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ABSTRACT

USING THE WEB INFRASTRUCTURE FOR REAL TIME

RECOVERY OF MISSING WEB PAGES

Martin Klein

Old Dominion University, 2011

Director: Dr. Michael L. Nelson

Given the dynamic nature of the World Wide Web, missing web pages, or “404 Page not Found”

responses, are part of our web browsing experience. It is our intuition that information on the web

is rarely completely lost, it is just missing. In whole or in part, content often moves from one URI

to another and hence it just needs to be (re-)discovered. We evaluate several methods for a “just-

in-time” approach to web page preservation. We investigate the suitability of lexical signatures and

web page titles to rediscover missing content. It is understood that web pages change over time

which implies that the performance of these two methods depends on the age of the content. We

therefore conduct a temporal study of the decay of lexical signatures and titles and estimate their

half-life. We further propose the use of tags that users have created to annotate pages as well as the

most salient terms derived from a page’s link neighborhood. We utilize the Memento framework to

discover previous versions of web pages and to execute the above methods. We provide a workflow

including a set of parameters that is most promising for the (re-)discovery of missing web pages.

We introduce Synchronicity, a web browser add-on that implements this workflow. It works while

the user is browsing and detects the occurrence of 404 errors automatically. When activated by the

user Synchronicity offers a total of six methods to either rediscover the missing page at its new URI

or discover an alternative page that satisfies the user’s information need. Synchronicity depends on

user interaction which enables it to provide results in real time.
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CHAPTER I

INTRODUCTION

Digital data preservation is often seen as an institutional effort. That means archives, libraries and

other for-profit or non-profit organizations spend a lot of time and money on applying preservation

services to their own collections. The commonly known preservation approaches are refreshing

(copying bits to different systems), migration (transferring data to newer system environments) and

emulation (replicating the functionality of obsolete systems) [229, 228]. The underlying assumption

is that digital data will eventually become unavailable and inaccessible meaning devices used to

access the data will become inoperable. Therefore the argument is to invest in a preservation effort

now to yield persistent data available and accessible for humanity far in the future. This approach

follows a “just-in-case” philosophy. The World Wide Web, somewhat as a by-product, provides

what can be called “just-in-time” preservation [196]. It occurs naturally but still randomly in the

“living web” where people create, copy and move content. This rather passive kind of preservation

is enabled due to search engine services, web archival efforts and digital library research projects. It

is neither supervised nor does it follow quality control guidelines but it has the invaluable benefit of

millions of users contributing worldwide around the clock. The web is not controlled by one entity

which decides what digital resource is important and needs to be preserved. It rather follows popular

demand while also allowing uncountable niches to exist. While this “democracy” also bears the risk

of single entities going out of business or shifting their operational focus, the web, in its unity with

aggregated efforts of its users, will ensure preservation.

Emulating resources is primarily done on desktop computers using client software even though it

seems to be a matter of time until the gap to networked and distributed emulation systems will be

closed. However, examples for refreshing and migration can already be found in the web. Figure ??

shows the refreshing and migration of a web document. The original document was published as a

NASA technical memorandum in 1993 as a compressed PostScript (.ps.Z) file on a nasa.gov website.

Google Scholar has more than ten versions of the paper indexed, CiteSeer offers three remote and

four local copies of the document and the Internet Archive (IA) provides five cached versions of the

pdf document - all instances of refreshing. Although NASA eventually migrated the report into a

PDF document, CiteSeer performed that migration independently and also migrated the document

into PNG format. Yahoo! and Google provide dynamic conversion to HTML. It probably would be

much harder now to completely eradicate the content of this resource from the web than it was to

publish it in 1993.

Given this example we argue that even if an original resource in the web is being removed we

are often able to find a copy at a different location which makes it a “just-in-time” preservation

approach. However, it is often a problem to retrieve the resource of interest. It, for example, is

entirely possible that there are many more copies available in the web than shown in Figure ??,

but we just did not find them. We therefore propose to apply information retrieval techniques to

rediscover web resources.
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Fig. 1 Refreshing and Migration Occurring in the Living Web

1 THESIS MOTIVATION

Related research has shown that web pages become inaccessible over time (shown for example in

[147] and [166]) and consequently HTTP 404 “Page Not Found” errors are part of everyone’s web

browsing experience. However, as mentioned above, our intuition is that web pages do not disappear

but often just move to a new location which then needs to be discovered. We propose the use of

information retrieval techniques to address the problem of web page preservation.

Regarding the frequent change of URIs mapping to some content in the web, four general scenarios

can be observed:

1. the same URI maps to the same or very similar content at a later time

2. the same URI maps to different content at a later time

3. a different URI maps to the same or very similar content at the same or at a later time

4. the content can not be found at any URI.
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Table 1 Conferences and their Original URIs

Conference Original URI
JCDL 2005 http://www.jcdl2005.org/
Hypertext 2006 http://www.ht06.org/
PSP 2003 http://www.pspcentral.org/events/annual_meeting_2003.html
ECDL 1999 http://www-rocq.inria.fr/EuroDL99/
Greynet 1999 http://www.konbib.nl/infolev/greynet/2.5.htm

Table 1 provides five examples of research conference URIs for each of these scenarios. The column

next to the conference name displays the original URI as it was published at the time the conference

was held. The different cases of the conferences, their URIs, and the validity of the URIs are as

follows:

1. Joint Conference on Digital Libraries (JCDL) 2005, today this URI is still valid and accessible

and also holds the same original content.

2. Hypertext 2006, the URI is still valid today but does not reference to the original content

anymore. The snapshot in Figure 2 shows on the right the unrelated content that is available

through the original URI today.

3. Professional Scholarly Publishing conference (PSP) 2003 and European conference on digital

libraries (ECDL) 1999, both URIs return a 404 error today but suitable replacement pages are

available.

(a) PSP, the replacement page is hosted on the same server

(b) ECDL, the page is hosted by a different domain but still summarizes the event

4. Greynet 1999, the URI returns a 404 error and a replacement page can not be found.

2 DESCRIBING THE MAPPING BETWEEN URIS AND CONTENT

The dynamic mapping between URIs and content can be formalized into a framework consisting of

two functions. Let us consider a set of URIs to be (u1), (u2), ...(un) ∈ U each with a timestamp t

assigned and where U is the set of all URIs in the web. Let us further assume a set of content to be

(c1), (c2), ...(cm) ∈ C also with a timestamp t attached and where C is the representations served

when dereferencing the URI at time t, hence indexed and searchable content. The first function

(u2c) shown in Equation 1 takes a URI and a timestamp tx (for example to access and distinguish

multiple cached copies) and maps this pair into content (ca, tx):

u2c(ui, tx)→ (ca, tx) (1)

Note that content (ca, tx) has a timestamp assigned too.
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Fig. 2 The Official URI of the Hypertext 2006 Conference Provides Different Content Over Time

The second function (c2u) shown in Equation 2 maps content into URIs. Since the content can

be held by multiple URIs at different times, the equation is displayed as a matrix:

c2u(ca, tx)→


(ui, tx) (ui, tx+1) ... (ui, tx+k)

(ui+1, tx+a) (ui+1, tx+b) ... (ui+1, tx+c)

...

(uj , tx−k) (uj , tx+n) ... (uj , tx+m)

 (2)

Turning our attention to the content, we define (ca, tx) as full content and (c′a, tx) as a subset of

the content so that (c′a, tx) ⊆ (ca, tx). (c′a, tx) is obtained by applying what we call a reduced

representation function rr to (ca, tx) as shown in Equation 3.

(c′a, tx) = rr(ca, tx) (3)

If we, for example, apply rr to two contents (ca, tx) and (cb, tx) and find that rr(ca, tx) ≈ rr(cb, tx)

it is possible that (ca, tx) ≈ (cb, tx) or (ca, tx) 6≈ (cb, tx). In order to further explain the notion of

equality and similarity of content we state the following possible cases:

1. if (ca, tx) = (cb, tx) then rr(ca, tx) = rr(cb, tx)
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2. if (ca, tx) ≈ (cb, tx) then rr(ca, tx) ≈ rr(cb, tx), maybe even rr(ca, tx) = rr(cb, tx)

3. if (ca, tx) 6≈ (cb, tx)

(a) rr(ca, tx) 6≈ rr(cb, tx) is the expected scenario

(b) rr(ca, tx) ≈ rr(cb, tx) then we need to further explore this problem. This scenario is

comparable to hash collisions where dissimilar input yields similar output. Our problem

in this case is that the c2u function would return inaccurate values.

The following scenarios can occur for the function u2c→ (ca, tx) where ∀ k > 0 and ∀ l ≥ 0:

1. u2c(ui, tx) = u2c(ui, tx+k) - the same URI maps to the same or similar

(u2c(ui, tx) ≈ u2c(ui, tx+k)) content at a later time

2. u2c(ui, tx) 6≈ u2c(ui, tx+k) - the same URI maps to different content at a later time

3. u2c(ui, tx) = u2c(uj , tx+l) - a different URI maps to the same or similar

(u2c(ui, tx) ≈ u2c(uj , tx+l)) content at the same (l = 0) or at a later time (l 6= 0)

4. u2c(ui, tx) returns (ca, tx) 6∈ C - content not found at any URI

Note that “similar” content, in contrast to “the same” content, is more forgiving of minor changes

that do not effect the overall context and intention of the content of the web resource’s representa-

tion. Such minor changes could be corrected typos in less significant terms, updated datestamps or

frequently changing advertisements that occur on the page. There are numerous ways to measure

similarity of textual documents such as simple term overlap, cosine similarity as well as the Jaccard

and Dice coefficient which are explained in detail in Chapter II.

An example for scenario 1 is the JCDL 2005 URI, which at the time of the conference as well

as today maps to the same content. The Hypertext 2006 URI is an example of scenario 2. It

does not provide content about the conference anymore. In this case we are interested in finding a

different URI that maps to the original content. Thus we need to solve the equation of scenario 3 in

order to discover candidates for uj . The second mapping function c2u(ca, tx) is designed to provide

such candidates. If its result set is not empty, meaning URIs have been returned, we can start the

evaluation of uj candidates. If however the result set is empty, we need to assume that (ca, tx) 6∈ C,

which means the content is not discoverable. This process is also required for scenario 4 in order

to discover possible values of uj . The original URIs of the PSP, ECDL and Greynet conferences

are examples for this scenario. All three scenarios imply that we have certain knowledge about the

content (ca, tx). For example, if we do not know what “Hypertext 2006” is, how do we know which

URI maps to the “right” content, or in other words, which (ca, tx) to use for c2u?

2.1 Possible Implementations

A possible and very likely implementation of the u2c function is URI dereferencing. All items of

Table 1 represent examples of URI dereferencing. Probably the most intuitive implementation of

the c2u function is a search engine query where a user “generates” the content in the form of query

terms and retrieves URIs in return. Other possible implementations where the URI is used as the
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input to c2u are a search engine query for the in- and outlinks of a web page in order to analyze the

link neighborhood. Queries to search engine caches as well as to web archives for copies of a page

are also feasible. These implementations become especially useful when the URI dereferencing fails.

Further options are based on web browsing experience and domain knowledge. It is for example

known that web sites of colleges in the US belong to the .edu domain and the computer science

department usually is abbreviated with cs. An experienced user could for example anticipate the

URI of the computer science department at Cornell University http://www.cs.cornell.edu/.

The earlier introduced reduced representation function rr can be implemented in various ways.

If it exists, a web page’s title is an intuitive candidate for the rr function since it is understood to

summarize the document’s content. A lexical signature, described in detail in Chapter II, Section

6, consisting of a few terms only is another option to transform textual content into a reduced

representation. Tags given by Internet users can also refer to a document’s content. The web service

Delicious [7] for example offers the capability to share bookmarks and their annotations with the

Internet community. In a hyperlinked environment such as the World Wide Web, the rr function

can also be implemented with the help of the link neighborhood of a centroid URI. The underlying

assumption is that content-wise related pages share links.

Hash functions can provide another option for a special reduced representation of the content.

However, we prefer the previous four implementations of the transformation function because they

allow us to implement the function c2u as search engine queries which would not be possible with

hash values since search engines do not handle such input. It is important to notice that the

framework presented here is independent of the implementation of the u2c, c2u and rr functions.

2.2 Sample Results of the Mapping Functions

Table 2 shows alternative URIs for the five conferences discovered using the c2u function. For

the Hypertext conference we were able to discover that the site has moved to http://hypertext.

expositus.com/. c2u (implemented as a search engine query) revealed that the original URI in-

terestingly is still indexed by Google as shown in the left part of Figure 2. c2u also returned the

alternative URI for the PSP and ECDL conferences. The alternative URI for PSP holds the same

original content and the URI is hosted by the same domain, just the path to the HTML file has

changed. The returned URI for ECDL is a conference overview page provided by the DBLP com-

puter science bibliography service. This page provides meta information such as the conference

location and references to all accepted papers of the conference. Note the two differences here:

1. the site is hosted by a different entity, even in a different top-level domain, and

2. the content of the discovered page is different compared to the original but probably still

sufficient for the user seeking information about the conference.

In this case we are able to recover parts of the original content of the page but other information

such as the conference schedule and the look and feel of the page may be lost.

The last example has a less positive outcome. No alternative URI for Greynet (a conference on

the preservation of so called grey literature) was returned by c2u and thus, at this point, we need

to consider the content of the Greynet conference as lost.
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Table 2 Conferences and Their Alternative URIs

Conference Alternative URI

JCDL 2005 http://www.jcdl2005.org/

Hypertext 2006 http://www.hypertext.expositus.com/

PSP 2003 http://www.pspcentral.org/events/archive/annual_meeting_2003.html

ECDL 1999 http://www.informatik.uni-trier.de/~ley/db/conf/ercimdl/ercimdl99.html

Greynet 1999 ???

3 THESIS STATEMENT

The goal of this dissertation is to address the detriment to the web browsing experience caused by

404 responses and provide alternatives to missing pages in real time. To achieve this goal we propose

the use of the following four implementations of the rr function:

1. lexical signatures

2. web page’s titles

3. tags, used to annotate the page

4. link neighborhood based lexical signatures.

The idea of using lexical signatures for this purpose is not entirely new. Phelps and Wilensky

[218] first introduced the term lexical signature and proposed their use to discover web pages that

had been moved. Their preliminary tests confirmed that 5-term lexical signatures are suitable for

discovering a page when used as search engine queries. Although Phelps and Wilensky’s early results

were promising, there were two significant limitations that prevented lexical signatures from being

widely deployed.

1. Their scenario required the browser’s source code to be modified to exploit lexical signatures

and

2. they required lexical signatures to be computed a priori.

Park et al. [214] expanded on the idea of Phelps and Wilensky and studied the performance of nine

different lexical signature generation algorithms (retaining the 5-term precedent). They proved that

slight modifications in the generation process can improve the retrieval performance of relevant web

pages.

Web pages’ titles (Hyusein and Patel [130]) as well as tags (Bischoff et al. [71]) have been shown to

be suitable for web search and the link neighborhood has been shown to refine the lexical signatures

of centroid pages (Sugiyama et al. [247]). However, none of these three methods has been studied

in context of (re-)discovering missing web pages. By building upon the idea of Phelps and Wilensky

and leveraging the feasibility study of Park et al. we propose using all four implementations of

the rr function to (re-)discover missing web pages based on the Web Infrastructure (WI) which is

described in detail in Chapter II, Section 2.
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The open source community around the Mozilla project [34] is growing and we see more and more

browser extensions being implemented. Maybe even more importantly, we are able to implement

the rr function in real time and for example do not need to compute lexical signatures a priori. We

therefore overcome the limitations that prevented Phelps and Wilensky’s system from being widely

deployed.

We propose Synchronicity, a Mozilla Firefox add-on that catches 404 errors when they occur,

meaning while the user is browsing the Internet. The system utilizes the Memento framework (see

Chapter II, Section 4) to obtain cached and archived versions of the page. Besides offering these older

versions to the user, the add-on further obtains the title and generates a lexical signature based on

the previous versions of the page. The add-on also obtains tags as well as generates link neighborhood

based lexical signatures of the missing page. Any of these methods represent implementations of the

rr function and are meant to offer alternative pages to the user (with respect to the c2u mapping)

while she is browsing the web.

Synchronicity implements the scenario of several components (which may be causally unrelated)

working together and returning meaningful results. The components are web pages gone missing, the

natural preservation of digital data in the WI and the application of diverse Information Retrieval

(IR) methods. The meaningful results, of course, are (re-)discovered relevant web pages, again

implemented with the c2u function.

In related research, McCown [189] has shown that the WI can be used to reconstruct missing

websites. He developed a system called Warrick which crawls web repositories such as search engine

caches and the IA for copies of the website. Warrick merges the findings (if necessary) and therefore

reconstructs the entire missing website. Synchronicity is different compared to Warrick in a number

of aspects. It locates the missing page or sufficient replacement pages in real time, it uses information

retrieval techniques (like lexical signatures) to (re-)discover the pages and, unlike Warrick, which

reconstructs entire sites using the URI as the seed for the WI, Synchronicity recovers single web

pages.

The last point also determines that the target group is different. Where Warrick is aimed

primarily towards website administrators and content generators who accidentally lost their websites,

Synchronicity is geared towards end users, browsing the web and experiencing HTTP 404 errors.

The work done by Harrison for his master thesis [119] and published in Harrison and Nelson

[120] can be considered as an early version of Synchronicity. His software system called Opal also

feeds lexical signatures into the WI to find missing web pages. The main difference is that Opal is a

server side system and therefore requires system administrators to install and maintain the software.

We take a different path since our system is purely client sided and, due to the information retrieval

components, more sophisticated.

Lastly, we create the “Book of the Dead”, a corpus of missing web pages. To the best of our

knowledge no such corpus is available thus far. Most related preservation and information retrieval

research has been done on corpora of resources that are in fact not missing. Often experiments

are conducted on synthetic web sites or pages or based on bounded datasets usually created for a

particular research goal. Such corpora are described in detail in Chapter III, Section 8. We apply

our methods to our new corpus and evaluate their outcome. We also offer the corpus to fellow

researchers to enable and encourage continuative research in this area.
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3.1 Organization

The dissertation is organized into the following chapters, separated by topic and contribution.

Chapter II: Background – We introduce basic terminology as well as components and protocols

of the Internet used in the dissertation. We explain in detail information retrieval concepts

and measures to evaluate the performance of retrieval systems and provide examples of their

use.

Chapter III: Research Review: Digital Preservation for the Web – We analyze related re-

search that motivates, supports and compliments our work. We show current circumstances

with respect to missing web pages and give examples of common server responses. We review

related work on the use of search engines and all of our methods mentioned above.

Chapter IV: TF-IDF Values for the Web – This chapter covers our work on finding a well

performing estimation method for IDF values for textual web page content. It further contains

the correlation study between term count and document frequency scores.

Chapter V: Lexical Signatures for the Web – Here we analyze the evolution of lexical signa-

tures over time and their performance in dependence of their age. We develop a framework to

automatically generate well performing lexical signatures.

Chapter VI: Titles – Our next retrieval method is evaluated in this part of the dissertation. We

analyze its evolution over time and compare to the change of document content. We identify

“stop titles”, titles with no semantic value.

Chapter VII: Tags – In this chapter, we look at the retrieval performance of tags and introduce

the notion of “ghost tags”, tags that no longer describe a URI’s content.

Chapter VIII: Link Neighborhood Lexical Signatures – We evaluate all parameters of link

neighborhood based lexical signatures and provide a set of parameters that warrant the gen-

eration of well performing search engine queries.

Chapter IX: Book of the Dead – We introduce the corpus of missing web pages and provide

the contextual “aboutness” of every single URI in the corpus. We apply all retrieval methods

and report the results.

Chapter X: Synchronicity – In this chapter, we present our software implementation. We cover

its functionality and show screen shots of its operation.

Chapter XI: Future Work and Conclusions – Here we give pointers to aspects for future work,

summarize our findings and list all contributions of this work.
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CHAPTER II

BACKGROUND

1 INTRODUCTION

In this chapter, we introduce components and protocols of the Internet that are used in the dis-

sertation. For example, we explain in detail the web infrastructure, since it motivates the entire

concept of this work. We further introduce the reader to the Memento framework, as it is another

foundation of this work.

We demonstrate the underlying algorithms of the term frequency-inverse document frequency

weighting scheme as well as the mathematical background for lexical signatures. This is meant to

review these concepts and their success in IR research.

Since we are utilizing retrieval systems in this work, we explain some methods to evaluate their

performance. String similarity methods are covered as well as rank correlation measures. We use

these methods in the following chapters and hence a basic understanding is beneficial. With the

help of several examples we hope to vividly introduce the concepts to the reader.

2 WEB INFRASTRUCTURE

The WI consists of Internet search engines such as Google, Yahoo! and Microsoft Bing and their

caches. It also includes non-profit archives such as the Internet Archive or the European Archive as

well as large-scale academic digital data preservation projects e.g., CiteSeer and NSDL. The WI is

explored in detail in Frank McCown’s dissertation thesis [189] and other related work [139].

McCown has done extensive research on the usability of the WI for preservation. He coined the

phrase “lazy preservation” [196] as the utilization of the WI to reconstruct missing websites. He

developed Warrick, a system that crawls web repositories such as search engine caches (characterized

in [193]) and web archives to reconstruct websites. His system is targeted to individuals and small

scale communities that are not involved in large scale preservation projects and suffer the loss of

websites. This approach requires almost no effort from web administrators, hence its label “lazy

preservation”.

McCown et al. [191] also investigated what factors contribute to the reconstruction of websites

based on the WI. Their findings indicate that the PageRank value (computed by Google) as well as

the age of the missing page affect the success of the reconstruction greatly. The distance in number

of hops of a missing page from the root page was a factor as well, since most web crawlers have a

depth limit when crawling a website.

McCown and Nelson [195] also formally described web repositories in the WI. They distinguish

between flat and deep repositories. A repository is considered flat if it only keeps one, the most

recent, version of a resource as search engine caches do, for example. Deep repositories (such as

the Internet Archive), on the other hand, store multiple versions of a resources distinguished by

timestamp. In addition they refer to repositories that do not allow public access as dark repositories
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and to others that allow access as light repositories. As a logical consequence, they also define gray

repositories as those that are partially accessible.

Another approach to preservation of web pages based on the web infrastructure is called “shared

infrastructure preservation” [241]. The idea is to push resources (including metadata) via NNTP

newsgroups and SMTP email attachments to other sites that may archive (refresh, migrate) the

data. Smith further introduces an Apache module called mod oai which provides OAI-PMH access

to MPEG-21 DIDL representations of web resources [240]. She calls this approach “web server en-

hanced preservation”. Nelson et al. [209] summarize these example implementations for alternative

approaches to web scale preservation. They argue that conventional approaches to digital preserva-

tion, such as storing digital data in archives and applying methods of refreshing and migration, are,

due to the implied costs, unsuitable for web scale preservation.

3 SEARCH ENGINES AND THEIR APIS

All three major search engines (Google, Yahoo! and Bing) offer APIs for the public to access their

services. These APIs allow users to write scripts that retrieve search results from the search engine’s

index. Data such as the ranking of the results, their URIs, their snippets, as well as their titles

as displayed through the web interface are available. Additionally the (estimated) total number of

results are available. The user can further specify the range of the desired results by indicating in

the query string the start value for the ranking and the number of results to obtain. Regular search

operators such as AND, LINK or SITE are also possible, but the exact syntax may vary between

search engines. In general, the user can chose to use the SOAP [40], JSON [21] or XML [41] format

to retrieve data from the APIs.

Early on in this dissertation work, Google had a general web search API in service which allowed

1, 000 queries per day. This API was used for the experiments presented in Chapters IV and V. As

of November 1st 2010, Google has officially deprecated its general web search API and now refers

to using the Custom Search API [14] instead. The new API restricts users to a 100 query per day

quota, but the user can pay 5 USD per 1, 000 queries for up to 10, 000 queries per day.

Yahoo! introduced their BOSS Search API [45] in 2008 and promised unlimited queries to their

index. All of our other experiments are therefore based on this API. However, Yahoo! commercialized

this service as well and now offers 1, 000 queries against the entire index for 0.80 USD or against a

“limited” index with a slower refresh rate for 0.40 USD [22]. The initially introduced free service

will discontinue soon after the new model is launched.

Bing established a new version of their API [3] recently. Since the previous one did not perform

as well as the Yahoo! BOSS API and came with the same quota limits as the Google API, we did

not use Bing extensively in this work.

An example query for the term wimbledon against the Yahoo! BOSS API could look like this:

http://boss.yahooapis.com/ysearch/web/v1/wimbledon/?appid=my_api_key&format=xml

Of course my api key would have to be replaced with a valid key. In this example, we are requesting

an XML formatted response which could look like this:
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<?xml version="1.0" encoding="UTF-8"?>

<ysearchresponse xmlns="http://www.inktomi.com/" responsecode="200">

<nextpage><![CDATA[/ysearch/web/v1/wimbledon/?format=xml&count=10&appid=-my_api_key&start=10]]></nextpage>

<resultset_web count="10" start="0" totalhits="6020511" deephits="40400000">

<result>

<abstract><![CDATA[The official site of the All England Lawn Tennis Club, home to The Championships

<b>Wimbledon</b>, featuring news, features, spectator information, museum guide and online shop]]></abstract>

<clickurl>http://lrd.yahooapis.com/ ... http%3A//www.wimbledon.com/</clickurl>

<date>2011/05/30</date>

<dispurl><![CDATA[www.<b>wimbledon.com</b>]]></dispurl>

<size>18049</size>

<title><![CDATA[<b>Wimbledon</b> - The Home of Tennis]]></title>

<url>http://www.wimbledon.com/</url>

</result>

<result>

<abstract><![CDATA[The 2010 <b>Wimbledon</b> Championships took place on the outdoor grass courts

at the All England Lawn Tennis and Croquet Club in <b>Wimbledon</b>, London, United Kingdom. <b>...</b>]]>

</abstract>

<clickurl>http://lrd.yahooapis.com/ ... http%3A//en.wikipedia.org/wiki/2010_Wimbledon_Championships</clickurl>

<date>2011/05/10</date>

<dispurl><![CDATA[<b>en.wikipedia.org</b>/wiki/<wbr>2010_<b>Wimbledon</b>_Championships]]></dispurl>

<size>596495</size>

<title><![CDATA[2010 <b>Wimbledon</b> Championships - Wikipedia, the free encyclopedia]]></title>

<url>http://en.wikipedia.org/wiki/2010_Wimbledon_Championships</url>

</result>

We replaced some cryptic, potentially query specific data between the ¡clickurl¿ tags in order to

improve the readability of the otherwise obvious response. We retrieve the estimated total number

of results as totalhits (no duplicates) and deephits (with duplicates). Each result is embedded

between ¡result¿ tags which further include the abstract (snippet) of the result, its date (presumably

last visited date), the URI for a web interface user to click on, the displayed URI, size and title of

the result page and again the URI.

Since search engines and their APIs are essential to web related research, they have been subject

to performance evaluations in the past. McCown and Nelson [192], for example, compared search

results from Google, Yahoo! and (at that time) MSN obtained from their APIs and web user

interfaces and found significant discrepancies. Their results suggest that the index the Google and

Yahoo! APIs are drawing from are not older but seem to be smaller than the index for the web

interface. MSN appeared to have the most synchronized interfaces overall.

McCown and Nelson [194] further investigated the persistence of search results. They found that

it can take up to one year for half of the top 10 results to be replaced in Google and Yahoo! for

popular queries. For MSN, however, it may only take two to three months.

Search engines mostly also provide cached versions of indexed pages. The caching strategies

behind this service were investigated by McCown and Nelson [193] in order to see whether one could

build a reliable preservation service on top of the caches. They analyzed the Google, Yahoo!, MSN

and Ask caches and found that Ask had the fewest resources cached. The rates for the other three

were much better, at or above 80%. MSN showed the least stale cached resources (12%) and Google

the most, with 20%.

With the aggregated work of McCown and Nelson, we know more about the otherwise entirely

non-transparent “black box” search engines and their APIs.
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Fig. 3 The Memento Architecture

4 MEMENTO AND WEB ARCHIVES

The web architecture [2] does not define the dimension of time. It acknowledges that creating a

new URI for every single change of state for any given resource would lead to a “significant number

of broken references”. It therefore promotes independence between the state of a resource and its

identifier (URI). This means that only the current representation of a resource is available and older

representations are lost.

This is where web archives come into the picture. The Internet Archive (IA) [20], for example,

holds copies of websites beginning in 1996 to the present [147]. It implements, unlike commercial

search engines, a best effort approach for web page preservation. That means its crawlers generally

traverse the web and archive individual web pages at irregular intervals with no specific policy as to

what pages to crawl at what times. The IA also participates in focused crawling based on policies

and topics such as the Olympic Games and other international events. After crawling a site, the IA

will not publish it in their index for another six to twelve months because of an applied “quarantine

period”. As of 2010, the IA holds more than 1.5 billion unique URIs [207], which makes it the largest

web archive to date. We also see several international libraries and institutions focused on archiving

particular portions of the web, mainly distinguished by country code of the domain [46, 87, 173, 223].

4.1 Memento Basics

Memento is a framework for time-based access of web resources [259, 260]. It utilizes the WI to pro-

vide previous representations of web resources. Memento uses search engine caches and various web

archives, with the Internet Archive probably being the most reputable contributor. Each previous

resource is called a Memento [24]. The framework further includes TimeGates, web resources that

redirect to the proper Memento depending on the client-specified datetime. Figure ??1 displays the

general Memento architecture. The web resource that we want to retrieve Mementos of is identified
1This figure is taken from http://www.mementoweb.org
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as URI-R, the TimeGate as URI-G and the single Mementos (in this example M1 and M2) are

identified as URI-M1 and URI-M2.

The Memento framework is based on transparent content negotiation [128] in HTTP. In order

for a web client to retrieve a Memento of URI-R it sends an HTTP request to the original resource

including an Accept-Datetime HTTP header. The resource responds with an HTTP Link header

pointing to the pre-defined TimeGate. The TimeGate performs the content negotiation over the

time dimension with the client-given datetime and responds, providing an HTTP 302 status code

meaning “Found” and the Location header pointing to the matching Memento, for example URI-

M1. The client will then send another GET request to retrieve the Memento from the specified

URI. The TimeGate and each Memento can also respond with a Link header pointing to the first

and last known Memento of URI-R. Note that a URI’s first Memento can at the same time be its

last Memento. The individual Mementos can further point to the next and previous Memento again

using the HTTP Link header. If a client specifies a datetime for a Memento that is out of its range,

meaning before the first or after the last Memento, the TimeGate also responds with the HTTP

302 status code and includes the Location header pointing to the first or most recent Memento,

respectively. If an archive has more than one Memento with the same datetime, the TimeGate

selects one of the matching Mementos and sends a 302 response code plus the proper Location

header.

It is possible that Mementos of any given resource are distributed over numerous archives. Rather

than the client querying every single archive separately, the Memento framework offers an aggregator

to address this problem. A resource that provides an overview of all available Mementos is called a

TimeBundle. The TimeBundle is a conceptual resource, which means it does not have a represen-

tation. It is a resource that aggregates other resources such as the original resource, its TimeGate

and its Mementos. The resource called TimeMap describes the TimeBundle, as it is a machine

readable document from which the URIs of all available Mementos can be obtained. A TimeBundle

redirects to the TimeMap with a HTTP 303 response. Figure 42 depicts the underlying concept of

TimeBundles and TimeMaps in the Memento framework. The Memento framework currently has

the state of an IETF Internet draft [258].

4.2 Uses of Memento

Despite its early stage Memento has already stimulated research in global web archiving. For

example, Ainsworth et al. [55] approach the question of how much of the web is archived. They

utilize Memento to check for archived versions of a page and find that the IA and search engines

have a similar URI coverage with respect to their sample sets. They built four sets of randomly

sampled URIs from the Open Directory Project (DMOZ) [27], Delicious, the URI shortening service

Bitly [4] and search engine indexes. Their results show that 35-90% of the URIs have at least one

Memento, 17-49% have two to five Mementos, only 1-8% have six to ten Mementos and 8-63% of

URIs have more than ten Mementos.

Sanderson and Van de Sompel [236] utilize the Memento framework and introduce a technique

2This figure is taken from http://www.mementoweb.org
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Fig. 4 Memento Timebundle Concept

that bridges the gap between an annotation about a web resource and its ever changing represen-

tation. The problem is that an annotation about a resource made today may be invalid tomorrow

since the resource has changed. They build upon the Open Annotation Collaboration (OAC) [235]

techniques and the availability of archived versions of resources through Memento. This combination

ensures persistence of web annotations over time.

In later work, Sanderson et al. [233] also utilize OAC techniques to implement a system fa-

cilitating the interoperability of repositories. In this case they address the need for collaboration

while researching digital copies of medieval manuscripts. This, for example, includes the sharing

and modifying of annotations made about the resources. A manuscript (or a part of it) is visu-

alized as a canvas which means that there is a need to aggregate multiple canvases to display the

entire manuscript. Sanderson et al. utilize OAI-ORE aggregations (Lagoze et al. [171, 172]) for

this requirement. ORE aggregations are sets of resources that can also include metadata about the

resources. It therefore is a good ontology for a sequence of canvases.

5 TERM FREQUENCY - INVERSE DOCUMENT FREQUENCY

Term frequency (TF) is the number of occurrences of a term within a particular document. It

therefore represents the importance of a term for that particular page. Inverse document frequency

(IDF), on the other hand, is defined as the number of documents a term occurs within the entire

corpus of documents. It hence provides an indicator of the rareness of that term in the document’s

corpus. Karen Spärck Jones [144] introduced in 1972 the notion of term specificity, which later

became known as IDF. The intuition was that for document retrieval a term occurring in many

documents in the corpus is not a good discriminator and hence should get a lower score compared to

a term only occurring in a few documents. Coupled as TF-IDF, the score provides a very accurate

measure of terms’ local (within the document) and global (within the entire corpus) importance.

The computation of TF values is not difficult, simply counting the occurrences of a term within

a document usually suffices. Document length normalization can be applied to avoid a bias towards

longer documents. A longer document possibly uses the same term more often than a shorter
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document and is therefore bound to show an increased relevancy towards a query containing this

term. Also longer documents tend to contain more unique terms, which increases the number of

matches between that document and a query. The most common approach for TF normalization

is to normalize each TF value individually with the maximum TF value of the document [62, 110].

Equation 4 shows how to normalize using maximum TF values.

TFnorm = a+ (1− a)
TF

TFmax
(4)

TFnorm is the normalized TF value, TF is actual TF value of a term and TFmax is the maximum

TF value in that document. This equation includes a smoothing factor a which is generally set to

0.4 as stated in [182]. Cosine normalization [231] is a common alternate normalization scheme. It is

computed with Equation 5

TFnorm =
TF√

w1
2 + w2

2 + ...+ wt2
(5)

where wi denotes the basic TF-IDF score of term i. Cosine normalization tends to favor short

documents in retrieval. This intuitively makes sense since a higher normalization factor results in

lower retrieval chances for a document. In fact, the retrieval probability of a document is inversely

related to the normalization factor used for term weighting in that document. To balance that

tendency we can apply a pivoted normalization scheme introduced by Singhal et al. [239] to, for

example, cosine normalization. The pivoted scheme is based on predicted relevancy in dependence of

document length. It lowers the value of the normalization factor for shorter documents and increases

the value for larger documents.

In practice we can also find other approaches to normalization. Simply using the logarithm of

the raw TF value (Equation 6) or the document’s byte length as applied in the Okapi system [226]

has been shown to be feasible.

TFnorm = 1 + log(TF ) (6)

Okapi TF [225] normalizes for document length normalization and also accounts for term frequency

saturation. It is, for example, used in the BM25 ranking function [226]. One possible equation for

Okapi TF is shown in Equation 7

TFdi,D =
(k1 + 1)× tf(di, D)

k1 × (1− b+ b× |D|
|Davg| ) + tf(di, D)

(7)

where tf(di, D) is the number of times that term di occurs in D, |D| is the total number of terms

and |Davg| is the average document length in the entire corpus. It further includes two parameters

k1 and b that can be freely tuned.

The computation of IDF values is done with Equation 8, where D denotes the total number of

documents in the entire corpus and di is the number of documents in D that contain term i.

IDFi = log
|D|
|di|

(8)

Since it is possible that a term does not occur in any documents, which would lead to the division by

zero, the denominator is frequently computed as |di|+1. Obviously the computation of IDF depends

on global knowledge about the corpus, namely |D| and |di|. If, as given in our case, the entire web is

the corpus, these values cannot be computed accurately. No single entity (search engines, archives,
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etc.) possesses a copy of the entire web. Hence, the mandatory values to compute IDF scores have to

be estimated. To compute TF-IDF values for any given term, its TF and IDF values are multiplied.

The significance of IDF has been studied in the past, for example by Karen Spärck Jones [145]

and Papineni [212]. They found that IDF is optimal for document self-retrieval which means, given

an information retrieval environment, IDF is the perfect weight associated with a term to have the

document (that contains the term) retrieve itself. In other words, this means that IDF is believed to

have the ability to successfully discriminate against other documents. Intuitively, one would consider

low-DF terms to be most desirable for discriminating between documents especially in combination

with a high TF value. While that holds true for TF-IDF, it has been shown that for text classification

problems a high dimensional feature space is undesirable. This means, isolated from TF, using DF

as a feature space applying a threshold for cutting off low-DF terms is beneficial for the performance

in text categorization [271].

One of the main disadvantages of TF-IDF is that it considers unigrams only, meaning that,

for example, it treats “New York” as two terms and results in two TF-IDF values, even though

(depending on the context) it should probably be considered as one phrase resulting in one score.

This can lead to a lower performance, and therefore an approach called soft TF-IDF has been

introduced [88]. The basic idea is to apply string similarity measures (some of which are introduced

in Section 7.3) to do a more “fuzzy” matching on the terms when obtaining DF values. This should

result in the same (higher) score for similar terms. Soft-TFIDF has, for example, been applied for

gene name normalization [105].

6 LEXICAL SIGNATURES

A lexical signature is a small set of terms derived from a document that captures the “aboutness”

of that document. It can be thought of as an extremely lightweight metadata description of a

document, as it ideally represents the most significant terms of its textual content.

Lexical signatures are usually generated following the TF-IDF weighting scheme, which means

all terms of the document are ranked in decreasing order of their TF-IDF score. The top n terms

from that list form the lexical signature. Usually so called stop words, words frequently occurring

in a language but not contributing to the lexical character of a document [109, 230] are dismissed

prior to the TF-IDF calculation. Stop words usually have a large DF- and hence a low IDF value

which means their TF-IDF value will be low too. They will consequently not be highly ranked in a

list of terms ordered by their decreasing TF-IDF values and therefore not make it into the lexical

signature. However, removing stop words in advance reduces the complexity of the overall lexical

signature computation.

A set of stop words is also called a negative dictionary since the terms cannot be chosen as index

terms for retrieval systems. Wilbur and Sirotkin [266] introduced a method to automatically identify

stop words. Their claim is that stop words have the same probability to occur in both documents

not relevant to a given query and documents relevant to the query. It is further not uncommon

to shorten terms to their stem in order to avoid quasi duplicates due to trivial word variations.

Probably the most famous and commonly applied stemming algorithm is the Porter stemmer, first

introduced by Porter [220].
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(a) Paper’s First Page (b) Paper’s Abstract (c) Paper’s Lexi-
cal Signature

Fig. 5 Lexical Signature Example

Figure 5 displays an applied example of a lexical signature. Consider the scholarly paper titled

“Removal Policies in Network Caches for World-Wide Web Documents” by Abrams et al. [47]

published in 1996. The layout of the paper is typical for a scholarly publication as its first page

displayed in Figure 5(a) shows. Besides the title, list of authors and their affiliations, the paper starts

with an abstract. The abstract (shown in Figure 5(b)) briefly (often in not more than 250 words)

summarizes the essence of the paper. Search engine APIs advertise a maximum query length of

2048 bytes [15] which means a query containing 250 terms is in most cases not supported. However,

assuming the publication’s abstract is possible as a search query, it would be very specific to this

particular paper. That means, given the paper is indexed by the search engine, chances are very

good that it will be returned, very likely even with a high rank. The high degree of specificity on

the other hand also implies that in case the paper is not returned, the search engine would likely

not return other related results but rather an empty set. With such a query we would always be in

danger of over-specifying potential results. Figure 5(c) shows the 5-term lexical signature derived

from the paper. The terms intuitively make sense given the anticipated topic of the paper. They

seem promising to have a search engine return the paper high in rank but at the same time, they

are general enough to expect other related documents to be returned. Indeed this lexical signature

works very well and returns the paper in the top ranks in all three major search engines (Google,

Yahoo! and Bing) as well as a other potentially relevant results.
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7 INFORMATION RETRIEVAL MEASURES

7.1 Search Engine Performance

Precision and Recall

Precision and recall are well-known methods to evaluate a retrieval system’s performance [90, 182].

Intuitively, precision is a measure of specificity, meaning how good the system is at rejecting non-

relevant documents, and recall tells us how well a system performs in returning all relevant doc-

uments. Consider a collection of documents D that the retrieval system to be evaluated is based

on, and let |D| be the number of documents in this set. The set of documents relevant to a query

is denoted as R, with |R| being the number of relevant documents. A query against the system

returns an answer set A, and |A| is the number of returned documents. Equations 9 and 10 show

that precision is the fraction of retrieved documents that are relevant, and recall is the fraction of

relevant documents that are retrieved.

P =
|R ∩A|
|A|

(9)

R =
|R ∩A|
|R|

(10)

These measures imply that there is a set of documents retrieved and also a set of documents not

retrieved. It is further assumed that relevance is binary. Having these two measures for IR systems

makes sense since, depending on the circumstances, one may be more important that the other. A

typical web surfer may always prefer all results on the first page of the result set to be relevant - high

precision - whereas intelligence analysts, for example, may be more interested in retrieving as many

documents as possible - high recall. So, it becomes obvious that the two measures are a trade-off. It

is always possible to obtain a high recall by simply returning all documents on any query but that

very likely implies low precision. Systems with high precision, on the other hand, often suffer from

low recall. F-measure [182] is the harmonic mean between precision and recall and can be used to

give weights to either of them (see Equation 11).

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR
β2P +R

where β2 =
1− α
α

(11)

In its simplest form, where β = 1 it is written as F1, which is short for Fβ=1. F1 can be computed

following Equation 12.

F1 =
2PR
P +R

(12)

To further explain the concept of precision and recall, consider the following example. An index D

contains 10 relevant documents to a query q. The query, however, results in a set of 20 returned

documents, 5 of which are relevant. The recall value is computed as R = 5
(5+5) , resulting in R = 0.5.

That means the query retrieved half of the relevant documents but left the other half not retrieved.

Precision is computed as P = 5
(5+15) = 0.25, which means that only one out of four retrieved

documents is relevant to the query.

Mean Average Precision

Precision and recall, as previously introduced do not take into account the ranking of the results.

They, rather, treat all results as an unordered set of documents. To evaluate the performance of
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modern retrieval systems with ranked results, these measures need to be extended. Precision is

often measured at certain low levels of retrieved results. It is referred to as precision at n or P@N,

where n often is five, ten or twenty. The obvious advantage of this method is that only the relevant

documents within n need to be considered and the overall number of relevant documents (denoted

as |R| in Equation 9) do not have to be estimated. However, that also implies a potentially low

level of stability especially with a small n if we, for example, see a dramatic change in relevance at

ranks just beyond n. Mean average precision (MAP) [182] measures the quality of results across

all observed ranks (or recall levels). MAP is defined as the mean of average precision values for

individual information needs. An information need is not necessarily a search engine query, even

though it often is translated to one query or a set of queries. An information need, for example, can

be:

Who won the men’s singles competition at Wimbledon 1992?

which can be transformed into a query:

tennis AND men AND Wimbledon AND 1992 AND NOT doubles

MAP is computed with Equation 13.

MAP (Q) =
1
|Q|

|Q|∑
j=1

1
mj

mj∑
k=1

Precision(Rjk) (13)

where the set of relevant documents for an information need qj ∈ Q is d1...dmj
and Rjk is the set

of retrieved results ranked higher than document dk. To further illustrate MAP, let us consider an

example with two rankings R1 and R2, which are the result of two information needs. Each ranking

contains ten documents d1...d10. In R1 we find to be relevant d1, d2, d5, d7 and d10. This translates

to the following precision scores of the relevant documents at their corresponding rank: P (d1) = 1
1 ,

P (d2) = 2
2 , P (d5) = 3

5 , P (d7) = 4
7 and P (d10) = 5

10 . The average precision of R1 APR1 therefore is

APR1 =
( 1

1 + 2
2 + 3

5 + 4
7 + 5

10 )
5

= 0.73 (14)

In R2 we only find the following four results to be relevant: d2, d3 and d6. This translates to the

precision scores P (d2) = 1
2 , P (d3) = 2

3 and P (d6) = 3
6 . APR2 is computed as

APR2 =
( 1

2 + 2
3 + 3

6 )
3

= 0.56 (15)

MAP of R1 and R2 is now simply computed as

MAP(R1,R2) =
0.73 + 0.56

2
= 0.65 (16)

Discounted Cumulative Gain

Discounted Cumulative Gain (DCG) [136] has become a popular measure for web search applications.

It is based on the assumptions that highly relevant documents are more useful than less relevant

documents and that the lower the rank of relevant documents the less useful it is for the user since

it is less likely to be examined. Therefore, relevance is seen as a gain from examining a document,
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and the gain is discounted at lower ranks. DCG is computed by using the relevance score for each

item i in an ordered result set of size p, as shown in Equation 17.

DCG =
p∑
i=1

2reli − 1
log2(1 + i)

(17)

To normalize DCG, we take the DCG value and divide it by the Ideal Discounted Cumulative Gain

(IDCG) produced by a perfect ordering of the result set. Equation 18 shows the formula for nDCG

[137].

nDCG =
DCG

IDCG
(18)

Let us again use the ranking R1 from the above example where five documents were relevant. Let us

assume relevance scores between 0..3, where 0 stands for irrelevant documents, 1 for mildly relevant,

2 for relevant and the score of 3 is given to highly relevant documents. For the ten documents we

observe the following relevance scores: R(d1) = 3, R(d2) = 1, R(d3) = 0, R(d4) = 0, R(d5) = 2,

R(d6) = 0, R(d7) = 2, R(d8) = 0, R(d9) = 0 and R(d10) = 1. With the relevance given, we can

compute DCG as

DCGR1 = 7 + 0.63 + 0 + 0 + 1.16 + 0 + 1 + 0 + 0 + 0.29 = 10.08 (19)

The ideal ranking with respect to the relevance would be: d1, d5, d7, d2 and d10 which results in a

IDCG of

IDCGR1 = 7 + 1.89 + 1.5 + 0.43 + 0.39 = 11.21 (20)

With DCG and IDCG computed, we can finally determine nDCG as

nDCGR1 =
10.08
11.21

= 0.9 (21)

7.2 Rank Correlation

Spearman’s ρ [203] and Kendall τ [152, 153] are frequently used rank correlation coefficients. Their

values always fall in the range [−1, 1]. The value of 1 means a perfect agreement between the two

rankings. and a value of −1 indicates a perfect disagreement. The value of 0 means the rankings are

independent of each other. One difference between these two correlation measures is that Kendall τ

penalizes two independent swaps in a ranking with the same weight as two sequential swaps, whereas

Spearman’s ρ penalizes the sequential swaps more. For example, let us consider the optimal ranking

Ro = (1, 2, 3, 4) and compute its correlation to the rankings R1 = (2, 1, 4, 3) and R2 = (1, 3, 4, 2).

We compute τ(Ro, R1) = 0.33 and τ(Ro, R2) = 0.33, but ρ(Ro, R1) = 0.6 and ρ(Ro, R2) = 0.4. Both

R1 and R2 have two swaps, which explains the same τ value. All values in R1 need to be swapped

once, but one value in R2 needs to be swapped twice, which results in a lower ρ.

The M-Measure is another correlation measure. It was introduced by Bar-Ilan et al. [64] and

is based on an eye-tracking study conducted by Enquiro Research [9] showing that users are much

more likely to pay attention to the search results on top of a page than to the bottom set of results.

A low score means the compared rankings show discordance in the high ranks, and a high score

stands for concordance in the top ranks.
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7.3 Textual Similarity

Edit Distance

The Levenshtein Edit Distance [177] is a common distance measure between strings or entire doc-

uments. It is defined as the minimum number of insertions, deletions and substitutions needed to

transform one string into the other. For example, the edit distance between canceled and cancelled

is one, and between survey and surgery is two (as seen in [62]). Possible extensions to the edit

distance include assigning different weights to each operation.

Dice Coefficient

The Dice Coefficient [97] is a simple similarity measure. It is defined for two sets (A and B) as their

intersection scaled by their size (see Equation 22). It returns a value between 0 and 1.

Dice(A,B) =
2× |A ∩B|
|A|+ |B|

(22)

Similar to Dice is the Jaccard coefficient [250], which is computed with Equation 23.

Jaccard(A,B) =
|A ∩B|
|A ∪B|

(23)

Jaro and Jaro-Winkler Distance

The Jaro distance [134, 135] and the Jaro-Winkler distance [267] as a variant of the Jaro distance

measure the similarity between two strings. They are frequently used in duplicate detection especially

for duplicates of names. Both scores are normalized, which means that a distance of 0 means no

similarity and a distance of 1 means the compared strings are identical. For two strings s1 and s2,

the Jaro distance Js1,s2 is computed as shown in Equation 24, where |s1| is the number of characters

in s1 and |s2| the number of characters in s2.

J(s1,s2) =
1
3
×
(
m

|s1|
+

m

|s2|
+

(m− t)
m

)
(24)

The number of matching characters between the two strings is indicated by m and defined as a

character that is no further away than bmax(|s1|,|s2|)
2 c − 1 in the other string. The letter t stands

for the number of so called transpositions which is defined as the number of matching terms in a

different order divided by 2. For example, for the strings Michael and Micheal, we see |s1| = |s2| = 7

and also m = 7. We have two characters ae and ea that are a match but in different sequence which

means t = 2
2 = 1. Therefore

J(s1,s2) =
1
3
×
(

7
7

+
7
7

+
(7− 1)

7

)
= 0.95 (25)

The Jaro-Winkler distance JW is based on the Jaro distance but puts more weight on similarity at

the beginning of the string. It uses a constant scaling factor p for this weight, which is commonly

set to p = 0.1. Equation 26 shows how to compute JW .

JW(s1,s2) = J(s1, s2) + (l ∗ p(1− J(s1, s2))) (26)
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The length of the prefix that the two strings have in common (in number of characters) is indicated

by l. That results for our previous two strings in the following Jaro-Winkler distance:

JW(s1,s2) = 0.95 + (4 ∗ 0.1(1− 0.95)) = 0.97 (27)

Cosine Similarity

One of the most successful similarity measures is based on cosine correlation. It is based on the

vector space model [232], which means the two strings or documents to be compared are represented

as an n-dimensional vector. The vector contains one component for each term in the document.

Note that it is immaterial here that the order of terms is lost. The vector representations ~V (d1) and
~V (d2) of two documents d1 and d2 are used to compute the cosine similarity as shown in Equation

28.

cosine sim(d1, d2) =
~V (d1) · ~V (d2)

|~V (d1)||~V (d2)|
(28)

The numerator is the dot product of the vectors, and the denominator is the product of their

Euclidean lengths, resulting in a document length normalization of the vectors. With that Equation

28, can be rewritten as shown in Equation 29, where the unit vector ~v(d1) = ~V (d1)/|~V (d1)| and

~v(d2) = ~V (d2)/|~V (d2)|.
cosine sim(d1, d2) = ~v(d1) · ~v(d2) (29)

Shingles

Andrei Broder introduced a technique for near-duplicate web page detection known as shingling in

[77] and Broder et al. [78]. Given an integer k and a sequence of terms in a document D, the concept

is to define the k-shingles of D to be the set of all consecutive sequences of k terms in D. An often

used example is the following text:

a rose is a rose is a rose

The unique 4-shingles (k = 4) for this text are:

a rose is a

rose is a rose

is a rose is

with the first two shingles occurring twice in the text. Two documents are near-duplicates if their

sets of shingles are nearly the same. The Jaccard coefficient for example can be used to compute the

similarity of the obtained sets of shingles. Broder et al. use a fingerprinting technique to identify

duplicate documents in the web. That means for each document they compute a hash value and

if two hash values match they found a duplicate. One of the duplicates will be dismissed since

duplicate documents by definition have identical shingles. To decrease the complexity of the method

and more directly determine the similarity of documents, they further use “super shingles”. Super

shingles are shingles of shingles which means if two documents have one super shingle in common

they share a sequence of shingles indicating a high level of similarity.
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The disadvantage of shingles is that the error in estimating similarity increases for shorter docu-

ments because short documents contain only a few shingles. Super shingles consequently make this

problem even worse. Further the choice of a good k-value is essential. With a smaller k for example,

the amount of shared shingles between documents can increase which can lead to a false sense of

similarity. Common values for k found in the literature are 4 ≤ k ≤ 6.
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CHAPTER III

RESEARCH REVIEW: WEB PRESERVATION AND WEB

INFORMATION RETRIEVAL

1 INTRODUCTION

This dissertation is a synthesis of the previously disparate areas of digital preservation and infor-

mation retrieval. In this chapter, we will give an overview of related research in both areas and

beyond.

First, we refer to research investigating the dynamic character of the web. The research shows

a quantification of the amount of web pages disappearing and (re-)appearing as well as the amount

of pages whose content has changed to various degrees. This part of the research review further

includes work on longevity of URIs and HTTP approaches to overcome this problem.

One of the main aspects of this dissertation work is to provide a solution to the problem of

missing web pages. A web page is considered missing once it returns an HTTP 404 response code.

We therefore cover several examples of this phenomenon from the web and give an overview of what

is currently being done by web server administrators to support the user when she encounters such

a negative response.

This work is largely based on finding Mementos as well as on the performance of web search

engines. The majority of our methods to rediscover missing web pages generate strings to submit

as queries to conversational search engines. Hence research on web search is of interest to us in this

chapter too. We refer to work investigating user’s search behavior, patterns and trends. Most of

this work is based on large scale log analysis of Internet search engines.

In the previous chapter we introduced the notion of lexical signatures and the ways they are

generated. As we will show in Chapter V, lexical signatures are one of the methods we investigate

to generate output that can be used as a search engine query to rediscover missing pages. This idea

however is not entirely new, so we include related work on lexical signatures, lexical signature-based

applications and TF-IDF related work in this chapter as well. Our work on TF-IDF computation

will be covered in Chapter IV.

Tags used to annotate URIs are a method that we investigate in Chapter VII. The question

whether tags can be used for search and how much we can gain by including tags in our web search

has been the topic of various research work. We will give an overview of the significant findings in

this chapter.

Relevant for Chapter VIII is work on alternative search query generation methods. In particular,

the evaluation of the retrieval performance of anchor text is of interest to us. We give an insight

into what other researchers have accomplished in this area in Section 6 of this chapter.

Since our experiments introduced in Chapter IV are based on web content corpora, we provide

an overview of existing corpora. We compare the corpora we used with possible alternatives and

reasons for our choices.



26

2 DYNAMIC CHARACTER OF THE WEB

2.1 Change in the Web

An early study on the rate of change of web pages was done by Douglis et al. [99]. Their research

shows that HTML documents change more frequently than documents containing rather static

content types such as images. They also show that the most frequently accessed resources have

the shortest intervals between content modifications.

Brewington and Cybenko [73] find that the web is rather young, meaning 20% of the web pages

in their sample set are not more than 12 days old and one out of four pages is younger than 20 days.

Due to their analysis, the mean lifetime of a page is between 63 and 190 days with a median of 117

days. They further find that, trusting the last modified timestamp returned from web servers, most

of the page modifications are made during normal US office hours between 5 a.m. and 5 p.m. Pacific

Standard Time.

Cho and Garcia-Molina [85] studied changes on the web in a binary way (change/no change).

They found, for example, that it took only 11 days for 50% of the .com domains in their sample set

to change but it took almost 4 month for 50% of the .gov domains to change. They also found that

even though web pages change rapidly overall, the actual rates of change vary dramatically from

page to page. Cho and Garcia-Molina stated that the overall average change interval of a web page

would be approximately 4 months.

Lim et al. [179] investigate the degree of change of web pages and the “clusteredness” of changes.

A cluster of changes explains where in the document the changes happen. There is a difference, for

example, whether two sentences are inserted at the top of a page as an entire new paragraph or all

terms inserted individually and spread across the document. Their results show that a vast majority

of pages (90%) have changes smaller than a distance of 20% to their previous version, which means

a fairly low degree of change. Also, only one out of five pages shows changes that are less than

70% clustered, which indicates that the changes that are happening are being made mostly in the

same “area” of the page. These findings can have an effect on how pages are stored or cached, for

example, in case only the updated portions need to be replaced.

In a later work by Cho and Garcia-Molina [86], the authors introduce a model to estimate

the change frequency in the web. For web pages, the actual change history is usually not known,

since even crawlers with small revisitation intervals may miss some changes in between crawls.

However, Cho and Garcia-Molina showed that their estimator predicts the change frequency of

web pages better than a naive model based on dividing the number of observed changes by the

monitoring period. Their findings are noteworthy, since web crawlers can improve their effectiveness

by adjusting their revisitation frequency. Compared to the naive approach, their model detected

35% more changes.

Fetterly et al. [107] build on Cho’s work and conduct a similar study on the change of web

pages but expanded in terms of web page coverage and sensitivity to change. They found that,

for example, larger pages (in terms of byte size) change more often and more severely than smaller

pages.

Ntoulas et al. [210] investigated textual changes of web pages of a period of one year and found

that the link structure of pages changes more than the actual content (they observed 25% new links
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each week). Their second main result was that the content of 50% of the pages (even after one year)

was less than 5% different compared to their initial version.

Adar et al. [53] conducted a study exploring changes of web pages. They analyzed change on

the content level, the term level and structural level of 55, 000 web pages over a five week period.

Roughly 65% of their pages showed some change, while the degree of change depended on the domain

and structure of the page. They identify page specific ephemeral vocabulary as well as terms with

high staying power, both potentially useful to determine the page’s “aboutness”. The authors find

that various structural elements of web pages change with different rates. Adar et al. [50] introduce

a tool called Zoetrope that enables users browse the web and adds the time dimension to it. The

system lets users explore past versions of web pages or only parts of web pages. Zoetrope crawls and

indexes web pages and is therefore able to offer temporal content to the user. In their study, the

authors investigated the structural changes of web pages by analyzing the frequency of change of

Document Object Model (DOM) elements within the pages. They found that the median survival

rate of DOM elements after one day is 98%, 95% after one week, dropps to 63% after five weeks and

is only 11% after one year. They found indicators that DOM elements containing more characters

tend to survive longer.

2.2 Longevity of URIs

Despite well-known guidelines for creating durable URIs [69], missing pages (HTTP response code

404) remain a pervasive part of the web experience. The lack of link integrity on the web has been

addressed by numerous researchers [58, 59, 93, 92]. Brewster Kahle [147] wrote an article in 1997

focusing on preservation of Internet resources. He claimed that the expected lifetime of a web page

was 44 days. A different study of web page availability performed by Koehler [166] shows the random

test collection of URIs eventually reached a “steady state” after approximately 67% of the URIs were

lost over a 4-year period. Koehler estimated the half-life of a random web page is approximately

two years. Lawrence et al. [174] found in 2000 that between 23 and 53% of all URIs occurring

in computer science related papers authored between 1994 and 1999 were invalid. By conducting

a multi-level and partially manual search on the Internet, they were able to reduce the number of

inaccessible URIs to 3%. This confirms our intuition that information is rarely lost, rather it is just

moved. Spinellis [243] conducted a similar study investigating the accessibility of URIs occurring in

papers published in Communications of the ACM and IEEE Computer Society. He found that 28%

of all URIs were unavailable after five years and 41% after seven years. He also found that in 60%

of the cases where URIs where not accessible, a 404 error was returned. He estimated the half-life of

a URI in such a paper to be four years from the publication date. The work done by McCown et al.

[190] focused on articles published in the D-Lib Magazine. Their results show a 10-year half-life of

these articles. Nelson and Allen [208] studied object availability in digital libraries and found that

3% of the URIs were unavailable after one year. Dellavalle et al. [96] examined Internet references

in articles published in journals with a high impact factor (IF) given by the Institute for Scientific

Information (ISI). They found that Internet references occur frequently (in 30% of all articles) and

are often inaccessible within one month after publication in the highest impact (top 1%) scientific

and medical journals. They discovered that the percentage of inactive references (references that
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Table 3 Overview of URI Persistency Research Results

Reference Object of Interest Amount Misc
Year Inaccessible Information

Lawrence URIs in Computer Science 23-53% manual search revealed
et al. [174] related papers published relevant content and thus

2000 between 1994 and 1999 number dropped to 3%

Koehler [166] random collection 67% after 4 years estimated half-life
2002 of web pages 2 years

Markwell and URIs in distance 16.5% found .gov domain
Brooks [184] learning materials to be most stable

2002

Nelson and objects in various 3% of objects refers to after a
Allen [208] digital libraries manual search was done

2002 between 2000 and 2001

Dellavalle URIs from high IF 3.8% after 3 months recovered relevant information
et al. [96] journals 13% after 27 months of 50% of inactive

2003 URIs

Spinellis [243] URIs published in 28% after 5 years 60% failure cases returned
2003 CACM and IEEE articles 41% after 7 years 404 error

estimated half-life 4
years from publication date

McCown URIs in D-Lib Magazine about 30% majority of failures
et al. [190] articles published between returned 404 error

2005 1995 and 2004 half-life 10 years

Sanderson URIs in scholarly about 25% 45% of URIs that exist
et al. [234] articles from arXiv (and not archived) in arXiv are not archived

2011 and UNT

return an error message) increased over time from 3.8% after 3 months to 10% after 15 months and

up to 13% after 27 months. The majority of inactive references they found were in the .com domain

(46%) and the fewest were in the .org domain (5%). By manually browsing the IA they were able to

recover information for about 50% of all inactive references. Markwell and Brooks [184] conducted

a similar study observing links from a Biochemistry course intended for distance learning for high

school teachers. They also found that the number of accessible links steadily decreased, and after

one year 16.5% of their links were non-viable. They observed that the .gov domain was the most

stable one and links referring to the .edu domain were more transient. 17.5% of these links had

disappeared within a year.

Sanderson et al. [234] study the persistence and availability of web resources that are referenced

in scholarly articles. They collected such articles from the arXiv.org repository and the University of

North Texas digital libraries. Their collection contains more than 160, 000 URIs, the largest dataset

analyzed thus far. The Memento framework enables them to test for archived versions of a given

URI. Sanderson et al., for example, found that roughly three out of four URIs from both datasets

are still available, either at their original location or in some archive. The number of still existing

but not archived URIs was much greater in the arXiv dataset though. These results also indicate

that approximately 25% of all URIs do not exist anymore and are not archived. Table 3 gives a brief

overview of all mentioned research results on URI longevity.
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2.3 Approaches to Broken URIs

In the following three sections we give a brief overview of different approaches to address the problem

of broken links in the web. The one characteristic all these methods have in common is that they

assume the web administrator will take action such as changeing server configurations or installing

and maintaining additional software.

Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) [108] by default responds with the code 404 to a requested

URI that can not be found on the server. This response gives no indication of whether the erroneous

condition is of a temporary or permanent nature. We cover the 404 response code seperately in

Section 2.4. HTTP further provides the functionality to redirect a request to a page that has

moved to a different location. The response code 301, for example, stands for a resource that

has permanently been assigned a new URI. This response can result in an automatic redirect to

the resource’s new location. HTTP code 302, on the other hand, indicates a temporary move

of a resource to a different URI. These procedures are helpful to avoid broken links if the web

administrator is aware of the actual new location of the page and modifies the configuration of the

web server accordingly. It is less useful for common web users since they do not have this kind of

administrative access to the server.

Persistent Identifiers

Several approaches for persistent identifiers have been proposed to address the problem of broken

links (also called linkrot). A Digital Object Identifier (DOI) [215] is a permanent identifier of an

digital object that can be resolved to an instance of the required data. The DOI is resolved through

the Handle system [249]. PURL (Persistent Uniform Resource Locator) [238] does not refer to the

location of the resource itself but to a (supposedly) more persistent, intermediate location. The

current technological background of PURIs is HTTP 302 redirects.

Link Authorities

Nakamizo et al. [204] developed a tool that discovers the new URI of a web page in case it has

been moved. The system is based on what they call “link authorities” − reliable web links that

are updated as soon as a page moves. They give an example of a company that changed names

and therefore the URI to their website changed also. However, they were able to discover the new

URI through the link authority of the old page, a consortium site to which the company belonged.

That site was updated (with the new URI) as the company name changed. Morishima et al. [200]

extended this work by enhancing the tool with heuristics based on assumptions about the location

of the page that has been moved. They embrace the probability that despite the fact that the page

has moved, it is still hosted by the same domain (but the URI changed). In related experiments

[201, 202] they furthermore use HTTP redirect information if available and perform a keyword search

with web search engines to locate the new page.
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Fig. 6 Default 404 Page − http://www.pspcentral.org/events/annual_meeting_2003.html

Popitsch and Haslhofer [121, 219] introduced a tool they call DSNotify to handle broken links

in linked data environments. DSNotify is designed as a change detection framework which means it

can monitor subsets of a linked environment and detect and correct broken links. It can also notify

subscribed applications about (undesired) changes in the dataset as well as forward requests to new

resource locations in case they are known to the system. The functionality of DSNotify is based on

the periodic access of the supervised dataset. It creates an item for each resource it encounters and

can therefore extract a feature vector from its representation, which is stored along with the item.

While this approach maybe suitable for a bounded dataset, it seems problematic to apply it to a

web scale environment.

2.4 404 − Page Not Found

Figures 6 and 7 show two common appearances of 404 “Page Not Found” errors. Figure 6 shows a

default error page returned from the web server with the message that the original URI of the PSP

conference (Table 1) could not be found on the server. Figure 7, in contrast, shows the customized

404 response page from Google. It contains corporate design elements and is probably meant to

appear a bit more pleasant than a standard error page. An even more sophisticated error page can

be seen in Figure 8. The requested URI was http://www.rice.edu/bla/bla/bla, and the user is

given the option to correct spelling and other obvious mistakes, use a shortened URI trying to access

a page on a higher level within the same domain and search for copies of the requested page in the

Google cache and the IA. Unfortunately, Rice University has decided to discontinue their “service”,

and the website is returning a default 404 error page now. The example shown in Figure 9 requires
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Fig. 7 Customized 404 Page − http://www.google.com/blablabla

a browser plugin. The add-on is called ErrorZilla [10] and it is designed for the Mozilla web browser.

It catches 404 errors and provides several options for network layer operations (ping, trace, etc.)

and also offers a search in the Google cache and the index of the IA. ErrorZilla also provides the

option to “coralize” the URI, which means to use Coral [33], a free peer-to-peer content distribution

network, to access the requested URI. To use Coral, .nyud.net is simply appended to the URI.

The work of Francisco-Revilla et al. [111] is related in the sense of missing and changing web

pages. They have developed the Walden’s Paths Path Manager, which is a tool that allows users

(the target group is school teachers) to construct trails or paths using web pages which are usually

authored by others. The path can be seen as a meta-document that organizes and adds contextual

information to those pages. Thus, part of their research is about discovering relevant changes

to websites. Simply comparing the candidate page with a cached copy may not be sufficient for

them because some changes are actually desirable and should not be automatically dismissed. It

is possible that pages change on a constant rate (such as weather or news sites) and therefore a

simple comparison is not sufficient. Their focus, however, is on discovering significant changes to

pages. Their evaluation of change is based on document signatures of paragraphs, headings, links

and keywords. They also keep a history of these values so that a user can actually determine long-

term as well as short-term changes. Just recently they redesigned the software and launched version

four of the system [72].

Soft 404 Error

Bar-Yossef et al. [65] introduced a formalized decay measure for the web. They realized that not

only single web pages but collections and even entire neighborhoods of the web show significant

decay. They also focus on the problem of 404 errors. Inarguably, detecting hard 404s (the case
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Fig. 8 More Sophisticated 404 Page − http://www.rice.edu/bla/bla/bla

where the 404 is indeed returned) and detecting syntactically incorrect URIs is trivial, but they

describe an algorithm to detect so called “soft 404s” − actual “Page Not Found” errors that do not

return the HTTP response code 404 but instead return code 200 (meaning “OK”). The user’s request

causes a 404 internally on the server side but due to its configuration, a customized page is returned

along with the response code 200. Similar to customized “Page Not Found” response pages (that

come with the response code 404), the main benefit of soft 404s is that the layout of the returned

page is held in the corporate design of the company often including the logo and an opportunity

for the user to search the website for other pages. Figure 10 shows an example of a soft 404

response. The URI http://www.baer.com/index.php?page=shop.product_details&flypage=

flypage.tpl&product_id=3378&category_id=1310&option=com_virtuemart&Itemid=10 is the

result of a product search with the web site’s search tool. This is a common error where the

script exists (thus a 200 response) but the arguments supplied to the script no longer identify a

resource in the database the script accesses. A search in Google for ford master cylinder restricted

to this site with

http://www.google.com/search?q=ford+master+cylinder+site%3Abaer.com

will return several results with the same soft 404 error. The HTTP headers of the response to

the requested URI shown in Figure 10 are displayed in Figure 11(b). We can see that the server

responds with a HTTP 200 response code meaning “OK”. Figure 7 and the corresponding headers

shown in Figure 11(a) display the response to another resource that does not exist http://google.
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Fig. 9 404 Page with Add-On ErrorZilla −
http://www.thisurlsurelydoesnotexist.com/bla/bla/bla

com/blablabla, but this server sends the proper 404 response code.

The URI http://jcdl2007.org is another example of a soft 404. It used to be the canonical URI

for the JCDL conference in 2007, but no longer returns conference-related content. Our assumption

is, similar to the example of the Hypertext 2006 conference website introduced in Chapter I, that the

website administrators did not renew the domain registration and someone else took over, maybe

hoping to take advantage of the popularity the site has gained thus far. Such a phenomenon is also

known as “parked web sites”. The report by Edelman [102] provides a good overview and gives a

specific case study on the issue.

If we send a request to a resource that very likely does not exist on this server, such as http:

//jcdl2007.org/blablabla we would expect a 404 error in return. As seen in Figure 12, the web

page tells us that the requested resource no longer exists on this server. The figure also shows the

HTTP headers returned from this request. It confirms that the server responds with a 200 code

meaning it is indeed a soft 404. In this case however, we are led to believe that the intentions of the

website administrator are somewhat suspicious since the page still contains some random content

about digital libraries, probably to make sure it will keep its ranking in search engines.

Bar-Yossef et al. [65] present an approach to learn whether or not a web server produces soft

404s. This is achieved by sending two requests to a “suspicious” server. The first request is asking

for the page of interest and the second for a page that with very high probability does not exist. It

then compares the server behavior for the two returns such as number of redirects. The content of

the returned pages are also compared using shingles (Chapter II, Section 7.3) so that, in case the two

behaviors and the content of the returned pages are very similar, the algorithm gives a clear indication
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Fig. 10 Soft 404 Page at http://www.baer.com

of having detected a soft 404. The authors are aware of the problem with this approach: a case where

a soft 404 URI and a legitimate URI both redirect to the same page. An example they give is the

URI: http://www.cnn.de (the German site of CNN) used to redirect to http://www.n-tv.de which

is a German 24 hour news channel (similar to Bloomberg). The problem is a resource that surely

does not exist such as http://www.cnn.de/blablabla also redirects to http://www.n-tv.de. The

solution the authors present is to declare a URI that is the root of a web site (http://www.cnn.de

in this example) can not be a soft 404. Bar-Yossef et al. found almost 30% of their URIs to be cases

of soft 404.

Since soft 404s usually return pages that the user did not expect, the difference between the

expected page (the one the user has experienced before) and the actually returned page can be

significant. Search engines have therefore identified soft 404s as undesirable and consider them as

not useful to the user. Google calls for a farewell to soft 404s [12] and more recently announced that

its crawling mechanism can detect soft 404s and interactively work with a website administrator to

overcome this detriment [11]. While this procedure in general appears desirable, it has been critiqued

as inaccurate [16] and shown to also include server side errors displayed as 500-level response codes

[17]. Yahoo! and its web crawler Slurp have been seen to apply the approach introduced by Bar-

Yossef et al. to detect soft 404s [44]. Conceptually, this method is similar to the method introduced

by Francisco-Revilla et al. [111], since they are both comparing the expected with the actual returned

page.
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(a) Hard 404 (b) Soft 404

Fig. 11 HTTP Headers of Hard and Soft 404 Responses

2.5 Near-Duplicate Web Pages

One part of the dynamic character of the web is the fact that pages disappear. Another aspect

however is the observation that numerous duplicates or near-duplicates for web pages exist. Even

though research in the field of (near-)duplicate web page detection has introduced techniques in-

tended for optimizing web crawling (by identifying and hence omitting duplicates) such duplicate

web pages can still be of use for web page preservation. The shingle technique introduced by Broder

et al. (see Chapter II, Section 7.3) can be used to cluster web pages based on their shingle values,

which, for example, can be applied for what the authors propose as a “Lost and Found” service for

web pages. Charikar [83] introduced another technique that became very popular. It is a hashing

function that changes relative to the changes of the input set. That means entire web pages or

subset of pages can be compared by their hash values. Henzinger [124] compared both techniques

and found that both perform well on identifying (near-)duplicates on different sites but do not per-

form well for duplicates within the same site. Hence she proposes a combination of both methods

to overcome that weakness. Fetterly et al. [106] created clusters of near-duplicate web pages while

their similarity was measured using shingles and other means. They found that about 28% of their

pages were duplicates and 22% were virtually identical. Their results also support the intuition that

a lost page often can be restored by finding other pages on the web. The work done by Brin et al.

[75] is also related since they introduced further methods to detect copied documents by comparing

“chunks” of the documents. In [74] Brin transforms text into a metric space and computes the

document similarity based on the distances in the metric space. Baeza-Yates et al. [61] also show

that a significant portion of the web is created based on already existing content. They explored
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Fig. 12 Soft 404 Page at http://jcdl2007.org/blablabla

the notion of genealogical trees for web pages where children would share a lot of content with their

parents and are likely to become parents themselves.

3 SEARCHING THE WEB

A lot of research has been done analyzing the user’s search behavior and intent. Jansen et al. [133]

conducted an extensive study on user queries on the web in 2000. They analyzed the log files of the

search engine Excite and found that 35% of the queries were unique (first query on one distinct user),

22% modified (second, third, etc. query of one user which is modified due to added/deleted words)

and 43% were identical (same query as the one preceded by the same user). The large amount of

identical queries has two reasons: 1) the user tries to re-find some result and 2) the search engine

automatically issues the same query if the user views the second, third, etc. result page. They also

found that about two thirds of all users issued just one query and most of the users that issue more

than one do not add/delete a lot of their initial query, the most frequent change was a modification

of the terms (where adding and deleting occurs with a similar frequency). The mean number of

pages examined per user was 2.35, while more than half of the users did not access the second result

page. The mean number of query terms was 2.21, and boolean operators were not frequently used

(most frequently: AND in 8% of all queries). They also analyzed the distribution of the query terms,
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finding a few terms used very often and a long tail of terms only used once (with a broad middle in

between). The term distribution they found is similar to the Zipf distribution [49].

Jansen and Spink [132] compared nine published studies providing data about searching through

web search engines. Since these datasets were published between 1997 and 2002, they are able to

draw conclusions about trends in search. They found, for example, that the number of queries

per user in one session remained stable, which can be interpreted as such that the complexity of

interaction between the systems and the user is not increasing. Considering that the authors also

found the number of users viewing only one result page to be increasing (also supported in Spink

et al. [244]), one can even argue for a decrease of that complexity. As for the length of the queries,

there seemed to be a slight decrease in one-term queries from 30% to 20%. They further found a

slight shift in topics that were searched for. Nearly half of all queries (in US search engines) were

for people, places, and things. This number appeared to be steadily increasing while the number of

queries for sex and pornography, as well as for entertainment and recreation, were decreasing.

Weber and Jaimes [265] conduct a complex analysis of the Yahoo! query logs in order to gain

insight into who searches for what and how. They examine demographics, session statistics and query

types (navigational, informational and transactional as introduced by Jansen et al. [131]). With this

method they find “stereotypical” results such as white conservative men searching for business and

gardening, baby boomers searching for finance-related topics and liberal females seeking shopping-

related content and maintaining long sessions which hints at a browsing and comparison behavior.

Baeza-Yates et al. [60] applied supervised and unsupervised learning techniques to identify the users’

intent in a search query. Unlike Jansen et al. [131], they defined informational, non-informational

and ambiguous queries. Zaragoza et al. [274] asked the questions whether the problem of web search

was solved and whether all rankings across major search engines were the same. They point out,

similar to Saraiva et al. [237], that query frequencies follow a power law distribution [48]. They found

that the three major search engines, namely Google, Yahoo! and Bing, all perform very well for the

very frequently issued queries and for navigational queries. They saw differences in performance at

the small end of the power law tail and for non-navigational queries. According to their results each

of the three search engines seem to work on different portions of the tail.

Pass et al. [216] provide a “Picture of Search” from the perspective of the AOL search service.

Their analysis shows, for example, a mean query length of 3.5 terms. They also find that 28% of

all queries are reformulations of a previous query, in which cases the average query is reformulated

2.6 times. That indicates that users frequently do not find what they are looking for and change

their input in case the desired result is not shown immediately, i.e. on the first result page. Pass et

al. also find indicators for a geographical distribution of queries. They see that between 12% and

28% of queries include a local aspect. The query los angeles dodgers, for example, is most frequently

issued in the greater Los Angeles area. Lazonder et al. [175] investigate the relationship between

the level of experience of users for web search and their search performance. They found that more

experienced users were faster and more efficient to successfully complete the “locate site” tasks.

However, they did not find a significant performance difference between experienced and novice

users for the “locate information” task. That means when it comes to discovering information on

a given web site, the level of experience is insignificant. It is well-known that domain expertise

enhances search performance in terms of efficiency and effectiveness [197, 217, 127, 183]. It has also
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been shown that users with domain expertise do better in judging the complexity of search tasks

[154] and also show a different strategy (for example, prioritizing) to approach search tasks [261].

Teevan et al. [254] investigate search for socially-generated content on Twitter and compare it to web

search. They explore that users search on Twitter for temporally relevant content and information

about people. While this is not much different from web search, they find Twitter queries to be

shorter and less likely to change within a user session. They claim Twitter users repeat their queries

in order to monitor the associated search results. Web search queries, in contrast, often evolve

with the user learning about a certain topic of interest. Sun et al. [248] confirms these findings by

observing that blog and news queries often refer to people and temporally-relevant content. Mishne

and de Rijke [199] also see blog searches mainly for people and products but also find that the users’

overall search patterns are similar to web search patterns.

Ji et al. [140] introduce a method to support the user in generating well-performing search queries.

This especially becomes helpful for searches where the user has only limited knowledge about the

desired information. Modern search engines already offer some level of support by autocompleting

the query while the user is typing. If she, for example, starts typing “andre ag”, Google will

automatically offer queries for the Andre Agassi Foundation, his book, his school and quotes of

him. The approach by Ji et al. is based on fuzzy keywords, meaning a query term can occur in

multiple attributes in the target document and the order of terms is not relevant. It further includes

documents that approximately match the query as potentially relevant.

3.1 Re-finding Web Pages

The work done by Teevan et al. [251, 252, 253] addresses repeat searches − instances of the same

query string issued by the same user within a 30-minute period. She analyzed the Yahoo! log files

over a period of one year and found that repeat searches are indeed prevalent. 40% of all queries led

to clicks on the same result by the same user but only 7% were clicks on URIs clicked by multiple

users which indicates that people much more likely click on results that they themselves have seen

before. Teevan proposed a system to predict the likelihood of users clicking on the same result,

which has obvious value to search engines. She also implemented a browser plugin that interfaces

with existing search engines. It catches a user query that is similar to an older query. The plugin

fetches the response (current result set) from the search engine and also the previously viewed results

(from a local cache). It merges both result sets and marks the previously viewed results. Therefore,

users are quickly able to re-find web resources that they have discovered before.

Adar et al. [51] investigate the reasons behind the users’ revisiting behavior of web pages. They

analyze web interaction logs of more than 600, 000 users and observe four revisitation patterns. First,

they identify a fast group, meaning pages being revisited with intervals of less than one hour, for

example, due to reloads of the page. Examples for these pages are shopping sites (or hubs) offering

a broad range of products a user may click on but shortly after return to the overview page in order

to navigate to the next product. These pages see almost no long-term revisitations. The second

category is a medium group where pages get revisited hourly or daily. Examples are portals such as

bank and news pages as well as web mail. Classic characteristics for such pages are shorter URIs and

a lower mean directory depth compared to the fast group. The third group is called the slow group
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and contains pages that were revisited in intervals longer than one day. Special search pages for

travel or jobs, for example, belong to this category, as well as event and movie pages most frequently

visited on weekends. Lastly, they identified a hybrid group with web pages showing characteristics

from several other groups. Local Craig’s List homepages are considered an example for this group.

Adar et al. [52] explore the relationship between content changes of web pages and users’ revis-

itation behavior of these pages. Their findings support the intuition that pages that change more

frequently are being revisited more often. However, the amount of change varies, which makes them

conclude revisitation is not purely about the amount of change but more about what is changing.

Regarding the frequency of change, they found that pages changing more often within a shorter

period of time were revisited more frequently also.

The authors argue that understanding the user’s revisitation pattern can help improve the inter-

action between content providers and Internet users. For example, search engines can benefit from

better organizing their results and browsers could improve the display of the pages content.

4 LEXICAL SIGNATURES OF WEB PAGES

So far, little research has been done in the field of lexical signatures for web resources. Phelps
and Wilensky [218] first proposed the use of lexical signatures for finding content that had moved
from one URI to another. Their claim was “robust hyperlinks cost just 5 words each”, and their
preliminary tests confirmed this. The lexical signature length of 5 terms however was chosen some-
what arbitrarily. Phelps and Wilensky proposed “robust hyperlinks”, a URI with a lexical signature
appended as an argument such as:

http://www.cs.berkeley.edu/~wilensky/NLP.html?lexical-signature=

texttiling+wilensky+disambiguation+subtopic+iago

where the lexical signature is everything after the “?” in the URI. This example was taken from

Robert Wilensky’s website. They conjectured that if the above URI would return a 404 error, the

browser would take the appended lexical signature from the URI and submit it to a search engine

to find a similar page or a relocated copy of the page.

Park et al. [214, 213] expanded on the work of Phelps and Wilensky, studying the performance

of 9 different lexical signature generation algorithms (and retaining the 5-term precedent). The

performance of the algorithms depended on the intention of the search. Algorithms weighted for TF

were better at finding related pages, but the exact page would not always be in the top n results.

Algorithms weighted for IDF were better at finding the exact page but were susceptible to small

changes in the document (e.g., when a misspelling is fixed). They also measured the performance of

lexical signatures depending on the results returned from querying search engines and the position

of the URI of interest in the result set. They do not compute a performance score but distinguish

between four performance classes:

1. the URI of interest is the only result returned

2. the URI is not the only one returned but it is top ranked

3. the URI is not top ranked but within the top 10
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4. the URI is not returned in the top 10.

Park et al. thoroughly evaluated algorithms for generating lexical signatures, but they only re-

checked their results once after ten months. Like Phelps and Wilensky, they did not perform an

extensive evaluation of how lexical signatures decay over time and did not explore lexical signatures

of more or less than five terms.

4.1 Lexical Signatures based Applications

Harrison and Nelson [120] developed a system called Opal which uses lexical signatures to find

missing web pages using the WI. They adopted Phelps and Wilensky’s function to generate lexical

signatures but also did not explore the reasoning behind the 5-term lexical signature. Part of their

framework is the Opal server which catches 404 errors and redirects the user to the same page at its

new URI or to a different page with related content. Opal servers learn from experience and are able

to exchange data with other Opal instances by utilizing the Open Archives Initiative Protocol for

Metadata Harvesting (OAI-PMH) introduced in [170, 257]. The drawback of this approach is the

effort required by the web administrator since the web server configuration for each Opal-enabled

server needs to be modified and maintained.

Wan and Yang [263] explore the “WordRank”-based lexical signatures. This lexical signature

generation method takes the semantic relatedness between terms in a lexical signature into account

and chooses “the most representative and salient” terms for a lexical signature. The authors also

examined 5-term lexical signatures only and found (similar to Park et al. [214, 213]) that DF -

based lexical signatures are good for uniquely identifying web pages and hybrid lexical signatures

(variations of TF-IDF) perform well for retrieving the desired web pages. They claim however that

WordRank-based lexical signatures perform best for discovering highly relevant web pages in case

the desired page can not be located.

Staddon et al. [245] introduce a lexical signature-based method for web-based inference control.

Following the TF-IDF method, they extract salient keywords (which can be considered a lexical

signature) from private data that is intended for publication on the Internet and issue search queries

for related documents. From these results they extract keywords not present in the original set of

keywords which enables them to predict the likelihood of inferences. These inferences can be used

to flag anonymous documents whose author may be re-identified or documents that are at risk to

be (unintentionally) linked to sensitive topics.

4.2 TF-IDF Values in Hyperlinked Environments

Sugiyama et al. [246, 247] uses the TF-IDF scheme to represent the content of web pages without

particularly focusing on lexical signatures. They claim that for documents in a hyperlinked structure

like the web the content of neighboring pages need to be exploited too, in order to obtain more

accurate descriptions of a page. Their research is based on the idea that the content of a centroid

web page is often related to the content of its neighboring pages. This assumption has been proven

by Davison in [94] and Dean and Henzinger in [95]. The authors define neighboring pages as pages

that refer to the centroid page (inlinks for the centroid) and pages the centroid links to (outlinks).

Sugiyama et al. show that by refining the original TF-IDF with input from the neighborhood, the
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performance of the lexical signature in terms of precision and recall while querying search engines

for related pages can be improved. However, the problem of off-topic links − for example links that

refer to the download page of the Adobe Acrobat Reader or Macromedia Flash Player, pages that

may support the user in viewing content of a page but are unrelated to the actual content − is not

particularly addressed in this work.

Zhu and Rosenfeld [275] used Internet search engines to obtain estimates for DF values of uni-

grams, bigrams and trigrams. They plotted the obtained phrase count (comparable to what we call

term count TC in Chapter IV) and web page count (our DF in Chapter IV) and were able to apply

a log-linear regression function to all three n-gram cases which implies a strong correlation between

the obtained TC and DF values. Zhu and Rosenfeld also found that the choice of one particular

search engine did not matter much for their results. Keller and Lapata [151] also used Internet

search engines to obtain DF values for bigrams. They compare these values to corpus frequencies

(comparable to our TC) obtained from the British National Corpus (BNC) and the North Amer-

ican News Text Corpus (NANTC). Despite significant differences between the two corpora, Keller

and Lapata found a strong correlation between the web based values (DF ) and the values obtained

from the two text corpora (TC). The main application Keller and Lapata see for their results is

estimating frequencies for bigrams that are missing in a given corpus. Nakov and Hearst [206] give a

justification for using the search engine result count (DF ) as estimates for n-gram frequencies (which

can be TC). They chose the noun compound bracketing problem [205] to demonstrate their results.

The compound bracketing problem has traditionally been addressed by using n-gram frequencies.

They found that the n-gram count from several Internet search engines differs, and these differences

are measurable but not statistically significant. They come to the conclusion that the variability

over time and across different search engines represented by the obtained n-gram frequencies does

not affect the results of a specific natural language processing task.

5 TAGS FOR WEB SEARCH

Web sites such as Delicious, which enable users to annotate and share their bookmarks with the

entire web community, play an important role for web users. With the emerging phenomenon of

social annotations, a lot of research has been done to investigate the value of tags for search in the

web. Bao et al. [63], for example, observe that tags from Delicious are usually good summaries of

the corresponding web pages and the count of the tags indicates the popularity of the pages. They

introduce two algorithms which incorporate these observations into the ranking of web pages. The

first, called SocialSimRank (SSR), returns a similarity estimate between tags and web queries, and

the second, SocialPageRank (SPR), captures the popularity of web pages. SSR is shown to find

semantic associations between tags and a query which can improve web search and SPR ranks pages

from the users’ perspective. Yanbe et al. [270] also exploit social annotations from Delicious to

enhance web search. They propose to combine the current link-based ranking methods with char-

acteristics derived from social annotations. They introduce SBRank which captures the popularity

of a page. It is computed by counting the number of times a page has been bookmarked (voted for

by users) and can therefore be seen as a simplistic version of SPR described above. The authors

implemented a prototype search portal which enables searching by “common query terms” as well
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as by tags. The user can also give certain weight to the source e.g., have tags twice as important

for the query as the common terms. The ranking of the results is determined by combining link-

based methods and the output of SBRank. Morrison [138] also investigated the usefulness of tags

for search and found in an extensive study that search in folksonomies can be as precise as search

in major modern web search engines. By comparing Delicious data with search engine log data,

Krause et al. [169] found that tags and search terms both follow a power law distribution. That

implies a low overall overlap and an increased overlap for the more frequent terms. They further

found sparse overlap in Delicious and search engine rankings but if there was overlap it occurred at

the top end of the rankings. Heymann et al. [126] conducted probably the most extensive study

on tags with a dataset of about 40 million bookmarks from Delicious. They observed that roughly

9% of the top 100 results for search queries (from the AOL logs) are annotated in Delicious. This

coverage increases to 19% considering only the top 10 results. That means despite the relatively

small coverage of web pages Delicious URIs are disproportionately common in search results. They

also found that tags significantly overlap with popular search terms which indicates that tags can

indeed help locating relevant pages. Interestingly, despite the overlap, tags and search terms were

not correlated. Their results further show that about half of the tags occur in the content of the

page they annotate and 16% even occur in the page’s title. They additionally found that in one out

of five cases the tags neither occur in the page nor in the page’s inlinks or outlinks. They conjecture

that tags therefore can provide data for search that is otherwise not available. However, they state

that annotated URIs are rather sparse compared to the size of a modern search engine’s index.

Bischoff et al. [71] analyze tags from three different systems: delicious.com, last.fm (a music

portal) and flickr.com (a photo portal). Due to the variety of the sources they classify the tags

into eight categories. They found that different categories are important for different domains e.g.,

the category Topic was dominant for tags from Delicious and Flickr since it describes the domain

and anything that can be seen on a picture but the category Type was prominent for Last.fm tags

since it describes the file format as well as the music genre. Therefore the predicted usefulness of

tags for web search (assessed by a user study) depends on the category of the tags. This observation

is intuitively confirmed since tags that belong to the Location category are more useful to discover

an image on Flickr than piece of music from Last.fm or a bookmark from Delicious. Bischoff et al.

confirm the findings of Heymann et al. [126] with 44.85% of tags from Delicious occurring in the

text of the annotated page and hence claim that more than 50% of the tags provide new information

about the URI they describe which in fact could be useful for web search.

Yanbe et al. [270] propose a social bookmarking-based ranking and use it to enhance existing

link-based ranking methods. They also find that tag proportions stabilize over time which means

users eventually come to an agreement over tags and even copy each other. The work done by Bao

et al. [63] incorporates the frequency of tags used to annotate URIs as an indicator for its popularity

and quality.

Hayes et al. [123] found that tags performed poorly in clustering textual documents (blogs)

compared to even a simple clustering approach. Tags were imprecise and showed a low recall.

However, Hayes and Avesani [122] found that within the cluster the tags were very useful to detect

cluster topics. These results confirm the general notion that tags in general are often too vague (for

search) but in special cases contain valuable information.
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6 FURTHER SEARCH QUERY GENERATION METHODS

Henzinger et al. [125] provide related web pages to TV news broadcasts using a search engine

query containing two terms. This query summarizes the content of the broadcast by extracting its

closed captions. Various algorithms are used to compute the scores determining the most relevant

terms. These terms can be thought of as a 2-term lexical signature. The terms are used to query

a news search engine where the results must contain all of the query terms. The authors found

that one-term queries return results that are too vague and three-term queries too often return

zero results, thus they focus on creating two-term queries. Bharat and Broder [70] investigated the

size and overlap of search engine indexes. They tried to discover the same page in several different

search engine indexes. Their technique was generally based in randomly sampling URIs from one

index and checking whether they exist in another. They introduce the notion of “strong queries”,

a set of salient keywords representing the randomly sampled URI and used as the query against

the other indexes, hoping it would return the URI. To generate the strong queries they simply used

the n terms from the document that least frequently occurred in their entire data set and formed a

conjunctive query with the “AND” operator. With this approach they, similar to lexical signatures,

leveraged the power of IDF . Martin and Holte [185] introduced the notion of a content-based

address. They argue that URIs are due to the dynamics in the web unreliable and a content-based

addressing approach that results in a set of words and phrases, when used as a search engine query,

is able to overcome these changes. Such queries were supposed to retrieve the document in the top

10 results and also have the potential to return other related documents. They introduce a system

called QuerySearch which initially generates a query for a document based on its terms frequency

and position in the document. It then tries to find several simplified versions of the query which all

can form the content-based address of the document. Jiang et al. [141] later enhanced this approach

and focused on query suggestion methods.

Fuxman et al. [115] introduce an approach for the problem of keyword generation. Their problem

domain is identifying appropriate keywords for a concept or domain that advertisers can purchase

from search engines. This problem is relevant for both search engines and advertisers. All major

search engines generate revenue with advertisement and offering a broad set of relevant keywords

enables them to even reach small businesses. On the other hand businesses have the opportunity to

advertise their services through a powerful medium. The authors analyze the click log of a major

search engine and define a relationship between a concept (e.g., shoes), a URI and a query. If a

user clicks on a certain URI as a result of her query one can argue for an association between the

query and the URI. The authors further define an association between URIs and concepts (e.g.,

www.shoes.com and shoes) which then means that a query can be associated to a concept. Fuxman

et al. employ Markov Random Fields [178] to model the graph defined by these pairwise relationships

and apply a random walk algorithm [100] to efficiently generate keywords.

Unlike Fuxman et al., the approach taken by Turney [255] for keyword extraction is based on

documents and their content. He proposed GenEx which is a rule-based system to extract keyphrases

from text. The Keyword Extraction Algorithm (KEA) introduced by Witten et al. [268] and Gutwin

et al. [112] works similarly by training the system in advance based on a number of textual features

such as TF-IDF and the location of the term in the document. KEA was enhanced with web specific
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features such as the estimated number of results from web search engines in [256] and hyperlink data

in [150].

The Keyphrase Identification Program (KIP) introduced by Wu et al. [269] is also based on

a prior knowledge of positive samples for keyphrases to train the system. KIP is specialized on

extracting significant nouns. Hulth [129] explored the use of natural language techniques for keyword

extraction. She showed that better results can be obtained when splitting text into np-chunks and

considering part-of-speech (POS) tags for keyword extraction compared to statistical measures such

as term frequencies. Yih et al. [273] proposed a method to extract keywords from web pages using

observed frequencies in query logs. Their approach was motivated for contextual advertisement. All

of the above methods result in keywords or keyphrases that describe the “aboutness” of a textual

document. Therefore they are all relevant alternatives for generating web search engine queries.

6.1 Anchor Text

It is well known that the link structure in the web holds valuable information for search. The great

success of link analysis algorithms such as PageRank [76] and HITS [164] provide the evidence.

However, they only consider the link structure and not the anchor text itself for identifying author-

itative pages. Craswell et al. [89], for example, found that link anchor information can be more

useful than the content itself for site finding. This point is supported by the work of Fujii et al.

[114] on the NTCIR-5 WEB task [26]. Dou et al. [98] provided indicators that anchor text is similar

to user queries for search engines but also showed that anchors within the same site are less useful

than external anchors. They build a dependence model for anchor text depending on the origin

of the text and give weights accordingly. This finding is supported by Eiron and McCurley [103]

who investigated the properties of anchor text in a large intranet. Metzler et al. [198] proposed a

method to overcome the so called anchor text sparsity problem. The goal is to enrich a document’s

representation even though the document might only have very few inlinks. The idea is to propagate

anchor text across the web graph and aggregate anchor text of external pages linking to any given

page and its internal inlinks. Yi and Allan [272] address the same anchor text sparsity problem by

applying a language modeling based technique. Their approach is based on the assumption that

similar pages have distinct inlinks with similar anchor texts. In case one page suffers from anchor

sparsity its could benefit from a richer body of anchor text from a contextually similar page. Kraft

and Zien [168] propose the use of anchor text to refine search queries. Query refinement is an often

interactive process to modify insufficiently performing queries with the goal of improving returned

results in terms of quality and quantity. This refinement is usually achieved by applying query

expansion techniques [79, 222] or relevance feedback mechanisms [80, 117]. Kraft and Zien show

that anchor text can provide terms for query refinement that perform better that terms obtained

from a document’s content itself. Hyusein and Patel [130] showed that indexing web documents

by their title, anchor text and some emphasized text only results in poor precision and recall for

search. Their findings imply that despite the usefulness of anchor text and titles for search indexing

additional terms derived from the document’s content is essential. Dai and Davison [91] investigate

the temporal aspect of anchor text. They find that propagating historical weights of anchors over

time can produce significant improvement in ranking quality. Anchor text has also been shown to
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be useful to enrich textual representations of other kinds of resources. Harmadas et al. [118] have

shown, for example, that propagated anchor text can be useful for building textual representations

of images.

Martinez-Romo and Araujo [186, 187, 188] have recently addressed the problem of broken web

links. They introduce a method to recover from linkrot based mainly on querying the anchor text

used to point to the missing page against a search engine. However, they also find that expanding

the query with contextual data from the missing page (obtained from the Internet Archive) can

improve the retrieval performance.

7 MESSAGE DIGEST ALGORITHMS

Hash functions can be used to transform the content of a resource into a non-reversible representation

of that resource. They have traditionally been used for data lookup and comparison tasks. However,

if we consider a web page as the input to the hash function, we can compare its output to a lexical

signature since both capture the content of the page (ignoring the fact that the hash value is

the transformation of the entire content and the lexical signature consists of a limited number of

significant terms only). Changes in the input set (web page) are reflected in the hash value and as

long as they are significant also in the lexical signature.

However, there are two problems with this approach. First, with common hash functions such

as MD5 [224] and SHA-1 [101] the output changes dramatically, even with the smallest changes in

the input set. Secondly, even if we would be able to implement a hash function that changes the

output symmetrically to the degree of change of the input, we would not have the infrastructure

to use these output sets as queries for search engines. To the best of our knowledge, none of the

major general topic search engines support hash values as input. We are mostly restricted to textual

content and URIs because this is the data input supported by the WI.

The Simhash function introduced by Charikar [83] is different. For any given input set the hash

function changes relative to the modification of the input. That means if the input only changes

slightly, the change in the hash functions is minor and if the input set changes significantly the

change in the hash function is major. We still can not use Simhash as input for search engines but

it is useful as a similarity measure of web pages. Manku et al. [181] demonstrates how Simhash can

be applied to find similar web pages in order to improve the quality of a web crawler.

To demonstrate the differences between the hashing functions we show in Table 4 the base64

encoded MD5 and SHA-1 hash values of a passage from the US Declaration of Independence in

two variations. The first is the original phrase as it appears in the Declaration and the second is a

slightly modified version of the original. Instead of “We hold these truths to be self-evident...” the

modified phrase is “I hold these truths to be self-evident...”. As we would expect, the hash values

are dramatically different despite the only minor change in the input. Table 5 shows the base64

encoded Simhash value of the original and the modified phrase of the declaration In contrast to the

MD5 and SHA-1 values we can see some similarity between the Simhash values. The eighth, ninth

and tenth line are completely identical and the third and seventh line are similar. Simhash reports

a normalized similarity score between the two hashes of 0.97 on a scale of 0 to 1 indicating a very

strong similarity. Interestingly, if we make an even smaller and this time semantically insignificant
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Table 4 MD5 and SHA-1 Hash Values for the Original and Slightly Modified Passage from the
Declaration of Independence

“We hold these truths to be self-evident...” “I hold these truths to be self evident...”

MD5 85e1187eab57b877a7f1584724dca1f8 5843aaf98e8ded90ce8fafc41d9206b0

SHA-1 faea9c76bb42581f5e234f78ef4d28a756395270 deb3f16c13b8a10ffdd8b47162f229f88c749674

Table 5 Base64 Encoded SimHash Values for the Original and Slightly Modified Passage from the
Declaration of Independence

Line “We hold these truths to be self-evident...”

1 ywEACK8oVwiuNc2Kq8EvdKtZqy6qpA9FqqI8/ajtb8GmiTCTpD6P6qQFdwmh2TfwodNBbJ+RPYif
2 WInVneZiHp2mAbScWWIwm20SmZdnNjSWz0yKlMX7SpSrFXiTgmIVkirAkY15Q8uNIdOvjGLe6om7
3 AnCIjI2sg3FKUIKKCKt/xTH+f7HDmH+pbpJ+oiSdfcqpnXwMQtB7tyzRewHHuXnK1BR4c5+IeB8n
4 knflkDt3fvJodsiMBnbDqXx0093FdKA633OoiE5wk0wZb+FGfG6YFaRs4sRuaLlVPmU7ONZkkrB/
5 Y0iu7mL34rJhE8a6YJk1E13OFyVX7pjQVv9m9VV5iLdVJab+UVd1MFEpfgdOSqQVTTGyQkyUTY1L
6 Qx2USpn770hlv/ZH/8f5R/KnN0W5yBRETFgLQ4eyW0EMjSBAUtNqPmEIiz0JRIo6XrCSOGrSpzMS
7 2XozBuDXMsid/TJBiMQxF56dLuJmbSySGCcsSV4cKqFsSSl4sislTtu4JUde3yMXhX0iDPwyIgiB
8 zyCs9tYgolDLHiIM4h1VNxcceFD7GvjwoBruGcAaOHTQGfH6QBkxMccYLUT1F/h+sBTNHtUUDC3e
9 E5AC7hIeg6IQAtqNDbfBqA2XM4ANYTBCDUMt7Az7d5MK
10 myRqB3u4kQdas2wBz7yQAM8UjABv030AMaei

Line “I hold these truths to be self-evident...”

1 ywEACLBEeCmvKFcIrjXNiqvBL3SrWasuqqQPRaqiPP2o7W/Bpokwk6Q+j+qkBXcJodk38KHTQWyf
2 kT2In1iJ1Z3mYh6dpgG0nFliMJttEpmXZzY0ls9MipTF+0qUqxV4k4JiFZIqwJGNeUPLjSHTr4xi
3 3uqJuwJwiIyNrINxSlCCigirf8Ux/n+xw5h/qW6SfqIknX3KqZ17tyzRewHHuXnK1BR4c5+IeB8n
4 knflkDt3fvJodsiMBnbDqXx0oDrfc6iITnCTTBlv4UZ8bpgVpGzixG5ouVU+ZTs41mSSsH9jSK7u
5 YvfismETxrpgmTUTXc4XJVfumNBW/2b1VXmIt1Ulpv5RV3UwUSl+B05KpBVNMbJCTJRNjUtDHZRK
6 mfvvSGW/9kf/x/lH8qc3RbnIFERMWAtDh7JbQQyNIEBS02o+YQiLPQlEijpesJI4atKnMxLZejMG
7 4NcyyJ39MkGIxDEXnp0u4mZtLSrKNiySGCcsSV4cKqFsSSl4sislTtu4JUde3yMXhX0iDPwyIgiB
8 zyCs9tYgolDLHiIM4h1VNxcceFD7GvjwoBruGcAaOHTQGfH6QBkxMccYLUT1F/h+sBTNHtUUDC3e
9 E5AC7hIeg6IQAtqNDbfBqA2XM4ANYTBCDUMt7Az7d5MK
10 myRqB3u4kQdas2wBz7yQAM8UjABv030AMaei

change to the original meaning we modify “We hold these truths to be self-evident...” to be “We

hold these truths to be self evident...” we see the Simhash value drop slightly to 0.91. It is easy to

imagine that our small modification of the original text neither changes the title of the document

nor affects the lexical signature of the document. As mentioned in Chapter I, Section 2.1, hash

functions are one way of implementing the reduced representation function rr. However, due to

several reasons mentioned earlier we chose alternate implementations such as lexical signatures and

titles.

8 WEB CONTENT CORPORA

Numerous text corpora are available for information retrieval research. A small sample of corpora and

their characteristics can be found in Table 6. These corpora are generally considered a representative

sample for the Internet [242] but have also been found to be somewhat dated [84]. The TREC Web

Track is probably the most common and well known corpus in information retrieval research. It is

based on a crawl of English language web pages and has, for example, been used in [247] for DF

estimation. The British National Corpus (BNC) [176] is not based on web page content but on

miscellaneous written documents and transcripts of verbal communication such as phone calls and

interviews of British origin. It has been used for [245].
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Table 6 Available Text Corpora Characteristics

Corpus Google N-Gram TREC WT10g BNC WaC
Source Google indexed English language British English Texts uk.Domain

English language Web Pages (newspapers, journals, Web Pages
Web Pages books)

Transcripts of Verbal
Language (meetings,

radio shows)
Date 2006 1997 1994 2006

Unique > 13M 5.8M [167] N/A > 10M
Terms > 100M Total Terms

Number of > 1B 1.6M 4, 124 > 2.6M
Documents (Not Available) (Available) N/A (Available)

TC Available Not Available Available Available
from 3rd Party

Freely Noa No No Yes
Available

aA limited number of free copies of the corpus are available from the Linguistic Data Consortium, University of
Pennsylvania

The Google N-Grams [113] were published in 2006. This corpus is based on the Google index and

therefore provides a powerful alternative to the corpora mentioned above. Not only does it contain

the most amount of unique terms it also is based on the most amount of documents.

The Web as Corpus kool ynitiative (WaCky) [42] provides another corpus based on web pages.

Their Web as a Corpus (WaC) is freely available to everyone and, similar to the Google N-Grams,

contains a huge number of unique terms. It was also created fairly recently and it is based on a

crawl of the .uk domain.
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CHAPTER IV

TF-IDF VALUES FOR THE WEB

1 BACKGROUND

As shown in Chapter III, Section 8, various corpora containing textual content of web pages are

available to researchers. Corpora such as the TREC Web Track and the BNC provide all docu-

ments they are based on. Researchers can therefore precisely determine TF and DF values for all

terms they contain. The DF value is represented as |di| in Equation 8 of Chapter II, Section 5.

Since the sum of documents in the corpus (|D| in the same Equation 8) can easily be computed both

mandatory values for the IDF computation are given. Since both corpora are not freely available we

turn our focus to the Google N-Grams. This corpus provides all unique terms (or n-term tokens) of

the corpus along with the count of their overall occurrences in the entire corpus. We call this value

term count (TC). The N-Grams do not provide the documents they are based on which means we

can not determine DF values for the terms. To illustrate the difference between TC and DF , let us

consider a small sample corpus of 5 documents D = d1...d5 where each document contains the title

of a song by The Beatles:

d1 = Please P lease Me

d2 = Can′t Buy Me Love

d3 = All Y ou Need Is Love

d4 = All My Loving

d5 = Long, Long, Long

Table 7 summarizes the TC and DF values for all terms occurring in our corpus. We can see that

the values are identical for the majority of the terms (8 out of 10). The example also shows that

term processing such as stemming would have an impact on these numbers. Without stemming Love

and Loving are treated as different terms with stemming they both would transform to Lov. The

WaC also provides TC values of all their unique terms. Unlike the Google N-Grams all documents

are provided as well and so we can determine DF values as well. Due to the size of the corpus and

the documents it is based on (the Google index) we would prefer to use the N-Grams for computing

our DF values. However, from personal conversations with a Google representative we know that

Google does not intend to publish the DF values of their corpus. But given these two corpora we

can investigate the correlation between TC and DF values. With a positive outcome we could say

Table 7 TC-DF Comparison Example

Term All Buy Can’t Is Love Me Need Please You My Loving Long
TC 2 1 1 1 2 2 1 2 1 1 1 3
DF 2 1 1 1 2 2 1 1 1 1 1 1
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with confidence that the TC values provided by the N-Grams can be used interchangeably with DF

values from the WaC and therefore are suitable to estimate DF values for our lexical signatures.

We achieve this by investigating the relationships between TC and DF values within the WaC and

also between WaC based TC and Google N-Gram based TC values as shown in Klein and Nelson

[159].

2 CORRELATION OF TERM COUNT AND DOCUMENT FREQUENCY

VALUES

2.1 Correlation Within the WaC

Fig. 13 Term Count and Document Frequency Ranks in the WaC Dataset

We take the WaC dataset and rank all its terms according to their TC and DF values in

descending order. The scatterplot of the ranks from these two lists is displayed (in log-log scale)

in Figure 13. The x-axis represents the TC ranks and the y-axis the corresponding DF ranks. We

see the majority of the points fall in a diagonal corridor. That indicates a high similarity between

the rankings since two identical lists would be displayed as a perfect diagonal line. Figure 14 shows

the measured and estimated correlation between TC and DF values in the WaC dataset. The

increasing size of the dataset, meaning the increasing list of terms, is shown on the x-axis. The solid

black line displays the Spearman’s ρ values. The value for ρ at any size of the dataset is above 0.8

which again indicates a very strong correlation between the rankings. The results are statistically
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Fig. 14 Measured and Estimated Correlation Between Term Count and Document Frequency
Ranks

significant with a p-value of p ≤ 0.05. The blue line shows the computed Kendall τ values for the

top 1, 000, 000 ranks and the red line represents the estimated τ values for the remaining ranks.

We again find a strong correlation with computed τ values between 0.82 and 0.74 and estimated τ

values of at least 0.66. We did not compute τ for greater ranks since it is a very time consuming

operation. For the entire WaC dataset (over 11 million unique terms) we estimated a computation

time for Kendall τ of almost 11 million seconds or more than 126 days which is clearly beyond a

reasonable computation time for a correlation value. Kendall τ was computed using an off-the-shelf

correlation function as part of the R-Project [36], an open source software environment for statistical

computing. The software (version 2.6) was run on a Dell Server with a Pentium P4 2.8Ghz CPU

and 1 GB of memory.

Gilpin [116] provides a table for converting τ into ρ values. We use this data to estimate our τ

values. Even though the data in [116] is based on τ values computed from a dataset with bivariate

normal population (which we do not believe to have in the WaC dataset), it supports our measured

values.
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(c) Integer Values

Fig. 15 Frequency of TC/DF Ratios in the WaC − Rounded

2.2 Term Count − Document Frequency Ratio in the WaC

We further emphasize the correlation between the two rankings by plotting the TC/DF ratios of

all terms. For two ranked lists which are perfectly correlated the ratio for all list items is equal to

1. Figure 15 shows (in log-log scale) the frequency of all ratios. The point with by far the highest

frequency is at x = 1 which confirms the dominance of the “perfect ratios”. Figure 15(a) shows

the distribution of TC/DF ratios with values rounded after the second decimal and Figure 15(b)

shows ratios rounded after the first decimal. It is clearly visible that the vast majority of ratio

values are close to 1. The visual impression is supported by the computed mean value of 1.23 with a

standard deviation of σ = 1.21 for both Figure 15(a) and 15(b). The median of ratios is 1.00 and 1.0

respectively. Figure 15(c) shows the distribution of TC/DF ratios rounded as integer values. It is

consistent with the pattern of the previous figures. The mean value is equally low at 1.23 (σ = 1.22)

and the median is also 1. Figure 15 together with the computed mean and median values accounts

for another solid indicator for the strong correlation between TC and DF values within the corpus.

2.3 Similarity Between WaC and N-Gram TC Values

After showing the correlation between TC and DF values within the WaC, we investigate the

similarity between the TC values available from both corpora, WaC and the Google N-Grams. Since

both corpora are based on different sources and the N-Gram dataset was generated from a much

greater set of documents, a direct comparison of intersecting terms could be misleading. However,

a comparison of the frequency of all TC values of the two corpora will give an indication of the

similarity of the two datasets. Figure 16 displays in log-log scale these frequencies of unique TC

values from both corpora. Visual observation of the figure confirms the intuition that the distribution

of TC values in both corpora is very similar. The assumption is that only the greater size of the

Google N-Gram corpus compared to the WaC is responsible for the offset between the points in

the graphs. Figure 16 further shows the TC threshold of 200 that Google applied while creating

the N-Gram dataset meaning that unigrams occurring less than 200 times in their document set
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were dismissed. Now, knowing that the TC values are very similar between the two corpora and

Fig. 16 Term Count Frequencies in the WaC and N-Gram Corpus

seeing the high correlation between TC and DF values, we are led to the conclusion that the Google

N-Gram (TC) values are usable for accurate IDF computation. These results are also supported in

related research conducted by others [151, 206, 275].

The TREC Web Track has been used to compute IDF values in [247] and the BNC in [245] but it

is unknown whether the authors actually computed DF values from the corpora or used TC values,

which in case of the BNC are available through a 3rd party.

3 ESTIMATING IDF VALUES TO GENERATE LEXICAL SIGNATURES FOR

THE WEB

The Google N-Grams provide an attractive corpus for the following reasons:

1. it is created by Google, a well established source

2. the size of the collection seems suitable

3. the collection was created recently (2006)

4. and it is based on web pages from the Google index and thus representative of what we generate

lexical signatures from.
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However, Google’s terms of use prohibit us from utilizing the corpus in any kind of service or public

software. But since we have seen that the N-Grams are suitable for generating accurate IDF values

we can use the corpus as a baseline and compare other potential IDF value generation methods

against it.

We validate two different approaches against this baseline:

1. a local collection of web pages and

2. “screen scraping” document frequency from search engine result pages.

This comparison determines whether the two alternative methods return results that are sufficiently

similar to our baseline and thus warrant use for (re-)discovering web pages. We evaluate the results

by analyzing the top n terms ranked by their TF-IDF value generated by the three different means.

The analysis consists of measuring the term overlap and the correlation of the list of ranked terms

as shown in Klein and Nelson [157].

3.1 Choice of Baseline Corpus

The Google dataset provides TC values for n-grams where n = 1 to n = 5. In case of n = 1

the tokens are called unigrams and bigrams in the case where n = 2. The number of documents

Google used in the compilation of the N-Grams was not published and thus not available to us at

the time we conducted our experiment. Since the N-Gram dataset is based on the Google index

we use the last officially publicized Google index size of 8 Billion (in 2005) for the value of |D|
for the IDF computation. We are aware that this is a rather conservative estimate but since all

major search engines have discontinued publishing their index sizes we trust in the last officially

announced numbers. Other (unofficial) sources like http://www.worldwidewebsize.com/ report

much larger numbers and a case can be made to use their experiments in future work (even though,

mathematically speaking, it would not make a difference).

The dataset only reports n-grams that appear at least 200 times. For terms that do not appear

in the N-Gram dataset, we optimistically assume they just missed the threshold for inclusion and

give them a value of 199. Since we compute IDF values of single terms we use all 1-term tokens

from the N-Gram set and refer to the resulting data from the baseline as N-Gram (NG) data.

3.2 Local Universe Data

Even though for the computation of IDF values the intuitive approach would be to download all

existing web pages, parse their content and compute the document frequency of all terms, this is

clearly not feasible. However, we can download a sample set of web pages and all their copies from

the last N years to create a “local universe” with document frequencies available for all terms.

We randomly sampled 300 URIs from dmoz.org as our initial set of URIs. From this pool we

selected only the more common domains .com, .org, .net and .edu similarly to the filters applied in

Park et al. [214] we dismiss:

• all non-English language websites and

• all websites with less than 50 words of textual content (HTML code excluded).
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Our set of URIs eventually contains 78 .com, 13 .org, 5 .net and 2 .edu URIs for a total of 98.
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Fig. 17 Mementos from the Internet Archive from 1996 to 2007

We used the IA to download all available copies for each of our 98 URIs. Our local universe

consists of a total of 10, 493 Mementos, each identified by a URI (U) and the timestamp (t) it was

archived. Note that at the time we conducted this experiment the Memento framework was not

yet deployed and we therefore used the IA as our only resource for previous versions of the URIs.

Despite that, for reasons of consistency, we use the term Memento for the here obtained copies. The

model of the corpus is shown in equation 30.

local universe =


U1,t1 U1,t2 ... U1,tn

U2,t1 U2,t2 ... U2,tn

...

U98,t1 U98,t2 ... U98,tn

 (30)

Figure 17 shows all (in September 2007) downloaded Mementos of all 98 URIs in this 12 year

span. The date of the Mementos is shown on the x-axis and the URIs, alphabetically ordered and

numbered, along the y-axis. Within the 12 year time span we only see a few Mementos in the

early years of 1996 and 1997. The graph becomes more dense however from the year 2000 on. The

first Mementos date back to December 1996 and the latest in September 2007. Figure 17 shows an

interesting fact: at any given point in time at least one of the URIs does not have a Memento or, in

other words, at no point in time do we have Mementos for all our sample URIs. We extracted all
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terms from each Memento and stored them in a local database. We do not include the content of

neighboring pages at this point. This term database consequently consists of all unique terms that

appear in any of the 98 web pages within the 12 year time span and the number of documents they

appear in. Thus the database represents the union of the textual content of all our Mementos and

the document frequency of all terms. With the frequencies and the total number of documents in

our universe we have both mandatory values available to compute IDF values for all terms. We

call the data that results from this computation locally computed (LC) data.
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Fig. 18 Term Frequency Distribution in the Local Universe

Figure 18 confirms that the term distribution in our local universe (despite its limited size) follows

a Zipf distribution [49] of Pk = c × (k−a) where a = 1.134, similar to the distribution of English

language terms. There are a total of 254, 384 terms with 16, 791 unique terms. Figure 19 shows the

development of these two numbers over time where the left y-axis represents the numbers for the

total terms and the right y-axis shows the numbers for the unique terms. We also computed the

number of new terms per year normalized by the total number of Mementos in the respective year.

The values range from 87.7 to 177.5 with a mean of 131.7 and a standard deviation σ = 24.3.

It is worth mentioning that we also generated term databases for each and every single year

separately and computed IDF values for each year in respect to the according database. We found

however that the results for the per year generated IDF values were very similar to the values
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Fig. 19 New vs Total Number of Terms

generated based on the LC data and thus we do not report on them separately.

3.3 Screen Scraping the Google Web Interface

A very common approach ([120, 180, 214, 218]) to compute IDF values of web page content has been

to glean document frequency information from search engine result pages. This approach is known

as “screen scraping” and can be done in real time which makes it attractive for many scenarios. In

this approach, every single term is queried against a search engine and the “Results”-value is used

as the document frequency for that term. Figure 20 shows an example of the Google result set (from

May 2008) for the query term wines and the estimated number of documents the term occurs in:

55, 000, 000. Although the document frequency information is only estimated [18], this is the only

information available to us. Our screen scraping data was generated in January of 2008 and we use

the same value for |D| as in Section 3.1. We refer to this data as screen scraping data (SC).
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Fig. 20 Google Result Set for the Query Term wines

3.4 Comparison Methods for TF-IDF Ranked Term Lists

Since the TF computation is done the same way in all three approaches (including the baseline), we

compare lists of terms ranked by their TF-IDF (and not only IDF ) value in decreasing order. We

transform the lists of terms ranked in descending order by their TF-IDF values into 5-, 10- and 15-

term lexical signatures. Table 8 shows an example of terms in a lexical signature and the according

TF-IDF values. We took the textual content from the URI http://www.perfect10wines.com in

2007 and list the top 10 terms in decreasing order of their TF-IDF values for each of our three

approaches. All three lists of table 8 contain 10 terms but despite different TF-IDF values we only

see 12 unique terms in the union of all lists. From these lists one could create a lexical signature

for the given website. The 5-term lexical signature generated by the screen scraping method, for

example, would be wines, robles, perfect, paso, wine. This example also shows that we did not apply

stemming algorithms because otherwise wines and wine would be treated as one entity.

To measure the differences between these lexical signatures we use three different comparison

methods which have been proven in related research [192] to be efficient in comparing top x search

engine results. The first method we apply is normalized term overlap. Since the idea is to feed the

lexical signatures back into search engines, term overlap is an important metric. For simplicity, we
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Table 8 Top 10 TF-IDF values generated from http://www.perfect10wines.com

Local Universe Screen Scraping N-Grams
Term TF-IDF Term TF-IDF Term TF-IDF

1 perfect 7.77 wines 5.97 wines 7.56
2 wines 6.95 robles 5.3 perfect 7.25
3 10 6.57 perfect 4.35 robles 7.18
4 paso 6.29 paso 4.27 paso 6.93
5 wine 6.18 wine 3.26 wine 4.86
6 robles 5.4 sauvignon 3.16 10 4.52
7 sauvignon 3.54 chardonnay 3.15 chardonnay 3.99
8 cabernet 3.54 robles84 3.11 sauvignon 3.93
9 monterey 3.36 cabernet 3.09 cabernet 3.89
10 chardonnay 3.36 enthusiast85 2.91 monterey 3.49

assume query term commutativity, although in practice the order of query terms can slightly change

the results based on proximity in the original document and other factors. We normalize the overlap

of k-term lists by k. Let us, for example, assume list α contains three terms α = [a, b, c] and list β

contains β = [b, c, d]. The normalized overlap would be 2/3 since α and β share two out of three

terms.

In a scenario with m total terms (all candidates to make it into the lexical signature) and an

k-term lexical signature, there is value in knowing whether a term is ranked k + 1, meaning it has

just missed the top k, or whether it is ranked m or m− 1, meaning in the lower end of the ranked

list of all terms. The overlap value will not reveal this information and always leave us wondering

if the performance would be better if we chose a bigger or even a smaller k. For this reason we also

use a modified version of Kendall τ correlation introduced by Fagin et al. [104]. This measure will

answer the question since we compare lexical signatures of different length (5, 10 and 15 terms).

The common Kendall distance measure can not be applied here since its general assumption of both

lists having all items in common can not be guaranteed. The modified version of Kendall does not

require both lists to share all items.

Since our lexical signatures start with the top k terms, we also think there is value in giving

more credit to lists that are very similar in the high ranks and maybe less similar at the lower end

than lists that show the opposite pattern. We use the M -measure as our third correlation method.

The M-Score will provide information about the locality of the term ranks in the lexical signatures.

A low score means the compared lexical signatures show discordance in the high ranks and a high

score stands for concordance in the top ranks.

All three methods are normalized and return scores between 0 and 1 where 0 means complete

disagreement and 1 complete agreement.

3.5 Results

With our three different models for IDF generation (LC, SC, NG) and the three different comparison

and similarity measures between ranked lists of terms in decreasing TF-IDF order we can report on

all together nine comparisons. Since we consider the NG based data our baseline, the comparison
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Fig. 21 Term Overlap, Kendall τ and M-Score of All Three Lexical Signature Generation Methods
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between LC and SC is included just for completeness. It is more important for us to see how LC

and SC compare against NG. Figure 21 shows all comparison and correlation scores of all 98 URIs

over time. The progress in time (which is due to the temporal character of our local universe) is

displayed on the x-axis and the y-axis shows the appropriate values as the mean of all 98 URIs for

a particular year. The first horizontal line of graphs holds the normalized term overlap scores, the

second the Kendall τ scores and the third the M-Scores. The first vertical column of the plots shows

the comparison values between LC and NG based data, the middle one shows SC and NG based

data comparison and the graphs in the rightmost column display comparison values between LC

and SC based data. The three lines visible in each of the plots represent lexical signatures consisting

of 5, 10 and 15 terms respectively.

We can observe that all nine plots look fairly similar with the lines being somewhat out of tune

in the early years and from approximately year 2000 on the scores become more and more consistent

with values of well above 0.5 for all three top k lexical signatures. The noise in the early years can

be explained with our sparse dataset in these years. Over time, as the dataset grows, the scores level

off. We can also see the highest correlation in terms of overlap, Kendall τ and M-Score between the

SC and NG based data. This is not surprising since these two datasets are supposedly based on

the same (Google) index which exceeds the size of our local index (LC based data) by several orders

of magnitude. It furthermore becomes visible that the similarity between LC and NG is greater

than between LC and SC. We have two explanations for this observation. First, we argue that

data returned by screen scraping is not as accurate as what Google reported in their N-Grams since

the Google web interface only returns estimated values for number of documents a term appears in.

Second, we do have a frequency for every single term in the NG dataset (due to Google’s threshold

we assign a value of 199 to all terms that do not appear in the N-Grams) but there are cases

where the Google web interface does not return a value for certain terms which we consequently

can not include in the lexical signature computation. For example, one URI contains the term

companyproductsfaqorder which queried against the Google web interface returns no results1.

As mentioned above we consider the normalized term overlap displayed in the top row of Figure

21 as a very important similarity measure. After the initial noise in the early years we see an overlap

of 80% in the best case (SC vs NG), about 70% in LC vs NG comparison and a worst case of 50%

comparing LC and SC. The scores for Kendall τ (middle row of Figure 21) are even higher which

means that not only the term overlap is good in the lexical signatures that are compared but also

the order of the terms is fairly similar meaning the number of pairwise disagreements within the top

k lexical signatures and thus the number of switches needed to transform one lexical signature into

the other is rather low.

The M-Score (displayed in the bottom row of Figure 21) accounts for the highest score in this

comparison. The best cases report scores of 0.9 and above. This graph confirms that the disagree-

ments in the lexical signatures are rather at the low end of the ranked list of terms regardless of the

method the IDF values were computed with. The M-Score is the only comparison where a slight

difference between top k lexical signatures becomes visible. Top 5 lexical signatures seem to perform

slightly worse than top 10 and top 15 especially in the comparisons LC vs NG and LC vs SC. This
1This is not quite accurate since the query term does return one result: the dissertation proposal published on this

author’s website.
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means the TF-IDF methods become more correlated as k increases.

All methods shown in Figure 21 comparing LC and NG as well as SC and NG data show that

both the local universe based data as well as the screen scraping based data is similar compared

to our baseline, the N-Gram based data. The presented scores seem to imply that the agreement

between the methods for IDF computation improves or at least stays the same as we chose a greater

number of terms.

3.6 Inter-Search Engine Lexical Signature Performance

We have shown that screen scraping a search engine’s web interface to estimate a term’s DF value

is a feasible approach. It provides accurate results and can be done in real time.

The purpose of this small scale experiment was to investigate the relationship between a search

engine’s DF value and the retrieval performance of the lexical signatures based on those DF values

using the very same search engine. We are trying to answer the question whether we can improve

retrieval values by using DF values from one search engine and querying the lexical signatures against

a different search engine as shown in Klein and Nelson [160].

We use Google, Yahoo! and MSN (Bing had not yet been introduced at the time we conducted

this experiment) for this approach. We used the 309 URIs from the dataset introduced below in

Chapter V, Section 3.2 and generated three lexical signatures for all of those URIs. For each URI

we eventually have a Google based lexical signature, a Yahoo! based lexical signature and a MSN

based lexical signature. We then cross-query all lexical signatures against the two search engines

they were not generated from using the corresponding APIs. Since all of the sample URIs are from

the live web and indexed by all of the search engines we should be able to locate them in the result

sets. We therefore can compare the retrieval performance of lexical signatures across search engines.

Figure 22 shows the 5-term Lexical Signature performance in all search engines. The labels on

the axes indicate what search engine the lexical signatures were derived from (first letter) as well as

what search engine they were queried against (second letter). G, M and Y stand for Google, MSN

and Yahoo! respectively. The label GM , for example, represents lexical signatures based on Google

and queried against MSN. The size of the dots is proportional to the number of URIs returned. We

distinguish between one of four retrieval categories:

1. the URI is returned as the top ranked result or

2. the URI is returned in the top 10 but not as the top ranked result or

3. the URI is ranked somewhere between 11 and 100 or

4. the URI was not returned which means in our case is ranked somewhere beyond rank 100.

The categories are further argued for in Chapter V, Section 3.1. The absolute values are also plotted

in the graph either inside or right next to the corresponding dot. MSN based lexical signatures

perform better when queried against Yahoo! or Google than against MSN itself. They return

more top ranked URIs (MY ), more URIs in the top 10 and top 100 (MG) and leave fewer URIs

undiscovered in both scenarios. Yahoo! and Google based lexical signatures perform best when

queried against the search engine they were generated from. Even though Y G returns almost twice

as many URIs in the top 10 than Y Y its performance in the top ranks is much worse.
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Fig. 22 Lexical Signature Performance Across All Three Search Engines

4 SUMMARY

In this chapter we have shown that term count (TC) values can be used to estimate the document

frequency of a given term for the purpose of computing the term’s TF-IDF value. This conclusion

is derived from two of our findings. First we see a very strong correlation between the TC and DF

ranks within the WaC. Second we find a great similarity between TC values of terms in the WaC

and the Google N-gram corpus despite the difference in corpus sizes. These results do not provide

a bulletproof case that all values correlated to TC (TF may be an example) can automatically be

used as a replacement for DF but they do give strong indicators that TC values gained from the

Google N-grams (a recently generated, on web pages based corpus) are usable for the generation

of accurate IDF values. With this finding the computation of accurate IDF values becomes more

convenient and the resulting lexical signatures of web pages still perform well for (re-)discovering

the page when fed back into search engines.

However, since the Google N-grams can only be used for research purposes we can not utilize them

for our software implementation. Therefore we investigated two additional methods for computing

IDF values for web pages. We used the Google N-grams as a baseline to evaluate the performance

of the two methods. The first method is based on a local universe meaning a set large of web

pages that, considered as a corpus, can provide DF values. The second method is known as screen

scraping the search result page from a search engine. Even though neither of these methods is new

to the community, the comparison of the two against a baseline is novel. The results in this chapter
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show a great similarity between the two methods and the baseline. In particular, all three similarity

measures, term overlap, Kendall τ and the M-Score support this finding, especially for the screen

scraping based data. The scores for local universe based data are still good but slightly below the

screen scraping values. Another interesting finding is that it appears with the increasing number

of terms for a lexical signature the agreement between the methods also increases or at the very

minimum remains stable. In conclusion, both approaches provide good correlation with data derived

from the Google N-grams and are suitable for our purpose. However, screen scraping has the major

advantage of being feasible in real time and it can be implemented in our software system. Including

a local universe into our software does not seem realistic.
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CHAPTER V

LEXICAL SIGNATURES FOR THE WEB

1 BACKGROUND

A lexical signature of a textual document is typically generated using the TF-IDF scheme. To

generate lexical signatures of web pages the pages of interest are usually filtered by language, mime

type and length. Pages containing less than 50 words have been dismissed in related research [214]

to ensure a good sized body of text to extract a lexical signature from. Naturally such a signature is

language dependent and therefore non-English content is also dismissed. Furthermore, non-HTML

resources, for example, PDF or Microsoft Word documents, are discarded. Several techniques are

feasible to enforce this filter. It is possible (but not mandated by RFC 2616 [108]) that the HTTP

server provides an HTTP header specifying the content type of the resource. In case this information

is not provided or there is a need to validate the provided data, third party software such as the

UNIX file command line tool can be used to provide a best guess about the content type of the

investigated document as shown in [264].

Once these hurdles are overcome all terms of the page are extracted into a “bag of words”. We

compute TF-IDF values for all terms and sort the terms in decreasing order of their TF-IDF value.

The top n terms of that list form the lexical signature of a document and therefore represent our

first implementation of the rr function introduced in Chapter I. The main purpose of a lexical

signature is to be used as a query against a retrieval system such as an Internet search engine and

retrieve the same document in the result set as well as other highly relevant documents. This concept

consequently follows the c2u function also formally introduced in Chapter I.

2 EVOLUTION OF LEXICAL SIGNATURES OVER TIME

Intuitively one understands that the content of web pages changes over time. Given that, we are

interested in investigating how much lexical signatures change and decay over time. Table 9, for

example, shows various results of the rr function in dependence of time. The lexical signatures were

created at some point in the past and again at the time of writing in early 2011. The first two

lexical signatures were created by Phelps and Wilensky in the late 1990s. The lexical signatures for

the Endeavour project at Berkeley change but at least shows an overlap of two out of five terms.

Interestingly the zip code has made it into the lexical signature by now even though the content of

the page has not changed in the last 11 years. The lexical signatures for Randy Katz’s homepage in

contrast do not show any term overlap. Correcting the typo in Californa likely contributed to the

disappearance of the term since California is not a good discriminator in the entire index of a search

engine. The Library of Congress example also shows two terms in common for both lexical signatures.

Today the page is indexed with terms such as detailurl and shortname which are part of JavaScript

code in the page and therefore not necessarily obvious to the user. The JCDL 2008 example shows

the highest overlap of four terms. Only the email address replaced the less discriminating token
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Table 9 Lexical Signatures Generated from Various URIs Over Time

URI Lexical Signature
Past Recent

http://endeavour.cs.berkeley.edu/

amplifies endeavour endeavour 94720-1776
leverages charting achieve inter-endeavour

expedition amplifies
(late ’90s) (2011)

http://bnrg.eecs.berkeley.edu/~randy/

californa isrg randy eecs
culler rimmed professor frameset

gaunt katz
(late ’90s) (2011)

http://www.loc.gov/

library collections library playersize
congress thomas detailurl shortname

american collections
(2008) (2011)

http://www.jcdl2008.org/

libraries jcdl libraries jcdl
digital conference digital conference

pst info@jcdl2008.org
(2008) (2011)

http://www.dli2.nsf.gov/

nsdl multiagency digital library
imls testbeds dli2 2002
extramural 2003
(late ’90s) (2009)

pst. The last example is also provided by Phelps and Wilensky. They generated the early lexical

signature of the web page for the Digital Libraries Initiative 2 in the late 1990s. Today the URI

returns a 404 error − the project has expired years ago. The recent lexical signature was created

from the last available copy provided by the IA from 2009. We see no overlap between the lexical

signatures.

These examples underline the intuition that the content of web pages changes over time and

therefore their lexical signature changes. In the following experiment we modeled the decay of

lexical signatures over time. The results will enable us to give a statement about the usefulness of a

lexical signatures with respect to its retrieval performance. Ideally we would take snapshots of the

entire web over a period of several years and evaluate the change. Since that is clearly infeasible

for us we chose to utilize the IA and their best effort approach to make copies of the web. The

IA provides copies of web pages starting in 1996 to the present and is therefore a great source for

such a dataset. We use the “local universe” repository introduced in Chapter IV, Section 3.2 and

visualized in Figure 17. For each URI we aggregate all terms per year and generate lexical signatures

for each of those years. For example, the URI http://www.perfect10wines.com has observations

in the IA in 2005, 2006 and 2007 (as Figure 23 shows) and so we generate three lexical signatures

for this URI. The top 10 terms of each lexical signature along with their TF-IDF scores for this

URI are shown in Table 10. This example shows a core of 8 terms (highlighted in bold) that occur

in all three years. The ranking of the terms varies and the dynamics within the lexical signatures,

meaning the rise and fall of words can be seen with terms such as chardonnay (ranked 6 in 2005
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Fig. 23 58 Mementos of http://www.perfect10wines.com in the Internet Archive

and 9 in 2007) and paso (9 in 2005 and 3 in 2007). The example of Table 10 also shows that we did

not apply stemming algorithms (wine and wines) nor eliminate stop words from the list of terms in

this stage of the experiment. We conduct a term overlap analysis of the lexical signatures generated

for all URIs at all available points in time and again we assume query term commutativity for our

lexical signatures.

2.1 Results

We distinguish between two different overlap measures per URI:

1. rooted − the overlap between the lexical signature of the year of the first observation in the

IA and all lexical signatures of the consecutive years that URI has been observed

2. sliding − the overlap between two lexical signatures of consecutive years starting with the

first year and ending with the last.

For example, if a URI has copies in the IA in each year from 1996 through 2001, we would have

rooted overlap values for the lexical signatures of 1996 and 1997, 1996 and 1998, 1996 and 1999,

1996 and 2000 and finally 1996 and 2001. For the sliding overlap we have data for 1996 and 1997,
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Table 10 10-term Lexical Signatures generated for http://www.perfect10wines.com for 2005,
2006 and 2007

2005 2006 2007
Term Score Term Score Term Score

1 wines 8.56 wines 6.52 wines 5.25
2 perfect 5.00 wine 4.80 wine 4.50
3 wine 3.03 perfect 4.70 paso 4.50
4 10 2.60 10 3.45 perfect 4.10
5 monterey 2.24 paso 3.01 robles 3.75
6 chardonnay 2.24 robles 2.89 10 3.40
7 merlot 2.20 monterey 2.79 monterey 2.25
8 robles 1.99 chardonnay 2.79 cabernet 2.25
9 paso 1.99 ripe 1.86 chardonnay 2.25
10 blonde 1.38 vanilla 1.86 sauvignon 2.25

1997 and 1998, 1998 and 1999 etc. The term overlap is the number of terms two lexical signatures

have in common e.g., if two 5-term lexical signatures have three terms in common its overlap would

be 3/5 = 0.6.

Tables 11 and 12 show the normalized (over the maximal possible) mean overlap values of all

URIs where Table 11 holds the overlap values of what was introduced as rooted overlap and Table

12 holds values for the sliding overlap. All lexical signatures compared consist of 5 terms. In both

tables the columns represent the year of the first observation in the IA e.g., all values for all URIs

with observations starting in 1996 can be found in the column headed by 1996. The mean overlap

of all URIs starting in 1996 between the starting year and 2001 can be thus be found in the first

column and fifth row (the 2001-row) of Table 11. The overlap between 2003 and 2004 of all URIs

with observations starting in 1999 can consequently be found in the fourth column (the 1999-column)

and eight row (the 2003− 2004-row) of Table 12.

We generally observe low overlap scores for the rooted overlap (Table 11). We see an overlap

of slightly above 10% between lexical signatures from 1996 and more recent ones. The maximum

overlap value of 90% is scored for lexical signatures created in 2006 and 2007. Values are highest

mostly in the first years after creation of the lexical signatures and then drop over time. We rarely

see values peaking after this initial phase which means terms once gone (not part of the lexical

signature anymore) usually do not return. This indicates that lexical signatures decay over time and

become stale within only a few years after creation.

Due to the year by year comparison, it is not surprising that the sliding overlap values (shown

in Table 12) are higher than the rooted overlap values. We can observe a different pattern here.

Values often increase over time and quite frequently they peak in the more recent past. It almost

seems that lexical signatures enter a “steady state” from a certain time on. This could be because

of the way people did web sites in the late 90s. We need to point out that all values are mean values

over all URIs and normalized by the maximum possible overlap. Especially for the early years due

to the sparse set of observations these values may not be representative.
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Table 11 Normalized Overlap of 5-Term Lexical Signatures − Rooted Overlap

compare Year of First Memento
to 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1997 0.33

1998 0.13 0.33

1999 0.13 0.20 0.56

2000 0.13 0.33 0.49 0.51

2001 0.20 0.27 0.31 0.46 0.58

2002 0.13 0.33 0.33 0.32 0.48 0.64

2003 0.13 0.13 0.40 0.40 0.47 0.54 0.66

2004 0.13 0.13 0.36 0.35 0.40 0.53 0.60 0.66

2005 0.13 0.07 0.38 0.37 0.37 0.42 0.50 0.63 0.58

2006 0.13 0.20 0.31 0.35 0.38 0.48 0.51 0.46 0.62 0.80

2007 0.20 0.20 0.27 0.29 0.37 0.44 0.50 0.37 0.52 0.60 0.90

Table 12 Normalized Overlap of 5-Term Lexical Signatures − Sliding Overlap

Year of First Memento
comparison 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1996-1997 0.33

1997-1998 0.40 0.33

1998-1999 0.73 0.27 0.56

1999-2000 0.53 0.40 0.49 0.51

2000-2001 0.47 0.87 0.56 0.62 0.58

2001-2002 0.53 0.73 0.51 0.52 0.63 0.64

2002-2003 0.60 0.73 0.67 0.55 0.67 0.64 0.66

2003-2004 0.93 0.80 0.76 0.69 0.80 0.83 0.73 0.66

2004-2005 0.87 0.80 0.73 0.66 0.82 0.68 0.83 0.74 0.58

2005-2006 0.93 0.47 0.71 0.72 0.77 0.72 0.84 0.51 0.76 0.80

2006-2007 0.87 0.53 0.80 0.68 0.83 0.76 0.81 0.49 0.68 0.80 0.90
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Table 13 Lexical Signatures Generated from URIs Over Time Queried against Google at Different
Points in Time. Results are Shown as Rank/Total Results (Year of the Query)

URI Past LS Queried Recent LS
in Past Recently Queried Recently

http://endeavour.cs.berkeley.edu/
1/1 4/194,000 1/139

(late ’90s) (2011) (2011)

http://bnrg.eecs.berkeley.edu/~randy/
1/<100 NA/11 1/9,340

(late ’90s) (2011) (2011)

http://www.loc.gov
1/174,000 2/356,000 1/17

(2008) (2011) (2011)

http://www.jcdl2008.org
2/77 9/550 1/617
(2008) (2011) (2011)

http://www.dli2.nsf.gov
1/1 NA/19 NA/8,670

(late ’90s) (2011) (2011)

3 PERFORMANCE OF LEXICAL SIGNATURES

Table 13 shows the results of applying the c2u function meaning querying the lexical signatures

of the URIs shown in Table 9 of Section 2 at different points in time. The query results of the

lexical signatures by Phelps and Wilensky in the late 1990s can be obtained from their numerous

presentations available on the web. The table shows the query results of the lexical signatures

created in the past and queried in the past as well as very recently but also the results of the

recently generated lexical signatures queried at the time of writing.

We can see that all lexical signatures created in the past performed very well in the past. All

three lexical signatures by Phelps and Wilensky showed an excellent performance by returning the

URI top ranked. Two of the three lexical signatures return the target URI as the only result. If we

are not concerned about recall this is the optimal output of the c2u function. The lexical signature

of the Library of Congress had a high recall but still returned the URI top ranked. The JCDL URI

was returned ranked second with a low recall which means the lexical signature is still performing

well.

Querying the old lexical signatures today shows a different picture. We do not find the DLI2

URI and the URI of Randy Katz’s page returned at all. The DLI2 URI no longer exists and since it

has been deleted from the search engine’s index it can not be returned. The URI of Randy Katz’s

page however is still indexed and could have been returned. The three URIs that are returned are

ranked in the top 10 which can be considered a good result of c2u given the dated rr output even

though the recall is rather high. The newly generated lexical signatures perform much better with

all indexed URIs returned top ranked and a low recall value.

This example proves that the performance of lexical signatures changes over time. An up-to-date

output of the rr function potentially performs better in the sense of finding recent versions of a page.

However, an old lexical signature could still be used for identifying an old version. We conduct an

experiment querying the lexical signatures of our “local universe” against today’s search engines and

evaluate the results in terms of their performance.

We also are interested in investigating the length of well performing lexical signatures. Therefore
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we generate lexical signatures that differ in the number of terms they contain. Phelps and Wilensky

[218] as well as Park et al. [214] chose 5-term lexical signatures assuming 5 would be good number

regarding precision and recall when feeding lexical signatures back to Internet search engines. We

chose a wider range starting at 2 terms going up to 10 terms and for comparison reasons we also

created 15-term lexical signatures. The goal is to display a performance curve that gives an indication

for a possibly dated and insufficiently performing lexical signature.

3.1 Results Over Time

We took the lexical signatures generated from all URIs of the local universe introduced in Chapter

IV, Section 3.2 (over the time span of 12 years) to form queries which we issued to the Google search

API between November 2007 and January 2008. Since the Google API, at the time we conducted

this experiment, had a limit of 1000 queries per day, we only ask for the top 100 results. To evaluate

the performance of lexical signatures we parse the result set of the lexical signature queries and

identify the URI the lexical signature was created from. This filter works due to bunching in a

rather liberal fashion. Even if the actual URI string is not identical, as long as the desired URI

is one of the bunch, we consider it identified. For example, if the URI the lexical signature was

generated from is http://www.foo.bar the bunch of URIs that would all count as a hit is:

• http://foo.bar

• http://foo.bar/page.html

• http://www.foo.bar/page.html.

The search results provided by the search engine APIs do not always match the result provided by

the web interfaces ([192]) but we are using the Google API for all queries and thus are not forced

to handle possible inconsistencies.

As a first step we analyze the result set by again distinguishing between our four scenarios for

each URI. Either:

1. the URI is returned as the top ranked result or

2. the URI is returned in the top 10 but not as the top ranked result or

3. the URI is ranked somewhere between 11 and 100 or

4. the URI was not returned which means in our case is ranked somewhere beyond rank 100.

We consider a URI for the last case as undiscovered because numerous studies ([54, 133, 142, 143,

165]) have shown that the vast majority of Internet users do not look past the first few search results.

These studies also show that users rarely click on search results beyond rank 10. We are aware of

the potential discrimination of results ranked just beyond our threshold and there is an obvious

difference between search results ranked 101 and, for example, rank 10, 000. However, we chose this

classification for simplicity and do not distinguish between ranks greater 100.

Table 14 shows the performance statistics of all lexical signatures in today’s search engine dis-

tinguished by the number of terms they consist of. It displays the relative amount of URIs returned
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Table 14 Lexical Signature Length vs. Rank

1 2-10 11-100 ≥101 MR
2-term 24.3 14.9 13.2 47.6 53.1
3-term 40.2 15.0 15.0 29.8 36.5
4-term 43.9 15.7 11.4 29.0 33.8
5-term 47.0 19.4 3.4 30.2 32.7
6-term 51.2 11.4 3.4 34.1 36.0
7-term 54.9 9.4 1.5 34.2 35.5
8-term 49.8 7.7 2.2 40.4 41.9
9-term 47.0 6.6 0.9 45.5 46.4
10-term 46.1 4.0 0.9 49.0 49.8
15-term 39.8 0.8 0.6 58.9 59.5

with rank 1, ranked between 2 and 10, between 11 and 100 and beyond 100 therefore representing

our four retrieval scenarios. The last column holds the mean values of all ranks for a particular

n-term lexical signature. For all lexical signatures we can observe a binary pattern meaning the

vast majority of URIs returns either ranked 1 or beyond 100. This pattern becomes even more

obvious when comparing the top 10 results (including the top rank) and the number of undiscovered

URIs. In none of the cases more than 15% of URIs are ranked between 11 and 100. We can see

that the performance of 2-term lexical signatures is rather poor with almost 50% undiscovered URIs

and a mean rank of more than 53. 3- and 4-term lexical signatures perform similarly with a slight

advantage for 4-terms when it comes to top ranked results and a lower mean rank value. 5-terms

lexical signatures have the overall best mean rank value. They also return more results top ranked

and ranked in the top 10 than 4-term lexical signatures but less URIs ranked between 11 and 100.

7-term lexical signatures show by far the highest percentage of top ranked URIs. Their mean rank

however is lower than with 5-term lexical signatures. The performance of 6-term lexical signatures

is somewhere between 5- and 7 terms. The value for top 10 results are much lower than for 5-term

lexical signatures. It appears this loss is split in half with one half going to the top ranked results

and the other to the undiscovered results. The picture for 8-, 9- and 10-term lexical signatures is

basically the same. Their performance is not very impressive and gets worse as more terms are

added to the lexical signature as the values for the 15-term lexical signatures prove. The binary

pattern however is best visible at these high-term lexical signatures.

Figure 24 shows the rank distribution of all URIs returned by 5-term lexical signatures over the

12 year period. The color black represents the rank beyond 100 and the lightest gray represents rank

1. All ranks in between are colored proportionally where (for reasons of readability) we clustered

ranks 2-10, 11-20, 21-30, etc. into ten clusters respectively. Therefore we plot 12 different gray tones

including rank 1 and rank > 100. The x-axis again represents the date of the lexical signature of

each URI and the URIs are numbered on the y-axis. Here the URIs are sorted. The primary ranking

is done by earliest observation in the IA. Thus the URIs with observations in 1996 are plotted on

the bottom, followed by URIs with observations starting in 1997 etc. This results in the step-shape

of the figure. The secondary ranking effects the URI order within one year (within one step so to

speak). Here all URIs are sorted by their mean rank in ascending order. This secondary ranking and
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Fig. 24 Ranks of 5-term Lexical Signatures from 1996 to 2007

the color scheme mentioned above is the reason for the lighter colored bottom half and the darker

upper half of each step.

Figure 24 gives visual confirmation of the numbers in Table 14. For 5-term lexical signatures we

see roughly 50% top ranked results, 30% of the URIs are undiscovered (black) and 20% ranked in

between 1 and 100 with a strong bias towards the top 10 (lighter gray). We can also see gaps for

some URIs in the plot (white) which is simply caused by missing observations in the IA. Park et al.

[214] classified the URIs returned in four categories in order to evaluate the performance of lexical

signatures. With our above classification we did something very similar and subsume their four

categories by applying a performance evaluation score that rewards results at the top of the result

set and gives less value to results at the lower end of the result set. We use normalized Discounted

Cumulative Gain (nDCG) for this purpose. We apply a binary relevance score, meaning we give

the score 1 for an URI match and the score of 0 otherwise. Since we have binary relevance (i.e.,

one result has a value of 1 and all others have a value of 0), the IDCG will always have a value of

exactly 1 which means nDCG is equal to DCG. Further, since only one member of the result set

has a non-zero relevance score, and that one result always has a relevance score of exactly 1, we can

simplify the DCG equation as shown in Equation 31, where i is the position of the target URI in

the result set. We used this simplified DCG in previous work [264].

DCG∗ =
1

log2(1 + i)
(31)
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If the target URI was undiscovered meaning not returned or ranked beyond rank 100, we assigned

a nDCG value of 0, corresponding to an infinitely deep position in the result set.
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Fig. 25 Lexical Signature Performance by Number of Terms

Figure 25 shows the mean DCG values over all years. Just like in Table 14 we distinguish

between lexical signatures containing 2 − 10 and for comparison 15 terms. The figure proves that

7-term lexical signatures perform best with a mean DCG of almost 0.6. On the other end, 2- and 15-

term lexical signatures are not performing well. The DCG values for 3- to 6-term lexical signatures

steadily increase from 0.5 to 0.57. The values drop again for 8- through 10-term lexical signatures

from 0.54 to 0.48. The figure also shows the standard deviation of the mean values drawn in as the

thin dotted line. These values are high which is not surprising due to our binary relevance score

paired with the binary retrieval pattern seen in Table 14.

Figure 26 displays the DCG values of selected lexical signatures over time. To keep the graphs

readable we chose to display the most significant lexical signatures and do not draw a line for all

n-term lexical signatures. Each data point represents the mean DCG score of all URIs of a certain

year indicated by the values on the x-axis. We can clearly see the low scores of 2- and 10-term lexical

signatures even though 10-term lexical signatures show a slight increase towards the more recent

years. 5- and 7-term lexical signatures in contrast do much better as their score constantly increases

over time reaching up to 0.56 (5-terms) and 0.6 (7-terms) in 2007. This figure proves that lexical

signatures older than four or five years result in a mean DCG score of below 0.5. We consider this
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Fig. 26 Lexical Signature Performance Over Time

as our threshold and therefore declare the maximum age for a lexical signature that is expected to

perform well to be at most five years.

The great fluctuation of the numbers for the early years in Figure 26 can be explained with the

limited number of URIs and observations in the IA for that time. We do believe however that from

roughly year 2000 on there is a pattern visible. The lines evolve much more steadily which may be

because of an increase of observations in the IA from 2000 on (see Figure 17) in the sense of simply

more URIs observed and also in the sense of more copies made per day/month of the same URIs.

Another interesting observation is the line for 2-term lexical signatures. Regardless of its low

score it shows an almost flat line from year 2000 on. A possible explanation is that 2-term lexical

signatures are in fact good for finding related pages (as shown in [125]) but do so constantly over

time. That means 2-term lexical signatures constantly return relevant results with the URI of

interest rarely top ranked but usually somewhere in the result set. Our intuition is that it provides

good recall but its precision is rather poor and therefore the score is low.

3.2 Results in Different Search Engines

Unlike the experiment in Chapter IV, Section 3.5 we are here not interested in comparing the

retrieval performance across search engines but rather generate lexical signatures from three search



75

Top Top10 Top100 Undiscovered

U
R

Ls
 in

 %

0
20

40
60

80

Google
Yahoo
MSN

Fig. 27 5- and 7-Term Lexical Signature Retrieval Performance

engines and query them against the index they are based on. We use the Google, Yahoo! (BOSS)

and MSN Live APIs to determine the DF values. Due to the results of our earlier research we query

5- and 7-term lexical signatures for each URI against search engines. As an estimate for the overall

number of documents in the corpus (the Internet) we use values obtained from [37].

To obtain an increased dataset we again sampled from the Open Directory Project http://

dmoz.org and randomly picked 500 URIs. We are aware of the implicit bias of this selection but

for simplicity it shall be sufficient. We dismissed all non-English language pages as well as all pages

containing less than 50 terms (this filter was also applied in [158, 214]). Our final sample set consists

of a total of 309 URIs, 236 in the .com, 38 .org, 27 .net and 8 in the .edu domain. We downloaded

the content of all pages and excluded all non-textual content such as HTML and JavaScript code.

The TF-IDF score of common words is very low given a sufficiently large corpus. Therefore these

terms would not make it into the lexical signature, assuming the document contains enough other,

less frequent terms. However, for the sake of minimizing the number of search engine queries needed

to determine the DF values we dismiss stop words from the web pages before computing TF-IDF

values.

Figure 27 shows the percentage of the 309 URIs retrieved top ranked, ranked in the top 10 and top

100 as well as the percentage of URIs that remained undiscovered when using 5- and 7-term lexical
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signatures. For each of the four scenarios we show three tuples distinguished by color, indicating

the search engine the lexical signature was generated from and queried against. The left bar of each

tuple represents the results for 5- and the right for 7-term lexical signatures. We again can observe

the binary pattern with the majority of the URIs either returned in the top 10 (including the top

rank) or remain undiscovered. If we, for example, consider 5-term lexical signatures submitted to

Yahoo! we retrieve 67.6% of all URIs top ranked, 7.7% ranked in the top 10 (but not top) and 22%

remain undiscovered. Hence the binary pattern: we see more than 75% of all URIs ranked between

one and ten and vast majority of the remaining quarter of URIs was not discovered. Yahoo! returns

the most URIs and leaves the least undiscovered. MSN Live, using 5-term lexical signatures, returns

more than 63% of the URIs as the top result and hence performs better than Google which barely

returns 51%. Google returns more than 6% more top ranked results with 7-term lexical signatures

compared to when 5-term lexical signatures were used. Google also had more URIs ranked in the

top 10 and top 100 with 5-term lexical signatures. These observations confirm our earlier findings.

4 SUMMARY

This chapter provides the results obtained from our study of the decay of lexical signatures as an

implementation of the rr function over time. It further includes an analysis of their performance

with respect to their age and the number of terms they contain. To investigate the degree of change

over time we created lexical signatures of websites stretching over a 12 year time span and analyzed

their overlap with a rooted and a sliding measure. The overlap measured with the rooted method

is larger in the early years after creation of the web page and quickly decreases after three years.

However, the sliding method shows some noise in the early years indicating substantial changes in

the pages’ content but somewhat stabilizes from 2003 on. This suggests that a lexical signature that

is expected to perform well when queried against a search engine should not be older than five years.

This result further indicates that lexical signatures, unlike proposed by Phelps and Wilensky, should

not be created a priori if the incentive is to obtain a recent version of the missing page. The chances

of having the content of a web page (and consequently its lexical signature) change dramatically

especially after four years is very high.

Regarding the length of lexical signatures we found that 2-terms are by far insufficient. Slightly

better perform 3- and 4-term lexical signatures but 5-, 6- and 7-term lexical signatures show the best

performance numbers in terms of percentage of URIs returned top ranked, mean rank and nDCG.

Which of these three to chose depends on the particular intention since 7 terms return the most top

ranked results and show the highest nDCG but 5 terms have the best mean rank and leave fewer

URIs undiscovered. We also show that including more than 7 terms worsens the performance values.

For example, 15-term lexical signatures leave almost 60% of all URIs undiscovered.

These results, in aggregate with Chapter IV, constitute a framework for the creation of well per-

forming lexical signatures. Its parameters will directly be implemented in Synchronicity introduced

in Chapter X.
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CHAPTER VI

TITLES

1 BACKGROUND

We have seen in the previous chapter that lexical signatures, depending on their age, can perform

well as search engine queries with the intention of discovering web pages. However, the generation

of lexical signatures is expensive. Recall that a TF-IDF value needs to be computed for each term

(except stop words) occurring in the page. Computing IDF is costly since each term requires one

query against a search engine to obtain an estimation for the DF value. The question therefore

arises whether we can find a cheaper implementation of the rr function, or in other words a cheaper

method to distill the “contextual aboutness” of a page. This method needs to result in a textual

string suitable for our c2u implementation and, when queried against a search engine perform equally

well or even better than lexical signatures. Another question then is, if we find such a method, can

we achieve a performance gain when combining it with lexical signature based queries?

In this chapter we investigate the performance of web pages’ titles as a second rr function

implementation and analyze some of their string characteristics. We maintain a few underlying

assumptions regarding web pages’ titles. We anticipate that a majority of web pages actually have

titles. Furthermore we believe that titles are descriptive of the page’s content and that titles,

compared to the content itself, change infrequently over time.

2 PERFORMANCE OF WEB PAGE TITLES

To illustrate the concept behind this experiment we show two examples in Table 15. It displays

the titles and lexical signatures obtained from two URIs. One page is about an airplane chartering

organization and the other is a web page about a photographer named Nic Nichols. Both rr im-

plementations output different strings of different length but c2u − in this case the query against

Google − returns in all cases the target URI top ranked. Both methods show great results in this

example. The following sections describe an experiment investigating the performance of web pages’

titles taken from URIs of a larger dataset. We further compare the titles’ performance against lexical

signature performances.

2.1 Title Extraction

Researchers such as Chakrabarti et al. [81] have found that up to 17% of HTML documents are

lacking titles. This estimate is based on their corpus of one million random URIs. But even if we

take this number as an upper bound, one can say that the majority of web pages contain titles and

therefore this method is worth investigating. In a brief and somewhat brute force experiment we

randomly picked 10, 000 URIs from dmoz.org and found that only 1.1% of URIs are lacking a title.

This underlines our intuition that titles of web pages are commonplace. We used the same sample

set of URIs introduced in the previous chapter since we have already downloaded all of the 309



78

Table 15 Example of Well-Performing Lexical Signatures and Titles Obtained from Two Different
URIs

Rank
URI www.aircharter-international.com
LS Charter Aircraft Jet Air Evacuation Medical Medivac 1

Title
ACMI, Private Jet Charter, Private Jet Lease, Charter Flight Service: 1Air Charter International

URI www.nicnichols.com
LS NicNichols Nichols Nic Stuff Shoot Command Penitentiary 1

Title
NicNichols.com: Documentary Toy Camera Photography 1of Nic Nichols: Holgs, Lomo and Other Lo-Fi Cameras!

URIs. We extract the titles by simply parsing the pages and extract everything between the HTML

tags ¡title¿¡/title¿.

2.2 Performance Results of Titles

Similar to the previous experiments we parse the top 100 returned results in search for the source

URI. We again distinguish between our four retrieval scenarios:

1. the URI returns top ranked

2. the URI returns in the top 10 but not top ranked

3. the URI returns in the top 100 but not top ranked and not in the top 10

4. the URI does not return, neither top ranked, nor in the top 10 or top 100.

With these scenarios we evaluate our results as success at 1, 10 and 100. Success is defined as a

binary value, as the target either occurs in the subset (top result, top 10, top 100) of the entire

result set or it does not.

Figure 28 shows the percentages of retrieved URIs when querying the title of the pages. We

queried the title once without quotes and once quoted, forcing the search engines to handle all

terms of the query as one string. Each tuple is distinguished by color and the left bar shows the

results for the non-quoted titles. It is surprising to see that both Google and Yahoo! return fewer

URIs when using quoted titles. Google in particular returns 14% more top ranked URIs and 38%

fewer undiscovered URIs for the non-quoted titles compared to the quoted titles. Only MSN Live

shows a different behavior with more top ranked results (almost 8% more) for the quoted and more

undiscovered URIs (more than 7%) using the non-quoted titles.

We can see however that titles are a very well performing alternative to lexical signatures. The

top value for lexical signatures taken from Figure 27 was obtained from Yahoo! (5-term) with 67.6%

top ranked URIs returned and for titles with Google (non-quoted) which returned 69.3% URIs top

ranked.
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Fig. 28 Non-Quoted and Quoted Title Retrieval Performance

2.3 Combined Title and Lexical Signature Performance

The observation of well performing lexical signatures and titles leads to the question of how much

could we gain if we combined both for the retrieval of the missing page? We modify the original c2u

function by adding a second iteration. The first iteration feeds lexical signatures into c2u. All URIs

that remained undiscovered are subject for the second c2u iteration. We feed their titles into the

function and analyze the returned ranks of this second iteration in order to evaluate the potential

performance gain. Table 16 summarizes the results shown in the sections above. It holds the

Table 16 Relative Number of URIs Retrieved with one Single Method from Google, Yahoo! and
MSN Live

Google Yahoo! MSN Live
1 10 100 > 100 1 10 100 > 100 1 10 100 > 100

LS5 50.8 12.6 4.2 32.4 67.6 7.8 2.3 22.3 63.1 8.1 1.6 27.2
LS7 57.3 9.1 2.6 31.1 66.7 4.5 1.9 26.9 62.8 5.8 1.6 29.8
TI 69.3 8.1 2.9 19.7 63.8 8.1 0.6 27.5 61.5 6.8 1.0 30.7

relative numbers of URIs retrieved using one single method. The first, leftmost column indicates

the method. LS5 and LS7 stand for 5- and 7-term lexical signatures and TI stands for titles. The
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Table 17 Relative Number of URIs Retrieved with Two or More Methods Combined

Google Yahoo! MSN Live
1 10 100 > 100 1 10 100 > 100 1 10 100 > 100

LS5-TI 65.0 15.2 6.1 13.6 73.8 10.0 2.3 14.0 71.5 10.0 1.9 16.5
LS7-TI 70.9 11.7 4.2 13.3 75.7 7.4 1.9 14.9 73.8 9.1 1.9 15.2
TI-LS5 73.5 9.1 3.9 13.6 75.7 9.1 1.3 13.9 73.1 9.1 1.3 16.5
TI-LS7 74.1 9.4 3.2 13.3 75.1 8.7 1.3 14.9 74.1 9.1 1.6 15.2

LS5-TI-LS7 65.4 15.2 6.5 12.9 73.8 10.0 2.6 13.6 72.5 10.4 2.6 14.6
LS7-TI-LS5 71.2 11.7 4.2 12.9 76.4 7.8 2.3 13.6 74.4 9.1 1.9 14.6
TI-LS5-LS7 73.8 9.1 4.2 12.9 75.7 9.1 1.6 13.6 74.1 9.4 1.9 14.6
TI-LS7-LS5 74.4 9.4 3.2 12.9 75.7 9.1 1.6 13.6 74.8 9.1 1.6 14.6

LS5-LS7 52.8 12.9 6.5 27.8 68.0 7.8 2.9 21.4 64.4 8.4 2.6 24.6
LS7-LS5 59.9 9.7 2.6 27.8 71.5 4.9 2.3 21.4 66.7 7.1 1.6 24.6

top performing single methods are highlighted in bold figures (one per row).

Table 17 shows in a similar fashion all reasonable combinations of methods involving lexical

signatures and titles. A combination of methods formally translates to a sequence of c2u iterations

with varying rr implementations as their input. The sequences displayed in the leftmost column are

sensitive to their order of inputs, i.e. there is a difference between applying 5-term lexical signatures

first and 7-term lexical signatures second and vice versa. The top results of each sequence of methods

are again highlighted in bold numbers.

Regardless of the sequence and their input, the best results are obtained from Yahoo!. If we

consider all combinations of only two methods we find the top performance of 75.7% twice in the

Yahoo! results. Once with LS7−TI and once with TI −LS5. The latter sequence is preferable for

two reasons:

1. titles are easy to obtain and do not involve a complex computation and acquisition of DF

values as needed for lexical signatures, and

2. this methods returns 9.1% of the URIs in the top 10 which is 1.7% more than the first sequence

returns. Even though we do not distinguish between rank two and rank nine, we still consider

URIs returned within the top 10 as good results.

The sequence LS7−TI−LS5 accounts for the most top ranked URIs overall with 76.4%. While

the 3-method sequence returns good results, there are not drastically better than, for example, the

two methods mentioned above. The performance delta is not sufficient to justify the expensive

generation of lexical signatures without using the easy to obtain titles first.

The last two rows in Table 17 show results for sequences of methods based purely on lexical

signatures. The results again are good but it is obvious that a combination with titles (either as the

first or second method) provides better results.

Yahoo! uniformly gave the best results and MSN Live was a close second. Google was third,

only managing to outperform MSN Live once (TI − LS5) at the top rank.

2.4 Analysis of Title Characteristics

Given that the title of a page seems to be a good method considering its retrieval performance we

further investigate the title characteristics of our dataset.



81

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39 42

Title Length in Number of Terms

F
re

qu
en

cy

0
5

10
15

20
25

30
35

Top
Top10
Top100
Undiscovered

Fig. 29 Title Length in Number of Terms vs Rank

Title Length

The relation between title length in number of terms and the title’s retrieval performance is shown

in Figure 29. Each occurring title length is represented by its own bar and the number of times this

title length occurs is indicated by the height of the entire bar. The shaded parts of the bars indicate

how many titles of the according length performed in what retrieval class (the usual, top, top 10,

top 100 and undiscovered). The titles vary in length between one and 43 terms. However, there

is, for example, no title with length 21, hence its bar is of height null. Visual observation indicates

a title length between three and six terms occurs most frequently and performs best compared to

shorter titles and titles containing more terms.

The contrast of total title length in number of characters and rank is shown in Figure 30. Unlike

in Figure 29 we left out non-represented title lengths here. While it seems difficult to determine

a typical title length (it varies greatly between 4 and 294 characters) we only see 15 URIs with a

title length greater or equal to 100 characters. Furthermore, only three URIs contain more than 200

characters in their title. Figure 30 does not reveal an obvious relationship between the number of

characters and the rank returned for a title. However, we can see that very short titles (less than 10

characters) do not perform well. A title length between 10 and 70 characters is most common and

the ranks seem to be best in the range between 10 and 45 characters.
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Fig. 30 Title Length in Number of Characters vs Rank

Title Term Characteristics

Besides the overall title length we are looking at the length of each title term. Figure 31 depicts

on the left the mean number of characters per title term and their retrieval performance. Terms

with an average of 5, 6 or 7 characters seem to be most suitable for well performing queries. On the

bottom right end of the barplot we can see two titles that have a mean character length per term of

19 and 21. Since such long words are rather rare they perform very well.

It is not surprising that we observe stop words in the titles. As shown on the right in Figure 31

the performance of titles with more than one or two stop words suffers. Search engines generally filter

stop words from the query and therefore (for non-quoted titles) it makes sense that, for example,

the title with 11 stop words does not return its URI within the top 100 ranks.

3 QUALITY OF WEB PAGE TITLES

We have shown in the previous section that web pages’ titles can perform very well as search engine

queries to discover a page. However, titles are usually created by humans which intuitively makes us

understand that not all titles are equally good. We further assume that titles, as well as the pages’

content, undergo some changes over time and therefore, similar to lexical signatures, with time may

become less useful when describing a page’s content.
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Fig. 31 Mean Number of Characters per Title Term and Number of Stop Words vs Rank

The examples displayed in Table 18 further motivate the research questions in this section. The

examples illustrate the differences between titles and lexical signatures and their retrieval perfor-

mance. We have already seen the first example in Table 15. The lexical signature from the URI

www.aircharter-international.com as well as its title perform very well and return the URI

as the top ranked result when queried against Google. Both methods result in query string that

describe the page’s content well and contain terms that (in combination) sufficiently discriminate

against other pages. For this example URI one could have chosen either method and the results

would have been equally good. Given the costs to generate a lexical signature however, using the

title should be the first choice.

In the second example, the URI www.redcrossla.org, we obtain a lexical signature that contains

terms which were part of the page at the time of the crawl but are less descriptive for the overall

“aboutness” of the page. Instead, they represent the content of a single snapshot of the page at

a certain point in time. Hence the output of the page’s rr function is very sensitive to change of

the page’s content. Therefore the c2u function does not return the page within the top 100 results

and hence, as per our definition, remains undiscovered. The title of the page however captures

the timeless essence of a web page of the Red Cross in Los Angeles and consequently performs

much better. Submitted to c2u it returns the URI top ranked. This example illustrates that
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Table 18 Examples for Well and Poorly Performing Lexical Signatures and Titles

Rank
URI www.aircharter-international.com
LS Charter Aircraft Jet Air Evacuation Medical Medivac 1

Title
ACMI, Private Jet Charter, Private Jet Lease, Charter Flight Service: 1Air Charter International

URI www.redcrossla.org
LS Marek Halloween Ready Images Schwarzenegger Govenor Villaraigosa > 100

Title American Red Cross of Greater Los Angeles 1
URI smiledesigners.org
LS Dental Imagined Pleasant Boost Talent Proud Ways 1

Title Home > 100

despite the reliable TF-IDF based selection of the most salient terms of a page, a lexical signature

is not automatically the best chosen rr implementation. This especially holds true for pages with

frequently changing content such as news pages, forum pages, etc. A web page’s title can be more

robust since a title is understood to capture the overall topic of a page or a document. Our third

example represents data taken from the URI smiledesigners.org, a web page of a dentist. The

generated lexical signature contains terms that one could intuitively consider suitable for a search

query and indeed c2u returns the URI top ranked. The title however is an unfortunate choice. While

Home may be a good title within the site, it does not identify this page among others in the web.

Submitted to c2u it does not return the URI within the top 100 results (but it is indexed with the

term). This last example shows that not all titles are equally good for web retrieval and well suited

as an rr implementation. Some user may simply not pay attention to what their title should be and

others may just adopt the default of their web page generation tool or editor.

In this section we are investigating the quality of web pages’ titles. We evaluate the relevancy

of results returned from c2u when executed with a title. We obtain temporal snapshots of pages

and their titles in order to investigate the evolution of titles and content over time. We are further

searching for quality indicators that can be applied in real time to give a prediction of the performance

of any given title.

3.1 Similarity of Search Results

A New Dataset

We were motivated to increase our corpus from Section 2.1. We started with randomly sampling

20, 000 URIs from the Open Directory Project dmoz.org. Similar to the filters applied in [158, 214]

we first dismissed all pages containing less than 50 terms from our 20, 000 URI set. Second we

applied a very restrictive off-the-shelf English language filter (the Perl package Lingua::Identify

available through CPAN). This process shrank our corpus down to 6, 875 pages. Table 19 shows the

top level domains of the originally sampled URIs and of the final filtered dataset. We downloaded

the content of all 6, 875 pages and excluded all HTML elements.
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Table 19 Sample Set URI Statistics

.com .org .net .edu Sum
Original 15289 2755 1459 497 20000
Filtered 4863 1327 369 316 6875

Title Extraction and Copies from the Internet Archive

This dataset also supports our argument that titles of web pages are commonplace. Only 0.6% of

all web pages (a total of 41) did not have a title. We extracted the titles of all pages by filtering all

terms between the HTML tags ¡title¿¡/title¿.

In order to investigate the temporal aspect of the title evolution we queried the URIs against the

Internet Archive (IA). The IA and its crawler are not in competition with search engines. It rather

is a best effort approach and all copied pages remain in a “quarantine period” for six to 12 months

before they become accessible through the IA interface. Out of our 6, 875 pages the IA provided

copies for 6, 093 URIs. We downloaded all available copies (more than 500, 000) and extracted the

pages’ content and titles.

Title and Lexical Signature Performance

For the sake of completeness we repeated parts of the experiment discussed in Section 2.2 with this

larger dataset. Due to the increased number of URIs and hence number of queries against search

engines we only queried the Yahoo! BOSS API. Also due to the results found in Section 2.2 we

did not query with quoted titles. The results in Figure 32 confirm our earlier findings, the binary

retrieval pattern and titles slightly outperforming 5- and 7-term lexical signatures.

3.2 Similarity of Search Results

Thinking about web pages’ titles as search engine queries lets us intuitively identify three special

cases of search results:

1. Aliases, meaning two or more URIs resolve virtually the same content where the URIs may or

may not canonicalize to the same value

2. Duplicates, meaning two or more pages hold duplicated content or a large subset of the other

3. Title collisions, meaning two or more pages share the same title but their content is very

different.

To further illustrate these special cases let us explore the following examples: The Wikipedia page

for “Lateef”1 and “Lateef The Truth Speaker”2 are the same and hence can be considered as aliases.

The former has a note saying “(Redirected from Lateef the Truth Speaker)”, but there is no HTTP

notification about their equivalence. Note that Google indexes the former, and Yahoo! indexes the

latter, however, neither search engine produces duplicate links.
1http://en.wikipedia.org/wiki/Lateef
2http://en.wikipedia.org/wiki/Lateef\_the\_Truth\_Speaker
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(a) 5- and 7-Term Lexical Signature Performance
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(b) Title Performance

Fig. 32 Retrieval Performance of Lexical Signatures and Web Pages’ Titles

The Wikipedia page for “baseball balk”3 and the answers.com page4 can be considered duplicates.

The two pages have overlapping content, in part because they both quote from the rule book. The

answers.com page additionally includes Wikipedia content as well as other sources5. Baeza-Yates et

al. [61] explored the notion of genealogical trees for web pages where children would share a lot of

content with their parents and are likely to become parents themselves. Our notion of duplicates is

similar to this concept.

An example for title collisions are the following five pages:

http://www.globalrei.com/photos.php?property_ID=70694

http://www.globalrei.com/631-Westover-Aveune-a70694.html

http://www.globalrei.com/properties.php

http://www.globalrei.com/about.php

http://www.globalrei.com/globalrei/frm/3265/market_information/

All pages have the same title “Welcome to my new website!” but their content is very different. In

fact the last URI even returns a customized 404 error page as introduced in Chapter III, Section

2.4.

In order to identify these three cases and reiterate our argument that web pages’ titles perform

well in search we investigate the similarity of the top 10 results with the originating URI (the URI

whose title was used as a query against the search API). We used two methods to explore the

similarity: normalized term overlap and k-shingles [77, 78] with a size of k = 5. We simplify the

notion of retrieval to a binary scenario meaning either the URI was discovered or not. We define a
3http://en.wikipedia.org/wiki/Balk
4http://www.answers.com/topic/balk
5http://en.wikipedia.org/wiki/Answers.com
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URI as discovered if it was returned within the top 10 search results including the top rank. For all

other cases the URI is considered undiscovered. We are aware that we discriminate against URIs

ranked between 11 and 100 with respect to our earlier measure of retrieval. However, the binary

pattern which is obvious in Figure 32 supports this simplification.

We show both in Figure 33, the normalized term overlap (o) and shingle values (s) divided in

five classes depending on their value:

• o, s = 1

• 1 > o, s ≥ 0.75

• 0.75 > o, s ≥ 0.5

• 0.5 > o, s > 0.0

• o, s = 0

Figure 33(a) displays the occurrence frequency of normalized term overlap values for all discovered

URIs. The top rank is dominated by an overlap between 50% and 75%. The fact that only 1466 top

ranked URIs have the perfect overlap despite the more than 60% top ranked URIs shown in Figure

32 indicates that the content of the pages has changed between the time we crawled the page and

the time we queried the search engine with its titles. From rank three on the most frequent overlap

value is between 1% and 50%. Figure 33(b) shows a similar graph for all undiscovered URIs. The

lower overlap class of values between 1% and 50% throughout the ranks stands out. The perfect

overlap is only noticeable for the top rank which indicates discovered aliases. The class with values

between 50% and 75% occurs most frequently for the top rank as well which further indicates the

discovery of duplicates.

A different and potentially better measure of document similarity is w-shingles. The shingle

value of 1 (s = 1) is an indicator of strong similarity (note that it does not guarantee identical

content) and a null value indicating no similarity between the shingles. Figure 33(c) shows five

classes of shingle values by rank for discovered URIs. We see the dominance of the top rank with

shingle value s = 1 which is not surprising considering the great amount of URIs discovered top

ranked (see Figure 32). However, this optimal shingle value is achieved more often than number

of URIs discovered top ranked. That indicates we discovered aliases and duplicates since for those

cases we expect shingle values to be high. The zero value is rather low for the top rank, increases

for rank two and three and then levels off. Figure 33(d) shows the same classes of shingle values

for undiscovered URIs. As expected in this scenario the zero value occurs very frequently. However,

the 300 occurrences of s = 1 for the top rank is surprisingly good. It indicates that here as well we

have discovered a number of duplicates and aliases within the top ranks unlike the original URI.

3.3 Title Evolution Over Time

It is our intuition that web pages’ titles change less frequently and less significantly than the web

pages’ content. The title supposedly reflects the general topic of a page which naturally changes less

often than its content. With all from the IA provided copies downloaded we are able to investigate

the temporal aspect of title changes. However, both the time intervals in which the IA makes copies
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Fig. 34 Title Edit Distance Frequencies per Internet Archive Observation Interval

of web pages as well as the dates of the earliest and latest copies of pages available in the IA can

vary. In order to be able to investigate the title evolution over time we need to generalize the

available copies of each URI. We define 60 day time windows in which we pick one copy per URI as

representative for the according time and URI. We define two such time windows per year, one in

February and one in August. Since the IA provides copies of web pages from as early as 1996 we

have a total of 27 time windows and hence a maximum of 27 representative copies per URI from the

last 14 years.

The Levenshtein edit distance gives a measure of how many operations are needed to transform

on string into another. We compute the edit distance between the titles obtained from the pages

as they were downloaded in August of 2009 (our baseline) and our representative copies from the

IA. We normalize the distance to a value between zero and one where one means the titles are

completely dissimilar and a value of zero indicates identical titles. The edit distance distribution

per time interval is shown in Figure 34. The time intervals are represented on the x-axis with the

most recent on the far left decreasing to the right. The number of available copies in the early years

of the IA is rather sparse. There are no copies of any of our web pages available in the first two

time intervals (2/2009 and 8/2008). A possible explanation is the IA internal quarantine period

mentioned earlier. However, for the third time interval we find copies of roughly 55% of all URIs.

The graph reveals that about half of the available titles from the more recent copies up until 2/2006
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are identical or at least very similar to the baseline. For example, we find copies of about 80% of

all URIs for time interval 2/2007 and more than half of those titles have an edit distance of zero.

This ratio drops for earlier copies. For the time intervals in 2002, for example, we see only about

30% of the available titles with a distance value of zero. We have to keep in mind though that

copies for only about 40% of our URIs are available from that time. From 2006 on it seems that

the percentage of low edit distance values decreases while the amount of higher distances increases.

The solid line in Figure 34 indicates the probability, based on our corpus, that a title of a certain

age is unchanged. Our data reveals that for copies as old as four years we have a 40% chance of an

unchanged title. We define titles that have an edit distance value of ≤ 0.3 as titles with only minor

changes compared to the baseline. The dashed line represents the chances for such titles given their

age. We can see that for copies of web pages as old as 5.5 years we have a probability of at least

40% that the title has undergone only minor changes.

3.4 Title Evolution vs Document Changes

If a page’s title changes less frequently over time than its content the title could constitute a reliable

search engine query for discovering missing web pages. To prove this intuition we computed shingle

values for all available IA copies in the above mentioned time intervals and our baseline version of

the according page downloaded in August of 2009. We normalized these values so that zero indicates

a very similar page and the value of one a very dissimilar page content. In order to compare these

values with the edit distance of our titles in two dimensions we computed the average of all available

copies in our time intervals per URI.

Figure 35 shows the average normalized edit distance on the x-axis and the average normalized

shingle value of the according URI on the y-axis. Both values are rounded to the nearest tenth.

The color indicates the overlap per point or in other words the amount of times a certain point was

plotted. The palette starts with a basic green indicating a frequency of less or equal than 10 and

transitions into a solid red representing a frequency of more than 90. The semi-transparent numbers

represent the total amount of points in the according quarters and its halves. The pattern is very

apparent. The vast majority of the points are plotted with an average shingle value of above 0.5

and an average edit distance of below 0.5. The most frequent point in fact is plotted more than

1, 600 times. It is (as an exception) colored black and located at the coordinates [0, 1] meaning close

to identical titles and very dissimilar content. The point at [0, 0] is plotted 122 times and hence

somewhat significant as much as some points with a shingle value of one and an edit distance of

above 0.5. These points have transitioned to red.

Figure 35 supports our intuition that titles change less significantly over time than the pages’

content. Therefore we claim titles to be the more robust technique with respect to content changes.

That means if we, for example, wanted to find what corresponds to a five year old Memento, perhaps

the lexical signature captures the aboutness at that specific time better but the title captures a

“longer range aboutness” of a web resource.
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Fig. 35 Title Edit Distance and Document Changes of URIs

3.5 Title Performance Prediction

The examples shown in Table 18 support the intuition that not all titles are equally good in terms

of their performance as search engine queries for the discovery of web pages. The title Home clearly

does not perform well and we can imagine other possible titles that are equally non-descriptive such

as Index or Welcome.

We are interested in a method to analyze any given title in real time and give a probability for

its usefulness for our search. If we can identify a candidate bad title, it can be dismissed right away

and we proceed with the generation of a lexical signature as the more promising approach for web

page discovery.

Ntoulas et al. [211] used methods based on web pages’ content to identify spam web pages. One

of their experiments shows that web pages’ titles consisting of more than 24 terms are likely to be
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spam. This result confirms that there are indicators by which we can predict the usefulness of titles

for search. Figure 36(a) displays the composition of our titles with respect to the number of terms

(on the x-axis) and number of characters (y-axis) they contain. The two different colors of the dots

represent cases where URIs were found and not found. This graph supports the findings of Ntoulas

et al. since it is visible that titles containing between two and 10 terms and less than 200 characters

return more URIs discovered than undiscovered and hence can be considered good titles. The graph

further shows that although search engines may enforce query limitations (number of query terms

or number of characters) on their APIs, we can not say with certainty that queries that exceed the

limitations will be unsuccessful. That means in case the servers silently truncate the queries the

titles still may hold enough salient information in the first n characters/terms that do not exceed

the possible limit to discover the URI. Figure 36(b) shows the same information for titles with nine

or less terms. These titles account for more than 70% of all titles in the entire corpus.

Most search engines automatically filter stop words (language dependent) from a query string

since they are not crucial when it comes to describing a pages’ content. For titles, however, our

intuition is that we can identify additional terms that would not necessarily occur in a common stop

word list for the English language but do not contribute to uncover the “aboutness” of a web page.

We analyze our corpus of 6, 875 titles and identify those that (used as the query string) do

not lead to rediscovering the originating page. We call these titles stop titles. For the sake of

simplification we narrow the rediscovery to a binary value meaning URIs that are returned within

the top 10 search results including the top rank are considered discovered and all remaining URIs

are considered undiscovered. Some of the most frequent stop titles in our corpus are home, index,

home page, untitled document and welcome. We further argue that terms such as main page, default

page and index html should be added to the list of stop titles even though they did not occur in

our dataset. The experienced Internet user and website creator will recognize most of these terms

as the default title setting of various web page generating tools. A complete list of stop titles from

this experiment can be found in Appendix A.

With the list of stop titles our approach is to automatically identify bad titles. The trivial case

is to match a given title with all of the stop titles and if we find a match the title is classified as

bad. The second approach is to compute the ratio of stop titles and total number of terms in the

title. The analysis on our corpus has shown that if this ratio is greater than 0.75 the likelihood

of the title performing poorly is very high and hence the title should be dismissed. Figure 37(a)

shows the sentinel value indicating the upper bound for the ratio based on our corpus and the binary

discovered/undiscovered classification of all titles.

Table 20 shows the confusion matrix for the second approach based on our experiments. We can

see that with the evaluated upper bound for the ratio (0.75) we obtain a total match of more than

71% and hence a mismatch of 28%.

The third approach is based on number of single characters in the title. That means if a title

contains stop titles we determine the ratio of number of characters in the stop title and number of

total characters of the title. The analysis of our corpus has shown that a ratio greater than 0.75

predicts a poor performance (as also shown in Figure 37(b)). Table 21 shows the according confusion

matrix to the third approach based on our experiments. The upper bound (also 0.75) accounts for

similarly good numbers with a total match of more than 71% but also achieves 0% false positives.
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(a) All Titles

(b) Titles with Nine or Fewer Terms

Fig. 36 Title Length in Number of Terms and Characters Distinguished by URI Found and Not
Found
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(b) Stop Title Characters and Total Number of Char-
acters

Fig. 37 Upper Bounds for Ratios of Number of Stop Titles in the Title and Total Number of
Terms in the Title and Number of Stop Title Characters and Total Number of Characters in the
Title

Table 20 Confusion Matrix for Stop Titles / Total Number of Words

Actual
Found Not Found

Predicted
Found 66.0% 0.42%

Not Found 28.27% 5.28%

Table 21 Confusion Matrix for Number of Characters in Stop Titles / Total Number of Characters

Actual
Found Not Found

Predicted
Found 66.45% 0.0%

Not Found 28.48% 5.07%
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4 SUMMARY

In this chapter we evaluate the retrieval performance of web pages’ titles as another implementation

of the rr function and compare it to lexical signatures. We further investigate the evolution of titles

over time and analyze the characteristics of poorly performing titles.

The results of using titles fed into c2u shown here lead us to the conclusion that titles of web pages

are a strong alternative to lexical signatures. Almost 70% of all URIs have been returned as the top

result from the Google search engine API when queried with their non-quoted title. Analyzing the

top 10 results for all queries we found that regardless of whether the URI was discovered, potential

URI aliases and duplicates were returned which also supports the argument that titles form well

performing queries. Considering that we did not address issues such as URI canonicalization in this

chapter we see our retrieval results as a lower bound.

However, our results also show that a sequence of c2u iterations with different input performs best.

Querying the title first and then using the 5-term lexical signature for all remaining undiscovered

URIs against Yahoo! provided the overall best result with 75.7% of top ranked URIs and another

9.1% in the top 10 ranks. Even though the sequence 7-term lexical signature, title, 5-term lexical

signature returned 76.4% of the URIs in the top ranks we recommend the former sequence since

titles are far cheaper to obtain than lexical signatures. Since titles are commonplace and we have

shown that they perform similarly well compared to lexical signatures our recommended strategy is

to query the title first and if the results are insufficient generate and query lexical signatures second.

Yahoo! returned the best results for all sequences and thus seems to be the best choice even though

Google returned better results when feeding only the title into c2u.

We have used copies of web pages from the Internet Archive to confirm our intuition that titles

decay over time. We have provided evidence that the content of web pages not only changes more

quickly but also more significantly than their titles. For example, the results show that for a four

year old title we have an almost 50% chance that it has not changed at all or has changed only

slightly. In comparison, in Chapter V we have seen that lexical signatures older than five years

perform poorly with an nDCG value of below 0.5. We therefore argue that titles can be a more

robust rr function implementation and a promising input for c2u with the intention to rediscover

missing pages.

Lastly, we have shown that not all titles are “good titles”, at least as an rr implementation.

With a thorough analysis of the composition of all titles in our data set we have provided a guideline

to automatically identify titles predicted to perform poorly for our purpose. We have distilled a list

of “stop titles” that indicate the title’s retrieval quality. Due to our results we conclude that if 75%

or more of a given title are stop titles it is predicted to perform poorly.

Given these results we have found two solid methods to rediscover missing web pages, created

a guideline of how to sequence them and became aware of their weaknesses. All these findings are

utilized in Synchronicity introduced in Chapter X.
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CHAPTER VII

TAGS

1 BACKGROUND

The previously introduced methods, namely a web page’s title and the page’s lexical signature, have

both shown to perform very well for the purpose of rediscovering missing web pages. However, both

methods are applicable only if a Memento of the missing page can be found. If that fails, meaning

if we can not obtain a Memento for the missing page, we have no means to gain knowledge of its

“aboutness” and we can not execute the rr function.

In this chapter we explore a third option. We investigate the retrieval performance of tags as an

rr implementation. In particular we analyze tags created by Delicious users to annotate URIs. We

see several promising aspects for using tags: unlike titles and lexical signatures tags may be available

even if no old copy of a missing page can be found. That means even if we can not obtain the title or

generate the lexical signature of the missing page we may find tags describing its content. Tags are

created by many users, therefore represent the “wisdom of the crowd”. They have been shown to

be useful for search [71, 126] and shown to possibly contain terms that do not occur in the original

(now missing) web page. Therefore tags could be suitable input for the c2u function and could be

beneficial for retrieving other, potentially relevant documents.

We do not expect tags to outperform titles and lexical signatures but we foresee an added value

for the rediscovery of missing web pages in combination with the previously established sequences

of c2u iterations.

In previously generated corpora containing randomly sampled URIs we observed that tags were

very sparse. In the corpora used for the experiments in Chapters V and VI which are also described

in [161], for example, we only found tags for 15% of all URIs. This led us to the creation of a new,

“tag-centric” corpus introduced here.

2 EXPERIMENT SETUP

2.1 Data Gathering

Heymann et al. [126] support the point that tags are very sparse in datasets based on randomly

sampled URIs. They show that compared to a search engine’s index the number of URIs annotated

with tags is diminishing. Therefore we decided to reverse the approach and obtain tags and the

URIs they annotate instead of first sampling URIs and then asking for their tags hoping to get a

good sized sample set. Note that these URIs are not really missing but due to the sparseness of

tags we use the obtained URIs and pretend they are missing. A few sources are available to obtain

tags left by users to annotate URIs. The website delicious.com is probably the most famous and

most frequently used one. We queried Delicious for 5000 unique URIs from their index using the

Delicious “random tool”1. We are aware of the bias of our dataset towards the Yahoo! index (which
1http://www.delicious.com/recent/?random=1
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Table 22 Tag Distribution for URIs Sampled from http://www.delicious.com

# of Tags 0 1-5 6-10 11-15 16-20 21-25 26-29 30
Frequency in % 0.42 1.44 2.36 4.48 6.66 6.86 4.04 73.73

we query against) especially in the light of Yahoo! integrating Delicious data into their index [8].

However, sampling from Delicious is an approach taken by various researchers [71, 126].

We eventually aggregated 4968 unique URIs from Delicious. We did get 11 duplicates and despite

the fact that we sampled from the “random tool” which pulls from the Delicious index we obtained

21 URIs that did not have tags. We used screen scraping, instead of the Delicious API, to gather up

to 30 tags per URI2. The order, which may be of relevance for web search, indicates the frequency of

use for all tags. Table 22 shows the relative distribution by number of tags for all URIs. We obtain

the maximum of 30 tags for almost three out of four URIs.

2.2 Performance Measure

We use the Yahoo! BOSS API for all queries and analyze the top 100 results. We apply three

different performance measures for our evaluation. Since our dataset consists of live URIs one way

of judging the performance of tag based search queries is to analyze the result set and monitor the

returned rank of the URI of interest. This establishes a binary relevance case. More precisely, similar

to our evaluation in [161] the first performance measure distinguishes between four retrieval cases

where the returned URI is:

1. top ranked

2. ranked 2-10

3. ranked 11-100

4. considered undiscovered (ranked 101+).

We consider URIs not returned within the top 100 as undiscovered. We are aware of the possibility

of discriminating against results returned just above that threshold but as mentioned earlier it is

known that the average user does not look past the first few search results ([54, 142]). We also

compute normalized Discounted Cumulative Gain (nDCG) for the result set as a measure to reward

results at the top of the result set and penalize results at the lower end. We give a relevance score of

1 for an exact match of the target URI and a score of 0 otherwise. For comparison reasons we also

include mean average precision (MAP) scores for our results with the same binary relevance scoring.

Secondly, we compute the Jaro-Winkler distance between the original URI and the top 10 re-

turned URIs from the result set. The intuition is that some highly relevant pages have very similar

URIs. The Jaro-Winkler distance is frequently applied to measure the similarity between short

string such as names and is therefore well fitting for comparing our URIs.
2We have previously shown the Delicious API to be unreliable, see:

http://ws-dl.blogspot.com/2011/03/2011-03-09-adventures-with-delicious.html



98

Table 23 Relative Retrieval Numbers for Tag Based Query Lengths, nDCG and MAP

# of Tags Top Top10 Top100 Undis Mean nDCG MAP
4 7.2 11.3 9.6 71.9 0.14 0.11
5 9.0 11.3 9.7 69.7 0.16 0.13
6 9.7 12.0 9.0 69.3 0.17 0.14
7 10.5 11.5 8.7 69.3 0.18 0.14
8 11.0 10.8 8.1 70.1 0.18 0.15
9 10.3 9.9 8.0 71.9 0.17 0.14
10 9.7 8.9 6.4 75.0 0.15 0.13

As a third measure, we compute the Dice coefficient between the content of the original page and

the content of the top 10 search results. This gives us a sense of the string based similarity between

the original content and the returned results. A high coefficient means a high similarity which in

turn can be interpreted as a high relevance to the query − the tags used to annotate the original

URI.

3 RETRIEVAL PERFORMANCE OF TAGS

3.1 Length of Tag Based Search Queries

We determined the best performing lexical signature length in previous work [158] and as shown in

Chapter V to be 5 and 7 terms. We initially assumed these parameters could be equally applied to

tags. Hence our input to the c2u function consisted of 5 and 7 tags. It turns out our assumption

was inaccurate and therefore we widened the spectrum. Table 23 shows query lengths varying from

4 to 10 tags and their performance in relative numbers with respect to our four retrieval categories

introduced in Section 2.2 as well as their nDCG and MAP. The generally low mean nDCG and

MAP values are due to the large number of undiscovered URIs. Table 23 shows that 8-tag queries

return the most top ranked results (11%) and 7-tag queries, tied with 6-tag queries, leave the fewest

URIs undiscovered. Is also shows that 7- and 8-tag queries are tied for the best mean nDCG while 8

tags have a slight edge at MAP. However, taking this data we can not find a statistical significance

(p-value ≤ 0.05) between the performances of 5-, 6-, 7- and 8-tag queries. The performance of 4-,

9- and 10-tag queries is in comparison statistically significantly worse.

3.2 Relevance of Results

Our binary retrieval evaluation (the URI is either returned or not) is applicable since we know what

the “right” result to the tag based query is − the URI. However, the results in Table 23 indicate that

a large percentage of URIs remain undiscovered. Next, we investigated the relevance and similarity

of the returned results for cases where the URI of interest is not returned.

URI Similarity

We compute the Jaro-Winkler distance between the original URI and the URIs of top 10 results to

determine the similarity between URIs. Given the data from Table 23 we take the results of the
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Fig. 38 Similarity Between URIs and Contents

five best performing tag based query lengths (5, 6, 7 and 8 tags) for this analysis. Figure 38 shows

in the top graph the mean Jaro-Winkler distance for all URIs (y-axis) per rank (x-axis). Each of

the four lines represent a query length but it seems insubstantial to distinguish between them. The

mean Jaro-Winkler value is high. It varies between 0.59 and 0.62 with slightly higher values for the

top two ranks. The values for ranks three through ten are almost indistinguishable. These results

show very similar URIs in the top 10 indicating a high degree of relevancy for the returned results.

Content Similarity

Figure 38 shows in the bottom graph the Dice coefficient between the content of the URI the tags

were derived from and the content of the top ten results. The intuition is that tags may not have

the specificity to reliably return their URIs but contain enough information to return other relevant

pages. This can especially be true for tags that do not actually occur in the pages. The graph

also distinguishes by query length but the differences are diminishing. The mean Dice coefficient

varies between 0.12 and 0.17. It is highest for the top two ranks and slightly decreases with higher

ranks. The low mean Dice coefficients give an indication for a small degree of string similarity for

the obtained results.

3.3 Performance Compared to Content Based Queries

In order to give a comparison for the performance of tags we also apply the previously introduced

rr implementations, the title of the page and the page’s lexical signature, and feed them into c2u.

Table 24 summarizes the c2u outcome distinguished by our four retrieval cases, nDCG and MAP.
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Table 24 Relative Retrieval Numbers for Titles, Lexical Signatures and Tags, nDCG and MAP

Top Top10 Top100 Undis Mean nDCG MAP
Titles 60.2 4.2 0.6 34.9 0.63 0.62
LSs 36.5 6.6 1.3 55.6 0.4 0.39
Tags 22.1 15.4 10.2 52.4 0.32 0.27

Note that the data in Table 24 is based on aggregated values meaning we merged the results for

5- and 7-term lexical signatures into one category and likewise for all tag based query lengths. We

can see that titles outperform lexical signatures, supporting our earlier findings in Chapter VI and

in [161, 162]. Both methods perform better than tags in terms of URIs returned top ranked, mean

nDCG and MAP even though tags leave slightly fewer URIs undiscovered than lexical signatures.

Tags return much more URIs in the top 10 and top 100 than any other method. One interpretation

of this observation is that tags, possibly rather generic by nature, are often not precise enough to

return the URI top ranked. but they do provide enough specificity to return the pages within the

top 100 results. This can be beneficial in case the other methods do not return the URI of interest.

This observation can be compared to the performance of lexical signatures generated with the first

method introduced in Park et al. [214]. Following this method the generated lexical signatures

contain terms in decreasing TF order only and IDF values are not considered. These TF-biased

lexical signatures show the worst performance in returning the URI as the only result.

3.4 Combining Tags With Other Methods

Tables 23 and 24 show that the overall retrieval performance of tags alone is not very impressive.

However, what these tables do not show is the value of tags in a sequence with other rr implemen-

tations. In other words, does the union of the results of more than one method improve the retrieval

performance? And speaking from the preservation point of view, can we rediscover more missing

URIs with combining two or even all three of the methods?

Extracting a web page’s title from the content is cheap; it costs just one request to the resource.

In case the resource is a Memento it entails two requests: one to a Memento aggregator and the

second to the archived resource itself. Lexical signatures are much more expensive to generate since

each term, as a candidate to make it into the signature, requires the acquisition of a document

frequency value. That means one request per unique term. Additionally we need to compute and

potentially normalize term frequency (TF) values. Obtaining tags, similar to titles, is very cheap

because it only requires one request to Delicious.

With this “cost model” in mind we define two sequences of c2u iterations with varying input:

Title-Lexical Signature-Tags (T-LS-TA) and Title-Tags-Lexical Signature (T-TA-LS ). Since titles

perform best (as shown in Chapter VI and also demonstrated in previous work [161]) we maintain

the priority for titles and query them as our first step in both sequences. As our second step in T-

LS-TA we apply the lexical signature based method to all URIs that remained undiscovered (34.9%

as shown in Table 24). We thirdly apply the tag based method to all URIs that are still undiscovered

in T-LS-TA. The difference in the second sequence is that we apply the tag based method second
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Fig. 39 Performance of Titles Combined with Lexical Signatures and Tags
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Table 25 Mean nDCG and Mean Average Precision for all Sequences of Methods

TI TI-LS TI-LS-TA TI-TA TI-TA-LS
Mean nDCG 0.63 0.67 0.72 0.69 0.71

MAP 0.62 0.67 0.70 0.67 0.69

(to the 34.9%) and the lexical signature based method third.

Figure 39 shows the combined retrieval performance. The data of sequence T-LS-TA is shown in

Figure 39(a) distinguished by contribution per method and separated in the previously introduced

four retrieval categories. The first three bars (from left to right) are additive meaning the darkest

part of the bars corresponds to the relative number of URIs returned by titles, the gray portion of

the bars corresponds to the URIs not returned by titles but returned by lexical signatures and the

white part of the bars represents the URIs neither returned by titles nor by lexical signatures. They

are returned by tags only. Therefore these three left bars are to be read as if they were growing with

the application of each additional method. The rightmost bar is to be read as if it was subtractive.

For Figure 39(a) that means the dark portion of the bar represents the number of URIs undiscovered

with titles (34.9%). The upper bound of the dark portion down to the upper bound of the gray

portion represents the retrieval gain due to applying the second method. The height of the white

portion of the bar corresponds to the final number of URIs that are left undiscovered after applying

all three methods (23%) in the sequence T-LS-TA. Figure 39(b) displays the data in the same way

for the sequence T-TA-LS. The color scheme remains the same with respect to the method meaning

dark is still the title, gray still the lexical signature and white still represents tags.

The height of the gray bar for undiscovered URIs is of course identical to the corresponding

white bar in Figure 39(a). The additive bar for the top ranked results is slightly higher in Figure

39(a) (67.2% vs. 66.4%) but the bars for the top 10 and top 100 results are slightly higher in Figure

39(b) (7.2% vs. 7.7% and 2.6% vs. 3.0%). The results for the sequence of methods in terms of

mean nDCG and MAP are summarized in Table 25. The performance increase of both sequences

is statistically significant as determined by the t-test with p-values below the 0.05 threshold. Tags

perform similarly compared to lexical signatures for URIs that remain undiscovered with the title

method. Since tags are so much cheaper to obtain than lexical signatures these results lead to the

recommendation to use tags as the default secondary method for rediscovering missing web pages

in case tags are available through Delicious. This condition is crucial since we have seen that tags

were rather sparse for previously analyzed web page corpora.

4 GHOST TAGS

Previous research [71, 126] has shown that about half the tags used to annotate URIs do not occur

in the page’s content. We find a slightly higher value with 66.3% of all tags not present in the

page. If we consider the top 10 tags only we find 51.5% of the tags not occurring in the page. This

discrepancy intuitively makes sense since the ranking in Delicious is done by frequency of use which

means that less frequently used tags are more likely to not appear in the page. However, these
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numbers only apply for the current version of the page. The tags provided by Delicious on the other

hand are aggregated over an unknown period of time. The date of tags in Delicious can only be

approximated but not reliably computed. It is possible that some tags used to occur in a previous

version of the page and were removed or replaced at some point but still are available for that page

through Delicious. We call these “ghost tags”, terms that persist as tags after disappearing from

the document itself.

To further investigate this aspect we use the Memento framework [259] to obtain old copies for all

URIs that have tags not occurring in their content. For our dataset that applies to more than 95%

of the URIs. Since we obtain different amounts of Mementos and different ages of the Mementos, we

decided to only check tags against the first Memento meaning the oldest available copy of the page.

We obtain Mementos of 3, 306 URIs some of which date back to 1996. Out of the 66.3% tags not

present in the current page we find a total of 4.9% being ghost tags. They occur in about one third

of the previous versions of our web pages. Figure 40 displays the distribution of tags (dark gray) and

the Mementos they occur in (light gray) per year. Note that the y-axis is plotted in log-scale. The

vast majority of our “ghost tags” is found in Mementos from recent years especially in 2009. Only a

few if any at all are found prior to 2006. We also see noticeable numbers from 2011 which indicates

a very short time between the publication of the tags at which time they did occur in the page and

their disappearance from the page. The majority of these very recent Mementos were obtained from

search engine caches. The observations from Figure 40 confirm 1) that ghost tags exist meaning

some tags better represent the past content of a web page than the current and, 2) these ghost tags

are found in the more recent past and rarely date back more than three years.

We then determine the importance of ghost tags for a page. We compare the tags’ occurrence

frequency in Delicious and their term frequency (TF) in the first available Mementos. We rank each

ghost tag according to its Delicious and its TF rank and normalize the rank to a value between zero

and one in order to avoid a bias towards a greater amount of available tags and longer documents.

The closer the value gets to zero the higher the rank and the greater the importance. Figure 41

displays the Delicious rank on the x-axis and the TF rank on the y-axis. Each dot represents one

ghost tag. If a dot is plotted more than once, its shade gets darker (18 dots are plotted twice,

one three times and one five times). The semi-transparent numbers indicate the percentage of dots

or ghost tags in the corresponding quadrants. The numbers confirm our first visual impression of

the graph. A majority of ghost tags (34.7%) occur in the first quadrant meaning their normalized

Delicious rank is ≤ 0.5 and so is their TF rank. This indicates a high level of importance of the

ghost tags for the document and also for the Delicious user. One fourth of the ghost tags seem to be

more important for the document than in Delicious since their ranking there is > 0.5. On the other

hand for 22% of ghost tags the inverse holds true. In 18.1% of the cases we can claim that “only”

infrequent terms became ghost tags. These results show the significance of ghost tags since one third

of them were used very frequently in the document and still are used frequently in Delicious.

5 SUMMARY

In this chapter we investigated tags created by users to annotate URIs as a third rr implementation

and as input to the c2u function.
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Fig. 40 Amount of Ghost Tags and Mementos Occurring in Previous Versions of Web Pages

Due to the sparsity of tags in the previously used datasets containing randomly sampled URIs

we here used a set of URIs obtained directly from Delicious, the source of our tags. We investigated,

similar to previous chapters, the length of well performing search engine queries based on tags and

compared them with the previously introduced methods. We showed that a search engine query

containing five to eight tags performs best. More than 20% of the URIs are returned in the top 10

ranks. We have further provided evidence for the top 10 results to be similar to the URI the queried

tags were obtained from. But compared to querying the title of the page or its lexical signature tags

alone do not perform well.

However, we here again find that a sequence of c2u iterations with tags and others methods can

increase the overall retrieval performance. Due to the fact that titles perform best comparing all

methods and given the low cost of obtaining a web pages’ title we still consider titles to be our

primary method. As a secondary method we have seen that both lexical signature and tags show

similar performances. It further is a fact that tags are cheaper to obtain compared to the rather

complex and time consuming creation of lexical signatures. Therefore we consider tags, if available,

as our secondary method for the rediscovery of missing pages.

We have further introduced the notion of “ghost tags”. Ghost tags are what we call terms

obtained from Delicious that do not occur in the current version of the web page they are annotating

but they do occur in a previous version of that page. Of course ghost tags are not restricted to
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Fig. 41 Ghost Tags Ranks in Delicious and Corresponding Mementos

Delicious. We just chose to obtain tags from this one source but we do suspect ghost tags to be a

ubiquitous phenomenon throughout various sources for tags.

We provided evidence that ghost tags are not just any terms, neither for the user nor for the

document. More than one out of three ghost tags appear to be important for the user as well as for

the document. We assessed the importance by analyzing the term’s ranking in Delicious (determined

by frequency of use) and its frequency of occurrence in the text.

The results of this chapter provide us with a guideline to implement tags as yet another method

to rediscover missing pages in our software system. In particular we gained knowledge about the

length of tag based queries. This method becomes particularly important if no Mementos of a

missing URI can be obtained, which means no titles are available and we can not create a lexical

signature.
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CHAPTER VIII

LINK NEIGHBORHOOD LEXICAL SIGNATURES

1 BACKGROUND

Two of the rr implementations as input for the c2u function for rediscovering missing web pages

introduced so far rely on obtained Mementos. The Memento’s content is used to generate a lexical

signature (Chapter V) and we extract its title (Chapter VI). If no Memento is available, both

methods are unusable. In this chapter we investigate link neighborhood lexical signatures (LNLS)

as a fourth rr function implementation. Like tags introduced in Chapter VII LNLSs can be used if

no Mementos of a missing page are available. A LNLS of a web page is a lexical signature generated

from the content of other web pages that link to the page of interest, also called their inlinks or

backlinks.

We performed an experiment to evaluate constructing lexical signatures from link neighborhoods

as seen in Klein et al. [163]. Since pages tend to link to related pages, our intuition is that the

link neighborhoods contain enough of the “aboutness” of the targeted page to create a valuable rr

implementation that also can be fed into the c2u function.

We constructed link neighborhoods by querying a search engine for listings of backlinks and

tested several methods of calculating lexical signatures from those link neighborhoods to find the

most effective signature based implementation.

Similar to Chapter V we identify in this chapter optimal values for LNLSs. We examine the

effects of lexical signature size, backlink depth and backlink ranking as well as the radius within a

backlink page from which terms for the link neighborhood lexical signature will be drawn.

2 CONSTRUCTING THE LINK NEIGHBORHOOD

We anticipated a large number of backlinks, which made us use the same corpus of 309 URIs

introduced in Chapter V, Section 3.2 for our experiment.

For each URI, we queried the Yahoo! BOSS API to determine the pages that link to the URI

(“backlinks”). We chose the Yahoo! BOSS API because it was previously shown to give more

complete backlink results than other search engines [192]. We refer to the order in which these

backlinks are returned as “backlink rank”. By obtaining the backlinks of the backlinks we created

a directed graph of depth two. Figure 42 graphically explains such a link neighborhood. The page

on the right with the vertical lines represents the target page which is the page that a user linked to

but is it no longer available. Using Yahoo!, we obtain (in this example) three pages that link to the

target page. These are the first-level backlinks, represented in the center with horizontal lines. For

each first-level backlink, we obtain its backlinks. These pages are represented with crossing lines and

we call them second-level backlinks. In this manner we retrieved a total of 335, 334 pages, 28, 325

first-level and 306, 700 second-level backlink pages.
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Fig. 42 Graphical Example for a Link Neighborhood

2.1 Pre-processing the Link Neighborhood

With a dataset of that size we need to guard against noisy inputs. We applied five filters to the

backlink page representations before we calculated lexical signatures. Those filters were based on:

content language, file type, file size, HTTP response code, and the presence of “soft 404s”. Some

of the filters have been used earlier, in particular in the local universe dataset first introduced in

Chapter IV, Section 3.2. All applied filters are also described in our technical report [264].

Language

Since we used an American search engine which is likely to have coverage biased towards English-

language pages [262] we made an attempt to discard non-English pages before the lexical signature

calculation. We again use the Perl module Lingua::Identify to obtain percentage guesses for each

page’s language and dismissed less than 8% of all pages.

File Type

We discarded less than 4% of all pages due to their non-HTML representations. In cases where the

server described the file type in the HTTP headers, this information was trusted. In other cases,

the Unix file command-line program was used to guess the file type.

File Size

Similar to the filter applied earlier we discarded any pages that contained fewer than fifty terms after

rendering to ensure enough input for a robust lexical signature. This filter accounted for dismissing

less than 7% of all pages.

HTTP Response Code

We experienced a variety of errors while downloading all web pages. Fortunately almost 97% of pages

returned the HTTP response code 200, which means success. We made a total of five attempts
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Table 26 Pre-Processing Statistics

Filter Percent of URIs Discarded
Content Language 7.36%
File Type 3.82%
File Size 6.86%
HTTP Result code 3.25%
Soft 404s 0.36%
Remaining 78.35%

to download the remaining pages. If none of the attempts resulted in success, those pages were

dismissed.

Soft 404s

Pages that terminate with an HTTP 200 status code (possibly after multiple redirects) while re-

turning an error message in the human-readable version of the page like “your page could not be

found” are known as “soft 404s”. Soft 404s have been introduced in Chapter III, Section 2.4. Since

these pages are not “about” the same things as the pages that they link to, they were discarded

(less than 1%). To determine if a page was a soft 404, we used a subset of the method laid out by

Bar-Yossef et al. [65]. We retrieved the URI, plus two modified versions of the URI with a random

20-character string inserted. First, we inserted the random string immediately after the first slash

after the domain name. Second, we inserted the random string immediately after the last slash in

the path. For example, if the original URI was:

http://example.com/path/to/file.html

and the random string was XXXXXXXXXXXXXXXXXX, then we would have downloaded also

http://example.com/path/to/XXXXXXXXXXXXXXXXXXfile.html

and

http://example.com/XXXXXXXXXXXXXXXXXXpath/to/file.html

We used the Jaccard similarity coefficient to determine the similarity of the representation returned

for the original URI and both modified URIs. If the original URI returned an HTTP error code,

meaning anything other than a 200-level success code, then we could declare that the page was not

a soft 404. If the first modified URI returned a HTTP error code, then the page could not be a soft

404, since malformed URIs in that path trigger real (hard) 404 responses. Otherwise we calculated

the Jaccard similarity between the representation of the original URI and the first modified URI as

well as the Jaccard similarity between the original URI and second modified URI. If both similarity

coefficients were above our threshold of 0.9, then the original URI was deemed to be a soft 404 and

discarded. Table 26 summarizes the percent of URIs that we caught in each pre-processing filter.

We caught some URIs in more than one filter, but only list the filter here in which they were caught

first.
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3 CALCULATION OF NEIGHBORHOOD LEXICAL SIGNATURES

We seek to determine the effects of lexical signature size, backlink depth, backlink ranking, as well

as the radius within a backlink page from which terms for the lexical signature should be drawn.

For every possible combination for each of these factors we computed the TF-IDF value of every

term in the appropriate section(s) of the appropriate pages. As usual the terms with the highest

TF-IDF value are chosen for the lexical signature.

3.1 Backlink Depth

The two options for depth were:

1. to use only the first-level backlinks, those that link directly to the target page (marked with

horizontal lines in Figure 42) and

2. to use first and second level backlinks (horizontal and crossing lines in Figure 42).

First-level backlinks might result in a lexical signature that more accurately describes the missing

page since they are closer to the target page. However, in cases where few first-level backlinks

exist, second-level backlinks might provide more information, leading to a better performing lexical

signature.

3.2 Backlink Ranking

The backlinks returned from the Yahoo! BOSS API are ordered. To determine whether this ranking

was helpful we tested the following three possibilities:

1. using only the top 10 backlinks,

2. using the top 100 backlinks and

3. using the top 1000 backlinks.

If fewer backlinks existed than allowed by the limit we use all available backlinks. If the rankings in

backlink results from the BOSS API were helpful, then using only the top backlinks would provide

a better lexical signature. If not, then using as many backlinks as possible might provide the better

lexical signature since that means including more data.

3.3 Radius

We considered four possibilities for the radius within the backlink page from which lexical signatures

would be drawn. lexical signatures are typically drawn from entire pages, and this was our first

possibility. However, since a particular section of a page can be about a different topic than a page

as a whole, we tested whether using only the relevant portions of a page would produce a better

lexical signature. To find the “relevant” portion of a backlink page we used the link from the page

to the target URI as a centerpoint and captured the ‘paragraph’ of context around the link. Such

a link should exist, since the backlink was described by the BOSS API as a page that linked to the

target URI. Hence the second option considered the anchor text plus the preceding five words and
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the following five words. We increased the radius around the centerpoint for the third option to

include the link plus ten words on each side. The fourth option used only the anchor text itself. In

cases where a given backlink page included multiple links to the same target URI, the text around

every link was included. In cases where we did not find the link to the target URI, the backlink

page was not included in the calculations.

3.4 Lexical Signature Size

We have previously shown that 5- or 7-term lexical signatures perform best. However, given that

the lexical signatures in this experiment were being derived from a link neighborhood instead of the

target page itself, we need to test the applicability of those standards. We stored the ten terms

with the highest TF-IDF value and queried lexical signatures of sizes one, two, three, four, five, six,

seven, and ten.

4 RESULTS

Just like for the evaluation of our results in Chapter V, Section 3.1 we use here again the normalized

Discounted Cumulative Gain (nDCG). We set the relevance score to 1 for an exact match of the

target URI, and 0 otherwise. We checked the first 1000 results and if the target URI was not found

we assigned a nDCG value of 0, corresponding to an infinitely deep position in the result set.

4.1 Backlink Depth

Figures 43, 44 and 45 show average scores of methods based on anchor text, anchor text ±5 words and

anchor text ±10 words, respectively, using the first- and second-level backlinks. First-level backlink

methods are drawn in black and second-level methods in red. Since the method based on using the

whole page performed exceptionally poor and its results do not change the overall outcome we do

not include that graph. The x-axis is the number of terms included in the lexical signature and the

y-axis is the mean nDCG. Note the dramatic decline in every case when second-level backlinks are

included. This shows that second-level backlinks’ relation to the target page is not tight enough to

be useful in describing the target page. As such, our best-performing method includes only first-level

backlinks.

4.2 Radius

We started with the assumption that some parts of a backlink page would use terms that are more

closely related to the target page, and that the most relevant terms would be in or near the link to

the target URI. As we can see in Figure 46 by far the best results arise from using only the terms

in the anchor text itself to calculate the lexical signature. The anchor text ±5 words or ±10 words

performed similar to each other and using the whole page performed the worst. Each step taken

away from the anchor text, by broadening the radius to include words around the anchor or the

entire page, yields increasingly poor results.
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Fig. 43 First- and Second-Level Backlinks Anchor Radius Lexical Signatures with Various
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Fig. 47 Effect of Backlink Rank (First-Level-Backlinks)

4.3 Backlink Ranking

Figure 47 shows the three possibilities for backlink ranks: using only the top 10, top 100, or top 1000

backlinks. Note that using 100 and 1000 backlinks (and anchor text) results in the highest overall

nDCG value of 0.61 obtained with 3-term lexical signatures. This accounts for more than 58% of all

URIs returned as the top search result. The corresponding nDCG value using the top 10 backlinks

only is 0.57. Considering this marginal delta in nDCG and the huge implied cost to acquire ten or

one hundred times as many pages and generate a lexical signature based on an accordingly larger

bucket of words, we consider using only the top 10 backlinks as the better tradeoff. The “return

on investment” is better when sacrificing an nDCG drop of only 0.04. For lexical signatures of size

greater than three terms the nDCG is equal or better using ten backlinks only. So while we do not

exactly know how Yahoo! determines its ranking, we do know (considering all costs) that we are

better off using only the top 10 backlinks of a URI.

4.4 Lexical Signature Size

We can further see in Figure 47 that the overall best performance is obtained using 3-term lexical

signatures. However, with the above reasoning meaning to use the top 10 backlinks only, the best-

performing lexical signature is four terms in length. Using ten backlinks, 4-term lexical signatures

have an nDCG value of 0.58 and almost 56% of all URIs are returned top ranked. Using more terms

yields poorer results. Using fewer terms and top 10 backlinks results in a slightly worse performance
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Table 27 Result Rank and nDCG vs Lexical Signature Size (1-anchor-1000)

# of terms in lexical signature
Result Rank 1 2 3 4 5 6 7 10
1 32.11 50.50 58.19 54.85 52.51 45.82 38.80 23.41
2-10 10.03 10.70 7.02 5.35 2.34 2.34 1.67 0.33
11-100 5.69 3.34 0.67 0.33 0.33 0.33 0.33 0.67
101-1000 4.35 1.67 0.00 0.00 0.33 0.33 0.33 0.00
> 1000 49.16 35.12 35.45 40.80 45.82 52.51 60.20 76.92
Mean nDCG 0.38 0.56 0.61 0.57 0.53 0.47 0.39 0.23

compared to top 100 and top 1000 backlinks. This result is noteworthy since we have previously

found (as seen in Chapter V) that the best lexical signature size is five or seven terms. We consider

the source of the terms that make up the lexical signature to be the reason for this disparity. In

this method, the terms are drawn not from the target page itself, but from pages that link to it,

which are likely to be “related”. Using five or seven terms drawn from the backlink pages is likely to

over-specify the backlink pages and their specific focus, rather than the content of the target page.

The second lexical signature generation method introduced in Park et al. [214] shows a similar

over-specification. These lexical signatures contain terms in decreasing order of their DF value only

and TF is disregarded. By using fewer terms, we decrease the risk of including a term in the lexical

signature that does not appear in the target page.

As explained before, the nDCG score represents the value of the result set to the user. To see

the meaning of this score more clearly, Table 27 shows the percentage of URIs by their location in

the result set. The data is obtained from using the first level backlinks, anchor text only and the top

1000 results since this combination accounts for the numerically best nDCG scores. Table 28 shows

the same results for using the top 10 backlinks only, our preferred combination of parameters. The

first row contains the percent of URIs that were returned top ranked in the result set. Each of these

URIs received the maximum score of 1. The following four rows represent those URIs that were

returned in the top 10 but not top ranked, on further pages, and those that were not rediscovered

at all. The last row, for comparison, shows mean nDCG scores.

Note again that the best results were obtained using 3-term lexical signatures and the top 1000

backlinks. Over 58% of the missing URIs were found in the top spot of the result set. However,

the top performance of our preferred method of using only the top 10 backlinks and 4-term lexical

signatures accounted for almost 56% URIs returned at the top position. Less than 5% of the

URIs were returned between rank one and 1000. These results confirm the “binary distribution”

introduced in the previous chapter meaning the majority of the URIs are either returned top ranked

or somewhere (if at all) beyond the top 1000.

5 SUMMARY

In this chapter we demonstrated the usability of link neighborhood based lexical signatures (LNLS)

as our fourth implementation of the rr function that also can be an argument to the c2u function.

We worked with a previously used rather small corpus anticipating the size of the entire dataset to
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Table 28 Result Rank and nDCG vs Lexical Signature Size (1-anchor-10)

# of terms in lexical signature
Result Rank 1 2 3 4 5 6 7 10
1 25.08 45.15 52.51 55.85 52.84 47.83 46.49 39.13
2-10 9.03 9.70 7.02 3.34 2.01 1.34 1.00 0.67
11-100 8.03 4.68 2.01 0.67 0.67 0.33 0.33 0.33
101-1000 5.69 2.34 0.33 0.67 0.33 0.33 0.33 0.00
> 1000 52.17 38.13 38.13 39.46 44.15 50.17 51.84 59.87
Mean nDCG 0.32 0.52 0.57 0.58 0.54 0.49 0.47 0.40

increase dramatically when including all neighboring pages. We investigated these lexical signatures

in terms of levels of backlinks to include, the importance of ranked backlinks, the radius of terms to

include around the anchor text, and the length in number of terms.

The results for the backlink levels are clear: only the first level is to be considered. Including

the second level washes away the context of the centroid page. Somewhat to our surprise using the

anchor text only shows the best performance. We anticipated more gain by including five or ten

words surrounding the actual anchor. Anchors are usually created manually and ideally very briefly

describe the page the link is referring to which makes it a suitable search query. In addition it has

been shown that anchor text is somewhat similar to queries generated by users for search engines.

The overall best performance is obtained by including the anchor text of the top 1000 backlinks

and generating a 3-term LNLS. However, the implied costs are huge as we would have to download

and parse 1000 pages and obtain DF value estimates for all terms. The more resource efficient

alternative is to include just the top 10 backlinks and generate a 4-term LNLS. With respect to

the bare retrieval numbers this setup performs second best but the difference is minimal. We

therefore recommend using the “lightweight” setup since it seems to be the better trade-off. Given

this outcome, we recommend the most resource efficient combinations of all parameters for the

generation of LNLS. However, compared to the previously introduced rr implementations, LNLS

are most complex to create as they require the most amount of queries against a search engine.

Given that fact we do not consider any sequences of c2u iterations including LNLS. We rather like

to consider this implementation as a last resort for an c2u input, in case all other iterations have

failed.

Similar to tags link neighborhood based lexical signatures gain importance in case no Mementos

are available. We still have a chance to obtain pages that link to the missing URI and create a query

representing the aboutness of the page of interest.
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CHAPTER IX

BOOK OF THE DEAD

1 BACKGROUND

In all previous experiments [158, 160, 161, 162, 163] we have been using data sets and corpora con-

taining URIs that were not actually missing. We generated these sets of URIs by randomly sampling

various sources and to evaluate our methods for the rediscovery of web pages we “pretended” they

were missing. The main reason for this is the fact that there is no corpus of actually missing web

pages available. Researchers in the area of information retrieval frequently utilize bounded data sets

as introduced in Chapter III, Section 8 but even these URIs are not missing. They rather are often

aggregated for a particular retrieval task such as identifying spam [39] or they are created to capture

a particular fraction of the web such as the TREC BLOG08 test collection [38], which contains blog

feeds.

In this chapter we introduce the Book of the Dead, a corpus of real missing web pages. We apply

our methods to rediscover missing web pages to this corpus and evaluate the results with the help of

the “Wisdom of the Crowds”. We make the corpus available for researchers interested in conducting

related experiments.

2 THE BOOK OF THE DEAD

One of the contributions of the Library of Congress [23] to web page preservation is aggregating

and archiving pages related to certain topics. They apply web crawling techniques [57], specifically

a method that is known as focused crawling [67, 68] in order to narrow the crawl to a particular

topic. The objective is to rather go into depth than breadth. Focused crawling has been shown to

be efficient for collecting large data sets specific to particular contexts [82, 221]. Using this approach

the Library of Congress, for example, aggregated pages about various federal and state elections in

2004 and 2006 as well as web pages about the terrorist attacks in the US on September 11 in 2001.

In the process of crawling the Library of Congress encountered numerous web pages returning

a response code that indicates some sort of error. Thankfully they agreed to sharing these URIs

which enabled us to generate the Book of the Dead corpus.

The data set originally contained 1371 URIs that returned some response code other than 200

(meaning “OK”). We counted a total of 376 URIs returning a 400-level response code out of which

290 were 404 responses. A total of 36 URIs returned a 500-level response and the remaining 1031

URIs returned a recorded response code of 0. Since such a response code is not defined in the HTTP

specifications [108] we chose to dismiss these URIs. We tested all URIs labeled with a 404 response

and found a total of 57 now returning a 200 response. It is possible that the Library of Congress

experienced transient errors or some other kind of temporary failures that caused them to record

the URI as missing. However, the portion of the data set we are experimenting with contained 233

actually missing URIs all of which can be found in Appendix B.
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2.1 The Aboutness of the Dead

Amazon offers a service called Mechanical Turk [1] which implements Human Intelligence Tasks

(HITs). The concept of this “micro-task market” is that businesses, researchers and developers

create HITs which individuals all over the world can work on. Creators of HITs benefit from the

access to a distributed around the clock active workforce getting their tasks done in a short period

of time. Workers on the other hand can work on their own schedule from a location they chose and

of course can pick interesting tasks to work on. Creators of HITs pay the workers for completing

the tasks (if satisfied) and Amazon gets a share as well. The Mechanical Turk is gaining popularity

in various research communities. It, for example, has been shown to work efficiently and reliably for

relevance assessment tasks [56] and user studies [155].

We utilize this service to gain knowledge about the content of the missing pages. We only gave

the Mechanical Turk workers two pieces of information: the general topic of the set of URIs (elections

and terror) and the URIs itself. We asked them to analyze the URI and give their best guess on what

the page used to be about. This approach is based on utilizing the web and a virtually unlimited

pool of users.

However, there are alternative methods for URI classification most of which are based on ana-

lyzing the content of the pages. Kan [148] introduced a different method. He uses the URI only to

categorize web pages which is much faster since the pages do not need to be fetched an analyzed. As

also shown in his later work together with Thi [149] they split the URIs into meaningful segments

and identify their features. These features together with applied maximum entropy [66] methods

enable them to model obvious patterns. They evaluate their approach with the WebKB corpus [43],

a corpus commonly used for text classification experiments and show that it can perform as well as

content based classification techniques.

Often an URI can give away the general idea of the content it dereferences. For example, it is

not difficult to give a broad idea of what the URI http://www.whitehouse.gov is about. Most

computer scientists will probably also know that the URI http://www.cs.umass.edu identifies.

This holds true for political parties and candidates. For example, the URI http://www.lptexas.

org/2006/helm/ is taken from the Book of the Dead. Obviously it is about something happening

in 2006 related to the state of Texas. We know the general topic of the corpus and can conjecture it

is a political website for an election in 2006. Maybe we even know that “lp” stands for Libertarian

Party and “Helm” is one of their candidates. The majority of the aggregated “aboutness” obtained

from Mechanical Turk workers for this URI confirms this intuitive analysis (each bullet corresponds

to an answer by a different worker):

• Texas 4th District Libertarian Party United States Congress House Elections Libertarian Party

Texas Helm Kurt G. Political candidates United States Elections United States United States

Politics and government 2001

• this web is about the analysing the votes

• This site is for Libertarian Party of Texas and contains news and events related to it.

• Libertarian party of Texas, candidate Helm for 2006 election
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• Texas poker cards hold’em

Anticipating a broad spectrum of opinions in this task, we asked for ten guesses per URI assuming

the aggregate of HITs would give a good idea of the “aboutness” of the missing pages. As expected,

this process also returned less useful replies. For example, some workers did not seem to read

the description and simply responded with “page is not working” or “dead link”. However, the

majority of responses seemed suitable and so we decided to manually filter the useless ones. Note

that we acknowledge a potential bias here but we made sure that we did not judge the relevance

of responses but rather just dismissed clearly misguided ones. This filter accounted for the set of

responses to shrink by roughly one third. However, each URI remained with at least two descriptions

from two different workers. The filtered and aggregated responses from the HITs together with its

corresponding URIs are available for download [32].

3 REDISCOVER THE DEAD URIS

3.1 Applying Titles and Lexical Signatures

Considering all our methods, the application of titles and lexical signatures show the highest prob-

ability of success. Therefore we decided to apply both methods to the Book of the Dead corpus.

We utilized the Memento framework and were able to obtain Mementos for 161 out of all 233 URIs.

From the latest available Memento per URI we extract the title and generate the 5- as well as

the 7-term lexical signature following the procedure described in earlier chapters. Out of the 161

Mementos 154 have a title and we are able to generate a 5- and 7-term lexical signature for 139

URIs. The remaining Mementos are not in compliance with the criteria for the generation of lexical

signatures; mainly they do not contain more than 50 terms.

We query the applied methods against the Yahoo! search API and recorded the top 100 results.

To assess the similarity and hence the relevance of the returned results we compute the Dice similarity

coefficient introduced in Chapter II, Section 7.3 between the Memento of the missing URI and the

top 100 returned results. Figure 48 displays the Dice coefficient for the 5-term lexical signature

results in a matrix. All URIs are shown along the x-axis and the ranks of the corresponding results

are shown along the left y-axis. The URIs are sorted by the mean Dice values over all ranks in

decreasing order. The Dice values D are separated into four clusters which are represented as four

different colors in the graph:

• D = 0 depicted in white

• 0 < D ≤ 0.3 in light gray

• 0.3 < D ≤ 0.6 in gray and

• 0.6 < D in black.

The light blue area mainly in the right part of the graph represents the URIs and ranks where no

results were returned from the Yahoo! search API. Further the average Dice value over all ranks per

URI is displayed with the green line and refers to the right y-axis. The red dots are representative

for download errors meaning cases where our script was not able to grab the content of the search
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Fig. 48 Dice Similarity Coefficient for Top 100 5-Term Lexical Signature Results per Rank
Including Mean Coefficient

result. The most likely reason being the download scripts do not accept HTTP cookies or send the

same HTTP request headers as conventional web browser. Figures 49 and 50 show the same data

for 7-term lexical signature and title queries, respectively.

The first obvious result is that almost all titles return some results whereas especially 7-term

lexical signatures show no results for about 20 URIs. However, the majority of results that are

returned for all three methods have fairly low Dice values. They fall in the second cluster meaning

0 < D ≥ 0.3 and are represented in light gray. Only a few dark gray and even fewer black results can

be seen. The ones that do occur however are mostly ranked in the top 10 (close to the x-axis) which

is not surprising since we would expect search engines to rank relevant results high. The average

coefficient per URI confirms the picture of overall low Dice values. It varies greatly for URIs with

fewer results returned. The few very similar results indicate cases where the missing page has moved

to a different URI but the content has not changed dramatically. The dark gray and in the best case

maybe even some of the light gray results indicate content-wise relevant pages. Overall we do not

see a lot of completely dissimilar results (white dots) which supports the overall good performance

of the two methods.
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Fig. 49 Dice Similarity Coefficient for Top 100 7-Term Lexical Signature Results per Rank
Including Mean Coefficient

3.2 Similarity of Search Result URIs

Another indicator for a successfully rediscovered missing web page is a high degree of similarity

between the discovered URI and the URI of the missing page. The Jaro distance, introduced in

Section 7.3 of Chapter II, is commonly used for the comparison of short strings such as names of

individuals or companies. It is also suitable for the comparison of URIs. For example, consider the

missing URI of the PSP conference in 2003 introduced in Table 1 of Chapter I

http://www.pspcentral.org/events/annual_meeting_2003.html

and its new URI

http://www.pspcentral.org/events/archive/annual_meeting_2003.html

shown in Table 2 of the same chapter. These URIs are very similar and their Jaro distance value of

0.91 confirms that. In this example the content is nearly unchanged which supports the point that

a high Jaro distance indicates a high level of relevancy.

Following this intuition we compute the normalized Jaro distance for all top 100 results of all

three methods. Similar in style with the graphs from the previous section Figures 51, 52 and 53

show the Jaro distances for the results distinguished by method. The light blue sections again show

ranks of URIs without results. The Jaro distance values J are separated into four clusters which are

represented as four different colors in the graph:
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Fig. 50 Dice Similarity Coefficient for Top 100 Title Results per Rank Including Mean Coefficient

• J = 0 depicted in white

• 0 < J ≤ 0.3 in light gray

• 0.3 < J ≤ 0.6 in gray and

• 0.6 < J in black.

All three figures show a moderate Jaro distance with the average (green line) falling between 0.3 and

0.5 for most URIs. The majority of returned URIs are drawn with a gray dot meaning 0.3 < J ≤ 0.6

as J is part of the third cluster. Another interesting observation that is most obvious in Figure

53 is that very similar URIs are not necessarily returned in the lower ranks, e.g. the top 10. They

are much more distributed over all ranks and seem to be just as likely to occur in the higher ranks

as they occur in the lower ranks. This observation is somewhat expected since we do not anticipate

search engines to discriminate by URIs but rather rank the results by relevancy and “importance”

of a page (as determined, for example, by PageRank [76] and potentially many more criteria). The

average Jaro distance per URI fluctuates the least in this graph due to the most amount of results

returned. The line is dropping to the right due to the sorting of the URIs by decreasing mean Jaro

distance value. However, we do not claim that URI similarity by itself can be considered reliable

evidence for a successful rediscovery of a missing page. The Hypertext 2006 conference web page,
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Fig. 51 Jaro Distance for Top 100 5-Term Lexical Signature Results per Rank Including Mean
Distance

also shown in Chapter I, provides a negative example even though the URIs are identical. In general

this assumption likely does not hold for URIs that have not changed at all or that have changed

only slightly over time but their content has changed dramatically and is no longer relevant to its

original as seen in the Hypertext example.

3.3 Relevancy of Search Results

The results of the previous section are satisfying only to a certain extent. They do not provide very

clear indicators for strong similarity or dissimilarity of the returned results. The majority of the

values were falling somewhere in the middle of the corresponding scale. For this reason we again

utilized the Mechanical Turk for a human relevance evaluation.

In Section 2.1 we created HITs to determine the “aboutness” of all missing pages. Now we create

HITs asking the users to judge the relevance between the “aboutness” and the returned results. For

simplicity we restrict the process to the top 10 results returned from each method. This threshold is

chosen somewhat arbitrarily and rather serves the sake of simplicity. We ask each HIT to be judged

with one out of the following four scores:

• 0: URI is broken
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Fig. 52 Jaro Distance for Top 100 7-Term Lexical Signature Results per Rank Including Mean
Distance

• 1: URI is not relevant

• 2: URI is somewhat relevant

• 3: URI is highly relevant.

Figure 54 shows the relevance scores for our applied three methods. All three subfigures display the

relevance scores with ten groups of four bars each. Each group represents a rank in the top 10 from

left to right. Each bar within a group represents a particular score. The height of the bars indicates

the relative frequency of occurrence over all URIs referring to the left y-axis. The values of the solid

line refer to the right y-axis and represent the average relevance score of the corresponding rank.

The dominant relevance class over all methods and ranks is “somewhat relevant” with the score of

2. This becomes apparent with the corresponding bars peaking at about 60% and the average score

for methods being very close to 2 over all ranks. The number of broken result URIs on the other

hand is diminishing for all methods and ranks. Figure 54(a) representing the title relevance scores

and Figure 54(b) for the 5-term lexical signatures shows a fairly balanced ratio between scores 1 and

3. Both bars fall in the 20% range for all ranks. The picture is similar for 7-term lexical signatures

shown in Figure 54(c) even though we see some slight imbalance particular for ranks one, four and

eight. However, the average relevance score here is also around 2 even though the line is not quite
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Fig. 53 Jaro Distance for Top 100 Title Results per Rank Including Mean Distance

as level as for the other two methods.

With a given relevance value for each of the top 10 results we also compute nDCG values for all

methods. As mentioned earlier nDCG penalizes low relevancy in the higher ranks and high relevancy

in the lower ranks. Since we created the HITs to judge relevance for the top 10 results only we can

rewrite our nDCG values as nDCG@10.

Figure 55 displays four lines three of which represent our three applied methods. The green

dotted line shows the nDCG values for the title results, the red dotted line for the 5-term lexical

signature results and the blue dotted line for the 7-term lexical signature results. All three lines are

sorted independently of each other in decreasing order of nDCG@10 values. The solid black line

represents the union of all three lines meaning it plots the maximum nDCG value of any of the three

methods for each URIs. Note that the y-axis starts at 0.5. The lines stretch to different values on

the x-axis because they have different numbers of results returned for each method.

Obviously the nDCG@10 for all methods is very high. For all methods half of the URIs that

have results returned show an nDCG@10 at or above 0.9. For the union of all methods this even

holds true for two thirds of the URIs. However, we also see a steep drop at the tail of the line

in particular for 7-term lexical signature results but also visible for the other two methods. That

means we have only a small number of URIs with the relevancy of their results being well below the

relevancy of the majority of results of other URIs. These kind of outliers do not surprise but we
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(c) 7-Term Lexical Signatures

Fig. 54 Relevance of Results by Method



126

0 50 100 150

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

URIs

nD
C

G

Union
Titles
5−Term LSs
7−Term LSs

Fig. 55 nDCG per URI

rather expected to find them in our corpus. It is possible that their “aboutness” resulting from the

HITs is not very specific or the URIs does not give away what the page could have been about and

therefore it is difficult to judge a positive relevance for the results.

Figure 56 also shows the nDCG@10 values for the title results but has the values for the other

two methods ordered accordingly. That means we see the same line for the title results as seen in

Figure 55 and each point on that line has corresponding point for the 5- and 7-term lexical signature

methods if the URI has results. In case of a tie it is broken up by the value for 5-term lexical

signatures and by the remaining value for 7-term lexical signatures thirdly if a tie still exists.

This concept implies that some points from the title method do not have a corresponding point

from the 5- and 7-term lexical signature methods and vice versa. The valuable observation of this

graph is that even with a decreasing relevancy for the titles results we see high relevancy numbers

for the other two methods. This is confirmed by the solid black line in Figure 55. It becomes

particularly obvious for URIs 90 through 150 where we see only a few relevancy points below the

titles line (mostly from the 5-term lexical signature method) but a large number of relevancy points

above the solid line. From URI 120 on its seems primarily the 7-term lexical signature method that

provides better results.

4 SUMMARY

In this chapter we introduce the Book of the Dead, a corpus of real missing web pages. The corpus

is based on an aggregation of web pages created by the Library of Congress during a focused crawl
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Fig. 56 nDCG per URI Ordered by Titles

around the topic of general elections in the US in 2004 and 2006 as well the terrorist attacks on the

US on September 11 2001. To the best of our knowledge no corpus of missing web pages is available

to researchers. We therefore conducted all experiments from Chapters IV through VIII on corpora

containing randomly sampled web pages that are not really missing.

We apply two of our most promising methods for the rediscovery of missing web pages to the

corpus and evaluate the results. We find that the title method returns results for most URIs while

lexical signatures, especially 7-term lexical signatures, leave roughly 13% of URIs without results.

Overall, most of the results show a fairly low content similarity to the Mementos of the missing

pages the methods were applied to. The majority of Dice values fall between 0 and 0.3. However,

we see a few results with high similarity scores which mainly occur in the top 10 results. The

similarity between the URIs of the missing pages and their results are slightly higher. We used the

Jaro distance and measured values between 0.3 and 0.6 for the most top 100 results.

We further utilize Amazon’s micro-task service called “Mechanical Turk” to obtain a general and

ideally unbiased idea of what each of the missing URIs were about. With this information we use

the Mechanical Turk again to assess the relevancy of the top 10 results for all URIs and methods.

The results are promising in the sense that the vast majority of results were judged as relevant and

only about 20% were considered irrelevant regardless of the method applied. The ranking of results

also shows encouraging numbers with nDCG values of 0.9 and higher for half of the title results, for

example. Our results also prove that even if the relevancy of the results of one method is not great

one or both of the other methods often provide highly relevant results. This means that the union
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of results is highly relevant with nDCG values of 0.9 or above for at least two out of three URIs.

Aside from these results, the “Book of the Dead” is a first approach to provide a comprehensive

corpus including a description of the aboutness of the content that the URIs used to dereference to.

We make this dataset available for download and hope it can provide a baseline for further relevant

research. The Book of the Dead is available at the URI http://bit.ly/Book-of-the-Dead.
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CHAPTER X

SYNCHRONICITY

1 BACKGROUND

In Chapters V through VIII we have introduced four methods to automatically rediscover missing

web pages in real time. We have characterized parameters which when applied to these methods

promise to show the best performance. For example, we have shown that a best performing lexical

signature should consist of five or seven terms and that a title containing ≥ 75% stop titles should

be dismissed since its projected performance is poor.

In this chapter we introduce Synchronicity, a Mozilla Firefox add-on that supports the Internet

user in (re-)discovering missing web pages in real time. Synchronicity is the prototype implemen-

tation of the above mentioned methods and further enables the user to browse previous versions of

any given web page as long as they are available. The term Synchronicity was coined by the Swiss

psychiatrist Carl Gustav Jung (1875-1961). It is a philosophical concept commonly defined as sev-

eral events that appear to be causally unrelated but are observed to occur together in a meaningful

manner [146]. We define our methods introduced in the previous chapters as such events and them

working together constitutes the meaningful manner − the rediscovery of a missing web page.

The logo of Synchronicity is a shrimp. It is displayed in the top right corner of each panel

when running the software. The idea is derived from the 1984 movie Repo Man [19] where in

one scene a supporting character called Miller explains the philosophical concept of synchronicity

(without actually using the term) to the main character Otto. Miller argues that there is a “lattice

of coincidences” and gives the following example: Otto is supposed to think of a plate of shrimp

and suddenly, out of the blue, someone else would mention “plate” or “shrimp” or “plate of shrimp”

without any explanation. According to Miller there would be no point in looking for one since it all

was part of an “cosmic unconsciousness”. This scene inspired the choice for a shrimp as the icon

and logo for our Synchronicity add-on.

2 IMPLEMENTATION

Synchronicity is implemented as an add-on to the Mozilla Firefox web browser [34]. The user needs

to download and install the extension and after restarting the browser the software is operational.

Synchronicity places its icon in the status bar and whenever a 404 error occurs the icon will change

color and appear with a bright red background. This indicates to the user that the error was caught

and Synchronicity could be used to help out.

Synchronicity utilizes the Memento framework introduced in Chapter II, Section 4 for time based

access of web resources. That means every time a URI results in a 404 error the system obtains

the URI’s TimeMap provided by Memento. From the TimeMap, Synchronicity can grab and parse

valid Mementos to obtain their titles and generate their lexical signatures. In its current state

Synchronicity considers a Memento valid if the HTTP response code is not 404.
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Synchronicity can also be activated without having observed a 404 error by simply double clicking

on its icon. This is useful in case of a soft 404 error or other unexpected or unwanted content of a

given URI as shown, for example, in Figure 2 in Chapter I.

3 DOCUMENT FREQUENCY SERVICE

We have shown in Chapter IV that estimating DF values for all terms candidate to make it into

a lexical signature is a crucial aspect of the computation of accurate TF-IDF values. We have

concluded from this chapter that screen scraping a search engine’s web interface is a feasible and

reliable approach to address this issue. Consequently Synchronicity relies on the screen scraping

approach for its lexical signatures.

It appears to be a waste of resources to query a search engine for each term every single time this

term occurs. A more reasonable approach is to implement a cache that stores previously queried

terms and their obtained DF values. This way we mainly achieve two things. First, the load on

the search engine is reduced since we avoid duplicate queries. Secondly, we expedite the TF-IDF

computation since the DF service can respond faster to requests for DF values that are already

stored in the cache and does not need to query the search engine.

The caching system is implemented as a Perl [35] based Common Gateway Interface (CGI) [227].

It is served through an Apache Web Server [31] running on a Linux [28] computer hosted by the

Computer Science Department at Old Dominion University. The terms and their DF values are

stored in an instance of a MySQL [25] database running on the same computer.

The CGI script is designed to take one term as an input parameter. It grabs the term from the

URI and checks its availability in the database. If the term is found the script returns its DF value.

If the term is not yet stored in the database the script queries it against the Yahoo! API and obtains

the estimated DF value. It then stores the term and the DF value in the database before returning

the DF value in response to the requested URI.

The web server is configured to rewrite an URI ending with

^/getdf/(.*)

to

/cgi-bin/getdf/getdf.cgi?term=$1

That means, for example, if someone would like to obtain the DF value of the term Wimbledon she

would request the URI

http://blanche-04.cs.odu.edu/getdf/wimbledon

and the web server would rewrite it to

http://blanche-04.cs.odu.edu/cgi-bin/getdf/getdf.cgi?term=wimbledon

The DF value is the only data (besides the usual HTTP headers) returned which makes it easy for

applications to parse it. Figure 57 shows the response of the web server to the request shown above.

Since the HTTP protocol version 1.1 is used the response is chunked. The term Wimbledon returns

a DF value of 88, 800, 000.
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Fig. 57 Telnet Session to Obtain Document Frequency Value

4 OPERATION

Synchronicity as seen in Klein et al. [156] triggers whenever a 404 error is encountered but it is up to

the user to load the Synchronicity panel into the browser. The panel can also be triggered manually

if desired. Synchronicity offers six options to support the Internet user in (re-)discovering missing

web pages. Figure 58 shows Synchronicity’s flow diagram with all options arranged. On startup the

system displays two tabs named Archived Version and New Version. The user can switch between

the tabs at any time. The purpose of the Archived Version tab is to display all available Mementos

for the given URI. It provides two visualizations, a TimeGraph and a TimeLine. The TimeGraph

is a dynamically generated but yet static image for the purpose of giving an overview about how

many Mementos are available from what year. By chosing a date the user can display a particular

Memento. The TimeLine mainly serves the purpose of browsing all Mementos. The TimeLine is

“zoomable” into time and the user can and view what archive the Memento was derived from and

when it was created. The user has the option to filter single archives and of course also display any

particular Memento.

The New Version tab offers five methods to rediscover the missing page at its new URI or discover

a replacement page that satisfies the user’s information need. The first four of these methods are
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Fig. 58 Synchronicity Flow Diagram

based on generating search engine queries and represent the implementation of our results from

Chapters V through VIII. The output of all methods can be modified by the user and queried

against any of the three major search engines Google, Yahoo! and Bing. The fifth method is based

on URI modifications meaning Synchronicity displays the URI that caused the 404 error and the

user can edit it and retry. The search results are displayed in the main browser window.

Synchronicity displays a small yellow InfoBox at all times giving a brief explanation what the

system can do at the corresponding panel. It, for example, explains how to zoom the TimeLine and

what to do with the generated lexical signature. The add-on also offers a Help button which when

clicked opens a new browser window with detailed supporting information for the user.

The user further is able to switch between two interfaces. The system by default offers the Basic

Interface which includes all the functionality just described but hides more complex configuration
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Fig. 59 Synchronicity Displaying the TimeGraph for the Missing URI
www.nbm.org/Exhibits/past/2002/New\_World\_Trade\_Center.html

options from the user. The Expert Interface is described in detail in Section 5.

An important benefit of Synchronicity is that it works while the user is browsing and provides

results in real time. Some methods may take longer than others but depending on the user’s

motivation she may be willing to invest more time to obtain the desired result if no other methods

succeeded.

4.1 Mementos

The retrieved Memento TimeMap contains references to all available Mementos of the missing URI.

Synchronicity visualizes all available Mementos in two different ways. First, it offers a TimeGraph

which displays a static graph of the overall number of Mementos found per year. Figure 59 shows

a screenshot of the TimeGraph for the missing URI http://www.nbm.org/Exhibits/past/2002/

New_World_Trade_Center.html. The URI is part of the Book of the Dead. The TimeGraph gives

the user an overview of when the majority of Mementos were created. Right next to the graph the

add-on offers three drop-down boxes which dynamically fill with the dates and times of all Mementos.

Here the user can pick one particular Memento by its creation time and have it displayed in the

main browser window.

The second visualization is called TimeLine. It is located behind the accordingly labeled tab. All

Mementos are displayed on a TimeLine implemented as a Simile Widget [29] as shown in Figure 60.
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Fig. 60 Synchronicity Displaying the TimeLine for the Missing URI
www.nbm.org/Exhibits/past/2002/New\_World\_Trade\_Center.html

Each Memento is placed at the proper time it was created and it is represented with the icon of the

archive is was derived from. The TimeLine consists of two “bands” − a lower and an upper band.

Each band can be dragged to the left and right which visualizes the “travel through time”. The

lower band is displayed on a year granularity and also shows the colored section spanning from the

first to the last available Memento. This section includes the time span currently displayed in the

upper band. The upper band by default starts at the month granularity but it is, unlike the lower

band, “zoomable”. That means a user can zoom into any given Memento and display the year, date

and time it was created. As usual for Simile time lines this can be done with a click wheel mouse or

multi-touch genstures on laptops. By clicking on one icon a small bubble appears that summarizes

the meta information of this Memento. It further offers a link to display the archived version in the

main browser window. The bubble is also visible in Figure 60.

The TimeLine further shows a matrix of all possible archives providing Mementos represented by

their icons. By clicking on one icon the TimeLine filters out all its Mementos. By clicking it again

its Mementos re-appear. Located just below the matrix is a button to clear all Mementos from the

TimeLine. This is useful if the user wants to, for example, only display Mementos from the National

Archives but does not want to filter all other archives by clicking on every single icon. After clicking

the Clear All button its label changes to Show All which reverses the previous action.

If the user’s information need is satisfied with displaying a Memento either with the help of the

TimeGraph or the TimeLine nothing else needs to be done. Note that in case no Mementos are
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Fig. 61 Synchronicity Displaying the Search Results in Yahoo! with the Title of an Obtained
Memento

available for any given URI, Synchronicity displays an appropriate message.

4.2 Search with Title

If an archived version of the missing page is not sufficient for the user she can click on the New

Version button which leads to a new panel offering five different methods to obtain a satisfying

version of the missing page.

The primary method, as argued in Chapter VI, is the Memento’s title as a textual feature

describing the aboutness of the missing page. By default Synchronicity obtains the title of the

latest available Memento. Obtaining this title requires just one request and therefore it is done

automatically when the add-on loads. That means there is no delay in obtaining the title and it is

shown automatically when the user clicks on the New Version button. The title can be used as a

search engine query in Google, Yahoo! and Bing and the search results are displayed in the main

browser window. Figure 61 shows the screen capture of Synchronicity having issued the title of our

missing example URI into Yahoo!. The title obtained from the latest available Memento is National

Building Museum: New World Trade Center Design Proposals. The top ranked resturned search

result is indeed the new location of the missing page www.nbm.org/exhibitions-collections/

exhibitions/new-wtc.html.

At any point the user can edit the obtained title and add or remove terms and re-query. In
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Fig. 62 Synchronicity Displaying the Search Results in Bing with the Lexical Signature of an
Obtained Memento

compliance with our findings in Chapter VI, Synchronicity informs the user if the obtained title is

predicted to perfrom poorly and recommends switching to the next option right away.

4.3 Search with Keywords

As a secondary method Synchronicity offers the generation of a lexical signature from the textual

content of the retrieved Mementos. We chose the label “Keywords” as it is, unlike “lexical signa-

tures”, a commonly well understood term but basically refers to the same concept. Here again the

system uses the last available Memento. By default and in agreement with our results from Chapter

V, Synchronicity generates 5-term lexical signatures. Depending on the length of the document and

bandwidth of the network connection this process may take some time. A proper warning is dis-

played right below the button that the user needs to click on in order to generate a lexical signature.

The system indicates that it is “busy” by displaying a rotating shrimp similar to the well known

hour glass cursor in the Microsoft Windows environment or the spinning “rainbow wheel” known

from Macintosh systems.

Figure 62 provides a snapshot of Synchronicity displaying the search results from Bing when

queried with the lexical signature of the missing example URI. The generated lexical signature is

trade mockbee exhibition protetch proposals and just like the title it returnes the new URI top ranked.

Similar to the previous method the user is encouraged to use the lexical signature as a search
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Fig. 63 Synchronicity Displaying the Search Results in Bing with the Obtained Tags from
Delicious

engine query string and she can modify the lexical signature as desired. The search results will again

be displayed for the user to explore.

4.4 Search with Tags

The next tab in the New Version panel offers the use of tags. Unlike titles and lexical signatures,

tags can also be applied for cases where no Mementos are available. Synchronicity queries the social

bookmarking site Delicious to obtain tags that users have used to annotate the now missing page.

The system applies our results from Chapter VII by offering seven tags by default. Here again can

the user edit the query string at any time. In case no tags can be obtained Synchronicity will give

proper feedback to the user.

As mentioned in Chapter VII the sparcity of tags prevents them from being a primary method

to rediscover missing web pages. There are no tags available for our sample URI. However, tags

are available for the Hypertext web page introduced in Chapter I. Delicious users have created

the tags conference hypertext acm denmark 2006 conferences research to annotate the URI ht06.

org. Synchronicity and the obtained tags queried against Bing can be seen in Figure 63. This

additional example is particularly interesting since someone has “parked” the domain some time ago

and therefore the latest available Memento dereferences to the current unrelated content. Having

Synchronicity extract the title or generate the lexical signature may in this case result in “incorrect”
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Fig. 64 Synchronicity Displaying the Search Results in Google with the Link Neighborhood
Lexical Signature of a Page

input for search engine queries since by default the add-on would just parse the latest Memento.

However, the available tags can be used for search. They also represent an example for ghost tags as

introduced in Chapter VII since they better describe a previous version of the page than the current

one. As long as users do not go back and delete their tags, they can be especially useful for such

cases.

Even though the results shown in Figure 63 do not contain the replacement page suggested in

Table 2 of Chapter I they do contain relevant content about the Hypertext conference.

4.5 Search with Extended Keywords

The most complex option Synchronicity offers is using the content of pages linking to the missing

page. Link neighborhood lexical signatures represent another method applicable for cases where no

Mementos of the missing URI can be found. Synchronicity queries search engines to obtain backlinks

(pages linking to the missing page) and generates a lexical signature from this link neighborhood.

With “Extended Keywords” we again chose a more commonly used label for the tab. The default

parameters are adjusted to our findings from Chapter VIII meaning the system uses the top 10

backlinks from the first level only and it considers only the anchor text to generate a 4-term link

neighborhood based lexical signature. This signature also serves as a search engine query and can

be modified by the user.



139

Figure 64 shows the Google search results for the link neighborhood lexical signature of the web

page for the JCDL conference 2006. Its URI www.jcdl2006.org/ does not result in a 404 error

per se but it displays nothing but an empty page with the URI on it. The conference content is

no longer available and hence the page can be considered missing. In fact this URI is an example

of a soft 404 as introduced in Chapter III, Section 2.4. Its link neighborhood lexical signature

as generated by Synchronicity is http://www.jcdl2006.org/ ACM/IEEEJoint 2006 JCDL. It results

as seen in Figure 64 in relevant results with the probably most accurate replacement page being

www.jcdl.org/archived-conf-sites/jcdl2006/ ranked fifth in the result set.

4.6 URI Modification

The fifth method that Synchronicity offers to the user is to modify and retry the actual URI that

caused the 404 response. The URI is automatically loaded into the proper text field where it can be

edited. The intuition is that shortening a long URI may help to at least find a new starting point to

browse for the desired resource. The root of the URI, for example, may still be responsive and the

user can possibly navigate from there to the desired page. This concept is not new, it, for example,

was implemented in the customized 404 page seen in Figure 8 in Chapter III.

5 ADVANCED OPERATION

Synchronicity by default starts with what we call the Basic Interface. However, the system offers

an additional interface aimed at the more advanced user. It is called Expert Interface and can be

activated by clicking on the corresponding button. The button can be used to toggle between the

two interfaces. Its label changes depending on what interface is currently activated. The user can

switch between interfaces at any point during the interaction with the add-on will arrive at the

corresponding tabs of the proper interface.

The functionality for both the TimeLine and the TimeGraph remains the same for the expert

user. However, the user is now able to switch to another Memento proxy. There are currently two

proxies available, one at Old Dominion University and one at the Los Alamos National Laboratory

and the user can chose between the two. This may have an effect on the amount of Mementos

available and their sources.

The New Version tab offers additional functions to the expert user. The main idea is that

all parameters that have been investigated in Chapters V through VIII can be manually changed

here. For the Basic Interface we implemented default values that have been shown to perform best

for all methods. However, the expert user has now the chance to modify these parameters. For

the title and keyword tab the expert user can chose one particular Memento to grab the title and

generate the lexical signature from. Recall that the Basic Interface automatically choses the latest

available Memento. The title tab further offers a function to display the titles of the last n number

of Mementos. The value of n by default is set to ten but it can be modified. The window displaying

the titles gives the user an impression of the evolution of titles over time and enables her to pick

one particular title for the search. In addition the icons of the corresponding archives are displayed

next to the titles. Figure 65 shows the additional options for the title based web page rediscovery.

The three drop down boxes are available to pick one particular Memento to obtain the title from.
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Fig. 65 Synchronicity Displaying its Expert Interface and the Options for a Title Based
Rediscovery of a Page

This feature can be helpful if the content of Mementos vary drastically and one particular Memento

promises to provide a better title than others. The small window to the right lists the titles of the

last ten Mementos and the icons of their archives for our initial sample URI. This option is useful

to follow the evolution of titles over time.

The number of terms forming a lexical signature and number of tags for search was by default

set to five and seven respectively. The expert user can change these values as desired.

The tab for search with extended keywords offers the most options to the expert user. All four

parameters that were evaluated in Chapter VIII can be changed here:

1. the number of terms for the link neighborhood based lexical signature (default is set to four)

2. the radius (anchor text ±n terms where n by default is zero)

3. the number of backlinks (default is set to ten) and

4. the backlink level (default is set to one).

By increasing any of these values the computation of the neighborhood based lexical signature will

take more time. This is most significantly noticeable when including the second level backlink.

However, the argument holds true here too: if the user is in real need of the page or seeks to gain

knowledge what the page was about, she might be willing to invest that extra time.
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Fig. 66 Synchronicity Displaying its Expert Interface and the Parameters to Generate the Link
Neighborhood Lexical Signature of a Soft 404 Page

Figure 66 shows the screen capture of the Expert Interface providing sliders to adjust the

paramters for the link neighborhood lexical signature generation. In this example Synchronicity

created Proceeding Marchionini UKOLN ACM/IEEE-CS http://www.jcdl2006.org/ Traugott JCDL

as a 7-term signature including ±5 terms around the anchor text. Figure 66 also shows the JCDL

2006 page considered missing in the previous example of Figure 64.

All options for all methods available through the Expert Interface are summarized in Figure 58.

6 SUMMARY

In this chapter we introduce Synchronicity, a Mozilla Firefox add-on that supports the user in

rediscovering missing web pages in real time. Synchronicity utilizes Memento to obtain previous

versions of a web page. It enables a user to browse through all available Mementos aggregated from

various web archives and search engine caches. She can evaluate Mementos by the time they were

archived and filter the displayed copies by particular archives.

Accessing an archived version of a page may already be sufficient to fulfill a user’s information

need. However, Synchronicity offers a number of addidtional methods to discover the missing page

at its new location or good enough replacement pages. The obtained Mementos build the foundation

for applying the title and lexical signature based rediscovery methods introduced in Chapters V and

VI. The software further implements the tag based and link neighborhood lexical signature based
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methods introduced in Chapters VII and VIII. These methods are applicable if no Mementos of an

URI are available. All four methods result in a query string that can be issued against search engines

and the search results are displayed for the user to browse. While creating this string Synchronicity

by default implements parameters that have been shown to perform best for all methods in the

previous chapters. The user can modify the generated query string at any time and re-query against

one of the three major search engines (Google, Yahoo! and Bing).

Synchronicity has an easy to use and straight forward interface but also gives an more exerienced

user the option to modify all default parameters for the generation of the search queries. Not only

can she, for example, modify the number of terms in a tag based query but also pick a particular

Memento to obtain a title or generate a lexical signature from. The title evolution can be made

visible by chosing to display the titles of a specified number of last Mementos.

Synchronicity is open source software and it is available for download via the Mozilla website

[30]. Synchronicity is also available at the more marketable URI http://bit.ly/no-more-404.

As a Firefox add-on it is easy to install on all platforms and can support the user in overcoming

the browsing detriment of 404 “Page not Found” errors.
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CHAPTER XI

FUTURE WORK AND CONCLUSIONS

1 ASPECTS FOR FUTURE WORK

We see several aspects where the work presented here can be expanded in the future.

1.1 Interplay With Memento

This work focuses on providing alternative inputs for the c2u function established in Chapter I.

The input is generated by any of the introduced implementations of the rr function and it typically

returns a set or URIs. The rr function captures the “aboutness” of a document in a compact form.

That means at the beginning of this process we distill the contextual essence of a document and at

the end we obtain a set of URIs valid at time tnow.

The Memento framework on the other hand starts with a URI and a time t and returns (for

example) a URI that identifies a previous version of a resource. That means Memento is helpful

in studying the evolution of a concept at URI1 over time. But if the concept moves from URI1 to

URI2 Memento can not follow, but rather reports a “false dead end” of the concept even though it

lives on and evolves at URI2.

The challenge in the future is to bring these two orthogonal processes together and research how

we can find the same or similar concepts at different URIs in web archives. That means given a

concept it should return URI1 @ t1, URI2 @ t2, ..., URIn @ tn. Such a system will enable users to

map concepts into archives, a process that currently is not possible.

For example, if a user wants to tell a story about the Deepwater Horizon oil spill in the Gulf of

Mexico she has to provide Memento with a URI (and a time) in order to obtain previous versions

of that URI. She might be aware of cnn.com, for example, which would certainly be a good starting

point but she is not able to retrieve archived information from sources (URIs) she is not aware of.

A possible “concept-aware” Memento would be able to support the user in exploring a topic across

URIs and across different archives hence enabling her to tell a rich story.

Related to this aspect, Memento could benefit from a contextual analysis of the previous version

considered to be returned. For example, if a user uses Memento to travel back in time for the

URI http://ht06.org she might be surprised to see that previous versions of that resource are

contextually irrelevant to the current context. Note that in this example the previous copies are

considered to be the original content of the Hypertext conference in 2006 and the current version

provides unrelated content as seen in Chapter I.

Ultimately we can think of an enhanced Memento service giving the user a preview of the

content to expect or maybe even an automatic dismissal of irrelevant versions of resoures. That

would improve time travel in the web since it could prevent the user from unwanted surprises.
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1.2 Study of Ghost Tags

We introduced the notion of “ghost tags” in Chapter VII as tags that better describe a previous

version of a page than the current one. The method we used to explore these tags can be extended

in several dimensions. We discovered ghost tags by analyzing the first Memento meaning the oldest

available archived version of a page only. There is obviously potential to investigate more Mementos

which would most likely result in the discovery of a higher precentage of ghost tags. It also would

be interesting to observe when terms “ghostify” meaning at what point they are deleted from the

document. This could be put into perspective with the term’s importance within the document and

within Delicious at that time.

We only used the bookmarking service Delicious to obtain tags about URIs. Even though Deli-

cious is arguably the most popular of these services we could utilize other annotation sites such as

Connotea [6], Historious [5] or Google Bookmarks [13].

1.3 Synchronicity Improvements

Synchronicity, even though more than a prototype, has not been developed beyond the beta status

yet. Its functionality can be enhanced in several directions.

The TimeGraph already provides some metadata about the discovered Mementos and the

archives they are available from. It would benefit from additionally displaying the amount of Me-

mentos discovered both in total numbers and distinguished by archive.

The lexical signatures are being generated based on the DF service introduced in Chapter X. This

implies the user has no choice but to use our DF values based on the Yahoo! index. It would be good

to offer alternatives and let the advanced user chose the index. The user could additionally benefit

from being able to chose between lexical signatures generated by different TF and DF weighted

functions as evaluated in Park et al. [214].

The currently latest version of Mozilla Firefox includes a lightweight database system called

IndexedDB. A great advancement to Synchronicity will be to have the user build their own local DF

index. For example, the extension could store each [DF value, term] pair it uses and therefore over

time build a local index providing faster access to the data.

Synchronicity does not yet distinguish between MIME types but rather assumes all encountered

resources to be HTML formatted. Even though it may be able to provide Mementos of non-HTML

resources functions such as title extraction and keyword generation may not work properly.

Synchronicity’s internal list of stop titles is static right now. Surely users will encounter other

titles that can be categorized as stop titles and hence should be able to add these to the list.

We also consider a command line implementation of Synchronicity for future work. Such a system

would not be affected by user interface constrains and could serve as a reference implementation to

demonstrate the entire spectrum of results. This system would particularly be useful for curators

of collections of digital resources when automatically testing for missing pages and looking for

alternatives. Synchronicity could be used for batch processing and would hence expedite these

processes.

Synchronicity implemented as a web service is another plausible system for future development.

Instead of having a client side system that users need to download and install we could offer a
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centralized service accessible through the web and easy to use for everyone.

The disadvantage of a client sided Synchronicity is that users can not benefit from the (re-

)discovery experience of other Synchronicity users. We consider a scenario where different users

encounter the same missing page as very likely and hence it would be convenient if they could share

and learn from each other’s outcome. We envision a (web) service that provides alternative URIs

to known missing pages. Synchronicity could access that service (much like a cache) and offer an

alternative URI, if available, to the user before it starts its own (re-)discovery process. Such a service

would most likely imply a n : m much rather than a 1 : 1 mapping.

1.4 Enhanced Link Neighborhood Lexical Signatures

We have shown in Chapter IX that the anchor text of neighboring pages is most useful to generate

well performing lexical signatures. Similar to stop words and the previously defined stop titles we

can also imagine the existence of “stop anchors”. This aspect should be investigated using a larger

corpus but positive results could be implemented in Synchronicity as well.

We have only considered the top 10 , top 100 and top 1000 backlinks to draw the anchor text

from. It remains the subject of future research to investigate the optimum number of backlinks. It

is entirely possible that including some number of pages between ten and 100 proves to be better

than only ten.

Alternatively it might result in a better performance to set the threshold as the number of anchor

terms instead of number of backlink pages. For example, the parameter could be to aggregate 50

anchor terms (all candidate to make it into the link neighborhood lexical signature) from however

many backlink pages it takes.

2 CONCLUSIONS

The Internet as an information space is huge and with that scale there will always be broken

references. Maybe it is the bookmark created some time ago or a link from a poorly maintained

website, but linkrot is verly likely to remain an undesired part of our web browsing experience.

In this dissertation we introduce several methods to overcome this detriment. Our idea is based

on the intuition that pages often do not completely disappear but rather just move to a different

URI. We approach the problem while it happens which means in real time we try to discover the

page of interest at its new URI or offer satisfying alternative pages while the user is browsing.

We utilize the Memento framework to obtain previous versions of now missing pages. We distill

the “aboutness” of these archived copies in form of their titles (Chapter VI) and lexical signatures

(Chapters IV and V) and apply it as search engine queries. Alternatively, especially if no Mementos

are available, we obtain tags (Chapter VII) and generate lexical signatures based on the missing

page’s link neighborhood (Chapter VIII) to issue further search engine queries. This work shows

that with the resulting set of URIs we have a very good chance of fulfill the user’s information need.

Synchronicity, our web browser extension, brings all these methods together to support the user

while browsing the web. It is not in competition with search engines but rather attempts to provide

the best possible input in order to fully utilizes their performance.
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Of course we can not prevent 404 “Page not Found” errors from happening and there is no single

web supervising institution that can, but with this work we contribute to overcoming the unwanted

dead ends while browsing the web.

2.1 Contributions

This dissertation makes a number of significant contributions to the field of digital preservation, in

particular the preservation of web pages at the time they are noticed missing by applying information

retrieval techniques.

1. This work identifies the ubiquitous problem of 404 “Page not Found” errors and offers a

complex solution bundling several content and link based methods.

2. The dissertation introduces a reliable real time approach to estimate document frequency

values and evaluates it against existing well performing baselines. That includes a thorough

correlation analysis between document frequency and the commonly used term count values.

3. This research results in a framework for the generation of lexical signatures. It experimentally

validates the optimal length and maximum age to ensure a satisfactory outcome when using

lexical signatures as search engine queries.

4. This dissertation further provides guidance to use a web page’s title for rediscovering missing

web pages. It analyzes the change of titles over time and compares it to page content change.

It introduces the notion of stop titles and provides an initial list of such (in a retrieval sense)

poor titles.

5. This work experimentally evaluates the retrieval performance of tag based search engine

queries, particularly with respect to an optimal length. This research is responsible for the

discovery of ghost tags.

6. Furthermore this work explores link neighborhood based lexical signatures and offers a frame-

work for their creation. It specifies optimal parameters such as length, number of backlinks

and their backlink level to include as well as the textual backlink radius.

7. The software contribution of this dissertation is the implementaion of Synchronicity as a

Mozilla Firefox extension. It brings all theoretical contributions together and is available

to users as open source software.

8. The Book of the Dead is another noteworthy contribution of this work. The corpus is available

to researchers and it includes the determined contextual “aboutness” of all missing URIs.
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[137] Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Techniques. ACM

Transactions on Information Systems 20(4), 422–446 (2002)

[138] Jason Morrison, P.: Tagging and Searching: Search Retrieval Effectiveness of Folksonomies on

the World Wide Web. Information Processing and Management 44(4), 1562–1579 (2008)

[139] Jatowt, A., Kawai, Y., Nakamura, S., Kidawara, Y., Tanaka, K.: A Browser for Browsing the

Past Web. In: Proceedings of WWW ’06, pp. 877–878 (2006)

[140] Ji, S., Li, G., Li, C., Feng, J.: Efficient Interactive Fuzzy Keyword Search. In: Proceedings of

WWW ’09, pp. 371–380 (2009)

[141] Jiang, S., Zilles, S., Holte, R.: Query Suggestion by Query Search: A New Approach to User

Support in Web Search. In: Proceedings of WI-IAT ’09, pp. 679–684 (2009)

[142] Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately Interpreting Click-

through Data as Implicit Feedback. In: Proceedings of SIGIR ’05, pp. 154–161 (2005)

[143] Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., Gay, G.: Evaluating the Ac-

curacy of Implicit Feedback from Clicks and Query Reformulations in Web Search. ACM Trans-

actions on Information Systems 25(2), 7 (2007). doi: http://doi.acm.org/10.1145/1229179.

1229181



155

[144] Jones, K.S.: A Statistical Interpretation of Term Specificity and its Application in Retrieval.

Journal of Documentation 28, 11–21 (1972)

[145] Jones, K.S.: Index Term Weighting. Information Storage and Retrieval 9(11), 619–633 (1973)

[146] Jung, C.G.: The Structure and Dynamics of the Psyche, 2 edn. Princeton University Press

(1970)

[147] Kahle, B.: Preserving the Internet. Scientific American 276, 82–83 (1997)

[148] Kan, M.Y.: Web Page Classification Without the Web Page. In: Proceedings of WWW ’04,

pp. 262–263 (2004)

[149] Kan, M.Y., Thi, H.O.N.: Fast Webpage Classification Using URL Features. In: Proceedings

of CIKM ’05, pp. 325–326 (2005)

[150] Kelleher, D., Luz, S.: Automatic Hypertext Keyphrase Detection. In: Proceedings of IJCAI

’05, pp. 1608–1609 (2005)

[151] Keller, F., Lapata, M.: Using the Web to Obtain Frequencies for Unseen Bigrams. Computa-

tional Linguistics 29(3), 459–484 (2003)

[152] Kendall, M.G.: A New Measure of Rank Correlation. Biometrika 30(1-2), 81–93 (1938).

doi: 10.1093/biomet/30.1-2.81

[153] Kendall, M.G. (ed.): Rank Correlation Methods. Griffin (1948)

[154] Khan, K., Locatis, C.: Searching Through Cyberspace: The Effects of Link Display and Link

Density on Information Retrieval from Hypertext on the World Wide Web. Journal of the

American Society of Information Science 49(2), 176–182 (1998)

[155] Kittur, A., Chi, E.H., Suh, B.: Crowdsourcing User Studies With Mechanical Turk. In:

Proceeding of CHI ’08, pp. 453–456 (2008)

[156] Klein, M., Emara, M., Nelson, M.L.: Synchronicity − Automatically Rediscover Missing Web

Pages in Real Time. In: Proceedings of JCDL ’11 (2011)

[157] Klein, M., Nelson, M.L.: A Comparison of Techniques for Estimating IDF Values to Generate

Lexical Signatures for the Web. In: Proceeding of WIDM ’08, pp. 39–46 (2008)

[158] Klein, M., Nelson, M.L.: Revisiting Lexical Signatures to (Re-)Discover Web Pages. In:

Proceedings of ECDL ’08, pp. 371–382 (2008)

[159] Klein, M., Nelson, M.L.: Correlation of Term Count and Document Frequency for Google

N-Grams. In: Proceedings of ECIR ’09, pp. 620–627 (2009)

[160] Klein, M., Nelson, M.L.: Inter-Search Engine Lexical Signature Performance. In: Proceedings

of JCDL ’09, pp. 413–414 (2009)

[161] Klein, M., Nelson, M.L.: Evaluating Methods to Rediscover Missing Web Pages from the Web

Infrastructure. In: Proceedings of JCDL ’10, pp. 59–68 (2010)



156

[162] Klein, M., Shipman, J., Nelson, M.L.: Is This a Good Title? In: Proceedings of Hypertext

’10, pp. 3–12 (2010)

[163] Klein, M., Ware, J., Nelson, M.L.: Rediscovering Missing Web Pages Using Link Neighborhood

Lexical Signatures. In: Proceedings of JCDL ’11 (2011)

[164] Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. Journal of the ACM

46(5), 604–632 (1999)
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APPENDIX A

LIST OF STOP TITLES

about

athletics

default plesk page

default page

home

home page

homepage

hometown has been shutdown people connection blog aim community network

index

index of

index htm

index html

index page

indexhtm

indexhtml

intro

introduction

main

main page

msn groups closure notice

moved

new page

start page

the club

the conservatory index

the page cannot be displayed

the page cannot be found

this site is under construction

this web site coming soon

transferring

untitled

untitled document

untitled page

web page under construction

webage unavailable

website disabled

website errors
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website not yet available

website template

welcome
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APPENDIX B

URIS IN THE BOOK OF THE DEAD

http://presidentofindia.nic.in/scripts/prlatest1.jsp?id=377

http://www.ukrainianorthodoxchurchusa.org/index.shtml

http://www.zinos.com/cool/zinos/scan/se=AR004044/sp=view_article/rs=yes/go.html

http://www.zinos.com/cool/zinos/scan/se=AR005218/sp=view_article/rs=yes/go.html

http://ias.berkeley.edu/africa/Courses/Lectures/Darfur-Links.htm

http://independencia.net/2004/compromiso_rubengob.html

http://jimeyer.org/congress/

http://lambornforcongress.org/cms/

http://legalaffairs.org/howappealing/

http://lettforliberty.blogspot.com/

http://library.law.smu.edu/miers/index.htm

http://lyndallamas29th.blogspot.com/

http://members.shaw.ca/erwin-w/klimbim/

http://myinfoserver.com/findkenny/findkenny.htm

http://notapundit.myblogsite.com/blog/Judiciary/

http://ostinato.stanford.edu/coping/

http://phil4congress.blogspot.com/

http://purportal.com/special/9-11/

http://robertdenison.campaignoffice.com/

http://sonomagreenparty.org/pamelizondo.html

http://sos.state.nv.us/nvelection/

http://stuttmanforcongress.blogspot.com/

http://taosvacationguide.com/arts/fall_arts.php

http://teacher.scholastic.com/newszone/specialreports/911/

http://thestar.com.my/sympathy/sympathymessages.asp

http://toddtiahrt.com/index.htm

http://ur.rutgers.edu/medrel/viewArticle.phtml?ArticleID=1682

http://verusratio.blogspot.com/

http://voicemag.net/opinion/lavins.shtml

http://waynewhitmer.blogspot.com/

http://web.mac.com/johndriscoll37/montana_first/we_can_win%21.html

http://webguy.blogspot.com/

http://webofsilence.blogspot.com/

http://wfmb.com/wtc_tribute.swf

http://wtc.filsa.net/WTC.html

http://ww1.prweb.com/byindustry.php?prcatid=62

http://www.540wfla.com/shannonburke.html
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http://www.adn.com/life/v-pda/story/1735610p-1851714c.html

http://www.airdisaster.com/cgi_bin/view_details.cgi?date=09112001&airline=

American+Airlines

http://www.airdisaster.com/cgi_bin/view_details.cgi?date=09112001&airline=United+

Airlines

http://www.allianceforarts.org/nyc-arts/9-11/perf.htm

http://www.alphadeltaphi.org/new/default.asp?PID=37

http://www.alternet.org/issues/index.html?IssueAreaID=25

http://www.americansolutions.com/default.aspx

http://www.amsa.org/news/supreme.cfm

http:

//www.apbroadcast.com/AP+Broadcast/Television/Video+and+Graphics/APTN+9-11-02.htm

http://www.artsusa.org/

http://www.asaforgovernor.org/default.aspx
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