our algorithm. We also exclude missing audio-only multimedia.

While Dm includes multimedia calculations, multimedia resources are rarely em-
bedded in our mementos (only observed twice in our entire set of 45,341 URI-Ms). We
observed that multimedia is often loaded by JavaScript files embedded in the DOM;
this prevents the multimedia files from being archived because archival crawlers (at
the time of this experiment) do not execute client-side JavaScript and therefore do
not archive deferred representations.

Further, the JavaScript files may not operate properly when archived [47] and
may not issue a request for the target multimedia files. If the JavaScript operates
properly and makes an HTTP GET request, the multimedia file would be missing
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(since it is not archived) and we would observe more missing embedded multimedia
files.

The Dm measurement (and its constituent weights) was constructed by archivists
as an improvement to the metric Mm currently used for archive quality assurance.
We do not assert that Dm is a perfect measure, but rather an improvement that will
require additional investigation and re-weighting to reach perfect agreement with
turker evaluation. We recognize that Dm should be more finely tuned to more ac-
curately reflect turker opinion of damage. We also avoid defining a threshold for
damage acceptance; this is left to the discretion of the archivist utilizing Dm to
measure damage in an archive.

6.5 DAMAGE IN THE ARCHIVES

We measured Dm values for each of the 45,341 URI-Ms from Section 6.3. We
used these measurements to assess Dm’s performance relative to turker assessment
and to perform damage measurements in the Internet Archive.

6.5.1 TURKER ASSESSMENT OF DM

We compared Dm to turker assessment and to Mm. As shown in Table 15, Dm

aligns with turker assessment of damage 32% of the time (5-0 and 4-1 splits, as
indicated in bold), an increase of 18% over Mm. Additionally, 49% tie with a 3-2
or 2-3 split and only 18% of the turker evaluations disagreed with the Dm measure.
Turkers agree more consistently when ∆Dm is larger. If we only consider ∆Dm >
0.30, the turkers agree with Dm 71% of the time. However with ∆Mm > 0.30, the
turkers agree only 20% of the time.

From the confusion matrix in Table 16, we determined that the accuracy of Dm

when comparing m2 vs m3 is 0.60, and F1 = 0.69. This is an improvement of 0.14
over the accuracy of Mm and an improvement over the harmonic mean of Mm by
0.14, showing that Dm measures damage closer to turker perception. We also cal-
culated the AUC in a ROC curve for Dm and compared it to Mm and the optimal
performance of the m0 vs m1 test. As shown in Table 17, Dm has an AUC of 0.584,
an increase in 0.108 over Mm, showing that Dm outperforms Mm and is closer to the
optimal performance of m0 vs m1 (AUC=0.789).
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∆Dm Splits
5-0 4-1 3-2 2-3 1-4 0-5 Total

1.0 0.00
0.9 1 0.01
0.8 0.00
0.7 0.00
0.6 1 0.01
0.5 0.00
0.4 4 1 0.05
0.3 2 2 3 0.07
0.2 2 1 2 2 1 0.08
0.1 4 16 27 15 12 3 0.77
0.0 0.00

Total 0.10 0.22 0.32 0.17 0.14 0.04 1.0

TABLE 15: The turker evaluations of them2 vsm3 (sampled mementos) comparisons
when using Dm as a damage measurement.

Turker Dm

Assesment Select m2 Select m3
m2 45 32
m3 8 14

TABLE 16: Confusion matrix of the turker assessments of the m2 vs m3 comparison
test against Dm.

Damage Calculation AUC F1 Accuracy
Mm 0.472 0.55 0.46
Dm 0.584 0.69 0.60
Mm0 0.789 0.88 0.80

TABLE 17: Dm provides a closer estimate of turker perception of damage and our
optimal performance of m0 vs m1 than Mm.
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FIG. 77: The average percentage of embedded resources missed per memento per year
in the Internet Archive as compared to damage per memento per year (Dm=0.128,
Mm=0.132).

6.5.2 MEASURING THE INTERNET ARCHIVE

With Dm validated as aligning closer to turker evaluations thanMm, we used Dm

to evaluate the Internet Archive’s damage rating over time. Our measurement shows
that only 46% of the 45,341 URI-Ms listed in the 1,861 TimeMaps are complete –
that is, 54% of all URI-Ms listed in the Internet Archive TimeMaps we studied are
missing at least one embedded resource2. In Figure 77, we show the average number
of missing embedded resources Mm along with the average calculated damage Dm

per URI-M per year.
Because the number of missed mementos is relevant to Mm and Dm, we investi-

gated the occurrence of missing and successfully dereferenced embedded resources.
Mementos in our dataset are missing very few embedded resources with most miss-
ing 1-10 embedded resources (shown as a histogram and Cumulative Distribution

2The Internet Archive performs URI canonicalization very well, and is assumed to not be a
source of missing resources.
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Function (CDF) in Figures 78(a) and 78(b)) (Missing Resources = 1.7, s = 4.6,
Md = 3)3. We note the long tail on this distribution; a few mementos are missing
a very large number of embedded resources (maximum is 116). We calculate that
61% of mementos are missing 3 or fewer embedded resources, and 85% of mementos
are missing 6 or fewer embedded resources. Most mementos have very few embed-
ded resources (Embedded Resources = 17.6, s = 86, Md = 7), as shown in Figures
79(a) and 79(b). A few mementos have a very large number of embedded resources
(maximum is 552).

In aggregate, we observed that 45,009 of 292,192 embedded resources were miss-
ing, meaning 15% of the embedded resources in the dataset are missing. Of these,
25,848 (57% of the missing URI-Ms) were important, meaning they were assigned an
additional weight by Dm (Equations 5 and 6). The average damage of all measured
mementos was 0.132.

The yearly Dm goes from 0.16 in 1998 to 0.13 in 2013. That means the Internet
Archive is doing a better job (over time) reducing the total memento damage in its
collection. However, the number of missing important resources (resources with an
importance > 1 due to added weights) is increasing, going from an average of 1.30
important resources per memento in 1997 to 2.38 important resources per memento
in 2013 for an average of 2.05 missing per memento. Meanwhile, the number of
unimportant missing embedded resources (damage rating weight ≤ 1) per memento
is increasing at a lesser rate, going from 1.35 in 1997 to 1.64 in 2013. This suggests
that while the Internet Archive is getting better overall at mitigating damage as
much as possible, the archive is missing an increasing number of embedded resources
deemed important.

The distribution of file types missing per memento (Figure 80) shows that most
URI-Ms are missing ≥ 1 embedded resource and that style sheets and JavaScript
files are missing at higher rates over time. Missing JavaScript may lead to additional
missing files (such as multimedia). Images are missing at varying rates per memento
over time.

3We measure the sample mean using X, sample standard deviation using s, and sample median
using Md. Our results are specific to a sample rather than the population (which would be the
entire WWW), and we use the sample symbols to match.
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(a) Occurrences of missing embedded resource numbers in the Internet
Archive as a histogram.

(b) Distribution of missing embedded resources within the collection
of Internet Archive mementos as a CDF.

FIG. 78: The distribution of the number of missing embedded resources per URI-M
in the Internet Archive. Note that we limited the figures to 100 missing embedded
resources.
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(a) Occurrences of successfully dereferenced embedded resource num-
bers in the Internet Archive as a histogram.

(b) Distribution of successfully dereferenced embedded resources
within the collection of Internet Archive mementos as a CDF.

FIG. 79: The distribution of the number of successfully dereferenced embedded re-
sources per URI-M in the Internet Archive. Note that we limited the figures to 100
successfully dereferenced embedded resources.
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FIG. 80: The number of missed embedded resources per Internet Archive memento
per year and MIME type.

6.5.3 MEASURING WEBCITE

In an effort to measure a different type of archive, we used the damage algorithm
to determine Mm and Dm of WebCite4. WebCite is a page-at-a-time archival service
that, as shown in Chapter 5, does not handle JavaScript well and may have more
damaged mementos as a result.

WebCite has 992 mementos in the TimeMaps of our collection of 1,861 URI-Rs.
The earliest available memento is from 2007, and the latest is from 2014. Only
six mementos are available from 2014; therefore, we will focus on 2007-2013 as the
target years of investigation due to the limited number of 2014 mementos, as well as
to match the period of observation of the Internet Archive. The Dm of the WebCite
collection over all years is 0.397 (s = 0.194), and theMm is 0.176 (s = 0.0926). All of
the mementos in this collection are missing at least one embedded resource – 100%
of the mementos are incomplete.

As shown in Figure 81, the Dm in WebCite is increasing over time, going from
4http://www.webcitation.org/
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FIG. 81: The average percentage of embedded resources missed per memento per year
in WebCite as compared to damage per memento per year (Dm=0.397, Mm=0.176).

0.285 in 2007 to 0.442 in 2013. Meanwhile, the average Mm remains steady, going
from 0.135 in 2007 to 0.139 in 2013. Only slight variation occurs, peaking at 0.287
in 2010.

Compared to the Internet Archive, WebCite has a higher damage value as well as
is missing a larger percentage of embedded resources. Additionally, Dm per memento
is higher, indicating that a larger percentage of missing embedded resources are
important (3,514 or 41.7%) in WebCite than in the Internet Archive.

WebCite is missing on average 10.1 embedded resources per memento (s = 8.0,
Md = 2.0). This distribution exhibits a long tail (as did the Internet Archive), with
a few mementos missing a large number of embedded resources (maximum is 133).
WebCite mementos successfully dereference on average 15.3 embedded resources per
memento (s = 30.7, Md = 4.0); again, note the long tail (maximum is 154). Across
the entire collection, 8,420 of 54,824 (or 15.4%) of the embedded resources were
missing in our investigation. We calculate that 56% of mementos are missing 3 or
fewer embedded resources, and 74% of mementos are missing 6 or fewer embedded
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resources (Figure 82(a)).
The distribution of file types missing per memento (Figure 84) shows that most

URI-Ms are missing ≥ 1 embedded image and CSS resources, on average. WebCite
has a lower occurrence of missing style sheets, but a higher occurrence of missing
images.

As we discussed in Section 5, WebCite has difficulties when encountering Java-
Script and embedded iframes. However, its archiving policies provide immediate
results as opposed to crawlers that may incur delay between the time a URI-R is
added to the frontier and a memento is created. WebCite’s difficulties with Java-
Script may contribute to the missing embedded resources in deferred representations.

6.6 IMPACT OF JAVASCRIPT ON DAMAGE

To investigate the impact of JavaScript on archival tools, we set up an experiment
to use Heritrix and PhantomJS to crawl the same set of URI-Rs and measure the
damage difference between the two sets of mementos. Our goal is to understand how
Dm is impacted by JavaScript by comparing mementos archived by a crawler that
can execute JavaScript (PhantomJS) and a crawler that does not execute JavaScript
(Heritrix).

6.6.1 CRAWLING DEFERRED REPRESENTATIONS

Crawlers are unable to discover the resources requested via Ajax (Chapter 4) and
are missing embedded resources which ultimately causes the mementos of the crawled
resources with deferred representations to be incomplete and have higher Dm.

We sampled 50 URI-Rs by randomly generating Bitly URI-Rs and identifying the
URI-Rs to which the Bitly URI-Rs redirected. We then manually classified the 50
URI-Rs as having either deferred or nondeferred representations and crawled the set
of URIs with Heritrix and PhantomJS.

During the Heritrix crawl, we used the 50 URI-Rs as a set of seed URIs and
allowed Heritrix to create their mementos. The final frontier size of this crawl was
1,588 URI-Rs. Using our damage algorithm, we measured the damage of the me-
mentos created by Heritrix and found that Dm=0.148. Recall that our previous
measurement showed the Internet Archive, Dm=0.13.

To ensure the crawler executes JavaScript and captures JavaScript-dependent
resources during the creation of mementos, we then crawled the 50 URI-Rs with
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(a) Occurrences of missing embedded resource numbers in WebCite
as a histogram.

(b) Distribution of missing embedded resources within the collection
of WebCite mementos as a CDF.

FIG. 82: The distribution of the number of missing embedded resources per URI-M
in WebCite. Note that we limited the figures to 60 missing embedded resources.
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(a) Occurrences of successfully dereferenced embedded resource num-
bers in WebCite as a histogram.

(b) Distribution of successfully dereferenced embedded resources
within the collection of WebCite mementos as a CDF.

FIG. 83: The distribution of the number of successfully dereferenced embedded re-
sources per URI-M in WebCite. Note that we limited the figures to 60 successfully
dereferenced embedded resources.
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FIG. 84: The number of missed embedded resources per WebCite memento per year
and MIME type.

PhantomJS. We recorded the embedded resources needed to create the representa-
tion, including those originating from JavaScript. This created a frontier of 3,364
URIs which we used as a seed URI list in Heritrix. We used Heritrix to create the me-
mentos using only the seed URI list, effectively creating mementos using the frontier
list of PhantomJS. For this crawl, Dm=0.129.

PhantomJS provided a 13.5% improvement to the collection damage over Heritrix.
This provides further evidence that deferred representations reduce the quality of
mementos due to traditional crawlers’ inability to execute JavaScript.

Not only does using PhantomJS provide a larger crawl frontier, but the damage
rating of the resulting mementos is lower. In short, this initial investigation suggests
that using PhantomJS mitigates the impact of JavaScript on resources with deferred
representations and results in higher-quality mementos. We discuss this in more
detail in Chapter 7.

6.7 MEASURING ARCHIVE.IS

While WebCite does not properly archive deferred representations, Archive.is
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creates mementos that limit leakage. To study the impact of Archive.is’s handling of
JavaScript on memento quality, we submitted each of our 1,861 URI-Rs to Archive.is
for archiving to create mementos of each resource.

When Archive.is creates a memento, it modifies the DOM to remove references to
embedded resources that were not available at archive time (i.e., embedded resources
that returned a non-200 HTTP response code) [209]. This results in a memento that
– if created properly – has no missing embedded resources. Additionally, Archive.is
obfuscates the URIs of embedded mementos, preventing a reliable mapping from
URI-R to URI-M. For example, the live resource might have an embedded image
such as

<img src="http://d3n8a8pro7vhmx.cloudfront.

net/peoplesgrocery/sites/1/meta_images/

large/pg_sidebar_logo.png?1372698696"

width="315" height="315">

and Archive.is will convert the URI-R to the following URI-M:

<img src="https://archive.is/v9cDq/

e632aee8994b72b42e8f7a977ddc1cb63329d9f5.png"

style="text-align:left;box-sizing: border-box;

... "/>

Due to these two archival practices, the damage algorithm used in this paper
is ineffective for determining memento quality in a directly comparable with to the
Internet Archive and WebCite. For this reason, we alter the method of measuring
the effectiveness of Archive.is’s archival process.

We initiated the archiving of each URI-R in our collection by Archive.is. We
counted the number of embedded resources that were successfully loaded live re-
sources (i.e., returned an HTTP 200 response when their URIs were dereferenced)
and compared this number to the number of embedded resources successfully archived
by Archive.is, resulting in a delta between live embedded resources and the memen-
tos embedded resources that we will refer to as ∆m. It is worth noting that the delta
between the number of embedded resources in live resources and mementos (∆m)
is a measure of neither Mm nor Dm, but is instead a mechanism for understanding
memento fidelity.
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We found that Archive.is has a ∆m=19.9 (s = 39.2), meaning that on average,
Archive.is did not archive 19.9 embedded resources from the live page due to either
its inability to archive the resources, or because Archive.is may have deemed the
embedded resources not suitable for archiving5. A histogram of all ∆m measures is
provided in Figure 85(a).

We submitted each URI-R in the collection to WebCite and recorded ∆m for
the WebCite mementos in the exact way we measured ∆m for Archive.is. In this
way, we can compare the two page-at-a-time archiver to determine which service
creates higher fidelity mementos. WebCite has a ∆m=21.6 (s = 41.7), which is
higher than the ∆m of Archive.is. The histogram of the WebCite ∆m is provided
in Figure 85(b). The higher WebCite ∆m indicates that Archive.is creates higher
fidelity mementos than WebCite, likely due to its superior support of JavaScript
dependent representations.

6.8 CONTRIBUTION TO RESEARCH QUESTION 2

To answer Research Question 2: How do we measure memento quality?,
we constructed an algorithm to automatically assess the damage of mementos based
on their missing embedded resources. We designed and executed an experiment that
evaluated the algorithm, and showed the historical patterns of Dm over time.

We demonstrated that Web users (as represented by Mechanical Turk Workers)
can correctly identify original mementos 81% of the time when presented with an
original and a manually damaged pair of mementos (m0 vs m1). After randomly
selecting 100 URI-Ms from the Internet Archive TimeMaps of 1,861 URI-Rs, we
show that turkers’ assessment of damage does not match that of Mm; in fact, their
perception of damage more closely aligns with a random selection than with Mm.

To provide a damage metric closer to the perception of Web users, we proposed
Dm, a damage calculation algorithm that estimates embedded resource importance to
determine the perceived damage of mementos. Using turker evaluations, we showed
that Dm aligns with turker perception 32% of the time when considering all ∆Dm

values – an improvement of 17% over Mm. If we limit ∆Dm > 0.30, we achieve an
agreement of 71%, an improvement of 51% over Mm. We show that the performance
of Dm is closer to that of the m0 vs m1 test than both Mm and a random selection.

5Archive.is lists the resources it saves and does not save in its FAQ page at http://archive.
is/faq.html.
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(a) Histogram of the memento vs live resource ∆m in Ar-
chive.is.

(b) Histogram of the memento vs live resource ∆m in Web-
Cite.

FIG. 85: The ∆m measurements of Archive.is and WebCite indicate that Archive.is
creates higher fidelity mementos than WebCite.
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We used Dm to measure the damage of mementos in the Internet Archive by mea-
suring Dm of 1,861 URI-Rs. The average damage of the Internet Archive collection
is 0.13 per memento and is missing 15% of its embedded resources. Mementos are
missing 2.05 important resources on average. The Internet Archive has gotten better
at mitigating damage over time, reducing Dm from 0.16 (1998) to 0.13 (2013).

Page-at-a-time archival services perform differently than the Internet Archive’s
Heritrix crawler6. We measured mementos of our collection in WebCite, finding that
the average damage of the collection is 0.397 per memento and is missing 18% of its
embedded resources. Mementos are missing 10.1 resources on average. Even though
damage in the Internet Archive is improving, the damage in WebCite is getting worse,
increasing Dm from 0.375 (2007) to 0.475 (2013).

We also demonstrate that deferred representations have a detrimental impact on
Dm and Mm. By using a crawl strategy in which JavaScript is executed during the
crawl, damage in the resulting mementos can be improved by 13.5%.

We also measured the damage of mementos in WebCite, and demonstrated
that the damage in the Internet Archive (Dm=0.128) is less than that in WebCite
(Dm=0.397). We know from Chapter 5 that WebCite does not archive JavaScript-
dependent representations effectively. We measured Archive.is to determine the fi-
delity of an archival service that makes an effort to use headless browsing to capture
JavaScript dependent representations. We found that Archive.is had a ∆m of 19.9
embedded resources between mementos and live resources, while WebCite had a ∆m

of 21.6. This shows that Archive.is provides a higher fidelity memento than Web-
Cite. We also show that deferred representations are of lower quality than their
counterparts that avoid JavaScript.

With Dm, archival services can automatically evaluate their performance and
the quality of their mementos. The archives could measure a selection of mementos
(either randomly sampled or by identifying those missing a proportion of embedded
resources, such as ∆Mm > 0.30) for damage to determine whether or not they have
been satisfactorily archived. That is, with this algorithm, the archives can provide the
greatest damage improvement through targeted repair efforts (e.g., identify mementos
that require additional attention to ensure proper archiving). Archives can also use
historical damage ratings of a URI-R to identify memento improvements or changes.

6The Internet Archive’s Save Page Now service operates as a page-at-a-time archival service
[250], but is not considered for the purposes of this study.
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Even though we have answered Research Question 2, this is a preliminary inves-
tigation of memento damage and archival quality. We have shown that percentage
of embedded resources missing is not an accurate representation of damage and have
proposed a more accurate metric. We will investigate the cumulative damage rating
over time. For example, a logo that never changes over a five year period could have
increased importance due to its use over multiple mementos. We plan to also mea-
sure the damage improvement of mementos if embedded resources are retroactively
captured and included in past mementos. This cumulative damage improvement can
help identify embedded resources that should be targeted by archives.
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CHAPTER 7

A TWO-TIERED APPROACH FOR CRAWLING

DEFERRED REPRESENTATIONS

Research Question 3: How can we crawl, archive, and play back deferred
representations? is a vast area of investigation in which we present a framework
for crawling deferred representations that incorporates PhantomJS into the legacy
archival workflow with Heritrix. We showed in Chapter 6 that PhantomJS helps
create higher quality mementos, and in this chapter, we measure the impact of us-
ing PhantomJS in an archival workflow. We measure the performance (i.e., crawl
time and frontier size) of the crawler components, expected performance of our two-
tiered crawling approach, present a classifier to recognize deferred representations,
and describe how the framework can discover and archive descendants of deferred
representations.

We investigate the performance impact of crawling deferred representations as
part of our improved framework for archiving deferred representations. We measure
the expected increase in frontier size and wall-clock time required to crawl resources,
and we investigate a way to recognize deferred representations to optimize crawler
performance (by crawl time as well as discovered frontier) using a two-tiered crawl-
ing approach that combines PhantomJS and Heritrix [57]. Our efforts measure the
crawling tradeoff between traditional archival tools and tools that can better archive
JavaScript with headless browsing – a tradeoff that was anecdotally understood but
not yet been measured.

We use 10,000 seed URI-Rs1 to explore the impact of including PhantomJS in
the crawling process by comparing the performance of wget (the baseline), Phan-
tomJS, and Heritrix. Heritrix crawled 2.07 URIs per second, 12.15 times faster than
PhantomJS and 2.4 times faster than wget. However, PhantomJS discovered 531,484
URIs, 1.75 times more than Heritrix and 4.11 times more than wget. To take advan-
tage of the performance benefits of Heritrix and the URI discovery of PhantomJS,
we recommend a tiered crawling strategy in which a classifier predicts whether or not

1Dataset available at https://github.com/jbrunelle/DataSets/blob/master/10kuris.txt.
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a representation will be deferred, and only resources with deferred representations
are crawled with PhantomJS whereas resources without deferred representations are
crawled with Heritrix. We show that this approach is 5.2 times faster than using
only PhantomJS and creates a frontier 1.8 times larger than using only Heritrix.

Following the investigation of performance tradeoffs, we study the extent of in-
teractivity in deferred representations [58], construct interaction trees of representa-
tions, and propose a model for representing interactions. We study the amount of
new and unarchived embedded resources that can be uncovered through automated
interaction with a representation. From these investigations, we propose a method
of discovering and crawling deferred representations and their descendants that are
only reachable through client-side events. We adapt Dincturk et al.’s Hypercube
model [79, 30, 80] to construct a model for archiving descendants, and we measure
the number of descendants and requisite embedded resources discovered in a proof-
of-concept crawl. Our two-tiered crawling approach identified 38.5 descendants per
seed URI crawled, 70.9% of which are reached through an onclick event, and adds
15.6 times more embedded resources than Heritrix to the crawl frontier. However,
crawling descendants is 38.9 times slower than simply using Heritrix. We demon-
strate that there are only two levels of descendants in our dataset, indicating that
the interaction trees of deferred representations are much shallower than we antic-
ipated. We conclude with proposed crawl policies, and an analysis of the expected
storage requirements for archiving descendants.

7.1 MOTIVATING EXAMPLES

We present an example of the challenge of archiving deferred representations and
the difference between mementos of URI-R http://www.truthinshredding.com/

captured by traditional tools versus PhantomJS in Figure 86. We took a PNG snap-
shot of the live Web resource (Figure 86(a)), the resource as loaded by PhantomJS
(Figure 86(b)), and the memento that is the result of crawling the resource with
Heritrix and viewing the memento in a local instantiation of the Wayback Machine
(Figure 86(c)). The title of the page “Truth in Shredding” appears in a different
font in Figure 86(a) than in Figures 86(b) and 86(c). This is not due to a missing
style sheet, but rather an incompatibility of the font for the headless browser. Figure
86(a) was rendered in the Mozilla Firefox browser, whereas Figures 86(b) and 86(c)
were rendered using the PhantomJS headless browser.
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(a) The live-Web resource at URI-R http:
//www.truthinshredding.com/ loads re-
sources A, B, and C via JavaScript.

(b) Using PhantomJS, the advertisement (B)
and video (C) are found but the account
frame (A) is missed.

(c) Using Heritrix, the embedded resources
A, B, and C are missed.

FIG. 86: Neither archival tool captures all embedded resources, but PhantomJS dis-
covers the URI-Rs of two out of three embedded resources dependent upon JavaScript
(B, C) while Heritrix misses them.
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The live Web resource loads embedded resources (annotated as A, B, and C) via
JavaScript. Embedded Resource A is an HTML page loaded into an iframe. URI-RA

is

https://apis.google.com/u/0/_/widget/render/page?usegapi=1

&rel=publisher&href=%2F%2Fplus.google.com%2F11074366589

0542265089&width=430&hl=en-GB&origin=http%3A%2F%2Fwww.t

ruthinshredding.com&gsrc=3p&ic=1&jsh=m%3B%2F_%2Fscs

%2Fapps-static...

The page loaded into the iframe uses JavaScript to pull the profile image into the
page from URI-RA1

https://apis.google.com/_/scs/apps-static/_/ss/k=oz.widget.

-ynlzpp4csh.L.W.O/m=bdg/am=AAAAAJAwAA4/d=1/rs=AItRSTNrapszO

r4y_tKMA1hZh6JM-g1haQ

Embedded Resource B is an advertisement that uses the JavaScript at URI-RB1

http://pagead2.googlesyndication.com/pagead/show_ads.js

to pull in ads to the page. Embedded Resource C is a YouTube video that is embed-
ded in the page using the following HTML for an iframe:

<iframe allowfullscreen="" frameborder="0" height="281"

src="//www.youtube.com/embed/QyLl4Fd4cGA?rel=0" width="500">

</iframe>.

PhantomJS does not load Embedded Resource A because the host resource com-
pletes loading before the page embedded in the iframe can finish loading. PhantomJS
stops recording embedded URIs and monitoring the representation after a page has
completed loading (i.e., on the onload event), and Embedded Resource A executes
its JavaScript to load the profile picture after the main representation has completed
the page load2. PhantomJS does discover the advertisement (Embedded Resource B)
and the YouTube video (Embedded Resource C). Even though the headless browser

2A PhantomJS script can be written in such a way that this race-condition can be avoided using
longer timeouts or client-side event detection, but this functionality is outside the scope of this
discussion.
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used by PhantomJS does not have the plugin necessary to display the video, and
therefore it is missing from the PNG, the URI-R is still discovered by PhantomJS.

Heritrix fails to identify the URI-Rs for the Embedded Resources A, B, and C.
When the memento created by Heritrix is loaded by the Wayback Machine, Embed-
ded Resources A, B, and C are missing. This behavior is a due to Heritrix’s inability
to discover the URI-Rs for these resources during the crawl. However, when viewing
the memento through the Wayback Machine, the JavaScript responsible for loading
the embedded resources is executed resulting in an either a zombie resource or an
HTTP 404 response for the embedded resources.

Heritrix’s inability to discover the URI-Rs of the embedded resources could be
mitigated by utilizing PhantomJS during the crawl. However, this raises many ques-
tions, most notably: How much slower will the crawl time be? How many additional
embedded resources could a two-tiered crawling approach uncover and potentially
need to store? Can we optimize the two-tiered crawling approach based on the de-
tection of deferred representations? In short, our investigation into these questions
will assess the feasibility of equipping Heritrix with PhantomJS to create a two-
tiered crawling approach to mitigate the impact of JavaScript on missed embedded
resources in the archives.

7.2 A FRAMEWORK FOR TWO-TIERED CRAWLING

To this point, we have presented our body of work regarding the impact of Java-
Script on the archives. We propose a two-tiered crawling approach designed to mit-
igate these challenges, and measure the impact, performance trade-offs of crawling
approaches, and the benefits of a two-tiered crawling approach in the rest of this
chapter. In this chapter, we summarize and measure the framework we have con-
structed as a result of our body of work.

7.2.1 SINGLE-TIER CRAWLING FRAMEWORK

In the legacy model of Web archiving (that in this section we refer to as the single-
tier framework), the archival workflow matched the way users and browsers interacted
with the Web before JavaScript and client-side technologies rose to prominence. The
crawler begins with a seed list as the initial frontier – URIs U1, U2, U3 in Figure
87. Beginning with U1 (the first URI in the frontier list), the crawler will simply
dereference the URI (Step 1), receive the representation (at this point, we do not know
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FIG. 87: The current archival work flow was designed to archive pre-JavaScript
nondeferred representations.

if the representation is deferred or if it has descendants), archive the representation,
extract the URI-Rs of embedded resources and links (U4, U5) (Step 2), and add the
extracted URI-Rs to the frontier (Step 3). The crawler repeats the process (e.g.,
the next URI, U2, will be popped off the top of the frontier) until the frontier is
exhausted.

While this method was effective when representations did not change on the
client, and URIs for embedded resources were delivered from a server embedded
in the representation at the time of dereferencing, JavaScript’s ability to construct
URIs of embedded resources and make additional requests for embedded resources
as a result of the page rendering or user interaction has made the archival workflow
in Figure 87 ineffective for the current Web. Our two-tiered crawling approach is a
proposed modification to the single-tier framework that incorporates a classifier and
headless browser to better archive deferred representations and their descendants.

7.2.2 TWO-TIERED CRAWLING APPROACH

We propose a two-tiered approach for crawling deferred representations. The
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FIG. 88: The proposed adaptation to the archival work flow handles deferred repre-
sentations and descendants.
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processes added to the original workflow are in red in Figure 88. In our two-tiered
crawling approach, we begin similar to the single-tier framework with a seed list of
URIs (U1, U2, U3), and the first URI on the frontier is selected and crawled (Step
1). Once the representation is archived, we reach the first change to the archival
workflow from the single-tier framework. We classify the representation as either
deferred or nondeferred (Step 2’), the process for which is discussed in more detail
in Section 7.4.

Nondeferred representations fit the single-tier framework of archiving and can
be properly archived using the single-tier workflow and proceeds as normal through
Steps 3 and 4. If the representation is classified as deferred, it will not be properly
archived using the single-tier framework workflow.

Deferred representations use a specialized sub-workflow beginning with Step 3’,
in which PhantomJS or another headless browsing utility dereferences the URI-R,
identifies the interactive DOM elements, and an interaction frontier (U1.1, U1.2, U1.3)
is built using the Max Coverage policy (Section 7.10.3). Each interaction associated
with the interactive elements on the interaction frontier is executed on the client to
discover the embedded resources and descendants on the client (Step 3”). From these
interactions and descendants, the URIs of any embedded resources are added to the
crawl frontier.

The two-tiered crawling approach is slower – in wall-clock time – per URI-R
with a deferred representation than the single-tier framework (Section 7.3.1), and
requires additional storage to handle the increased coverage of the Web (Section 7.12).
However, using the two-tiered crawling approach, we can uncover embedded resources
from deferred representations that the single-tier framework cannot (Section 7.3.2),
increasing the quality and completeness of the archive.

7.3 COMPARING CRAWLS

Before discussing the performance of our two-tiered crawling approach, we de-
signed an experiment to measure the performance differences between a command-
line archival tool (wget), a traditional crawler (Heritrix), and a headless browser
client (PhantomJS). We use wget as a baseline to which we compare the perfor-
mance of PhantomJS and Heritrix, and compare the performance of each tool to
understand their operation individually. We use their individual performances to
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recommend crawl policies and maximizing the performance and coverage of the two-
tiered crawling approach.

We constructed a 10,000 URI-R dataset by randomly generating a Bitly URI and
extracting its redirection target. We split the 10,000 URI dataset into 20 sets of 500
seed URI-Rs and used wget, Heritrix, and PhantomJS to crawl in parallel each set
of seed URI-Rs and their embedded resources. We repeated each crawl ten times to
establish an average performance, resulting in ten different crawls of the 10,000 URI
dataset (executing the crawl one of the 500-URI sets at a time3) with each of wget,
Heritrix, and PhantomJS. We measured the increase in frontier size and the time
taken per URI to crawl the resource.

Although Heritrix provides a user interface that identifies the crawl frontier size,
PhantomJS and wget do not. We calculate the frontier size of PhantomJS by counting
the number of embedded resources that PhantomJS requests when rendering the
representation. We calculate the frontier size of wget by executing a command4 that
records the HTTP GET requests issued by wget during the process of mirroring a
Web resource and its embedded resources. We consider the frontier size to be the
total number of resources and embedded resources that wget attempts to download.

We began a crawl of the same 500 URI-Rs using wget, Heritrix, and PhantomJS
simultaneously to mitigate the impact of changing resources. For example, if the rep-
resentation changes (such as includes new embedded resources) in between the times
wget, PhantomJS, and Heritrix perform their crawls, the number or representations
of embedded resources may change and therefore the representation influenced the
crawl time, not the crawler itself.

We crawled live Web resources because mementos inherit the limitations of the
crawler used to create them. Depending on crawl policies, a memento may be incom-
plete and different than the live resource. The robots.txt protocol, breadth- versus
depth-first crawling, or the inability to crawl certain representations (like deferred
representations) can all influence the mementos created during a crawl.

3We execute in 500 URI-R chunks to limit the chance that the resources change in between the
tools’ crawls of the same URI-R.

4We executed the command wget -T 40 -o outfile -p -O headerFile [URI-R] which
downloads the target URI-R and all embedded resources and dumps the HTTP traffic to a
headerFile.
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FIG. 89: Heritrix crawls 12.13 times faster than PhantomJS. The error lines indicate
the standard deviation across all ten runs.

7.3.1 CRAWL TIME BY URI

To better understand how the crawl times of wget, PhantomJS, and Heritrix
differ, we determined the time needed to crawl a URI-R. Heritrix has a browser-based
user interface that provides the URIs/second metric. We collected this metric from
the Web interface for each crawl. We used Unix system times to calculate the crawl
time for each PhantomJS and wget crawl by determining the start and stop times
for dereferencing each resource and its embedded resources. We compare the wget,
PhantomJS, and Heritrix crawl times per URI in Figure 89. Heritrix outperforms
PhantomJS, crawling 2.065 URIs per second (URIs/sec = 2.065) (s = 0.137) while
PhantomJS crawls URIs/sec = 0.170 (s = 0.001) and wget crawls URIs/sec = 0.864
(s = 0.855). Heritrix crawls, on average, 12.13 times faster than PhantomJS and 2.39
times faster than wget.

The performance difference comes from two aspects of the crawl. First, Heritrix
executes crawls in parallel with multiple threads being managed by the Heritrix soft-
ware; this is not possible with PhantomJS on a single core machine since PhantomJS
requires access to a headless browser and its associated JavaScript engine, and par-
allelization will result in process and threading conflicts. Second, Heritrix does not
execute the client-side JavaScript and only adds URIs that are extracted from the
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FIG. 90: PhantomJS discovers 1.75 times more embedded resources than Heritrix
and 4.11 times more resources than wget. The averages and error lines indicate the
standard deviation across all ten runs.

DOM, embedded CSS, and other resources to its frontier; this results in a smaller
frontier.

7.3.2 URI DISCOVERY AND FRONTIER SIZE

Crawler Crawl time Frontier Size
URIs/sec s URIs s

wget 0.864 0.855 129,443 3,213.65
Heritrix 2.065 0.137 302,961 1,219.82
PhantomJS 0.170 0.001 531,484 2,036.92

TABLE 18: Performance of wget, Heritrix, and PhantomJS for crawls of 10,000 seed
URIs.

As shown in Figures 89 and 90 and summarized in Table 18, we found that Phan-
tomJS discovered and added 1.75 times more URI-Rs to its frontier than Heritrix,
and 4.11 times more URI-Rs than wget. Per URI-R, PhantomJS loads 19.7 more
embedded resources than Heritrix and 32.4 more embedded resources than wget. The
superior frontier size for PhantomJS is attributed to its ability to execute JavaScript
and discover URIs constructed and requested through client-side scripts.
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(a) A portion of the Heritrix, PhantomJS, and
wget frontiers overlap, and PhantomJS and Her-
itrix identify URIs that the others do not.

(b) The frontier of URI-Rs unique to PhantomJS
shrinks when only considering the host and path
aspects (Base Policy for matching) of the URI-R.

FIG. 91: Heritrix, PhantomJS, and wget frontiers as an Euler Diagram. The overlap
changes depending on how duplicate URIs are identified.
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(a) Frontier size grows linearly with seed size.

(b) Crawl speed is dependent upon frontier size.

FIG. 92: Frontier size and crawl speed are dependent upon seed size, with PhantomJS
creating a larger crawl frontier but running more slowly than wget and Heritrix. Note
that the plotted dots are measured performance, while the lines are predictions.
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However, raw frontier size is not the only performance metric for assessing the
quality of the frontier. Rather than rely on näive cardinality of the frontier, we
performed a string-matching de-duplication (that is, removing duplicate URIs) to
determine the true frontier size5. PhantomJS and Heritrix discover some of the
same URIs, whereas PhantomJS discovers URIs that Heritrix does not and Heritrix
discovers URIs that PhantomJS does not. We measured the union and intersection
of the Heritrix and PhantomJS frontiers.

As shown in Figure 91(a), per 10,000 URI-R crawl Heritrix finds 39,830 URI-Rs
missed by PhantomJS on average, while PhantomJS finds 194,818 URI-Rs missed by
Heritrix per crawl on average. PhantomJS and Heritrix find 63,550 URI-Rs common
between the two crawlers. The wget crawl resulted in a frontier of 24,589 URI-Rs
that was a proper subset of both the Heritrix and PhantomJS frontiers.

This analysis shows that PhantomJS finds 19.70 more embedded resources per
URI than Heritrix (Figure 92(a)). Heritrix runs 12.13 times faster than PhantomJS
(Figure 92(b)).

7.3.3 FRONTIER PROPERTIES AND DEDUPLICATION

During the PhantomJS crawls, we observed that PhantomJS discovers session-
specific URI-Rs that Heritrix misses and Heritrix discovers higher level domains that
PhantomJS misses, presumably from Heritrix’s inspection of embedded JavaScript.
For example:

http://dg.specificclick.net/?y=3&t=h&u=http%3A%2F%2

Fmisscellania.blogspot.com%2Fstorage%2F

Twitter-2.png%3F__SQUARESPACE_CACHEVERSION

%3D1230999100588&r=

from PhantomJS versus

http://dg.specificclick.net/

from Heritrix. The uniquely Heritrix URI-Rs are potentially the base of a URI
(or TLD) to be further built by JavaScript. This URI-R is neither used by the
representation nor the JavaScript in which the URI-R is found and in this case, the

5Heritrix does frontier deduplication automatically, so we had to implement this feature in
PhantomJS and wget.
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URI does not return a representation. Because PhantomJS only discovers URIs for
which the client issues HTTP requests and http://dg.specificclick.net/ is never
requested, this URI-R is not discovered by PhantomJS.

To determine the nature of the differences between the Heritrix and PhantomJS
frontiers, we analyzed the union and intersection between the URI-Rs in the frontiers
using different matching policies (Figure 91(b)).

During a crawl of 500 URI-Rs by PhantomJS, 19,022 URI-Rs were added to the
frontier for a total of 19,522 URI-Rs in the frontier. We also captured the content
body (the returned representation received when dereferencing a URI-R from the
frontier) and recorded its MD5 hash value. We used the hash value to identify
duplicate returned representations during the crawl (i.e., we used the signature of
the representation rather than rely on string matching the URI-R).

To determine duplication between URIs, we used five matching policies to de-
duplicate the URI-Rs within the frontier (Table 19). In other words, we identify
cases in which the URIs are different but the content is the same, similar to the
methods used by Sigurðsson [265, 266].

The No Trim policy uses strict string matching of the URI-Rs to detect duplicates.
The Base Trim policy trims all parameters from the URI. For example, the URI

http://example.com/folder/index.html?param=value

would be trimmed to

http://example.com/folder/index.html

The Origin Trim policy eliminates all parameters and associated values that
reference a referring source, such as origin, callback, domain, or referrer. These
parameters are often associated with a value including the TLD of the referring page.
Frequent implementers include Google Analytics or ad services.

The Session Trim policy eliminates all parameters and their associated values
that reference a session. For example, the parameters such as session, sessionid,
token_id, etc. are all removed from the URI-R before matching. These parameters
are often used by ad services or streaming media services to identify browsing sessions
for tracking and revenue generation purposes.

The HTTP Trim policy removes all parameters with values that mention a URI.
Ad services, JavaScript files, and other statistics tracking services frequently utilize
these parameters. For example, the URI
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Trim Type URI
Duplicates

URI and
Entity
Duplicates

Accuracy

No Trim 6,469 4,684 0.68
Other Trim 6,933 2,810 0.62
Base Trim 7,078 4,749 0.68
Origin Trim 10,359 5,191 0.56
Session Trim 8,159 4,921 0.64
HTTP Trim 7,315 4,868 0.67

TABLE 19: Detected duplicate URIs, entity bodies, and the overlap between the
two using the five URI string trimming policies.

http://example.com/folder/index.html?param=value&httpParam=http://

www.test.com/

is trimmed to

http://example.com/folder/index.html?param=value

We used the five trimming policies to detect duplicates in the frontiers constructed
by PhantomJS in one of the crawls of 500 URI-Rs. At the end of the crawl, Phan-
tomJS had a frontier of 19,522 URI-Rs. We determined that this set of entity bodies
had 8,859 duplicate entity bodies. With the trimmed URI and the MD5 hash of the
entity, we can compare the identifiers and the returned entities for duplication.

For each of the 19,522 URIs in the frontier and their associated entity hash values,
we determined the trimmed URI string, the duplications of URIs in the frontier, and
the number of duplicate URIs that also had a duplicate entity body (Table 19). We
calculated the accuracy of each trim policy using the number of URIs with the same
entity hash and URI as a true positive (TP), the number of URIs that had neither
a duplicate URI nor a duplicate entity body as a true negative (TN), and the set of
all positives and negatives (P + N) as the total number of URIs (19,522).

The Base Trim and No Trim policies had identical accuracy ratings (0.68). The
Base Trim policy identified the most URI duplicates, and is used to determine the
overlap between the Heritrix and PhantomJS frontiers.

Using the Base Trim policy to only consider the host and path (e.g., http://
pubads.g.doubleclick.net/gampad/ads) of the PhantomJS and Heritrix frontiers,
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PhantomJS identifies 376,578 URI-Rs added to the frontier, 199,761 (55%) of which
are duplicates of the discovered URIs. If we consider only the host and path of the
PhantomJS URIs, the Euler Diagram of PhantomJS and Heritrix frontiers is more
evenly matched (Figure 91(b)).

7.3.4 DEFERRED VS. NONDEFERRED CRAWLS

To isolate the impact of resources with deferred representations on crawl perfor-
mance, we manually classified 200 URI-Rs from our set of 10,000 URI-Rs as having
deferred representations6 and another 200 as having nondeferred representations. We
crawled each of the deferred and nondeferred sets of URI-Rs with PhantomJS and
Heritrix.

During the crawl of the nondeferred set, PhantomJS crawled 0.255 URIs/sec
while Heritrix crawled 1.34 URIs/sec, 5.25 times faster than PhantomJS. Heritrix
uncovered 1,044 URI-Rs to add to the frontier, while PhantomJS discovered 403
URI-Rs to add to the frontier. This phenomenon of Heritrix having a larger frontier
than PhantomJS is due to Heritrix’s policy of looking into the JavaScript files to
extract URIs found in the code – the URI-Rs discovered by Heritrix are TLDs listed
in the JavaScript that may be used to construct URIs at run time (e.g., appending
a username or timestamp to the URI) or not used by JavaScript at all (e.g., a URI
that exists in an un-executed code block). We expect this phenomenon to occur with
all small seed lists because the Heritrix URIs will not overlap and therefore will not
be de-duplicated at small scales.

During the deferred crawl, PhantomJS crawled 0.5 URIs/sec. Heritrix ran 12.56
URIs/sec, 25.12 times faster than PhantomJS. Heritrix added 3,206 URIs to the
frontier, while PhantomJS added 3,436 URIs to the frontier. PhantomJS adds more
URIs to the frontier despite Heritrix’s introspection on the JavaScript of each crawl
target. This result is due to PhantomJS’s execution of JavaScript on the client.

We observe that the PhantomJS frontier outperforms the Heritrix frontier during
the deferred crawl. Heritrix crawls URIs faster than PhantomJS on each of the
deferred and nondeferred crawls, but far exceeds the speed of PhantomJS during the
deferred crawl.

6For the purposes of this part of our investigation, we do not consider descendants. We exclude
checking for descendants since we are only measuring the performance of PhantomJS versus Heritrix
and discuss the additional impact of descendants in Section 7.6.
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7.4 CLASSIFYING REPRESENTATIONS

In practice, archival crawlers such as Heritrix would ideally be able to identify
URI-Rs that will be difficult to archive in real-time. Heritrix currently does not
have such an automatic classification capability. Archive-It uses a hard-coded set
of URI-Rs (identified by human administrators) to identify URI-Rs with deferred
representations.

The ability to determine whether a resource will be difficult to archive or not will
allow Heritrix to assign the URI-R to either the faster, traditional Heritrix crawler
or the slower, PhantomJS (or other JavaScript-enabled) crawler. By enabling this
two-tiered crawling approach, the archival crawlers can achieve an optimal crawl
speed by utilizing the heavy-duty JavaScript-capable crawlers (e.g., PhantomJS) for
only those URI-Rs that need it. However, this approach requires the ability to, in
real-time, recognize or predict a deferred representation.

In an effort to predict whether or not a representation would be deferred, we con-
structed a feature vector of DOM attributes and features of the embedded resources.
We used Weka [120] to classify the resources on subsets of the feature vectors to
gauge their performance. We extracted the following features and use them to create
a feature vector representing the resource:

1. Ads: Using a list of known advertisement servers, we determined whether or
not a representation would load an ad based on DOM and JavaScript analysis.

2. JavaScript Tags: We counted the number of script tags with JavaScript, both
in files and embedded code.

3. Interactive Elements: We counted the number of DOM elements that have
JavaScript events attached to them (e.g., onclick, onload).

4. Ajax (in JavaScript): To estimate the number of Ajax calls (e.g., $.get(),
XmlHttpRequest) we counted the number of occurrences of Ajax requests in
the embedded external and independent JavaScript files.

5. Ajax (in HTML): To estimate the number of Ajax calls (e.g., $.get(),
XmlHttpRequest), we counted the number of occurrences of Ajax requests in
JavaScript tags embedded in the DOM.
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6. DOM Modifications: We counted the number of times JavaScript made a
modification of the DOM (e.g., via the appendChild() function) to account
for DOM modifications after the initial page load.

7. JavaScript Navigation: We counted the occurrences of JavaScript redirec-
tion and other navigation functions (e.g., window.location calls).

8. JavaScript Storage: We count the number of JavaScript references to stor-
age elements on the client (e.g., cookies) as an indication of client-controlled
information.

9. Found, Same Domain: Using PhantomJS, we counted the number of em-
bedded resources originating from the URI-R’s TLD that were successfully
dereferenced (i.e., returned an HTTP 200).

10. Missed, Same Domain: Using PhantomJS, we counted the number of em-
bedded resources originating from the URI-R’s TLD that were not successfully
dereferenced (i.e., returned a class HTTP 400 or 500).

11. Found, Different Domain: Using PhantomJS, we counted the number of
embedded resources originating outside of the URI-R’s TLD that were success-
fully dereferenced (i.e., returned an HTTP 200).

12. Missed, Different Domain: Using PhantomJS, we counted the number of
embedded resources originating outside of the URI-R’s TLD that were not suc-
cessfully dereferenced (i.e., returned a class 400 or 500 HTTP response code).

We manually sampled 440 URI-Rs (from our collection of 10,000) and classified
the representations as deferred or nondeferred, with 200 training and 20 test URI-Rs
for each based on whether or not their representations were deferred.

Even though our goal is to detect whether or not representations are dependent on
JavaScript, the simple presence of JavaScript is not a suitable indicator of a deferred
representation; JavaScript can alter the appearance of the page or DOM without
issuing a new HTTP request for a new resource. In our set of URI-Rs, the resources
with deferred representations had, on average, 21.98 embedded script tags or files,
while the resources with nondeferred representations had 5.3 script tags or files. Of
those resources with deferred representations, 84.1% had at least one script tag, while
49.5% of the nondeferred representations had at least one JavaScript tag. Because of
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Actual Predicted Classification
Classification Deferred Nondeferred

Deferred 182 38
Nondeferred 58 166

TABLE 20: Confusion matrix for the entire feature vector (F-Measure = 0.791).

Actual Predicted Classification
Classification Deferred Nondeferred

Deferred 179 41
Nondeferred 47 173

TABLE 21: Confusion matrix for the resource features (features 9-12 of the vector;
F-Measure = 0.844).

the ubiquity of JavaScript in both deferred and nondeferred representations, we opted
for a more complex feature vector to represent the features of the representations.

Using PhantomJS, we collected the 12 features required for a feature vector for
each of our 440 URI-Rs. Using Weka, we ran each classifier on the feature vectors.
Rotation Forests [242] performed the best of any of the standard Weka classifiers for
any of our datasets.

We used three subsets of the feature vector to investigate the best method of
predicting deferred representations. We selected attributes 1-8 to represent DOM-
derived features (those that can be collected without monitoring HTTP traffic). We
selected attributes 9-12 as embedded resource attributes, as in the attributes we can
extract if we load and monitor the embedded resources. Together, attributes 1-12
make up the entire dataset. We use these three feature sets (DOM-derived, monitor
resources, and full) to train and test our classifier.

We use a 10-fold cross validation of our training set data. We use the same three
data subsets and provide a confusion matrix of each set to include the entire feature
vector (Table 20), the resource feature vector (Table 21), and the DOM feature vector
(Table 22).

The accompanying statistics for the classifications are shown in Table 23. As a
reminder, accuracy is defined in Equation 5, and F-Measure is defined in Equation 6.
With only the DOM features, the test set is accurately classified representations as
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Actual Predicted Classification
Classification Deferred Nondeferred

Deferred 168 52
Nondeferred 41 179

TABLE 22: Confusion matrix for the DOM features (features 1-8 of the vector;
F-Measure = 0.806).

Features Classification Accuracy F-measure Precision Recall
DOM
Features Only

Deferred 79% 79% 78% 81%
Nondeferred 76% 80%

DOM & Resource
Features

Deferred 81% 82% 79% 81%
Nondeferred 90% 80%

TABLE 23: Classification success statistics for DOM-only and DOM and Resource
feature sets.

deferred or nondeferred 79% of the time. With only the embedded resource features,
the test set is accurately classified 81% of the time. If we combine both sets to create
the full feature set, we can correctly classify representations 81% of the time.

After a URI is dereferenced and a representation is returned, we can determine
whether or not the representation is deferred with 79% accuracy. If we also deref-
erence the URIs for the embedded resources and monitor the HTTP status codes,
we can increase, albeit minimally, the accuracy of the prediction to 81% of the time.
However, crawling with PhantomJS is much more expensive. Due to this minimal
improvement and much higher cost to measure, we limit the feature extraction to
the DOM classification. With a negligible impact on performance (Heritrix already
dereferences the URI-R during the crawl), our classifier is able to identify deferred
representations using the DOM crawled by Heritrix with 79% accuracy.

7.5 PERFORMANCE OF TWO-TIERED CRAWLING

Due to Heritrix’s limitations when discovering JavaScript-dependent embedded
resources and the slow crawl speed of PhantomJS, a two-tiered crawling approach
to crawling would allow an archive to simultaneously benefit from the frontier size
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Crawl Strategy Crawl Time
(hrs)

Crawl Rate
(URIs/sec)

Frontier Size
(URIs)

wget 416.16 0.864 129,443
Heritrix 407.53 2.065 302,961
PhantomJS 8,684.38 0.170 531,484
Heritrix +
PhantomJS 9,100.54 0.152 537,609

Heritrix +
PhantomJS
with Classifier

6,495.23 0.196 458,815

TABLE 24: A summary of extrapolated performance (based on our calculations) of
single- and two-tiered crawling approaches.

of PhantomJS and the speed of Heritrix. Table 24 provides a summary of the ex-
trapolated crawl speed and discovered frontier size of each crawler. While the test
environment used a single system, a production environment should expect to see
performance improvements with additional resources. PhantomJS crawls are not
run in parallel, and additional nodes for PhantomJS threads will further improve
performance.

We have described the operation of crawls with wget, Heritrix, and PhantomJS
in Sections 7.3.1 and 7.3.4. To reiterate, Heritrix crawls much more quickly than
PhantomJS, whereas PhantomJS discovers many more embedded resources required
to properly construct a representation. Optimally during a crawl, Heritrix would
dereference a URI-R and run the resulting DOM through the classifier to determine
whether or not the representation will be deferred (with 79% accuracy, as discussed
in Section 7.4). If the representation is predicted to be deferred, PhantomJS should
also be used to crawl the URI-R and add the newly discovered URI-Rs to the Heritrix
fontier.

Heritrix should be used to crawl all URI-Rs in the frontier because the DOM is
required to classify a representation as deferred. Since Heritrix is the fastest crawler,
it should be used to dereference the URI-Rs in the frontier and retrieve the DOM of
the resource for classification. Subsequently, only if the representation is classified
as deferred will PhantomJS be used to crawl the resource to ensure the maximum
amount of embedded resources are retrieved.
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Crawler URI-R Set Seed
Size

Frontier
Size

Crawl
Time

PhantomJS Deferred 5,187 311,903 84.9 hrs
Heritrix Nondeferred 4,813 124,728 23.6 hrs
Heritrix Deferred 5,187 171,499 26.7 hrs
PhantomJS All URI-Rs 10,000 438,388 686 hrs
Heritrix All URI-Rs 10,000 275,234 48.3 hrs
Two-tier All URI-Rs 10,000 399,202 133 hrs

TABLE 25: A simulated two-tiered crawl showing that the frontier sizes can be
optimized while mitigating the performance impact of PhantomJS’s crawl speed vs
Heritrix’s.

For a näive two-tiered crawl strategy that will discover the most embedded URI-
Rs and create the largest frontier, Heritrix and PhantomJS should both crawl each
URI-R regardless of whether the representation can be classified as deferred or non-
deferred. This strategy creates a crawl that is expected to be 13.5 times slower than
simply using Heritrix, but is expected to discover 1.77 times more URI-Rs than using
only Heritrix. This would ensure that 100% of all resources with deferred represen-
tations would be crawled with both Heritrix and PhantomJS. However, our classifier
has an accuracy of 79%, and we want to limit the use of PhantomJS to minimize the
performance impacts it has on the crawl speed.

If we include the classifier to predict when PhantomJS should be used or when
Heritrix will be a suitable tool, the two-tiered crawling approach is expected to run
10.5 times slower than simply using Heritrix. However, this policy is expected to
discover 1.5 times more URI-Rs than Heritrix. This crawl policy balances the trade-
offs between speed and larger frontier size by using the classifier to indicate when to
use PhantomJS to crawl resources with deferred representations.

To validate this expected calculation, we classified our 10,000 URI-R dataset,
which produced 5,187 URI-Rs classified as having deferred representations, and 4,813
as having nondeferred representations. We used PhantomJS to crawl the URI-Rs
classified as deferred, and only Heritrix to crawl the URI-Rs classified as nondeferred.
The results of the crawls are detailed in Table 25.

In this table, we show that PhantomJS creates a frontier of 438,388, 1.6 times
larger than that of Heritrix. However, PhantomJS crawls 14 times slower than Her-
itrix. If we perform a tiered crawl in which PhantomJS is responsible for crawling



207

only deferred representations, we can crawl 5.2 times faster than using PhantomJS
for all URI-Rs (but 2.7 times slower than the Heritrix-only approach, or the old way)
while creating a frontier 1.8 times larger than using only Heritrix. As a result, we
can maximize the frontier size, mitigate the impacts of JavaScript on crawling, and
mitigate the impact of the reduced crawl speeds when using a two-tiered crawling
approach.

7.6 MAPPING AND IDENTIFYING DESCENDANTS

In the remainder of this chapter, we adapt the Dincturk et al. Hypercube model
[80] to construct a model for archiving descendants, and we measure the number
of descendants and requisite embedded resources discovered in a proof-of-concept
crawl. We define a representation constructed as a result of user interaction or other
client-side event without a subsequent request for the resource’s URI as a descendant
(i.e., a member of the client-side event tree below the root).

We explore the number and characteristics of descendants as they pertain to Web
archiving and explore the cost-benefit trade-off of actively crawling and archiving
descendants en route to a higher quality, more complete archive. Dincturk et al.
constructed a model for crawling RIAs by discovering all possible descendants and
identifying the simplest possible state machine to represent the states. We explore the
archival implementations of their Hypercube model by discovering client-side states
and their embedded resources to understand the impact that deferred representations
and descendants have on the archives.

We evaluate the performance impacts of exploring descendants (i.e., crawl time,
depth, and breadth) against the improved coverage of the crawler (i.e., frontier size)
along with the presence of embedded resources unique to descendants in the Internet
Archive, using Heritrix as our case study of a Web-scale crawling tool. We show
that the vast majority (92% in s1 and 96% in s2) of embedded resources loaded as a
result of user interactions are not archived, and that there are only two levels in the
interaction tree.

Dincturk et al. present a model for crawling RIAs by constructing a graph of
descendants7. Their work focuses on Ajax requests for additional resources initi-
ated by client-side events which leads to deferred representations with descendants.

7Dincturk et al. refer to these as “AJAX states” within the Hypercube model; we use a tree
structure and therefore refer to these as descendants.
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Their work, which serves as the mathematical foundation for our work, identifies the
challenges with crawling Ajax-based representations and uses a hypercube strategy
to efficiently identify and navigate all client-side states of a deferred representation.
The Hypercube model defines a client-side state as a state reachable from a URL
through client-side events and is uniquely identified by the state’s DOM. That is, two
states are identified as equivalent if their DOM (e.g., HTML) is directly equivalent.

The hypercube model is defined by the finite state machine (FSM)

M = (S, s0,Σ, δ)

and defined further in Equation 13, where

• S is the finite set of client states

• s0 ∈ S is the initial state reached by dereferencing the URI-R and executing
the initial on-load events

• e ∈ Σ defines the client-side event e as a member of the set of all events Σ

• δ : SxΣ→ S is the transition function in which a client-side event is executed
and leads to a new state

si, sj ∈ S

δ(si, e) = sj

e = client-side event

j = i+ 1

(13)

Dincturk et al. define a graph G = (V,E) in which V is the set of vertices vi ∈ V
where vi represents an “AJAX State” si. Edges represent the transitions, or events,
e such that (vi, vj; e) ∈ E IFF δ(si, e) = sj. A path P is a series of adjacent edges
that constitute a series of transitions from s0 to si via ei...j. In effect, P is a series of
descendants derived from s0 with one descendant at each level of the tree.

We adopt the FSM presented by Dincturk et al. nearly in its entirety. Because our
application of this FSM is web archiving, our goal is to identify all of the embedded
resources required by the representation to build any descendant as a result of user
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interactions or client-side events, archive them, and be able to replay them when a
user interacts with the memento.

The representation returned by simply dereferencing a URI-R is defined as URI-
Rs0 . Subsequent descendants URI-Rsi

and URI-Rsj
are derived from URI-Rs0

through a series of events ei...j ∈ Σ. We define a descendant URI-Rsi
as a client-side

state originating at URI-Rs0 as transitioning via events e such that δ(s0, e) = s1. Ad-
ditionally, we define our paths through G as the set of embedded resources required
to move from s0 to si.

We present a generic interaction tree of descendants in Figure 93. When we
dereference a URI-R, we get a representation from the server; this is s0. If there are
two interactions available from s0, we can execute the interactions to get to Va or
Vb from our root s0 (note that the onclick event required an external image to be
retrieved). In this example, Va and Vb are descendants of s0 and are both s1 in P

from s0. If new interactions are available from Va, we can reach Vc and Vd, which are
both s2 in P from s0 (similarly, we can reach Ve and Vf from Vb, peers of Vc and Vd).

FIG. 93: A generic, three-level client-side state tree with interactions as state tran-
sitions.

Because of the differences between our model and the hypercube model (Section
7.7), our focus on web archiving, and to ensure we have omniscient knowledge of all
interactions, state dependencies, equivalences, and available interactions, we orga-
nize the states as a tree rather than a hypercube. Because new interactions lead to
states sn deeper in the tree, we generalize the levels of the trees as sn and refer to
new states by their vertices Vn.
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7.7 DESCENDANT EQUIVALENCY

Due to the archival focus of this study, we have a different concept of state
equivalence than the Hypercube model. While Dincturk establishes state equivalence
based on the DOM (using strict equivalence based on string comparison), we consider
the embedded resources required to construct a descendant. We consider descendants
to be equivalent if they rely on the same embedded resources. As such, we define the
set of embedded resources for a descendant sn as Rn.

Any two descendants with identical unordered sets of embedded resources are
defined as equivalent, effectively a bijection between the two descendants. P between
s0 to si is isomorphic if over the course of P , the embedded resources required are
identical, and each descendant within P are bijections. Note that in Figure 93, Va,
Vc, and Vd are equivalent because they require the same set of embedded resources,
even if Vc and Vd are reached through an additional ei and ej from Va.

Two paths are identical if, over the course of each sn ∈ P , the cumulative set of
embedded resources required to render each descendant is identical. We define the
set of embedded resources over the entire path as RP in Equation 14.

RP =
n∈P∑
i=0

Ri (14)

We present our process for traversing paths in Algorithm 1. We traverse all states
within the interaction tree to understand what embedded resources are required by
each state. If a state s requires a new embedded resource that has not yet been
added to the crawl frontier, it is added as part of path P . From RP , we identify the
archival coverage (using Memento – line 10). We also identify the duplicate URI-Rs
by canonicalizing using the Base trim policy to determine equality.

As an example, we present the state tree of a Bloomberg.com page in Figure 94.
At s0, the page has a menu at the top of the page with a mouseover event listener.
Mousing over the labels initiates Ajax requests for JSON data, and the data is used to
populate a sub-menu (s1). The sub-menu has another mouse-over menu that requests
images and other JSON data to display new information, such as stock market data
and movie reviews (s2). Note that s1 and s2 are very broad given the number of
menu items. This is an example of P through two levels of mouseover interactions
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1 forall the URI-R do
2 find s0...sn;
3 construct tree G of all progressions;
4 traverse G; identify Rn of sn;
5 if sn has a new resource then
6 treat sn as part of P ;
7 end
8 end
9 identify RP ;

10 find URI-Ms of RP to determine coverage;
11 de-duplicate RP to determine overlap;

Algorithm 1: Algorithm for traversing P .

that leads to new JSON and image embedded resources (Figure 95).
The page also has click events such as the “x” mark on the top right corner of the

advertisements. If the user clicks these, a request is made to the ad server to issue
new ads (s1). However, the ads may be new but the call to the server is not, resulting
in duplicate descendants in s1. Similarly, the comments section at the bottom of the
page is loaded into s0 via Ajax, and has a “Sort” feature. Selecting a sort feature
issues an Ajax request for the data in the comments section; note that the same URI
is used regardless of the sort option selected (Figure 96). This results in duplicate
descendants in s1.

Finally, note that the comments section has a form that users can fill out to
enter a comment. This is beyond the scope of this work; this type of action changes
the representation itself and can lead to infinite states, changing the nature of our
investigation from identifying archival targets to altering the live Web record.

7.8 DESCENDANT CRAWLING APPROACH

To measure descendants, we needed to construct a tool that can crawl, uncover,
and understand descendants and deferred representations. We have previously shown
that PhantomJS is an effective utility for crawling deferred representations (Section
7.3.4). We constructed a PhantomJS-based utility that dereferences a URI-R, iden-
tifies the interactive portions of the DOM (i.e., the DOM elements with event lis-
teners), and constructs a tree of descendants, reached via initiating interactions and
client-side events (just as in the Hypercube model). PhantomJS records the set of
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FIG. 94: Example state tree of http://www.bloomberg.com/bw/articles/
2014-06-16/open -plan-offices-for-people-who-hate-open-plan-offices.
Mouseover events lead to multiple descendants at s1 and further mouseover events
lead to descendants at s2, each requiring Ajax requests for JSON and image
resources. Please refer to Figures 95 and 96 for larger representations of this Figure.
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FIG. 95: Mouseover events attached to the menu bar lead to Ajax requests for JSON
and images to build submenus. Note that this is an up-close view of the left side of
Figure 94.
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FIG. 96: Click events attached to embedded advertisements and the comment section
of the page lead to Ajax requests for JSON to serve new advertisements and to sort
the comments. Note that this is an up-close view of the right side of Figure 94.
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embedded resources requested by the client; in a production system, this would be
the set of resources added to the Heritrix crawl frontier.

Because PhantomJS is closely tied to the DOM and client’s JavaScript engine,
race conditions and other event listener assignments prevent PhantomJS from under-
standing the entirety of events available on a representation. As such, we leveraged
VisualEvent8, a bookmarklet that is designed to visually display the DOM elements
that have event listeners and JavaScript functions attached, to understand which
events and interactions can be executed on the client. Our PhantomJS tool uses the
list of events identified by VisualEvent to construct a set of interactions E that may
lead to descendants. PhantomJS performs an exhaustive depth-first traversal of all
possible combinations of interactions. Post-mortem, we perform state equivalence
and identify the number of unique paths P , states sn, and embedded resources RP
that a crawler would have to visit in order to comprehensively archive the resources
needed to provide full functionality in a memento.

Note that our use of PhantomJS and VisualEvent is an alternate approach from
that used by Browsertrix and WebRecorder.io (Section 3.1). We performed an eval-
uation of Selenium and PhantomJS for their suitability to simulated and initiate
client-side events (a form of simulated user interaction with a page) [48]. We con-
cluded that PhantomJS – with additional tools like VisualEvent – is better for auto-
matically detecting available user interactions and triggering them, but Selenium is
the superior tool for monitoring streaming content and playing back a canned script
of user interactions.

Note that a Vn is reached by a series of interactions ei...j. We consider a descendant
that is a candidate to add to the tree identical to another descendant within the tree
if the set of interactions to reach the descendant are identical. If we encounter a
potential descendant that is reachable by the same interactions as another descendant
within the tree, we do not add the descendant to the tree because the descendant
already exists within the tree9.

We present our algorithm for crawling the descendants in Algorithm 2; this de-
scribes Steps 3’ and 3”. in the two-tiered crawling approach (Section 7.2). We begin

8VisualEvent is an open source project (https://github.com/DataTables/VisualEvent) that
overlays a DIV on a page and visually highlights the interactive DOM elements along with their
event handlers.

9Note that this refers to equivalency of interaction scripts, meaning the crawler should not visit
this state, rather than two states that are reached with different interactions but have the same sets
of embedded resources (Section 7.7).
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by using PhantomJS to dereference a URI-R (line 4) at s0, and use VisualEvent to
extract the interactive elements (line 5). We identify all possible combinations of
interactions and use them as an interaction frontier (line 7), and iterate through the
interaction frontier to crawl s1. From s1, we extract all possible interactions avail-
able, and add them to the interaction frontier. We iterate through the interaction
frontier until we have exhausted all possible combinations of interactions at each sn.
At the end of each sn construction, we run state deduplication (line 14). We deem
two interaction scripts as equivalent if they perform identical actions in identical
order:

{ei, ei+1, ..., ei+ n} = {ej, ej+1, ..., ej + n}

1 forall the URI-R do
2 run state s0;
3 begin
4 run PhantomJS; monitor and log Rn;
5 call VisualEvent functions to retrieve interactive DOM elements and

ei...j;
6 end
7 construct interaction scripts from all possible combinations of available

interactions to read sn;
8 forall the interaction scripts do
9 run PhantomJS, executing interactions in script;

10 monitor and log Rn;
11 call VisualEvent for events to reach sn+1;
12 construct new sn+1;
13 push new interaction scripts to list of all interaction scripts;
14 run interaction script de-duplication begin
15 if sn+1 has identical set of interactions in G then
16 remove sn+1
17 end
18 end
19 end
20 end

Algorithm 2: Algorithm for constructing G.

7.9 EDGE CASES

The approach that we identify in Section 7.8 is suitable for most of the deferred
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Event Type Deferred Nondeferred
Average s Average s

Depth 0.47 0.5 0 0
Breadth 36.16 97.15 0.53 2.62
Descendants 38.5 780.72 0.62 2.81

TABLE 26: The average distribution of descendants within the deferred representa-
tion URI-R set.

representations that a Web user may encounter while browsing. However, deferred
representations with certain conditions are not handled by our approach. Some rep-
resentations use a DIV overlayed on the entire window area and identify interactions
and events according to the pixel the user clicks. This creates an interaction frontier
of (Width × Height)! or 2,073,600! for a screen size of 1920 × 1080 pixels. Due to
this massive frontier size, we omit such interactions. Mapping (e.g., Google Maps)
and similar applications that might have a near-infinite descendants are outside the
scope of this work.

For these style of deferred representations, a canned set of interactions (e.g., pan
once, zoom twice, right click, pan again) would be more useful [48]. With enough of
these canned interactions, a sizable portion of the descendants can be identified by
a crawler over time, with coverage scaling with the number of executions performed.
This is the archival equivalent of the Halting Problem – it is difficult to recognize
when the crawler has captured enough of the embedded resources, when it should
stop, or when it has captured everything.

7.10 DESCENDANT STATES

During our crawl of the 440 URI-Rs, we re-classify each as having a deferred or
nondeferred representation. Our initial classification only considered whether Ajax
was used at s0 since s0 was the only level being crawled. We dereferenced each of
our 440 URI-Rs and identified 137 URI-Rs with nondeferred representations and 303
URI-Rs with deferred representations.

7.10.1 DATASET DIFFERENCES

The nondeferred URI-Rs have a much smaller graph of descendants, and therefore
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# States Deferred Nondeferred
Min 0 0
Max 7,308 13
Median 1 (occurrences 17) 0 (occurrences 119)

TABLE 27: The range of descendants varies greatly among the deferred representa-
tions.

we expect them to be easier to crawl. The nondeferred representation set of URI-Rs
had |Sdescendants| = 0.62 per URI-R (s = 2.81, M = 101) as shown in Table 26.
Nondeferred representations have a depth (i.e., max length of the P ) of 0 (after state
deduplication) because there are no new states reached as a result of the first round
of interactions (that is, the set of interactions available in the initial representation
does not grow as a result of subsequent interactions). Nondeferred representations
have descendants at s1 but the descendants do not result in additional embedded
resources. However, there are 0.53 interactions or events in s0 that, without our a
priori knowledge of the dataset, may lead to new states or event triggered requests
for new embedded resources.

Deferred representations are much more complex, with |Sdescendants| = 38.5 per
URI-R (s = 780.72). The standard deviation of the sample is quite large, with the
number of states varying greatly from resource to resource. For example, the max-
imum number of descendants for a URI-R is 7,308 (Table 27). Further, there are
many interactions available in deferred representations (36.16 per URI-R). Surpris-
ingly, deferred representations are relatively shallow, with an average depth of 0.47
levels beyond the first set of interactions per URI-R (s = 0.5) and a maximum path
depth of 2. This is counter to our intuition that deferred representations would have
large, deep trees of interactions to traverse to retrieve all of the possible embedded
resources for all descendants10.

The types of events on the client also vary depending on the event that is ex-
ecuted to create the new sn. For example, onclick events are prevalent in URI-Rs
with deferred representations, with 62.11% of all URI-Rs containing an onclick event
(Table 28). Even in the nondeferred set of URI-Rs, 4.29% of the URI-Rs have an
onclick event attached to their DOM. While other events occur with relative fre-
quency, clicks dominate the initiated requests for additional embedded resources in

10Our dataset and toolset omits edge cases as described in Section 7.9.
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Event Type Percent of URI-Rs Contribution
Deferred Nondeferred to RPnew

click 62.11% 4.29% 63.2%
mouseover 25.26% 3.00% 4.7%
mousedown 16.84% 1.72% 2.8%
blur 14.74% 0.86% 9.8%
change 11.58% 2.14% 0.0%
mouseout 8.42% 0.00% 0.8%
submit 6.32% 0.00% 0.0%
unload 5.26% 0.00% 1.2%
keydown 4.21% 0.00% 0.2%
focus 4.21% 0.00% 0.0%
keypress 2.11% 0.00% 5.5%
focusout 1.05% 0.00% 0.0%
dblclick 1.053% 0.00% 0.0%
submit 0.10% 0.43% 0.9%
mouseup 0.00% 0.86% 0.0%
focus 0.00% 0.43% 0.0%
other 29.47% 0.86% 11.0%

TABLE 28: Breakdown of the URI-Rs with various events attached to their DOMs
and the percent of all new embedded resources contributed by the events.
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FIG. 97: Crawling s1 provides the greatest contribution to RP ; the additions to the
crawl frontier by s0 (10,623) and s2 (10,208) only differ by 415 URIs.

deferred representations (Table 28), with onclick events being responsible for initi-
ating the requests for 70.9% of new embedded resources (and, by definition, 0% in
the nondeferred representation set). Recall that Rosenthal et al. are using only click
interactions to interact with pages in their LOCKSS Extension project [248]. Table
28 suggests that their approach is effective considering most events are onclick events
and the highest value target event (i.e., the most embedded resources are discovered
through click events).

7.10.2 TRAVERSING PATHS

As we discussed in Section 7.7, P identifies a unique navigation through de-
scendants to uncover the URI-Rs of new embedded resources. In our dataset, we
uncovered 8,691 descendants (8,519 for the deferred set, 172 for the nondeferred set)
as a result of client-side events, that is 19.7 descendants per URI-R. However, we only
identified 2,080 paths through these descendants to uncover all of the new embedded
resources, which is 4.7 paths per URI-R.

Nondeferred representations have more embedded resources (R0= 31.02 per URI-
R) than their deferred counterparts (R0= 25.39 per URI-R) at their initial s0 (Table
29). The paths P through the descendants are responsible for uncovering 54,378
new embedded resources (out of 66,320 total). That is, |R0|=11,942 (7,692 from
the deferred representations and 4,350 from the nondeferred representations), |R0 +
R1|=56,957, and |R0 + R1 + R2|=|RP |=66,320. This shows that traversing Pn to
reach s1 and s2 will significantly increase the crawl frontier beyond the base case of
s0, but crawling s1 provides larger contributions to the frontier than both s0 and
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s2. As we mentioned in Section 7.10.1, the depth of the deferred representations
was surprisingly shallow (max(|P |)=2). However, the overwhelming majority of the
URI-Rs added to the crawl frontier were identified by exploring the paths P of the
descendants (Figure 97).

Note that, out of the total 8,691 total descendants, the nondeferred represen-
tations have only 138 occurrences of s0 and 34 occurrences of s1. The deferred
representations have 6,051 occurrences of s1 and 2,468 occurrences of s2. Following
P through each s1 adds R1=53,706 URI-Rs to the crawl frontier, or 8.88 URI-Rs per
descendant. This shows that deferred representations have many more descendants
than nondeferred representations. Since R2=10,208, we add, on average, 4.14 new
URI-Rs to the frontier per s2 followed in P . According to these averages, crawling
s1 provides the largest benefit to the crawl frontier. If we consider only the 2,080
paths that lead to new embedded resources, we would add 30.73 URI-Rs to the crawl
frontier per P .

7.10.3 IMPACT ON CRAWL TIME

Using our measured crawl times and the set of states S that PhantomJS can
uncover and visit, we calculate the expected frontier size and crawl time that we
can expect during a crawl of our 440 URI-Rs. We calculated the s0 crawl time for
Heritrix-only crawls using the Max Coverage policy, PhantomJS crawls of only the
URI-Rs with deferred representations, and s1 and s2 uncovered by our PhantomJS
utility.

As we note in Table 29, s1 has the greatest addition to the crawl frontier. If we
omit s2 from our crawl, we still discover 82% of the embedded resources RP required
by our deferred representations and reduce crawl time by 30%. Depending on the
goal of the crawl, different crawl policies would be optimal when crawling deferred
representations. A policy to optimize archival coverage and memento quality should
traverse each s ∈ S and maximize RP ; we will refer to this policy as the Max
Coverage crawl policy. Alternatively, a crawl policy with the goal of optimizing
return-on-investment (ROI) should optimize the crawl time versus frontier size; we
refer to this policy as theMax ROI crawl policy. For maximizing ROI, we recommend
a crawl policy that omits s2 and instead uses Heritrix and PhantomJS to crawl s0

and s1 since s1 provides the greatest contribution to RP per crawl time (Table 29).
As shown in Table 29, using the Max Coverage policy will lead to a crawl time
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Heritrix only s0 s1 s2

Time (s) 1,035 8,452 27,990 40,258
Size (URI-Rs) 4,250 11,942 56,957 66,320
Time Increase - 8.12x 27.04x 38.90x
Size Increase - 2.81x 13.40x 15.60x
New URIs per
added second of
crawl time

- 1.04 2.30 0.76

TABLE 29: The increases in run time and frontier size relative to the Heritrix only
run.

38.9 times longer than using only Heritrix to perform the crawl, but will also discover
and add to the crawl frontier 15.60 times more URI-Rs. Alternatively, the Max ROI
policy will have a crawl time 27.04 times longer than Heritrix-only crawls, but will
add 13.40 times more URI-Rs to the frontier.

7.11 ARCHIVAL COVERAGE

While the increases in frontier size as presented in Section 7.10 appear impressive,
we can only identify the impact on the archives’ holdings by identifying which em-
bedded resources have mementos in today’s archives. We used Memento to retrieve
the TimeMap of each embedded resource’s URI-R to determine whether the embed-
ded resource had any mementos (i.e., has been archived before) or if the resource
identified by the URI-R has not been previously archived.

The embedded resources from our entire set of 440 URI-Rs are very well archived
– only 12% of the set of embedded resources in s0 do not have a memento. This is
consistent with the archival rates of resources from our prior studies [5, 52]. We only
consider the new embedded resources in the descendants in s1 and s2. That is, we
only consider the embedded resources added to the descendant that were not present
in the previous state, or the set of resources Rn+1 not a subset of the previous state’s
Rn. More formally, we define new embedded resources Rnew in Equation 15.

Rnew = ∀r ∈ (Rn+1 −Rn), n ≥ 0 (15)

We provide the percent of new embedded resources that are unarchived in each
state in Figure 98. The unarchived embedded resources are most frequently images
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FIG. 98: Embedded resources discovered in s1 and s2 are much more frequently
unarchived (92% and 96%, respectively) than s0 (12% unarchived).

(Figure 99(a)), with additional JavaScript files edging out HTML as the second
most frequently unarchived MIME-type. The unarchived images specific to deferred
representations (shown in the CDF in Figure 99(b)) vary in size between near 0B
to 4.6MB, and average 3.5KB. The median image size is 43B, indicating that the
majority of images are small in size but several are quite large and presumably
important (according to Dm).

However, the archival coverage of s1 and s2 is much lower, with 92% of Rnew in s1

missing from the archives (i.e., the URI-R of the embedded resource does not have a
memento), and 96% of Rnew in s2 missing from the archives. This demonstrates that
the embedded resources required to construct descendants are not well archived.
Because s0 is highly visible to crawlers such as Heritrix and archival services like
Archive.is, it is archived at a much higher rate than the descendants (Figure 98).

We also observe a large amount of overlap between the embedded resources among
descendants. For example, the top 10 embedded resources and their occurrence
counts are provided in Table 30 (we trim the session-specific portions of the URI-
Rs for comparison purposes). In all, just the top 10 occurring embedded resources
account for 22.4% of Rnew discovered by traversing through the paths. In theory,
if we can archive these embedded resources once, they should be available for their
peer mementos while in the archives.

The resources in Table 30 are mostly ad servers and data services such as Google
Analytics. The top 300 occurring embedded resources in our entire crawl frontier are
graphed – in order of most frequent to least frequently occurring – in Figure 100.
Figure 101 is a CDF of Rnew by URI-Rs with deferred representations and measures
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(a) Images are most frequently unarchived in deferred representa-
tions.

(b) Unarchived image vary in size, with most being small and few
being very large.

FIG. 99: Various mime-types of embedded resources are specific to deferred repre-
sentations. Data, text, and new JavaScript is loaded by JavaScript into the deferred
representations.
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URI-R Occurrences
ads.pubmatic.com/AdServer/js/showad.js#PIX&
kdntuid=1&p=52041&s=undefined&a=undefined&it=0

1782

edge.quantserve.com/quant.js 1656
www.benzinga.com/ajax-cache/market-overview/
index-update

1629

ads.pubmatic.com/AdServer/js/showad.js 1503
www.google-analytics.com/analytics.js 1330
b.scorecardresearch.com/beacon.js 1291
www.google-analytics.com/ga.js 1208
www.google.com/pagead/drt/ui 1151
js.moatads.com/advancedigital402839074273/
moatad.js

1112

a.postrelease.com/serve/load.js?async=true 907
Total 12,239

TABLE 30: The top 10 URI-Rs that appear as embedded resources in descendants
make up 22.4% of all resources added to the crawl frontier.

FIG. 100: The occurrence of embedded resources loaded into deferred representation
descendants.
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FIG. 101: Contributions of each URI-R and its descendants to RP .

the deduplicated crawl frontier if we crawl all descendants for a URI-R. This shows
that the largest 10% of our frontier contributes 91% of RP ; that is, a large portion
of the discovered crawl frontier is shared by our seed list.

7.12 STORING DESCENDANTS

Our prior research has shown that representing descendants in the archives is
difficult and could even lead to URI-M collisions between mementos (Section 4.4)
[145]. Jackson has discussed [134] the challenges with identifying descendants in
the archives – particularly those descendants that heavily leverage JavaScript to
change the representation without changing the URI-R – may lead to indexing and
referencing challenges.

The IIPC proposed an additional set of JSON metadata to better represent rep-
resentation context and environment variables (e.g., deferred representations and
descendants) in WARCs [131, 132]. We adapt the metadata to describe descendants
and include the interactions, state transitions, rendered content, and interactive ele-
ments (Table 31) and mock-up an example in Figure 102.

Conceptually, the WARC metadata would appear in the metadata section of the
WARC. While this specification may be used to represent deferred representations
and their descendants, at the authoring of this dissertation, the specification is only
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Field Name Data within field
startedDateTime Timestamp of interactions (no change from WARC

Spec)
id ID of sn represented by these interactions and resulting

Rn.
title URI-R of the descendant
pageTimings Script of interactions (as CSV) to reach sn from s0. E.g.,

click button A, click button B, then double click image
C.

comment Additional information
renderedContent The resulting DOM of sn.
renderedElements RP from s0 to sn.
map The set of interactions available from sn that will tran-

sition to a new sn+1.

TABLE 31: JSON object representing sn stored as the metadata of a WARC.

proposed rather than adopted, and may therefore evolve and change. As presented
[132], this metadata includes the DOM and descriptions of changes to the DOM as
a result of JavaScript and lists of embedded resources.

We present a summary of the storage requirements for descendants (using Max
Coverage) in Table 32. If we write out the JSON describing the states, transitions,
rendered content, and other information, it would add, on average, 16.45 KB per
descendant or memento. With 8,691 descendants, a total of 143 MB of storage space
for the WARCs will be required just for the metadata, along with the storage space
for the representations of the 54,378 new embedded resources.

The embedded resources discovered in our crawl average 2.5 KB in size. The em-
bedded resources at s0 were 2.6 KB on average, and the newly discovered embedded
resources, as a result of deferred representations, were 2.4 KB in size on average. We
estimate that nondeferred representations, which have 31.02 embedded resources on
average, would require 80.7 KB per URI-R, or 11.1 MB of storage for the 137 URI-Rs
in the collection. The storage requirement increases to 13.4 MB with the additional
metadata.

Deferred representations have 25.4 embedded resources at s0, or 70.0 KB per
URI-R. For the 303 URI-Rs in the collection, s0 would require 21.2 MB of storage.
In s1, the crawl discovered 45,015 embedded resources which requires 108.0 MB of
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1 "pages": [
2 {
3 "startedDateTime": "2015-04-20T01:00:00.000",
4 "id": "s_1_testPage.html",
5 "title": "Test Page",
6 "pageTimings": {null},
7 "comment": "state 1 of the test page",
8 "renderedContent": {<html>... <\html>},
9 "renderedElements": ["./20140907_090111.jpg",

10 "./20140903_200818.jpg"],
11 "map": [
12 {
13 "href": "img1",
14 "location": {...}
15 },
16 {
17 "href": "img2",
18 "location": {...}
19 },
20 ]
21 }
22 ]

FIG. 102: JSON metadata to be added to WARCS.
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Storage Target Size
JSON Metadata per descendant/memento 16.5 KB
JSON Metadata of all descendants 143 MB

Nondeferred (137 URIs)
Average Embedded Resource 2.5 KB
Embedded Resources per URI 80.7
Total embedded resource storage 11.1 MB
Total JSON MetaData storage 2.3 MB
Total with JSON Metadata 13.4 MB

Deferred (303 URIs)
Average Embedded Resource 2.6 KB
Embedded Resources per URI 70.0
Embedded resource storage s0 21.2 MB
Embedded resource storage s1 108.0 MB
Embedded resource storage s2 22.5 MB
Total JSON Metadata Storage 5.0 MB
Total with JSON Metadata 156.7 MB

TABLE 32: The storage impact of deferred representations and their descendants is
5.12 times higher per URI-R than archiving nondeferred representations.

additional storage, and 9,363 embedded resources at s2, or an additional 22.5 MB
of storage. In all, the 303 deferred representations require 156.7 MB of storage for
the entire collection and all crawl levels (8,691 descendants). This is 11.3 times
more storage than is required for the nondeferred representations, or 5.12 times more
storage per URI-R crawled.

If we consider the July 2015 Common Crawl [189] as representative of what
an archive might be able to crawl in one month (145 TB of data for 1.81 billion
URIs), an archive would require 597.4 TB of additional storage for descendants (29.9
TB of which is additional storage for metadata) for a total of 742.4 TB to store
descendants and metadata for a one-month crawl. If we assume that the July crawl
is a representative monthly sample, an archive would need 8.9 PB of storage for a
year-long crawl. This is an increase of 7.17 PB per year (including 358.8 TB of storage
for metadata) to store the resources from deferred representations. Alternatively, can
also say that an archive will miss 6.81 PB of embedded resources per year because
of deferred representations.
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7.13 CONTRIBUTION TO RESEARCH QUESTION 3

Our investigation of Research Question 3 led us to develop a two-tiered crawling
approach with a classifier for mitigating the impact of headless browsing solutions.
This recommendation serves as the first part of our answer to Research Question 3.

We measured the differences in crawl speed and frontier size of wget, PhantomJS,
and Heritrix. While PhantomJS was the slowest crawler, it provided the largest crawl
frontier due to its ability to execute client-side Javascript to discover URIs missed by
Heritrix and wget. Heritrix was the fastest crawler we observed, but is not capable of
archiving deferred representations. Our two-tiered crawling approach uses a classifier
to determine whether to crawl a resource with PhantomJS to reap the URI discovery
benefits of the specialized crawler where appropriate.

From the conclusions in Section 7.3, we know that PhantomJS finds 19.70 more
embedded resources per URI. Heritrix runs 12.13 times faster than PhantomJS,
meaning the crawler should avoid crawling URI-Rs with nondeferred representations
to maintain an optimal performance trade-off. We understand that PhantomJS is
required to discover the embedded resources needed to complete a deferred represen-
tation that Heritrix cannot discover. This increases crawler run time, but offers a
benefit of more complete mementos (and likely higher quality mementos) and a larger
frontier for crawling. We also found that 53% of the URIs discovered by PhantomJS
are duplicates of one another if we remove session-specific URI parameters.

Using DOM features we can accurately predict deferred and nondeferred repre-
sentations 79% of the time. Using this classification, deferred representations can
be crawled by PhantomJS to ensure all embedded resources are added to the crawl
frontier.

If using a two-tiered crawling approach, archives can leverage the benefits of
PhantomJS and Heritrix simultaneously. That is, using a deferred representation
classifier, archives can use PhantomJS for deferred representations and Heritrix for
nondeferred representations. Using a two-tiered crawling approach, we showed that
crawls will run 5.2 times faster than using only PhantomJS, and create a frontier 1.8
times larger than using only Heritrix. This crawl strategy mitigates the impact of
JavaScript on archiving while also mitigating the reduced crawl speed of PhantomJS.

We leverage PhantomJS and adapt the Hypercube model by Dincturk et al. and
present a FSM to describe descendants and propose a WARC storage model for
describing mementos of descendants.
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We show that, despite high standard deviations in our sample, deferred repre-
sentations have 38.5 descendants per URI-R and that deferred representations are
surprisingly shallow, only reaching a depth of 2 levels. This means that deferred
representations are shallower than originally anticipated (but also very broad). The
URI-Rs we sampled have 8,691 descendants (19.7 per URI-R) that add 54,378 new
embedded resources to the crawl frontier.

Crawling all descendants (which we defined as the Max Coverage policy) is 38.9
times slower than crawling with only Heritrix, but adds 15.60 times more URI-Rs
to the crawl frontier than Heritrix alone. Using the Max ROI policy is 27.04 times
slower than Heritrix, but adds 13.40 times more URI-Rs to the crawl frontier than
Heritrix alone. We do not recommend one policy over the other since the policy
selection depends on the archival goals of coverage or speed. However, both will help
increase the ability of the crawlers to archive deferred representations.

Most of Rnew (newly discovered embedded resources by traversing the paths) are
unarchived (92% unarchived at s1 and 96% at s2). However, after trimming, 22.4% of
the newly discovered URI-Rs match one of the top 10 occurring URI-Rs, indicating a
high amount of duplication within RP ; mostly, these are ad servers and data-services
like Google Analytics.

Our work establishes an understanding of how much Web archives are missing by
not accurately crawling deferred representations and presents a process for archiv-
ing descendants. We demonstrate that archiving deferred representations is a less
daunting task with regards to graph depth than previously thought, with fewer levels
of interactions required to discover all descendants. The increased frontier size and
associated metadata will introduce storage challenges with deferred representations
requiring 5.12 times more storage than crawling nondeferred representations.
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CHAPTER 8

FUTURE WORK, CONTRIBUTIONS, AND

CONCLUSIONS

When we began our research, the Web archiving community understood that
JavaScript makes Web archiving more difficult. However, the impact of, extent of,
and potential mitigations to the challenges JavaScript causes were neither measured
nor understood by the Web archiving community.

The foundations and motivations of our research began with examples of the
challenges JavaScript introduces to the Web archiving community (Chapter 4). We
demonstrated that historical events, such as the SOPA protest, were not archivable
with today’s technologies (Sections 1.2 and 4.1), and that advertisements – along
with other embedded resources loaded via JavaScript – can cause temporal violations
in mementos as demonstrated in our presidential campaign example on CNN.com
(Section 4.3). We defined mementos that load live Web content and present it as
if archived as zombie resources, characterizing zombie resource behavior as the live
Web leaking into the archives. We also defined deferred representations to refer to
representations that require post-load events (e.g., user interactions, onload events)
to fully load all embedded resources and complete a representation (Chapter 2).
Finally, we demonstrated that even if we can archive deferred representations, there
is no guarantee that we can reliably identify mementos of deferred representations in
the archives (Section 4.4).

With this foundational understanding of how JavaScript impacts the archives, we
measured the pervasiveness of deferred representations and zombie resources in the
archives and showed a trend of increased adoption of JavaScript by content authors
which leads to more zombie resources over time (Chapter 5). We show that leakage
in the archives is increasing over time, as well (Section 5.9).

We wanted to measure how increasing leakage impacted the quality of mementos
over time. We developed a metric that more closely matches Web users’ understand-
ing of memento quality than the traditional metric of percent of embedded resources
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missing (Chapter 6). We showed that mementos of deferred representations have
more damage than nondeferred representations (Section 6.6).

With the impact of JavaScript measured (Chapter 5) and a metric of quality
established (Chapter 6), we proposed a two-tiered crawling approach that proposes a
change to the way archival crawlers interact with and archive deferred representations
(Chapter 7). This area of research has three areas of investigation, the first being
an explanation of the differences between legacy crawling approaches and our two-
tiered crawling approach (Section 7.2). The second area of investigation compared
the performance differences, in terms of wall-clock time to perform a crawl and the
size of the crawl frontier, between the legacy crawling approach and the two-tiered
crawling approach (Section 7.3). We found that the two-tiered crawling approach is
much slower than the legacy approach but discovers a much larger crawl frontier. The
third and final area of investigation defines descendants and measures the number of
descendants of deferred representations that the two-tiered crawling approach may
discover (Section 7.6). We also propose using the IIPC WARC metadata to describe
and store descendants, and we estimated the additional storage requirements for
archiving descendants using the WARC metadata (Section 7.12).

We have presented a body of work in this dissertation that measures the preva-
lence and impact of deferred representations on the archives and proposes and mea-
sures the performance impact of a two-tiered archiving framework that will allow
archives to automatically crawl and archive deferred representations at Web scale.
We review the future work, contributions, and conclusions of our work in this chapter.

8.1 RESEARCH QUESTIONS REVISITED

In this section, we revisit our research questions posed at the beginning of our
research (Section 1.4) and answered in this dissertation.

RQ1. To what extent does JavaScript impact archival tools? Our initial
work recognized the phenomenon of zombie resources [54, 47] that reach into the
live Web and load live Web resources as if they were archived (Section 4.3). We
measured the prevalence of deferred representations in the archives (that potentially
lead to zombie resources) and show that the adoption of JavaScript over time has
led to an increasing number of zombie resources, increasing proportions of missing
embedded resources, and increasing archival challenges for the current archival tools



234

[146] (Section 5).
We performed an experiment establishing that while wget, WebCite, and Her-

itrix – the current state-of-the-art archival tools at the time – handled JavaScript
and deferred representations with varying levels of success, no Web-scale archival
tool could perfectly archive a deferred representation [52]. This is due to the differ-
ence between a browser’s capability to execute JavaScript and a crawler’s inability
to execute JavaScript and discover the embedded resources required to build de-
ferred representations. Further, even if archives could create mementos of deferred
representations, they may not be identifiable in the archives [145].

During this investigation, we defined the term deferred representations to refer to
client-side representations that make use of JavaScript and Ajax to load embedded
resources after an initial page load, leading to reduced archivability.

RQ2. How do we measure memento quality? Before discussing how archives
can produce better quality mementos of deferred representations, we constructed a
metric to quantitatively measure a previously qualitative human assessment (or a
misleading calculated metric Mm) of memento quality [51, 50] (Chapter 6). We con-
structed a metric (Dm) that more closely assesses the quality of a memento according
to human perception than current automated metric (Mm). We use this metric to
understand how archival quality has changed over time, how different archival ser-
vices perform relative to one another, and how deferred representations impact the
quality of an archive. Using Dm, we demonstrate that deferred representations lead
to reduced quality mementos.

RQ3. How can we crawl, archive, and play back deferred representa-
tions? The culmination of this body of work is a framework for archiving deferred
representations (Chapter 7.2). An intuitive solution that closes the gap between
the browser’s and crawler’s capability to handle JavaScript is to use a technology
that offers JavaScript support during the crawl [48]. However, we measured the
performance trade-offs between a headless browsing client (PhantomJS) and current
archival tools (wget and Heritrix) to demonstrate that PhantomJS runs much more
slowly than Heritrix and wget but uncovers more embedded resources [57] (Chapter
7).

To limit the runtime penalty, we defined a classifier to only use PhantomJS to
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load deferred representations – essentially using PhantomJS for those resources that
require a headless browsing client and allowing Heritrix to more quickly crawl those
that do not need a headless browsing client. This increases the frontier size but also
the overall crawl time.

As part of this work, we define descendants as client-side states in the FSM of
deferred representations reached by client-side interactions or events that have unique
sets of embedded resources. We measured the number of descendants and paths on
a client showed that they are only two levels deep and that can be discovered by a
crawler equipped with a headless browsing client [58]. From our experimentation,
we show that descendants are largely unarchived, significantly increase the crawl
time and crawl frontier of a crawler, and crawlers can use JSON metadata to store
information about the descendants in WARC files.

This body of work provides a two-tiered crawling approach to archive deferred
representations, increase the quality of the archives, and mitigate the impact of
JavaScript on mementos.

8.2 FUTURE WORK

Web users will continue to expect the Web and its technologies to advance, become
more interactive, and better service their needs. As such, we expect the adoption
of JavaScript to continue to increase in the near future. Without adopting a frame-
work for archiving second-order expressions (i.e., representations and their context,
including deferred representations and their descendants) and a method for replaying
deferred representations, second-order expression will continue to be absent in the
archives. Examples of content that will be missing without a mechanism to archive
second-order expression include comments on YouTube videos or news articles. Our
future work focuses on helping archivists implement our two-tiered crawling approach
and understand how the archives can use it to archive deferred representations.

Our future work will incorporate PhantomJS or another headless browsing client
into a Web-scale crawler to measure the actual benefits and increased archival cov-
erage realized when crawling deferred representations with a two-tiered crawling ap-
proach. We will also work to develop an approach to solve our current edge cases
(Chapter 7), including a way to handle applications like mapping applications using
our automated approach along with an approach using “canned interactions.” Our
goal is to understand how many executions of canned interactions are necessary to
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uncover an acceptable threshold of embedded resources (e.g., how many scrolls, pans,
and zooms to get the Google Maps tiles for all of Norfolk, VA, USA?). As part of this
research, we will study the overlap between the embedded resources in descendants;
for example, how many interactions or URI-Rs should we crawl to get all ads served
by an ad server? This is effectively the Halting problem for Web archiving.

Similar to our effort of using canned interaction, it would be useful to model user
behavior to understand the most likely interactions a user is likely to perform. This
will help identify the most likely embedded resources required from a user interaction,
as well as the highest value targets for a crawler. Similarly, using a user interaction
model, we can perform navigation paths through descendants in the archives using
existing mementos (similar to how one might use existing videos to perform video
game walk-throughs). We will also investigate using personalized representations
from user-archived mementos (e.g., via WARCreate) to improve coverage of deferred
representations [144].

8.3 CONTRIBUTIONS

In the below enumerated list, we present the contributions of this dissertation.

1. To better discuss the archival challenges with resources that leverage JavaScript
to load embedded resources, we coined the terms zombie resources, deferred
representations, and descendants.

2. We identified examples of zombie resources in the archives and demonstrated
the social importance of properly archiving deferred representations.

3. Our work measured the missing embedded resources in the archives over time
and measured the correlation between the increased missing embedded re-
sources and JavaScript adoption.

4. During our work to archived deferred representations, we constructed a metric
(Dm) that uses relative importance of resources to automatically measure the
quality of embedded mementos more closely to user perception than the simple
measure of completeness (Mm).

5. We used Mechanical Turkers to prove that Dm is an improvement upon Mm.
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6. In this dissertation, we showed that resources that do not use JavaScript to
load embedded resources have more complete and higher quality mementos.

7. We showed that Heritrix does not archive JavaScript-dependent resources, and
that PhantomJS – while it crawls much more slowly – creates a much larger
crawl frontier, leading to more complete mementos.

8. Our work demonstrated that descendants are not well archived, but are shallow
with only two levels of descendants. From this finding, we propose two crawl
policies for archiving descendants.

9. This dissertation culminates in a two-tiered crawling approach for archiving de-
ferred representations and proposed metadata to include in WARCs to identify
the descendants.

8.4 CONCLUSIONS

Any discussion of the 21st century will have to include the Web because of its
importance, prevelance, and ubiquity in today’s society and culture. As such, Web
archiving will continue to grow in importance as events such as the SOPA protest
manifest themselves solely on the Web. The goal of our research presented in this
dissertation is to ensure that historical events manifesting themselves on the Web,
when recalled as we do the September 11th terrorist attack through newspaper ar-
ticles and mementos of CNN.com, create an emotive response rather than a merely
factual recount. Our two-tiered crawling approach can help ensure these important
events are preserved – as they appear at time of viewing – for future generations,
rather than lost due to a technological mismatch between Web browsers and Web
crawlers.

The context in which today’s users view Web resources is also important to a
resource’s understanding, and therefore to its replay as a memento. Second-order
expressions are increasingly unarchivable, but our two-tiered crawling approach can
help reverse this trend. As descendants of deferred representations become increas-
ingly prevalent, their archiving to preserve second-order expression becomes equally
important. Archiving descendants will improve the archives’ ability to replay deferred
representations and allow users to interact with mementos in the archives without
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losing functionality. In aggregate, descendants create the equivalent of a joiner mem-
ento with multiple perspectives and smaller snapshots creating a complete picture of
a deferred representation.

In this dissertation, we have measured the current impact JavaScript has on the
archives due to the archival tools’ inability to automatically crawl deferred represen-
tations. As such, there is currently an inability to archive deferred representations
using the current Web-scale archival toolsets. We define the term deferred represen-
tation to describe the representations that are not fully built until after JavaScript
executes and loads additional embedded resources. We demonstrate that the in-
creased adoption of JavaScript leads to more missing embedded resources in the
archives.

To better measure the impact – as perceived by humans – of JavaScript on the
archives, we constructed an metric to more closely assess the quality of the archives
than the traditional metrics associated with completeness. We measure the correla-
tion between human perception and our metric, measuring the improved correlation
between human perception and our metric over the traditional metric of complete-
ness. Using our metric, we demonstrate that resources that rely on JavaScript to
load embedded resources have lower quality mementos than do resources that do
not use JavaScript to load embedded resources. That is, when archived, deferred
representations are of lower quality than nondeferred representations.

We propose a two-tiered crawling approach that leverages PhantomJS (or other
headless browsing utility) to crawl deferred representations, and present a classifier
that can limit the negative performance impacts of PhantomJS on the automatic
archival tools (e.g., Heritrix). We show that this will add many more URI-Rs to
the crawl frontier, but will also crawl much more slowly. We also define a FSM for
describing descendants, define a model for crawling descendants, and show that new
embedded resources needed to build descendants are nearly entirely unarchived.

Using the two-tiered crawling framework that we proposed, the archives will in-
crease their coverage of deferred representations and their embedded resources, par-
ticularly the resources required for descendants. This will provide higher quality
mementos and help preserve the Web as experienced by Web users (rather than by
Web crawlers) for future generations.
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