
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Summer 2012

An Extensible Framework for Creating Personal Archives of Web An Extensible Framework for Creating Personal Archives of Web

Resources Requiring Authentication Resources Requiring Authentication

Matthew Ryan Kelly
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds

 Part of the Computer Sciences Commons, and the Digital Communications and Networking

Commons

Recommended Citation Recommended Citation
Kelly, Matthew R.. "An Extensible Framework for Creating Personal Archives of Web Resources Requiring
Authentication" (2012). Master of Science (MS), thesis, Computer Science, Old Dominion University, DOI:
10.25777/x6x6-4x93
https://digitalcommons.odu.edu/computerscience_etds/6

This Thesis is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has
been accepted for inclusion in Computer Science Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/computerscience_etds
https://digitalcommons.odu.edu/computerscience
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/6?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AN EXTENSIBLE FRAMEWORK FOR CREATING

PERSONAL ARCHIVES OF WEB RESOURCES

REQUIRING AUTHENTICATION

by

Matthew Ryan Kelly
B.S. June 2006, University of Florida

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
August 2012

Approved by:

Michele C. Weigle (Director)

Michael L. Nelson (Member)

Yaohang Li (Member)

ABSTRACT

AN EXTENSIBLE FRAMEWORK FOR CREATING PERSONAL
ARCHIVES OF WEB RESOURCES REQUIRING

AUTHENTICATION

Matthew Ryan Kelly
Old Dominion University, 2012
Director: Dr. Michele C. Weigle

The key factors for the success of the World Wide Web are its large size and

the lack of a centralized control over its contents. In recent years, many advances

have been made in preserving web content but much of this content (namely, social

media content) was not archived, or still to this day is not being archived, for various

reasons. Tools built to accomplish this frequently break because of the dynamic

structure of social media websites. Because many social media websites exhibit a

commonality in hierarchy of the content, it would be worthwhile to setup a means

to reference this hierarchy for tools to leverage and become adaptive as the target

websites evolve. As relying on the service to provide this means is problematic in

the context of archiving, we can surmise that the only way to assure that all of

these shortcomings are not experienced is to rely on the original context in which

the user views the content, i.e. the web browser. In this thesis I will describe an

abstract specification and concrete implementations of the specification that allow

tools to leverage the context of the web browser to capture content into personal

web archives. These tools will then be able to accomplish personal web archiving

in a way that makes them more robust. As evaluation, I will make a change in the

hierarchy of a synthetic social media website and its respective specification. Then,

I will show that an adapted tool, using the specification, continues to function and

is able to archive the social media website.

iii

Copyright, 2012, by Matthew Ryan Kelly, All Rights Reserved.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Michele C. Weigle, for her guidance,

support, and facilitation of an idea that otherwise would have never come to fruition.

I would also like to thank my committee for their input and for keeping the document

down to a sane scope. Finally, I would like to thank my wife, Melissa, for reasons

that would exceed the length of this document if enumerated in a very small font.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . xiii

Chapter

I. INTRODUCTION . 1
I.1. PROBLEM . 2
I.2. APPROACH . 4
I.3. CONTRIBUTIONS . 5
I.4. THESIS ORGANIZATION . 6

II. BACKGROUND AND STATE OF THE ART 7
II.1. STATE OF PERSONAL DIGITAL ARCHIVING 8
II.2. STATE OF WEB ARCHIVING . 9
II.3. STATE OF PERSONAL WEB ARCHIVING 12
II.4. CURRENT TOOLS . 13
II.5. SUMMARY . 19

III. CONCERNS UNIQUE TO PERSONAL WEB ARCHIVING BEHIND
AUTHENTICATION . 20

III.1.NAÏVE URI CARDINALITY . 20
III.2.CONTEXT . 23
III.3.ARCHIVING VERSUS BACKING UP 28
III.4.MAINTAINING PRIVACY WITHOUT AUTHENTICATION 29
III.5.SUMMARY . 35

IV. NEW TOOLS FOR PERSONAL WEB ARCHIVING 36
IV.1.WARCREATE . 37
IV.2.ARCHIVE FACEBOOK . 40
IV.3.RE-PACKAGED XAMPP . 42
IV.4.SUMMARY . 45

V. CONSTRUCTING A GENERAL SPECIFICATION FOR SOCIAL ME-
DIA WEBSITES . 46

V.1. SUMMARY . 52

VI. IMPLEMENTATION DETAILS . 54
VI.1.USE CASE A: ADAPTING ARCHIVE FACEBOOK 54
VI.2.USE CASE B: ADAPTING WARCREATE 61
VI.3. IMPLEMENTATION-SPECIFIC CAVEATS 64

vi

VI.4.SUMMARY . 68

VII. EVALUATION . 70
VII.1.EXPERIMENTAL SETUP . 70
VII.2.EXPERIMENTAL HYPOTHESIS 74
VII.3.TOOL SELECTION TO VALIDATE POTENTIAL ADAPTABILITY 74
VII.4.PROCEDURE TO EVALUATE THE EFFECT OF A SOCIAL ME-

DIA WEBSITE’S CHANGE IN HIERARCHY 75
VII.5.FROM ARCHIVE FACEBOOK TO COHESIVE SOCIAL MEDIA

SITE BACKUP . 76
VII.6.RUNNING THE EXPERIMENT . 79
VII.7.SUMMARY . 83

VIII.CONCLUSION AND FUTURE WORK . 85

REFERENCES . 94

APPENDICES
A. SPECIFICATION XML FOR FACEBOOK 95
B. TABULAR COMPARISON OF TOOLS IN EVALUATION 97
C. CODE TO CAPTURE ANY SPEC-DEFINED SITE 99
D. SAMPLE WARC FILE . 101

VITA . 105

vii

LIST OF TABLES

Table Page

I. Similar abstractions of resources exist on numerous websites though
each is implementation-specific, which can require subclassing to accu-
rately describe the website’s section’s workings in a class-like hierarchy.
Facebook’s “friends” media type is inherently bi-directional, that is,
if you have a friend, that friend has you as a friend. In Google+, rela-
tionships can be uni-directional. I can have Alice in one of my circles
but that does not necessarily imply that Alice has me in one of hers. 46

II. Much has been stripped away to reduce redundancy of media types
that are similar. 79

viii

LIST OF FIGURES

Figure Page

1. To simplify the discussion of the various realms of archiving, this Euler
diagram shows how each realm relates. 8

2. Replaying the July 25, 2011 archived version of Craigslist returns the
unexpected result of the crawler’s original locale instead of the user’s
current locale. 11

3. The basis for Internet Archive’s Heritrix capture of Craigslist.org can
be seen with this fetch of the website using wget showing the site’s
reliance on GeoIP. 12

4. Facebook’s “download a copy of your data” feature results in a naviga-
ble set of locally accessible webpages with a selection of resources that
Facebook determined as appropriate for an “archive” and that also
belonged to the user. The interface deviates greatly from its original
context. This selective exclusion of content as well as the deviation
from the original context produces an “archive” of questionable integrity. 14

5. Social media websites expect users to experience them with a conven-
tional web browser and not a fetching tool. That this is enforced to the
top level of the website when accessing it with wget is a red flag that
content, were it to be archived, would likely not have its look-and-feel
preserved and would very definitely be incomplete because of the lack
of Javascript support by fetching tools. 18

6. URIs can not be used to guarantee what content is returned when
different users access the URI because of site personalization. The
tailoring of preferences here shows a user that is retaining the look-
and-feel of the previous version of Facebook (6a) and the interface
presented to a user that has opted into the Facebook Timeline interface
(6b). Though two different users are accessing content using the same
URI, the resulting content is drastically different because of the user-
based content tailoring. 22

7. When accessing facebook.com from a mobile device (7a), the content
supplied to the user is tailored to the user’s available screen width.
Where the screen width is less predictable but often wider, as is the
case with a PC running Internet Explorer (7b), the user is supplied
content with much more detail. 24

ix

8. Internet Explorer provides a way of exploiting the constructs of HTML
comments to provide code that is only pertinent to a subset of versions
of the browser. 25

9. Websites like web-sniffer.net allow a user to spoof their user-agent to
determine if different results are produced when various browsers are
visited. Browser-based plugin approaches also exist but by using web-
sniffer, a user is able to see the method used (modification of HTTP
headers) to accomplish the spoofing. Note the spoofing of the Opera
web browser while Mozilla Firefox is being used. 26

10. Upon replay, it would appear (left) that the archive has been decorated
with user interface elements by the Internet Archive to allow users to
navigate between temporally different versions of the same archived
page. The source code (right) seems to confirm this with the addition
of various scripting that compromises the integrity of the archive so
that a user cannot be sure they are experiencing the content in its
original form; however, the content in its original form does not resolve
URIs in a way that makes it usable on replay, so this URI rewriting
procedure is necessary for a suitable end-user experience. 34

11. WARCreate’s operation relies on a sequence of intermediary storage
because of the importance of content-length being explicitly defined
for the WARC records and the payload. This sequence also takes into
account the need to convert non-textual media to a form that can
stored as text, namely, the media’s base64 encoding. 37

12. A higher level view of an archival tool built upon the browser platform
gives perspective on how all of the components of archive creation,
consumption and replay can be experienced by the user. Displayed
here is the process that WARCreate uses to produce a WARC file.
The process is abstract enough for any browser-based tool to reuse by
putting in-place its logic where WARCreate’s logic currently resides
(after marker 3). 39

13. Archive Facebook saves the resources it “archives” to the local file
system, shown here as a navigable system of webpages linked with re-
source:// URIs. The add-on rewrites URIs that would normally point
to the absolutely defined http://facebook.com resource and instead
resolves them to local resources. 41

14. The XAMPP package provides an easy-to-use interface to encourage
the utilization of various packages created by the Apache Foundation.
Shown here are the two services needed for the executing of the local
wayback instance - Tomcat and Apache. 44

x

15. The hierarchy of the BBC website’s sports section easily resembles the
one described. The parent to the sports section would be represented
as the NewsWebsite object with the sports section’s siblings being
“News”, “Weather”, etc. as representation by the navigation at the
top of the page. 47

16. The class-like definition of a social media website is simplistic so as
to be applicable to a wide range of sites. Specific traits that are only
applicable to a specific website could be created by subclassing this
definition. 48

17. The definition for a section of a social media website contains only
fundamental attributes: the name of the section and the referencing
URL. An optional “preprocessor” attribute allow for the application of
a webpage preprocessing procedure onto both the classes that extend
from SocialMediaWebsiteSection as well as those that utilize the class
directly because of a lack of need for section-specific attributes and
procedures. 49

18. A preprocessor allows a webpage to be programmatically manipulated
prior to performing some operation, in this case, archiving. The So-
cialMediaPreprocessorCondition allows the preprocessor to require a
condition prior to execution. The maxFirings and timeBetweenFirings
attributes allow for repeatability of the preprocessor’s page manipula-
tion action. 49

19. A SocialMediaWebsite object can be decorated (in the spirit of Design
Patterns [24]) to only contain the child objects that are pertinent to
that website. Here, the sections of Facebook have been added as chil-
dren to the parent SocialWebsiteWebsite object. Using this method
allows for prototype-driven objectification of websites, aligning with
Javascript’s ability to extend objects in this way. Also interesting to
note is the ability of section objects (here, the “Notes” section) to
implement the general SocialMediaWebsiteSection object if they have
no further functional require beyond what the class defines. 51

20. While simple in definition, the inheritance chain of the defined classes
that represent the different section types are sufficient for describing
the hierarchy of many social media websites. Much of the power in this
hierarchical chain comes from the common traits that many sections
have and are defined in the abstract SocialMediaWebsiteSection class. 52

xi

21. Archive Facebook allows users to specify which parts of their profile
they would like archived. Each checkbox user interface element di-
rectly translates into a conditional clause in code containing the target
UI representative of the section of the user’s profile. 55

22. The Ajax request for the specification file can neglect some of the edge
case handling that would come about in needing to tailor the code to
multiple browsers. Utilization of the jQuery library can be see in the
general purpose $() selector function as well as in simplified iteration
schemes. 57

23. Binary data must be converted to an encoded form in order to store its
contents inline with ASCII data. An HTML5 canvas-based approach
works well for simple conversion but XSS concerns should be addressed
is fetching and storing content across multiple domains. 58

24. An example warcinfo record describes the WARC file itself in contrast
to all of the other records in a warcfile describe contents of the archive
or metadata for other records. 60

25. Internally, WARCreate is template driven. WARC data that relies
on the context of the target page is captured as appropriate. WARC
data that is normally generated by the capture tool, (e.g., Heritrix) is
fabricated by WARCreate. The crux of WARCreate lies in ensuring
that all data in the records that consist of fabricated identifiers and
experienced data are aggregated correctly to produce a valid WARC
file. 61

26. A single iterative loop utilizing the Chrome Extension API is suffi-
cient for implementing sequential archiving into the tool. A more
ideal approach would be to nest a second level of indirection into the
associative arrays representing the headers. The first level’s key would
be the URI and the value another associative array with each key be-
ing the header name. This would allow a more concurrent approach at
archiving to be used but for the sake of simplicity, a more rudimentary
set-then-clear sequence was used to demonstrate the implementation. 64

xii

27. Utilizing technologies that are more fit for a server than a user’s ma-
chine does not necessarily imply that a remote machine must be used.
Some of the difficulties of interacting with the file system are overcome
by providing server-like functionality onto a user’s machine. XAMPP,
a package suitable to accomplish this, allows just this and is discussed
more in Section IV.3. By utilizing their web browser (marker 1), a user
allows WARCreate to capture the HTTP headers of a browsed web-
page (marker 2) and optionally tell the Chrome extension to generate
a WARC from this page (marker 3). The extension sends this WARC
to a localized server (marker 4) to be validated, integrated with other
technologies and optimized (marker 5) and saves it to a local directory
(marker 6). This directory is accessible to the user’s local Wayback
instance to have its contents indexed (marker 7) and served through
replay to the user (marker 8). 66

28. The synthetic social media website setup for experimentation is
database driven and consists of a hierarchy similar to conventional
social media websites per Table I. Shown here is the aggregate feed of
a user named Lorem Ipsum’s “friends”’ information temporally inter-
twined with his own posts. 71

29. The root of the specification website contains an XML document that
provides references to all of the site-specific specifications. Determin-
ing the applicable specification is as simple as first querying this doc-
ument, matching up the target site to the “homepage” field and then
acquiring the correct specification by fetching the subsequent XML
document in the “specification” field. 72

30. The document at spec.socialstandard.org/test.xml contains the spec-
ification for the synthetic social media website created for this thesis. 73

31. URIs are iteratively processed in a mutable queue (31a to 31b). When
a URI is encountered that represents a section that contains subsec-
tions (e.g., “albums” section contains multiple “album” subsections
abstractly shown as URI2 in 31b), the discovered URIs are placed at
the front of the queue (31c) to be processed before URIs that were
siblings to URI2. This process can be recursively repeated, essentially
representing depth-first processing. 77

xiii

32. Abstracting the Javascript code of the original Archive Facebook’s into
more generic pseudocode shows that its logic is generally applicable,
even with hard-coded URIs. Note that Javascript’s allowance of scope
violation is exploited to retain a reference to all of the archived con-
tent and URI identifiers so that a cross-referencing URI-replacement
scheme can be used to rewrite URIs that were absolute on the target
pages to URIs that are local to the archive. 78

33. A test-run of the tool to be used to show the instilled adaptability
has resulted in this local copy of the test.socialstandard.org website
(33a). This page is part of BaseArchive. The detail of the URI in
33b shows that this resource is locally stored as well as the timestamp
representing the date of execution. 80

34. The target website’s URI scheme has changed. The new URI for the
content that was previously at http://test.socialstandard.org/personal
is now at http://test.socialstandard.org/myfeed. 81

35. A subtle change (lines 3 and 4) was made (from Figure 35a to Fig-
ure 35b) to the synthetic website’s specification to change the location
of the user’s personal stream/feed as well as the name of the resource
at the new location. 82

36. After conforming to the specification, the modified version of Archive
Facebook is able to fetch and preserve any arbitrary collection of
URI and associate them with one another through URIs rewriting.
The end-result is a local navigable version of the specified website.
Figure 36a shows the synthetic website at test.socialstandard.org has
been preserved. Note the URI (annotated in 36a, shown more clearly
in 36b) implicitly stored the date and time of archiving through the
name of the directory created on the local machine. 83

1

CHAPTER I

INTRODUCTION

The key factors for the success of the World Wide Web are its large size and

the lack of a centralized control over its contents [13]. Web crawlers were created

to traverse the web and collect information for indexing by search engines so that

the information contained in the pages on the web could be found. Through this

indexing, a webpage is considered “surfaced” from the Deep Web [8] (that is, the set

of all pages not accessible through search engines). Even when the content disappears,

the reference can continue to exist, leaving only a remnant of a resource that once

was. Estimates for the average lifetime of a web page vary and include concrete

estimates, such as 44 days, and approximations based on the size and location of the

content itself [16, 23, 30]. Many believe that if you find something on the Internet

once, it will be there when you look for it again, suggesting an almost magical

persistence [45]. But, this is not the case and oftentimes data is not preserved. The

original notion of the web crawler as an indexing tool has been extended to account

for the laborious task of preserving as much of what can be considered an infinite

amount of content [13] in a form that would allow the content to be re-experienced

(i.e. replayed) to those that may have not been aware of the content when it originally

existed on the web.

In recent years, many advances have been made in preserving web content. Efforts

from organizations like the Internet Archive1 have preserved content on the web that

would otherwise be lost in time. The Internet Archive, in particular, has provided

end-user access to its archives through the web-based Wayback Machine2. While the

Internet Archive has grown in the extent of the web it archives (about 12 petabytes

as of early 2012 [12]) since its inception in 1996 [29], there is much that has been

lost in time [7]. Much of this content was not archived, or still to this day is not

being archived, for reasons of content quality, the assumption that the web is self-

preserving, or the belief that archiving is not possible [48].

1http://www.archive.org
2http://archive.org/web/web.php

2

Information distributed on the web encompasses a vast array of the activities

and artifacts of humanity [19]. One very important area of the web that contains

much information, yet is not being preserved, is the user-generated content on social

media websites. This is largely because this content resides behind authentication.

Archiving services and tools do not currently attempt to capture this content because

of its reliance on a context inapplicable to the crawler. Content viewed by a user

who has authenticated with the targeted service is often tailored to a user’s history,

relationships, and other factors that do not pertain or are not appropriate from the

perspective of a web crawler. Relying solely on lack of context by a web crawling ser-

vice as justification for not preserving this content is an insufficient reason to prevent

this content from being preserved. Instead, the source, actions, and disposition of

the content should be considered [41], and the intrinsic value of such content should

be realized as content on these websites becomes a larger cornerstone of individuals’

respective digital histories. Individuals who would like to archive this content are

currently unable to do so. However, providing the means is achievable by translating

the task performed by the crawler to the context of the user.

In this thesis I will describe an abstract specification and concrete implementa-

tions of the specification that allow tools to leverage the context of the web browser

to capture content into personal web archives. These tools will then be able to

accomplish personal web archiving in a way that makes them more robust. As eval-

uation, I will make a change in the hierarchy of a synthetic social media website

and its respective specification. Then, I will show that an adapted tool, using the

specification, continues to function and is able to archive the social media website.

I.1 PROBLEM

Social media websites, by their very nature, are extremely dynamic in regards to

design, content and offerings. Services that exhibit this trait frequently provide the

facilities (e.g., an API) for a user or third party to utilize the content contained on

the website without having to query the service’s databases directly. This allows the

service to control what content is released to those that utilize the API but at least

provides a mean for users to acquire this otherwise protected content.

Relying on service-provided APIs, however, leaves open the potential for exclusion

or manipulation [53] of content at the discretion of the service, lack of look-of-feel

preservation of archived content when comparing that to be archived versus the

3

archived content, and breaking of code that utilizes the API when a certain feature

is disabled, deprecated or otherwise modified3. Even if the APIs give adequate access

to data, the complex and ever-changing terms of use4, permissions policies and indi-

vidual privacy preferences make archiving a considerable, even well-nigh impossible

challenge [68]. From this, we can surmise that the only way to assure that all of these

shortcomings are not experienced is to rely on the original context in which the user

views the content, i.e. the web browser.

Because web browsers are meant to play content fetched and not preserve the con-

tent, some programmatic approach must be taken to extend the browser to provide

this additional functionality. All modern browsers provide some facility to extend

the browser through an “extension” or “add-on” sub-system with an API that pro-

vides access to the browser’s core functionality. Developers can create tools that

leverage the browser context, which frees them from coding against the wide variety

of platforms and instead allows them to utilize a single browser API. Tools have

been created that allow a user to not be restricted by the data obtained through

service-level APIs and instead deliver a direct means of providing the preservation

ability that browsers have previously lacked. Projects like the Mozilla Firefox add-

on Archive Facebook [51] attempt to enable users to save this content (in this case,

a user’s data on facebook.com), but such tools are prone to break because of the

dynamic nature of the target websites. Further, such tools’ procedures are likely to

cease functioning or will function incorrectly because of their reliance on scraping

and regular expression based parsing schemes.

Archive Facebook’s name is a slight misnomer because its output has greater

similarity to a backup than an archive. The tool is capable of capturing the content

on a user’s Facebook page into a local directory accessible (consisting of the HTML

and images file that represent the user’s Facebook content) from the web browser.

However, the user is unable to relocate the “archive” to ensure preservation, extensive

information about the capture procedure is not retained and the data is not in a self-

contained format that would facilitate archive cohesion. From the perspective of the

Internet Archive’s Wayback Machine as an end-user, the output of Archive Facebook

seems sufficient, but the input to the Wayback Machine is more technical, structured

3An example can be seen in the frequent deprecation of API features by Twitter at https:
//dev.twitter.com/docs/deprecations/spring-2012

4Yahoo! Search Boss API http://developer.yahoo.com/search/boss/ once offered unlimited free
use but now charges on a basis of number of queries performed

4

and general purpose than the add-on’s backup. The ultimate objective of Archive

Facebook is to allow a user to preserve the content that resides on Facebook, which

some claim to be its users’ scrapbook, yearbook and Guinness World Record [37].

To be more like a standard archive, Archive Facebook would need to produce

output in a more suitable format like that produced by Internet Archive’s Heritrix

crawler and consumed by Wayback Machine: the Web ARChive (WARC) format [35].

WARC gives structure, standardization and motivation for preserving content in a

way beyond backup procedures like Archive Facebook’s. As few tools beyond the

Wayback Machine utilize the WARC format, the potential to which it might have in

further advancing developments in personal web archiving are numerous.5

I.2 APPROACH

The aim of this research is to explore the hierarchy of social media websites and

provide methods, means, and direction for personal web archiving. The structure

of the section breakup of various social media websites will be investigated and a

resulting class structure to generalize these sections into a class-like hierarchy will

be proposed. This hierarchy will also introduce the abstraction of actions to be

performed on these sections to facilitate comprehensive archiving. Once this structure

is established, a schema will be extrapolated to represent the section structure in a

usable and standardized format to be consumed by services that wish to leverage

the specification. The merits and downsides of using a standard specification in this

way, especially relating to the ephemerality of social media websites’ structure and

design, will be discussed and the problems addressed. Sample implementations of

the specification will also be described and provided to show that application of the

standard is accessible and can be applied to current tools so that these tools can

benefit from the advances that this standard provides. The specification will be

composed in a way to encourage extension and increased applicability to types of

social websites that do not currently exist. Creating a specification with its target

being the implementation by software projects is a design task. The specification is

progressively built in this thesis with a rationale being supplied for each element in

the specification. Allusion to the respective section from which the element is derived

is also supplied to validate that the element has a practical application. The structure

5One particular example of a use case that requires content to be archived in a standardized
format is in the Memento [69] project, which allows one to easily traverse websites over time.

5

is verbose in its nomenclature so as to be explicitly semantic and to be extensible

in an intuitive way when it is appended or otherwise modified as the target social

websites evolve and new ones with innovative site hierarchies come into existence.

Following the definition of the specification, and particularly the concrete defini-

tion of Facebook’s hierarchy, Archive Facebook is re-programmed to conform to the

specification so as to be adaptive to its target website’s frequently changing hierar-

chy. This modification of a browser-based software package is performed to show that

tools created to be used for personal preservation are not restricted by the structure

of the target website’s ephemerality.

To extrapolate the re-implementation of Archive Facebook into one that is web-

site agnostic, I have created a synthetic social media website with a hierarchy that

resembles those currently in existence but that can be manipulated to show the

tool’s adaptability. By doing this, tools that implement the specification inherit not

only the trait of being dynamic regardless of the target website’s hierarchy but also

are applicable to preserving websites outside their original intention with minimal

maintenance for the tools’ developers.

Finally, to serve as a bridge toward better personal web archiving, I have devel-

oped a browser based preservation tool, WARCreate, that allows any webpage to be

converted to the aforementioned WARC format. Providing this facility allows web-

sites that were previously not preserved, namely, content on social media websites, to

be preserved be any user that deems the content important or has a need to preserve

it.

I.3 CONTRIBUTIONS

Personal web archiving is frequently performed in a sub-par fashion with tools and

methods that would benefit from the advances already enjoyed in conventional web

archiving. To improve the state of personal web archiving and put forth issues that

need to be resolved in the creation of personal web archives, I intend on contributing

the following with this thesis:

• Enumerating outstanding issues that plague personal web archiving and issues

that tools built to capture content not previously preserved would face.

• Identifying and determining the commonality of hierarchy possessed by a select

set of social media websites.

6

• Creating a means, through a remote specification, for tools that are built to

capture content on social media websites to become adaptive to the sites’ struc-

ture irrespective of the ephemerality of their hierarchy.

• Evaluating the specification through the modification of a currently existing

tool to utilize the specification.

• Enabling users to preserve personal web content through the creation of a

browser extension, WARCreate, that allows any webpage to be preserved into

the WARC format, which was previously inaccessible.

• Modifying a client-side server suite to provide the facilities and capability of

personal preservation tools to utilize server technologies without inappropri-

ately exposing the data to be preserved.

I.4 THESIS ORGANIZATION

Chapter II will give information on the status quo in regards to various sorts

of digital archiving. Chapter III considers issues unique to personal web archiving

that currently exist or would need to be overcome when the task of preservation is

handed from the crawler to the user. Chapter IV will introduce tools built for or

heavily manipulated to accomplish the goals of this thesis. Chapter V will progres-

sively build the specification to be used by personal web archiving tools to become

more adaptive to hierarchical changes in social media websites. Chapter VI will

utilize the specification generated in this thesis via the modification of a select set

of personal web archiving tools. Chapter VI will also discuss some implementation-

specific caveats that arise in creating browser-based personal web archiving tools.

Chapter VII will evaluate the effectiveness of the specification for a reference im-

plementation in adapting to changes in a synthetic social media website’s change in

hierarchy. Chapter VIII will discuss the conclusions drawn from using the approach

of conforming to the specification as a hierarchical reference, the merits of adopting

it, the contributions of this research to the field of personal web archiving and future

work that could be done to extend this thesis.

7

CHAPTER II

BACKGROUND AND STATE OF THE ART

Understanding why the goals of this research would be useful requires one to

examine the state of archiving as a whole, particularly in the non-disjoint realms

of personal digital archiving, web archiving, and personal web archiving. Each of

these has outstanding tasks to be resolved or considered, many of which are in-

tractable. The importance of preserving digital content lies in that the content is

largely ephemeral. Missing web pages, for example, are ubiquitous in today’s brows-

ing experience [34]. Efforts like the Firefox add-on “Synchronicity” that support

the user in (re-)discovering missing webpages [33] through access to other archives

and caches would be more effective if more content were preserved. Preserving more

content in the ways considered to be “best practice” enables recollection of a digital

resource once it is discovered and in need of retrieval. Various software endeavors

and their respective services (e.g., IA’s Wayback) have driven forward momentum

of digital archiving but not all aspects have been translated over to personal digital

archiving.

Three realms of applicability for this research are personal digital archiving, web

archiving and personal web archiving (Figure 1). Issues that reside in a more specific

realm might find resolution in more general realms. This is especially the case in

realms that are encapsulated by another (e.g., personal web archiving within the

realm of web archiving). Because of this, the discussion of these realms will get

progressively less abstract.

8

Fig. 1. To simplify the discussion of the various realms of archiving, this Euler

diagram shows how each realm relates.

II.1 STATE OF PERSONAL DIGITAL ARCHIVING

Personal digital archiving spans a wide range of applications from assuring that

stored content is well-backed up and easily findable to verifying that the information

can be recovered if an original is ever lost. In the context of digital assets, many

users are aware of good practice yet few institute a consistent backup regimen or

only backup on an ad hoc basis [40]. Still then, users assume that the ethos of

the LOCKSS [39] (Lots of Copies Keeps Stuff Safe) system is sound but until a

resource needs to be accessed, the availability of the resource is often not verified.

An individual is seldom aware of this digital brinkmanship [40] and in practice,

few do much to hedge against this loss [45] in which a LOCKSS-like system would

be helpful in preventing. Individuals frequently use sub-par strategies like using

system backups as archives, moving files from one machine to another, moving files

to another medium (e.g., CDs, floppy disks) as their archiving strategy [44, 63]. All

of these are problematic and reduce the ability to recall information when needed.

Sound personal archiving practices are not commonplace both because users are

seldom able to implement their current strategies consistently [44] and many of their

strategies give a false assurance of their soundness due to user ignorance.

As Hodge [28] discussed, with proper life cycle management, digital objects are

9

more likely to be preserved. Best practices in preserving digital content come down

to a system of proper creation, acquisition, cataloging/identification, storage, preser-

vation and access. For example, practices used when a digital object is created

ultimately impact the ease with which the object can be digitally archived and pre-

served. Further, best practice requires that metadata is created as objection-creation

stage and that the archiving process is made more efficient when attention is paid to

issues of consistency, format, standardization and metadata description in the very

beginning of the information life cycle.

II.2 STATE OF WEB ARCHIVING

Generally speaking, web archiving consists of creating archives of any content that

resides on the web. The Internet Archive et al. have been major players in facilitating

the preservation of content on the web and assuring metadata is attributed. The

Internet Archive and Nordic National Libraries created a web crawler, Heritrix [56],

to crawl websites for inclusion into the Wayback Machine. The code for the Wayback

Machine is written in Java and was originally created with the intention of being

open source (distinguished from here on as all lowercase wayback) so as to promote

collaboration between institutions that were interested in archiving the web [56].

Prior to their efforts, no one had tried to capture a comprehensive record of the text

and images contained in the documents that appeared on the web [30]. For content

that has not been successfully archived by a particular organization, methods like

utilizing the lexical signatures of lost web pages [32] to find content not in an archive,

referencing other archiving institutions to supplement periods of time when a page

was not archived [69], and referring to search engines caches that were created as a

result of the indexing process [52,54] can be used to restore and repair incompletely

preserved content.

The output format of Heritrix, a WARC file, consists both of records to describe

the content to be archived as well as the archived content itself. Because Heritrix

experiences the web in a similar manner to a user when utilizing a web browser, in

that the HTTP protocol is used to request and process remote content, Heritrix is

able to capture these headers into a WARC file and use them as a basis for replay.

Conversely, tools that capture only the content after it has been processed by the

browser do not retain this metadata, which causes the replay experience to be incom-

plete and frequently inaccurate. An example WARC file is included as Appendix D,

10

to which line numbers given here refer. WARC files begin with a warcinfo record

(lines 2-15), which describes the WARC file and the tool used to generate the file.

After this are several WARC records that are generated through a crawl. These

include the following:

• metadata - describes a collection of resources crawled including information

such as the date of the crawl. (line 37)

• request - an abstraction of an HTTP request into the WARC format that

allows the request to be used in the replay of the preserved content. (line 18)

• response - like a request header except it contains the payload of the archiving

process - the webpage or resource to be archived. (line 48)

These records are concatenated together (with all binary data joined inline in a

form suitable for replay) into a file representing an instance of the WARC format.

Many WARC records containing multiple websites and crawls can be contained in a

single file. Further, a crawl is capable of being split among multiple WARC files using

a specific WARC record to guide the replay system in resolving external references

needed.

Though the WARC file format is widely used, it is just a specification for a con-

tainer and says nothing about the formats or semantics of the objects contained

within WARC files nor about their relationships to each other [68]. While other

formats exist (e.g., FOXML [22], METS [38], MPEG-21 [10], etc.) that attempt to

accomplish web resource bundling, none adhere to the Open Archival Information

System Reference Model (OAIS) [17]. The objective of the OAIS model is to pro-

vide a framework for the use of these bundling specifications [68]. Because of the

WARC format’s adoption of the model and its utilization by the most prominent

web archiving organization (Internet Archive), further discussion assumes this to be

the optimal format on which to base future web archiving efforts.

11

(a) (b)

(c)

Fig. 2. Replaying the July 25, 2011 archived version of Craigslist returns the unex-

pected result of the crawler’s original locale instead of the user’s current locale.

Little has been done in the way of assuring that an archive is replayed in the

manner originally intended. Archives generated from Heritrix are replayed as if

being viewed by Heritrix. An example of this problem can be observed with the

Internet Archive’s crawler of Craigslist1. The archived version retained by Heritrix

of Craigslist is based on the perspective of the crawer, i.e. Heritrix as run from

the Internet Archive in San Francisco. A user that wished to recall the content on

craiglist.org (Figure 2a) at a certain date would not have the luxury of simply entering

the domain but instead is required to be familiar with the site-specific redirection

scheme (Figure 2 progression from top left clockwise). This is one example where

not maintaining the look and feel through archiving potentially compromises the

1http://craigslist.org

12

content targeted to be archived. The reason for this discrepancy can be seen in

Figure 3, which shows the site’s reliance on GeoIP. When originally generated, code

that appeals to the user’s perspective (in this case, the web crawler; in other cases,

the user’s web browser) may result in unexpected output on replay. Emulation is

needed so the replay of web resources may exactly imitate legacy software [42].

1 > wget http://www.craigslist.org

2 --2012-08-06 18:40:09-- http://www.craigslist.org/

3 Resolving www.craigslist.org... 208.82.238.225

4 Connecting to www.craigslist.org|208.82.238.225|:80... connected.

5 HTTP request sent, awaiting response... 302 Found

6 Location: http://geo.craigslist.org/ [following]

7 --2012-08-06 18:40:09-- http://geo.craigslist.org/

8 Resolving geo.craigslist.org... 208.82.238.225

9 Connecting to geo.craigslist.org|208.82.238.225|:80... connected.

10 HTTP request sent, awaiting response... 302 Found

11 Location: http://norfolk.craigslist.org [following]

12 --2012-08-06 18:40:09-- http://norfolk.craigslist.org/

13 Resolving norfolk.craigslist.org... 208.82.238.225

14 Connecting to norfolk.craigslist.org|208.82.238.225|:80... connected.

15 HTTP request sent, awaiting response... 200 OK

16 Length: unspecified [text/html]

Fig. 3. The basis for Internet Archive’s Heritrix capture of Craigslist.org can be seen

with this fetch of the website using wget showing the site’s reliance on GeoIP.

II.3 STATE OF PERSONAL WEB ARCHIVING

Curation of personal digital materials in online storage bears some striking sim-

ilarities to the curation of similar materials stored locally [45]. The aforementioned

neglect stems from a lack of current need for resource recall, the inability to suf-

ficiently archive because of an unsound or poorly implemented processes and no

standard medium to assure that the output format will be able to be read in the

future. These are only a few of the numerous reasons why the practice of web archiv-

ing, and particularly personal web archiving, is in disarray. Users will often use the

circular reasoning of a service supplying the backup for data they have stored on the

web yet resort to poor archiving practices in assuring that the content is preserved.

13

For example, pictures on photo sharing websites2 retain more metadata than those

stored in a directory on a hard drive. While one usually will reference the more

comprehensive collection of photos on a local machine, in the event of system failure,

only then, will they attempt to recover photos from the photo sharing website. Little

redundancy is put in place and where it is, the integrity of data being backed up is

rarely verified until the data has been lost. Users are unwilling to put forth any

curatorial effort to ensure their work is not lost [45].

The extent to which a digital object is preserved corresponds to the methods and

medium used to accomplish the preservation. People archive their personal digital

belongings by relying on a combination of benign neglect, sporadic backups and

unsystematic file replication [45]. Tools created to alleviate the process are only

as reliable as the methods and medium that the tools employ. Archive Facebook,

for instance, preserves content in a directory structure navigable by a web browser.

While this content is saved to disk and retained, without appropriate measures (e.g.,

storing of metadata, appealing to standardized preservation formats) and a standard

medium (the tool suffers from the issue described in Section III.3), the content is not

preserved to a degree that we would expect of an archival format like WARC.

II.4 CURRENT TOOLS

Users currently have access to a wide array of tools to accomplish the task of

preserving their personal data. Some of these “tools” are simply interfaces provided

by the service, offering the user a way to liberate content the service deems as be-

longing to the user into a replayable format. Other tools suffer from varying degrees

of sub-optimality in terms of the output they offer the users. Here I take a look at

each tool’s output in comparison to all others. A high-level comparison of these tools

to one another is available in Appendix B.

II.4.1 FACEBOOK DATA DUMP

Facebook allows one to “download a copy” of their Facebook data. To accom-

plishing this, one must access General Account Settings3, select “Download a copy”,

enter the password, and submit the request. Facebook then gathers the information

that it feels is owned by the user, bundles it up in a navigable set of web pages devoid

2e.g., http://www.flickr.com
3https://www.facebook.com/settings

14

of the Facebook styling, and e-mails the user with a link to access the bundled files.

An example of the output can be seen in Figure 4.

The process of the user being notified varies to a degree undocumented by Face-

book but likely has a correlation with the number of resources attributed to the

user along with the amount of processing needed to decide ownership of the content.

Empirical tests on different user accounts do not show a direct correlation of time

before the user is notified and frequently resulted in a response with a large delay (as

much as a full day) to no response at all. The end-result could loosely be considered

an archive but lacks integrity, in that information was removed from the context of

Facebook and replaying the “archive” would not result in an experience similar to

the replaying an archive from wayback.

Fig. 4. Facebook’s “download a copy of your data” feature results in a navigable set

of locally accessible webpages with a selection of resources that Facebook determined

as appropriate for an “archive” and that also belonged to the user. The interface

deviates greatly from its original context. This selective exclusion of content as well

as the deviation from the original context produces an “archive” of questionable

integrity.

Noticeably absent from the data dump is content in which the user might have

been associated but does not “belong” to the user, as determined by the dump

procedure. Beyond simply maintaining the look-and-feel, intentionally excluding

content from a preserved medium sets a bad premise for preserving content qua

archives. If the purpose is to preserve, as is the user’s intention with the use of this

tool, and data related to the user that would be expected to be included is instead

15

excluded, the task of preservation was not performed to an acceptable degree.

II.4.2 GOOGLE TAKEOUT

Google Takeout4 is a service provided by Google to allow users of Google’s services

(including their social media counterpart, Google+) to download all data that one has

generated. Through an AJAX-driven web interface, Takeout allows a user to select

from “+1s”, “Buzz”, “Circles”, “Contact”, “Docs”, “Picasa Web Albums”, “Profile”,

“Stream” and “Voice” data to be included in an “archive”. After collecting the

information, Takeout provides a link to download the .zip file. This file contains an

extremely comprehensive set of data representative of the content of one’s account

organized into a directory structure, much like Archive Facebook. Unlike Archive

Facebook, however, the data is not stenciled in the original website design of the

contents’ respective origin. Also, unlike both Archive Facebook and the Facebook

data dump, there is no way to navigate the archive and view the resources’ contents

in a single medium (e.g., the web browser). Both of these differences are appropriate,

as Google appears to supply data that might not be readable in a web browser (e.g.,

vCard files for the “Contacts” portion of the Takeout output).

II.4.3 SEQUENTIAL “SAVE WEBPAGE AS”

Most browsers provide the facility to save the webpage currently being viewed to

disk. The output of this operation is similar to that of Archive Facebook’s. Archive

Facebook has the advantage of allowing pages to be pre-processed (e.g., continu-

ously scrolling to the bottom of a page until no more new content loads) yet “save

webpage as” is not tied to a particular website, so it is more general purpose. If a

similar set of webpages were sequentially (as in Section VI.2.1) and manually saved

using this primitive scheme of backup (for which “save webpage as” also suffers per

Section III.3), the produced backups are not directly accessible from one another

using backed up content. With Archive Facebook, the backup is fully navigable.

With the Wayback Machine, archives of a website are fully navigable. The general

purpose nature of this procedure, while universally useful, does not produce content

in an archival format, does not exhibit pre-processing of webpages without manual

intervention, and does not allow a series of backups from a single webpage to be

4http://www.google.com/takeout

16

inter-navigable, so it not nearly as suitable for archiving as other tools listed.

A post-processing procedure of defining how the backed up pages align with one

another along with converting the content archived into a recognized archival form

like WARC would be a step for the better in this procedure. Unfortunately, metadata

about the original context of the backup as well as any headers needed to replay the

content in its original form are absent, so improvement on this procedure would be

fruitless without modifications to its foundation.

II.4.4 OPENSOCIAL

OpenSocial5 is a bridge-like API that serves as a single medium of interfacing

with a variety of social media websites. The service works by having a user log on

to the target website, access a page on the target website’s domain representative of

the conduit for external data access, agree to let external services use this data, then

build applications based on a received authenticated key for access to the target’s

website. There are a few issues with this approach that are addressed by appealing

to the specification proposed in this thesis.

Firstly, OpenSocial is opt-in. Notably absent from the list of available social me-

dia networks is Facebook. By relying on the service to green light the external access

process, a barrier is put in place in preserving the content for the user on the social

media website. Further, if the target website is supported, the data received from the

target website suffers from similar issues as referenced in Section I.1 wherein a target

website decides what information about a user to liberate. An additional problem

with programming against this sort of meta API is that the results are likely similar

to that of a Facebook dump at best, i.e. it is unlikely that the service (Facebook

in this case) would provide additional data or design not already included in the

Facebook data dump. Because OpenSocial requires a service to opt-in, can be po-

tentially limited in the data it receives from the target website, and does not preserve

archive integrity through output with the target site’s look-and-feel, OpenSocial is

unsuitable for personal web archiving in the degree paralleled by the use case tools.

II.4.5 WARC-TOOLS

The Hanzo Archives WARC Tools suite6 is a set of core libraries/APIs and

5http://code.google.com/apis/opensocial/
6http://www.hanzoarchives.com/solutions/open source/projects

17

command-line tools for full-text and metadata-based search of archives in WARC

format [68]. Its implementation is completely decoupled from the Internet Archive’s

open source wayback offerings, which allows the programs in the package to function

without the technical overhead of a user installing a personal instance of wayback.

Because of this decoupling, the tools suffer from an issue similar to WARCreate in

that their implementation of the full WARC ISO standard is incomplete, causing

failures in validation where input should pass. However, WARCreate relies on the

external cdx-indexer for validation of generated WARC files (as documented in Sec-

tion VI.3.1) and, thus, is able to generate content that will work in the replay system.

Though the Python programs in the warc-tools package do not generate original con-

tent (rather, they serve as the foundation for the package described in Section II.4.7),

observing their failure with simple validation of officially generated (i.e., generated

by IA’s Heritrix instance) WARC files sets a poor premise for packages to use it as

a basis.

II.4.6 WGET WITH AUTHENTICATION

GNU Wget7 is a free software package for retrieving files using HTTP, HTTPS

and FTP. Wget is frequently used to fetch and store content from the web en-massse.

Because of its command-line accessible interface, many use the tool in conjunction

with scripts as a first step in retrieving the desired data. Wget allows parameter

specification using command-line flags to supply authentication credentials as well

as the ability to use an external file as a source for cookies. However, the perspective

issue akin to delegating the archiving task to Heritrix (Section II.2) is present in an

approach using wget or any tool that causes the replay experience to deviate from the

original form. Further, wget does not contain support for Javascript8, a requirement

for most AJAX-heavy social media websites, so it is unsuitable in its base form for

retrieving and archiving content on social media websites to a satisfactory degree.

7http://www.gnu.org/software/wget/
8http://wget.addictivecode.org/FeatureSpecifications/JavaScript

18

Fig. 5. Social media websites expect users to experience them with a conventional web

browser and not a fetching tool. That this is enforced to the top level of the website

when accessing it with wget is a red flag that content, were it to be archived, would

likely not have its look-and-feel preserved and would very definitely be incomplete

because of the lack of Javascript support by fetching tools.

Prior to manually entering the credentials needed to authenticate with a social

media service (e.g., Facebook, as shown in Figure 5), issues start to arise. To even

expect an acceptable replay experience, the fetched page must be viewed in a web

browser rather than a fetching tool. Services will often exclude tools and browsers

they do not support (further emphasizing the issue of preserving look-and-feel and

perspective as documented in Section II.2), which makes mediums used specifically

for archiving sub-optimal. With the preference of social media websites to have their

users experience their website in a browser context and wget’s lack of support for

Javascript, even with authentication it is insufficient for personal web archiving.

II.4.7 WGET-WARC

wget-warc9 is a patch onto “wget” that allows the program to output its data

to WARC files. With some work, one can specify wget to retain response headers

but there is no way for it to retain request headers [6]. The program also provides

a clean way to store redirects and 404 responses. wget-warc utilizes the warc-tools

9https://github.com/alard/wget-warc

19

package from Hanzo Archives, providing the missing data fetch element that Hanzo’s

offering does not provide. Because wget-warc utilizes wget, however, using it as a

tool to archive social media website will lead to the same problems as utilizing wget

(Figure 5). The project has great potential in retaining the headers, as required by

the WARC format but is not very user friendly (its compilation failed on two different

Linux distributions, even after some work). The tool will be much more useful once

it is integrated into a wrapper to allow it to process browser-based technologies (e.g.,

Javascript), thus making it more relevant to personal web archiving of social media

websites.

II.5 SUMMARY

Chapter II considers the state of various relevant forms of archiving and how

being cognizant of the fields’ current offerings and needs help to provide justification

for the objectives of this thesis. Sections II.1, II.2, and II.3 describe each realm, how

they relate to each other and how aspects of some are still not adapted to the others.

Section II.4 considered facilities provided by social media services and open-source

tools that attempt to enable users to preserve their information. Unfortunately, none

of these approaches are optimal for personal web archiving.

20

CHAPTER III

CONCERNS UNIQUE TO PERSONAL WEB

ARCHIVING BEHIND AUTHENTICATION

Personal web archiving exhibits some features not present in conventional web

archiving that should be addressed. Considering these prior to moving forward with

new methods will allow the methods to have a foundation in both accomplishing

their task while taking into account some of the caveats that are likely to come

about. These caveats arise when the task of personal web archiving is addressed in

a naive manner similar to conventional web archiving. Though there are likely to

be further concerns as the processes of archiving this content matures in the future,

the issues of näıve URI cardinality, authentication, privacy, and security in regards

to personal web archiving will be addressed. Topics relevant to web archiving in

general that will be discussed are of archive integrity, archiving vs. backing up and

the inconsistency in methods of obtaining data that plague web archiving as a whole.

III.1 NAÏVE URI CARDINALITY

Once a user is authenticated with a target website, the contents of a single URI

will likely vary from user to user. In the sample case of Facebook, a user’s news feed

is composed of the contents of the recent updates from a respective user’s friends.

Being that it is unlikely that two users have an identical set of friends (and even

if they do), the contents of two users’ news feeds will be different while still being

accessed with the same URI (e.g., www.facebook.com). Much of the content on the

web is assumed to contain the same data when accessed by two different users. Even

content within the Deep Web [8] with the same URI and explicit (GET request)

parameters will likely result in identical content, especially if the process of accessing

the content has no side effects. As content on the web becomes more dynamically

generated [36,58], hidden behind web forms and other kinds of query interfaces [71], it

becomes less accessible to crawlers1. For example, if two users access a URI that is not

1Though content on social media websites fits Raghavan’s definition of “dynamic” [58] and thus
is the target for the crawler, it is not, “form generated” and so contradictorily does not fit the
criteria.

21

indexed by search engines (through robots.txt [2] enforcement or simply because it

is not linked from elsewhere) residing at http://www.example.com/?key=secretKey,

the content could be different because the state of the resource between accesses is

not guaranteed (i.e., the user can never step into the same river twice [61,62]). One

reason for this is that pages include code that executes on the client machine to

retrieve further tailored content [58] (frequently implemented as Ajax calls). If this

content requires authentication, it is still possible that the content will remain the

same between different users, but it is the nature of social websites to tailor content

to its users. Even if the content when accessing http://www.example.com/?key=

secretKey while authenticated is nearly identical, any tailoring to the user (even a

content variation as subtle as a “Hello Username” message) will result in unique

content. One cannot assume that accessing a URI will result in the same content

or even the same design when accessed by different users. This is especially true in

the case of web archives when the representation of the resource (e.g., the HTML)

is retained but parameters originally sent to request the resource’s representation

(e.g., cookie information, credentials) are not sent to the replay system. Figure 6

shows two different Facebook users’ returned content after having accessed the same

URI (http://www.facebook.com/profile.php?sk=info). Normally, only the content

would be tailored to the user but because of the website’s personalization, the page

is completely different though temporally equivalent. On the surface web, only a

temporal difference would result in this drastic of a difference.

22

(a) Standard Facebook interface (b) Facebook timeline interface

Fig. 6. URIs can not be used to guarantee what content is returned when different

users access the URI because of site personalization. The tailoring of preferences here

shows a user that is retaining the look-and-feel of the previous version of Facebook

(6a) and the interface presented to a user that has opted into the Facebook Timeline

interface (6b). Though two different users are accessing content using the same

URI, the resulting content is drastically different because of the user-based content

tailoring.

Less subtle differences in the content displayed to different users when accessing

the same URI are becoming more commonplace as websites enable users to control

privacy settings. By using these privacy settings, a user is able to restrict or allow

specified content to be displayed with a scope that can span any of “publicly acces-

sible”, “only friends”, “only me” or any ad hoc subset. Though two users might be

friends (in the context of social media websites) with a third, the common friend can

potentially tailor what each user sees on a per user basis. This implies that, for the

most part, the content displayed to a user from a system that allows tailoring, is

almost always guaranteed to be unique.

As the content can greatly vary between users and the same URI when accessed

by different users can result in different content; in order to archive the content from

the perspective of a user, some unobtrusive identifier must be added to the means

of accessing the archive to assure that the content from the desired perspective is

served. Such an identifier will assure that when two users access the same URI, a

secondary identifier will provide the facility to serve the user the appropriate concept.

One way to accomplish this requirement of assuring consistent access to a unique

archive is to add “perspective” data to the URI in the location where the user-

name would normally reside [9]. An example for a user with a unique identifier of

23

12345 would embed this data with a result like http://12345@socialmediawebsite.

com/path/to/further/resources.php?p1=foo. The overloading of this attribute re-

mains semantic, as the “username” field in the URI scheme is still representa-

tive of a unique identifier but expanded to be a signifier to other tools to handle

URIs with this addition differently. In the case of HTTP, this attribute is rarely

included in the user scheme and different means of authentication are normally

used (e.g., requiring credentials on access of the URI that does not contain the

username:password@urischeme form). An implementation-based issue with this ap-

proach is that in the default implementation (at archive.org), Wayback Machine’s

crawler (Heritrix) uses a filter [3] to strip away certain information including the

username field preceding the hostname. Because of this, a different approach must

be used to accomplish perspective designation of an archive. This is discussed further

in Section III.2. As is evidenced here, Heritrix’s default functionality is too generic

to be applied to personal web archiving of content requiring authentication. The

lack of context and stripping of an external means to represent this context make it

unwieldy for a casual user. A user who would like to archive certain content on a

specific website would need to explicitly define URIs to crawl.

III.2 CONTEXT

When viewing a webpage from various perspectives, be it one of the variety of web

browsers available or from different devices (e.g., mobile phone, PC), it is possible

that different content is displayed based on the user’s choice of device (Figure 7).

Some websites serve a completely separate, often optimized version of a website to

those on mobile devices that might be restricted by bandwidth, screen real estate

or any number of limitations that a mobile device imposes. The code and markup

behind a webpage might also be tailored to serve certain information only appropriate

to users of a certain browser, potentially even limiting which browser may view

a website, as was common in the browser wars [70]. This behavior is still found

on systems where reliability of experience is crucial and the website administrators

have taken the route of excluding rather than being accessible. For these and other

reasons, it is easy to imagine two webpages (even those on the surface web behind no

authentication) being rendered differently when viewed by two people or by a single

person on multiple devices. As personal archives are much more susceptible to this

tailoring because of the desire of social media websites’ users for ubiquitous access

24

to a service, it is important to address these deviations in user experience and how

they relate to personal web archiving.

(a) Mobile Facebook display (b) Standard Facebook display

Fig. 7. When accessing facebook.com from a mobile device (7a), the content supplied

to the user is tailored to the user’s available screen width. Where the screen width is

less predictable but often wider, as is the case with a PC running Internet Explorer

(7b), the user is supplied content with much more detail.

Information about a user’s perspective when visiting a website is identified by a

user agent string, representative of identifying information (e.g., choice of browser,

current platform) and a few other pieces of information, essentially a digital finger-

print [20], to allow the sniffing of a user’s browsing attributes [26]. As was more

common in the past, when a user was prevented from accessing a website because of

one of these attributes (e.g., blocking any users that are not on a Macintosh from a

Macintosh Fan Club website or the exclusion imposed by Facebook in Section II.4.6),

this user agent information could be spoofed (or falsified) to circumvent the restric-

tion. Spoofing, as in Figure 9, also has the constructive use in testing to assure no

restrictions of this sort are being accidentally imposed by the webmaster. Even with

spoofing, how the page appears from the spoofed perspective cannot be accurately

observed without the further assistance of a corresponding rendering engine.

25

1 <!--[if lt IE 5]>

2 Your browser is too old and cannot render this content.

3 <![endif] ->

4 <!--[if gte IE 9]>

5 ...features not supported by version of IE prior to 9...

6 <![endif]-->

Fig. 8. Internet Explorer provides a way of exploiting the constructs of HTML

comments to provide code that is only pertinent to a subset of versions of the browser.

An example of constructively using browser spoofing would be in testing code

or markup that is tailored to a specific version of Microsoft’s web browser, Internet

Explorer (IE). Since version five2 IE has allowed unobtrusive HTML comments of

a certain form to be rendered only by those that satisfy the condition. An exam-

ple of this is shown in Figure 8. This content, enclosed in an HTML comment tag

from the perspective of any browser but IE, will render differently between users

that are using IE version 4 and version 9 and will show no content generated from

within the comment for users of browsers other than IE. In this instance, IE ver-

sions less than version 9 are unable to natively render the content within the second

conditional and so are appropriately not shown this content so as to not confuse

users with non-functional content. This filtering is performed client-side and could

be overcome with user agent spoofing. In addition to content exclusion, a user may

be served what the webmaster believes is a more appropriate display of the con-

tent, potentially leveraging features that are only available and are appropriate on

a certain platform. An example of this would be forwarding a user to a mobile ver-

sion of a website that utilizes the GPS functionality in a smart phone that would

not be appropriate on a user accessing the same website from a PC without this

functionality. Content might also be dynamically generated based a user’s choice of

browser, potentially utilizing a reliable browser detection library (e.g., QuirksMode’s

BrowserDetect3) to serve only appropriate media that the webmaster believes will

be compatible and optimally experienced by the user. The webmaster could also

potentially exclude access to content regardless of user agent spoofing, as the above

library does not rely on the value being spoofed via the user-agent request header

2http://msdn.microsoft.com/en-us/library/ms537512.aspx
3http://www.quirksmode.org/js/detect.html

26

to reliably detect the user’s browser. Instead, the script checks for support for var-

ious client-side attributes and operations that are present in a browser, secondarily

relies on the “navigator.vendor” attribute for identification and finally falls back on

the “navigator.userAgent” attribute if the other methods of identification fail. Per-

forming browser detection in this way circumvents many of the methods tools use to

accomplish spoofing but also provides a way for developers to reliably serve content

only meant for a specific subset of their users.

Fig. 9. Websites like web-sniffer.net allow a user to spoof their user-agent to deter-

mine if different results are produced when various browsers are visited. Browser-

based plugin approaches also exist but by using web-sniffer, a user is able to see the

method used (modification of HTTP headers) to accomplish the spoofing. Note the

spoofing of the Opera web browser while Mozilla Firefox is being used.

If a user wished to archive two versions of a website from two different perspectives

(e.g., browser, platform) and view them from either in the future, the content might

not be displayed properly yet that might not matter. The device from which a user

27

views his archive should not limit whether the archive is viewable, but an attempt

should be made to display the archive that contains the most similarity to the user’s

current perspective. Retaining this information to be included with the archive

should be as simple as capturing this metadata at the time of archiving, but the

Wayback Machine does not natively support user agent switching and instead only

serves the representation it received at crawl time.

Because Wayback strips portions of the URI it considered superfluous to archiv-

ing the page (Section III.1), encoding user agent information into the URI would

be problematic. Instead, a more reliable way to preserve this information would be

to encode it as metadata in the WARC records. Metadata is information that en-

ables and documents the long-term preservation and access to digital objects [68].

Retaining this information at the creation stage of the digital objects is preferential

for good practice, as described in Section II.1. Because the implementation-agnostic

case (i.e. appealing to the WARC format independent of wayback and Heritrix)

is useful to explore for further developing the applications that utilize the WARC

format, encoding user agent information in the URI will be discussed further here.

Doing so will reinforce the lower degree of qualitative optimality of considering an

encoding-based scheme over one that appeals more to the format itself.

With encoding the user agent into the URI, we wish to retain semantic, simple

URI schemes of the resulting archive and generalize the scheme to be applicable

to a variety of social media websites. Encoding too much information within the

URI scheme might be counterproductive to these goals. To consider a possible en-

coding scheme while leveraging the perspective specification described above and

ignoring the implementation-specific filtering by Heritrix, this information can be

encoded in what would normally be used as the password field in a URI. With

the Facebook example: http://perspective:useragentinfo...@facebook.com, it is un-

clear how to encode this information to be comprehensive of all of the informa-

tion in the user-agent string and still be succinct. Extracting all of the con-

tent and appending them in a fashion akin to appending variable values to the

end of a URI string (e.g., http://www.example.com/index.php?user=john&color=

blue) is not conducive to our goals, as even a scheme with limited browser at-

tributes would require URIs like “http://myusername:engine=Mozilla&plaform=

AppleWebKit&plaformversion=7B405&. . . ”.

28

Unlike overloading the username portion of the URI scheme, this sort of informa-

tion loading is an abuse of the original intention of the password attribute and would

not scale well when integrating the archives with other systems that use the field for

its intended purpose. Because of these issues, it would be difficult to represent all

possible permutations of perspective without a reference to external encoding and

that would still then contain a combinatorial number of variants.

Two non-mutually exclusive alternatives to this scheme would be to either include

the user agent information as WARC metadata (suggested above) and/or inject the

information into the target page for later reference. The first case is optimal, as it is

the more semantic option and the WARC format is designed to be extended in this

way. Unfortunately, from the client side perspective and the current offering of the

Wayback Machine and the open source wayback4 package, this user agent information

is not accessible to the end-user, which makes storing it in a WARC metadata record

useless without a customized wayback build modified to expose this information. An

additional offering from the Internet Archive’s Archive-It5 website has implemented

a way to attach additional metadata to an archive by using an external database,

but because of the overhead, this would be impractical for a casual user.

The second alternative is more obtrusive on the target document and less semantic

than the aforementioned ideal approach but is very accessible to the end-user, who

is the target of this study. At time of archiving, the user agent can be collected

and injected into the target HTML page as HTML metadata, rather than WARC

metadata. This information is directly accessible on the client-side via Javascript.

Because of this obtrusion, maintaining archive integrity is quite important. Because

this injection technique is the most accessible of the techniques discussed, considering

it as a use case for maintaining archive integrity will also be discussed further in

Section III.4.3.

III.3 ARCHIVING VERSUS BACKING UP

As documented in Section II.1, users are often confused as to what constitutes

an archive over a backup, or they perform their backups using sub-par methods that

make recall of resources difficult and assurance of the resources’ existence difficult

4https://github.com/internetarchive/wayback
5http://archive-it.org

29

to verify. While institutional archiving efforts are making great strides forward, con-

sumers are unintentionally flirting with digital brinkmanship in regards to method

of archiving [40]. It is not unusual for consumers to write the most valuable of their

files to external media [40], which are prone to decay and is unwieldy when the media

turns into a stack of media with little-to-no metadata and immense overhead for one

to recall a desired resource. Some even move files from one machine to another, pre-

suming the data is stored and safe in a folder with a label like, “My Old Documents”

yet moving files from one PC to its successor is not actually creating an archive [40].

To emphasize that which is lacking from these sort of backups to sufficiently consti-

tute them as an archive over a backup, this sort of folder movement can be compared

to the WARC format, which contains the headers necessary for replay. In addition

to also preserving metadata about the process executed to preserve the data and

additional information about the data itself, creating a backup using the WARC

format allows for resources to be wholly portable, i.e., many resources contained in

a single file. For preserved content to be accessible to the resources contained within

the backup, the references (e.g., the URIs or file paths) need to be manipulated prior

to preservation. With conventions like WARC, this rewriting is done at runtime of

the replay system, allowing the original content to be maintained in the archive.

Many are moving away from physical storage and relying on social media, free

unlimited storage e-mail space and other online services (particularly in social media)

to be a redundant means of backup, again finding appeal in LOCKSS. Individuals

use these services as a safety net for rescuing their digital belongings [40] where they

once referred to a stack of discs. These services often format the information in a way

fitting to the service (a 300 pixels per inch (ppi) image might be scaled down to 72ppi

to reduce file size), which leads to a new problem of deciphering, “which copy is the

best” and, “what are my options”. The difference here should be clear. While the

LOCKSS ethos assures that some backup is retained (assuming users occasionally

assure that the content still exists, as previously discussed), without metadata, these

copies still exhibit the same problems as backups, which archiving would prevent in

attributing metadata. A further requirement of a backup being an archive is data

portability. Utilizing the WARC format is a means to assure this.

III.4 MAINTAINING PRIVACY WITHOUT

AUTHENTICATION

30

Some people feel that everything on the web is in the public domain [43] though

the means one uses to obtaining this data is controversial [55]. With the approach

of obstructing this public access to information on the web via the walled garden of

authentication, social media websites are attempting to assure that only the informa-

tion that a user of the service wants exposed will be exposed. With this assumption,

users rely on the service to protect the data, but this protection scheme is the root

cause of the difficulty in archiving the information when the user wants to liberate

it for the purposes of service-independent archiving.

Retaining privacy without authentication for this data and still making it quick

and easy to retrieve and replay requires a scheme of protection. Various approaches

can be considered with two dimensions: degrees of encryption and centralization.

The sweet spot for these two is discussed here.

Transparency of implementation is debatable, as often the level of protection a

security scheme provides is inversely proportional to the amount of information that

is known about the scheme being used. Ideally, advances in encryption could be

applied here but many of these schemes are expensive, require a central server and

are impractical from the context of a browser. As we hope to overcome the barrier of

authentication by leveraging the browser, we will consider approaches toward security

and privacy that can take advantage of the context of the web browser by the user and

emphasize decentralization. By emphasizing decentralization, archives will retain a

greater degree of portability and the process of implementing the specification will

remain more accessible without the undue hindrance of an external service. The goal

is to explore the optimal degree of security while still making it easy to obtain and

tailor the level of security that a user desires.

The initial approach explored is that of symmetric-key-based cryptography.

Through providing this simple means of encryption, a user will be able to ensure

some (albeit small) degree of protection is used. We can leverage this scheme even

further by providing a relevant key to the data prior to encryption with a user-

specified key. This key would consist of a unique identifier representative of the user

on the network, e.g., a user ID. Other secure alternatives [4] are currently being de-

veloped to accomplish the goals of generating asymmetric key pairs and are built-in

the browser, i.e. they do not require by an external library. The merits and pitfalls

of using this symmetric key based approach are discussed below.

The difference between encoding and encryption should be clarified, as both are

31

utilized by the tools built and manipulated in this thesis. Encoding consists of

transforming data with the intention of usability and is utilized so that it can be

consumed or transported to a target system. An example of this is image data,

which is frequently transferred as an ASCII string representing the encoded form

(usually base64) of the data needed for the image to be reconstructed. Encryption,

however, has the intention of keeping data secret while utilizing encoding and some

other security measure.

For the use cases (Chapter VI) described in this paper, a symmetric key-based

approach is used. This simple approach usually relies on a shared key by multiple

parties. This key is used for the initial encryption and the eventual decryption of

the data. In the case of personal archives, both parties are frequently the same user.

Transmitting this key is frequently the downfall of symmetric key approaches, as a

man-in-the-middle attack can be used to intercept the data and brute force the key

to expose the data. The approach performed by WARCreate never transmits this key

but only transmits the data, so does it not suffer from this issue. Data is encrypted

with the key prior to transmission. When the encrypted data is to be retrieved, it is

largely nonsensical if the user does not know the key. The key is entered by the user

on the client side once the gibberish is received (or supplied to the tool beforehand

and retained) and used as the symmetric key for decryption, just as if the data were

being sent to another user. The implementation details of accomplishing symmetric

key based encryption are described in Section III.4.1.

III.4.1 OVERHEAD ANALYSIS AND WHAT IS LOST BY USING EN-

CRYPTION

With conventional key-based systems, the intention is to supply the key (e.g., a

user’s password) once, process that data and make it difficult to reverse the processing

and obtain the original data. Verification that this data is correct is a matter of taking

new input, running the same processing procedure and verifying that the results

match. Using an RSA-like [1] method via a public and private key pair requires the

overhead of a remote server-based solution to be effective. A weakness in stored key

approaches lies in the exposure of the key to the attacker. Rather than relying on

a stored key approach, a simpler method that also allows the data to be decrypted

while not requiring the overhead of a remote server is preferable.

The more suitable approach is to use a symmetric key. Using symmetric keys

32

allows the content, represented in a WARC file as ciphertext, to be decoded only

if the key is known by the user. This key is best implemented by way of using a

standard, consistent hashing function on the concatenation of the key and the data.

An extension to this would be to include the hashed key at a location in the ciphertext

based on the length of the original key. A thorough analysis, which is beyond the

scope of this research, would have to be done to assure that this method is reasonably

secure against rainbow table attacks6 at deciphering the content.

No browser-based decentralized approach will be as strong as a server-based so-

lution. A solely client-side approach would use Javascript. Javascript suffers from

issues of runtime malleability, shortcomings in system primitives needed for true

cryptography and a variety of problems [49] that make it less than ideal for cryp-

tographic implementations. However, adopting a server-based solution too tightly

couples a potential personal web archiving tool to a single point of failure. The

overhead required to encrypt the data is O(n) if a simple combination of base64

encoding and RC4 encryption is used. Such implementations are natively available

in Javascript7 and sufficiently secure for further discussion on less implementation

specific issues.

III.4.2 FURTHER DISCUSSION ON CENTRALIZED VERSUS DE-

CENTRALIZED APPROACHES

Aside from the case of enforcing privacy without authentication, both a partially/-

fully centralized and a completely decentralized approach at personal web archiving

have advantages and disadvantages. The ability to utilize external resources weighs

in favor of having some element of centralization or some form of external server

access to accomplish the process. This comes at the expense of loss in privacy and

increases the potential to malfunction as tools on external systems need to commu-

nicate. On the other side of the spectrum, a completely decentralized approach is

too extreme to be applicable to web archiving, where the resources are almost al-

ways located on a remote machine. A server-based approach could use protocols like

OAuth [27,60] or OpenID8 to ensure that only the user that created the archive can

6Simpler encryption schemes, like those using symmetric keys, are especially susceptible to rain-
bow table attacks. The gist of the attack employs using pre-computed hashes to match up with
encrypted keys.

7http://code.google.com/p/crypto-js/
8http://openid.net/

33

subsequently access it. If these services were to get compromised, go down, or suffer

from data loss of authentication credentials, personal archives created might become

inaccessible. Relying on external services for the core function of accessing an archive

increases the potential for these problematic scenarios. The specification proposed in

Chapter V is a guide for the tools. If it were to become outdated, removed from the

web or otherwise become inaccessible, the cached version of the specification would

remain suitable for as long as the previously existing specification were applicable

(e.g., until it would normally be updated). It is recommended that tools based on

the specification cache the respective (to the target service) implementation of the

specification for an incident such as the one described. Unlike a tool relying on the

external service of the specification, the issues with tools relying on authentication

services (if implemented correctly) would not be overcome with caching due to the

inherent reliance on such authentication systems on maintaining the allowance of

external access.

III.4.3 ARCHIVE INTEGRITY

Preservation and archival of the digital born media is not trivial and can contain

data quality issues [66]. Two considerations should be addressed in regard to archive

integrity, one abstract and one implementation-specific. When data is collected by

a crawler, it is normally not transformed in any way, as a conventional web crawler

like Googlebot only indexes metadata and sometimes a cached copy that is hardly

sufficient to be considered an archive (Section III.3), though efforts have been made

in using these caches as the basis for archival construction after-the-fact [50]. From

an end-user perspective, Heritrix appears to tailor crawled and archived pages to be

replayed in the Wayback Machine by appending additional archive metadata and

graphical user elements as in Figure 10. However, as documented in Wayback’s

administrator manual [5], the content originally archived can be viewed by the end-

user by adjusting the parameters queried to the Wayback Machine9. This behavior

also exists in the open source wayback. Often because archived content no longer

exists in its original form, there is not a way to verify that content archived at

a particular time, even by Heritrix, is identical to the representation in a WARC

9To accomplish this, the URI needs to be manipulated to add the string “id ” to the end of
the timestamp of the archive being viewed, e.g., http://web.archive.org/web/20110311013223/http:
//www.google.com/ to http://web.archive.org/web/20110311013223id /http://www.google.com/.

34

file because the source of the archive could have changed. Assuming tools created

based on the standard deem it necessary to modify the content in lieu of preserving

the content’s original form (e.g., for usability), a list of modifications that have

been performed on the content’s original form (a digital paper trail [65]) should be

presented before storing the data in a WARC file.

Fig. 10. Upon replay, it would appear (left) that the archive has been decorated with

user interface elements by the Internet Archive to allow users to navigate between

temporally different versions of the same archived page. The source code (right)

seems to confirm this with the addition of various scripting that compromises the

integrity of the archive so that a user cannot be sure they are experiencing the content

in its original form; however, the content in its original form does not resolve URIs

in a way that makes it usable on replay, so this URI rewriting procedure is necessary

for a suitable end-user experience.

Providing a means to represent how content has been modified only increases

the likelihood, and at worst does not affect the likelihood (i.e. it is not hindered),

that the content archived is consistent with its original form. If it is necessary to

first transform content in any way prior to preservation, as is done in converting

images to their binary representation, this should be documented in the WARC file

and attributed to the archived content10. An example use case where documenting

the changes made to the webpages that were archived can be supposed in Archive

Facebook. In the add-on, URIs on a webpage are transformed from their absolute

10The WARC format is inherently extensible, so a representation as simple as the output of a
“diff” tool would ensure that the original representation could be restored if manipulation of the
archive was necessary.

35

references (e.g., http://www.facebook.com/resource.html) to a reference relative to

other pages (e.g., ./resource.html) that are archived in the same session to assure

that the “replay” of the backed up content is navigable by the end-user. Because

Archive Facebook does not currently utilize the WARC format, the application of

documenting changes for the sake of archive integrity is largely moot. If Archive

Facebook were to utilize the WARC format, rewriting URIs to allow navigation

between pages archives would be unnecessary, as wayback prepends all URIs with

the hostname on which the wayback instance resides, making references to pages

that should be accessible from one page to another a process handled by the replay

system, usually wayback itself.

III.5 SUMMARY

This chapter considered issues that exist in personal web archiving and are es-

pecially of concern to those that wish to accomplish it by way of a web browser.

The näıve URI cardinality issue of Section III.1 addressed the matter that URI alone

is insufficient for serving as a reference to an archived resource, as the same URI

can represent an infinite number of variations of content at a location. Section III.2

highlighted a large problem that occurs with the accuracy of an archive when the

collection procedure is delegated to a context that does not match the archivist’s

perspective. Section III.3 emphasized that merely backing up data is insufficient

for the preserved output to be considered an archive. Section III.4 suggested some

methods to retain privacy on personal web archives collected and to ensure that if

sensitive data is preserved, it is not trivial to reinterpret by parties with malicious

intent. Section III.4.1 explored further as to why secure approaches are not accessible

to casual users and thus a balance should be made to obtain a level of security to

which the user feels is necessary to protect the archived data. Section III.4.2 went

to the other extreme in analyzing why server-based solutions are not appropriate

for personal web archives beyond the context of privacy and security. Lastly, Sec-

tion III.4.3 discussed why archive integrity is important for preservation, especially

for the realm of personal web archives.

36

CHAPTER IV

NEW TOOLS FOR PERSONAL WEB ARCHIVING

As described in Chapter II, previous approaches to archiving personal content

on social media sites are not optimal in terms of retaining the look and feel of the

original content and producing an archive in a standard format, such as WARC. In

this thesis, I use two new tools, WARCreate and ArchiveFacebook, to demonstrate

my approach to personal web archiving. I developed WARCreate for this thesis to

archive any viewable web page into the standard WARC format. I contributed to the

development of ArchiveFacebook, which backs up a user’s Facebook pages and retains

the look and feel of Facebook. Later in this thesis, I will use a modified version of

ArchiveFacebook to demonstrate that using the proposed specification allows a tool

to adapt to changes in a social media site’s hierarchy. In addition, in this chapter,

I will describe a modified version of the XAMPP client-side server suite that allows

users to view the WARCs created by WARCreate in a local instance of wayback.

Here I hope to enumerate the advantages and shortcoming of the extensions used in

this thesis and how the supplementary server suite can assist in them achieving their

goals.

37

Fig. 11. WARCreate’s operation relies on a sequence of intermediary storage because

of the importance of content-length being explicitly defined for the WARC records

and the payload. This sequence also takes into account the need to convert non-

textual media to a form that can stored as text, namely, the media’s base64 encoding.

IV.1 WARCREATE

WARCreate [31], a tool developed for this thesis, is an extension for the Google

Chrome web browser that allows a user to generate a WARC file from the current

webpage. To do this, the user clicks on the browser extension’s icon in the address bar

then presses the Generate WARC button. The browser extension gather the resources

(including external scripts, CSS and images) and HTTP headers normally used by

the web browser to generate a webpage and adds metadata (the warcinfo records) to

generate a WARC file that conforms to the WARC standard’s specification. It is this

adherence to the specification that allows the WARC file to be read by Wayback.

The internal workings of WARCreate consist of a “collect”, “concatenate”, and

“generate” series of operations (Figure 11) to produce a WARC file. When a page is

38

visited, even before the extension is instructed to preserve the content, the extension

stores all HTTP headers that the browser sent and received into a collection of strings.

If the extension is never given the command to generate a WARC from the page, this

information is discarded. If the command to preserve is given, the extension collects

all textual and binary content into strings as well. From the headers, metadata that

is representative of the resources, as well as information about the archiving session

being performed, is generated. The HTTP header content previously retained is

attributed to each resource’s representation as a string and concatenated along with

the representation’s respective metadata to produce a string representative of the

preserved page. A record is then generated by WARCreate to provide metadata about

the archiving session and is prepended to the archive to complete the generation of

the WARC file. This file is then served to the user.

The model used by WARCreate can be applied to other tools. By leveraging

the user’s perspective of the web browser (Figure 12, marker 1), a user interacts

with a tool (marker 2) that serves as a bridge for converting viewed content into

an archived form. In the case of WARCreate, the process described in Figure 11

is executed (marker 3) and the extension outputs the file representing the archived

content (marker 4) into a local repository. The concrete example of WARCreate

outputting WARCs couples with the consumption of this archived format (marker

5) by a system created to read the format, a local instance of wayback separate from

WARCreate. The user can then access this local instance (marker 6) and view the

result of the processing instigated by the initial interaction (marker 2) of the tool

(e.g., WARCreate) via the browser.

39

Fig. 12. A higher level view of an archival tool built upon the browser platform

gives perspective on how all of the components of archive creation, consumption and

replay can be experienced by the user. Displayed here is the process that WARCreate

uses to produce a WARC file. The process is abstract enough for any browser-based

tool to reuse by putting in-place its logic where WARCreate’s logic currently resides

(after marker 3).

The intention of the creation of the WARCreate Google Chrome extension was

to sacrifice immediate viewability of an archive for the advantage of appealing to a

standardized archiving format. WARC files are normally generated by the Heritrix

web crawler, to be consumed by the Wayback Machine. With the assumption that a

user would be able to leverage the open source nature of a tool (i.e., wayback) that

was created to consume a robust and extensible format of digital archive (i.e., the

WARC format), WARCreate generates this format of archive from any arbitrary web

page and works toward bridging the gap that currently exists between institutional

web archiving and personal web archiving.

WARCreate was developed for this thesis with one objective: to allow a user

to save a webpage and all other required metadata (e.g., header information) to a

WARC file. Its procedures, unlike Archive Facebook’s, are generalized enough to be

applicable to any webpage. WARCreate is not tied to any specific website’s hierarchy,

so it is immune to this sort of breaking. At the same time, WARCreate’s website

agnosticism prevents it from creating comprehensive WARCs cohesive of social media

sites’ content, like Archive Facebook.

To remedy this shortcoming, some form of sequential archiving (Section VI.2.1)

as well as the ability to associate subsequent pages together to form a comprehensive

(qua Archive Facebook) archive would a step forward for the tool. The implemen-

tation would need to stress the retention of the site agnosticism feature so as to

not succumb to the breaking caveat of other tools. Once these shortcomings are

addressed, having the tool conform to the specification will result in a tool that can

40

reliably create WARC files of all of a user’s pages on a social media website.

IV.2 ARCHIVE FACEBOOK

Archive Facebook, originally developed by the Web Sciences and Digital Libraries

(WS-DL) Research Group at Old Dominion University, operates by appealing directly

to the breakup of content sections on the social media website Facebook.com. Though

archivists have made previous strides in preserving websites like YouTube [11] and

MySpace [18], a growing amount of personal (and what will be historically significant)

information is locked behind the walled garden of Faceboook [51]. Through a system

of scraping, the Firefox add-on is able to capture the content in the viewport of the

user’s browser to disk and resolve references to all downloaded resources. The final

steps of the tool’s operation link all of the sections together and provide a starting

point for a user to replay the archive (see Figure 13) via an entry in the sidebar of

the user’s browser.

41

Fig. 13. Archive Facebook saves the resources it “archives” to the local file sys-

tem, shown here as a navigable system of webpages linked with resource:// URIs.

The add-on rewrites URIs that would normally point to the absolutely defined

http://facebook.com resource and instead resolves them to local resources.

Though both WARCreate and Archive Facebook circumvent the issue of context

and authentication, they do so in different ad hoc fashions. Archive Facebook does

not have relevance to websites outside of Facebook, and WARCreate is merely a

general purpose bridge of getting content from one form to another. Both of these

tools only work in the browser for which they were respectively created. Through

my work on both of these projects and the lack of extensibility that comes from

these types of one-off tools, I am providing a standard for addressing the hierarchy

and means for capturing content on social websites residing behind authentication,

so that this content can be captured and treated in the same way and with similar

tools as conventional web archives.

Archive Facebook reliably backs up (not archives, see Section III.3) the content of

a user’s Facebook profile. Because Archive Facebook is written to scrape the design

42

and hierarchy of Facebook at the time of its last update, its pattern-matching algo-

rithm breaks upon Facebook’s redesign or hierarchy change (resolved by conforming

to the specification as documented in Section VI.2.1). A further shortcoming of the

tool is that its output format is sub-optimal for archiving. Little information is re-

tained in a usable format about the “archiving” operation that is performed when a

user executes the tool’s main process. Improvement of retaining this metadata would

be a positive step toward the tool producing an archive.

The larger problem with Archive Facebook (aside from its inadaptability) is

the output format. The product of Archive Facebook is a navigable directory of

archived webpages. This is different than the product of a Facebook Data Dump

(Section II.4.1) in that Archive Facebook preserves the look-and-feel of the original

experience of the webpage and does not selectively exclude content based on the

opinion of a third party. The latter is likely the case with the Facebook Data Dump

because of content ownership, privacy and other concerns. Attempts in Section VI.2

improve on the tool’s inadaptability issue, however, the output is still not in a format

that portable, suitable for replay and integrates with other archiving technologies.

Attaining these traits would require internal re-packaging or post-processing of the

output. Doing this would make the tool more unwieldy for the casual user and would

be akin to appending the entire functionality of WARCreate onto Archive Facebook,

an endeavor that would require porting (from the Chrome API to the Mozilla API)

as well the introduction of scope creep into the software’s objective.

IV.3 RE-PACKAGED XAMPP

In Chapter II I emphasized that the goal of this thesis is to provide a way for

personal web archiving tools to be adaptive. Rather than limiting the applicability

of this thesis’s work to tools that output to a subpar archiving format, I created

WARCreate to bring personal web archiving one step closer to conventional web

archiving by enabling users to preserve content into the WARC format. The WARC

format is not meant to be consumed by the user but rather to be run through another

medium for reinterpretation.

WARC files have little practical use if it is difficult for end-users to replay the

archived content contained within. To validate that the content contained within

the WARC files produced by WARCreate consists of all of the desired content, some

wayback instance is needed, at least for visual validation of correctness. Because

43

WARCreate’s objective is to make the WARC format more accessible for the end

user in the context of web archiving, a preliminary implementation of an instance of

wayback was also created so that the end product of WARCreate could be evaluated.

This implementation uses the software package XAMPP1 (Figure 14) as a basis

for providing the foundation for a local wayback install. XAMPP provides a portable

implementation of its system, which allows the software package to be used without

needing to be installed into the registry of the operating system. For this evaluation,

XAMPP Portable was used on a Windows machine, but XAMPP is cross-platform

so the choice of operating system is not a limitation. XAMPP Portable does not

come stock with an Apache Tomcat2 instance, which is required for the Java-based

wayback package; however, the purpose of excluding the package by the developers

was to make XAMPP Portable lightweight, and Tomcat 6 is easily installed through

an Apache-supplied module for XAMPP.

1http://www.apachefriends.org/en/xampp.html
2http://tomcat.apache.org/

44

Fig. 14. The XAMPP package provides an easy-to-use interface to encourage the

utilization of various packages created by the Apache Foundation. Shown here are

the two services needed for the executing of the local wayback instance - Tomcat and

Apache.

To encourage the use of WARCreate, I have repackaged XAMPP Portable to

include the previously excluded Tomcat module. I also included wayback 1.6 in

the package to be loaded when Tomcat starts. Further customization of wayback’s

configuration files has been specified to provide the source of WARC files to be

within the XAMPP Portable folder, retaining the product’s core package (XAMPP)

encouragement of portability. This package is utilized by WARCreate by a user first

navigating Google Chrome to a webpage they would like to be archived. The user

then selects the button in the Chrome extension to begin the WARC creation process.

The file is then downloaded to the user’s system. Though the eventual workflow of

the browser extension will make this process more seamless, the user then needs

to move the downloaded WARC file to the location where wayback can find it for

replay, which is specified in the modified wayback configuration and documented in

45

the repackaged XAMPP Portable.

A user is then able to navigate their web browser (any browser on the system, as

the process is relieved of its coupling after the WARC creation process) to http://

localhost:8080/wayback (or simply http://localhost:8080 in a future implementation

of the repackaged product), search for the the archived URI in the text field and

view the archived webpage just as they would when using the Wayback Machine at

archive.org. It is not the objective of this thesis to merely demonstrate that content

behind authentication can be archived. Regardless, validating that it can be archived

using browser-based tools is important. These personal web archiving tools should

result in a standard format (i.e., WARC) and put emphasis on retaining the user’s

original perspective (i.e., the web browser) when preserving content of a personal

nature on the web.

IV.4 SUMMARY

Chapter IV describes two browser-based tools created to accomplish personal web

archiving. WARCreate, a tool developed for this thesis, is described in Section IV.1

while a pre-existing personal web archiving tool, Archive Facebook, is explained in

Section IV.2. Section IV.3 considered using a client-side server suite, XAMPP, to

allow browser-based archiving tools to leverage server-side technologies.

46

CHAPTER V

CONSTRUCTING A GENERAL SPECIFICATION FOR

SOCIAL MEDIA WEBSITES

In this chapter I will progressively build a specification to be used by archiving

tools to become adaptive to the frequently changing design of their target websites.

This will be done in a manner that justifies the end-result by alluding to the common

hierarchical trait between various social media websites. Table I illustrates this com-

monality between Facebook, Google+, and Twitter. Here, I have abstracted seven

of the most common social media site sections and shown how each of them maps to

these popular sites.

TABLE I

Similar abstractions of resources exist on numerous websites

though each is implementation-specific, which can require

subclassing to accurately describe the website’s section’s workings

in a class-like hierarchy. Facebook’s “friends” media type is

inherently bi-directional, that is, if you have a friend, that friend

has you as a friend. In Google+, relationships can be

uni-directional. I can have Alice in one of my circles but that does

not necessarily imply that Alice has me in one of hers.

Abstracted media type Facebook Google+ Twitter

personal stream wall posts my tweets

global stream news feed streams followees’ tweets

multimedia - photos photos photos N/A

multimedia - videos videos videos N/A

photo collection albums N/A N/A

posts notes N/A N/A

friends friends circles following

47

Creating a specification for addressing the problems to which tools like Archive

Facebook and WARCreate eventually succumb is initially a design problem. Guide-

lines help to establish boundaries in situations where no collection policy exists [28].

Much like the WARC format, inherent extensibility should be a core part of guide-

lines that are setup to remedy these tools’ problems. An allusion to Object Oriented

Programming (OOP) is useful here, though the advantage of using it is not immedi-

ately apparent until a hierarchy is built and potential design problems are considered.

Here I hope to design the hierarchy of a schema on which to base the specification in

the spirit of a class model. Inheritance will be duly utilized, as the sections and oper-

ations pertinent to social media websites tend to have inherent extensibility much like

a class structure where certain operations and traits are attributed to representative

sub-classes.

Fig. 15. The hierarchy of the BBC website’s sports section easily resembles the one

described. The parent to the sports section would be represented as the NewsWebsite

object with the sports section’s siblings being “News”, “Weather”, etc. as represen-

tation by the navigation at the top of the page.

Websites are inherently hierarchical, allowing a user to navigate to more specific

topics as the user traverses down the tree of navigation. An example of navigat-

ing a website would be to first access the site’s homepage, then a section of the

48

site (say, “sports” on a newspaper’s website) then a subsection like “top stories”

then a specific article (Figure 15). A class-like structure to represent each state

with explicit nomenclature would be NewsWebsite, NewsWebsite Section Sports,

NewsWebsite Section Sports TopStories and NewsWebsite Section Sports Articles,

respectively. This sort of lateral relationship of classes (in terms of the hierar-

chy), multiple inheritance (e.g., NewsWebsite Section Sports Articles might get spe-

cial properties from a class that defines “top stories” and one that defines articles

in general), encapsulation (e.g., NewsWebsite Section Sports TopStories is a con-

tainer for articles that might not always belong to the container) and implementa-

tion of abstractions into concrete classes (e.g., because NewsWebsite Section might

be too generic, it might be considered abstract and require an implementation like

NewsWebsite Section Sports) fits naturally to a website with conventional naviga-

tion. Many social media websites follow this conventional navigation strategy.

1 SocialMediaWebsite class

2 - homepage : str

3 - sections : section[]

Fig. 16. The class-like definition of a social media website is simplistic so as to be

applicable to a wide range of sites. Specific traits that are only applicable to a specific

website could be created by subclassing this definition.

The first rather trivial starting point in developing this hierarchy is to correlate

a website with a root class as a basis. This bare definition (Figure 16) of where the

website resides and the breakup of content is initially sufficient. It is important to

remember that extensibility should be emphasized to mimic the relations in practice.

We will develop a class hierarchy that is semantic and allows dynamically defined

sections (henceforth, objects of type SocialMediaWebsiteSection) to be attributed to

a class. These sections will provide their own implementation of a set of operations

as is appropriate to the respective section, allowing the pertinence of an operation to

be defined in the concrete object rather than a common generic “Section” class. A

rationale for this can be easily considered with comparing the expected functionality

allowed in a photo album section versus a user biography section.

Next, we will define the SocialMediaWebsiteSection (Figure 17), providing an

49

abstraction that would be common to a social media website section with a de-

fault implementation (e.g., setting the name of the section upon creation) with the

intention that these attributes might be overridden in the classes that extend Social-

MediaWebsiteSection.

1 SocialMediaWebsiteSection class

2 - name : str

3 - url : str

4 - [preprocessor : SocialMediaPreprocessor]

Fig. 17. The definition for a section of a social media website contains only funda-

mental attributes: the name of the section and the referencing URL. An optional

“preprocessor” attribute allow for the application of a webpage preprocessing pro-

cedure onto both the classes that extend from SocialMediaWebsiteSection as well

as those that utilize the class directly because of a lack of need for section-specific

attributes and procedures.

1 SocialMediaPreprocessor class

2 - timeBetweenFirings : int

3 - maxFirings : int

4 - conditionBeforeSubsequentFirings : SocialMediaPreprocessorCondition

5

6 SocialMediaWebsiteCollection class

7 - name : str

8 - ordered : bool

9 - items : SocialMediaWebsiteSectionItem[]

10

11 SocialMediaPreprocessorCondition class

Fig. 18. A preprocessor allows a webpage to be programmatically manipulated prior

to performing some operation, in this case, archiving. The SocialMediaPreproces-

sorCondition allows the preprocessor to require a condition prior to execution. The

maxFirings and timeBetweenFirings attributes allow for repeatability of the prepro-

cessor’s page manipulation action.

50

Getters and setters of these attributes are assumed to exist though are not im-

portant to define, as we will use this design in a medium where definition of these

functions here would be moot. The preprocessor attribute being defined here was

learned through experience with websites moving toward the loading of content on an

asynchronous basis, often triggered by user interaction. These sort of preprocessors

(class shown in Figure 18) exist in no particular section type and are common in

a wide array of sections. Even with its general pertinence, preprocessors are more

appropriate to some sections than others, so its definition by classes that extend So-

cialMediaWebsiteSection is optional. To display the robustness and validate that the

construction of this hierarchy resemble real sites, an implementation of the definition

of the Facebook website (as of early 2012) is shown in Figure 19. The complete

hierarchy sufficient to represent a wide range of social media websites can be seen in

Figure 20. The only further peculiarity in this diagram is in the definition of the So-

cialMediaWebsiteMultimedia class. Polymorphism, an attribute of OOP, is exercised

here in that a multimedia collection expects either a further collection or a concrete

multimedia object (e.g., photo or video) as a child. Both representations of the fur-

ther collection and concrete object extend a common parent class, which allows the

recursive requirement of the the multimedia collection’s “children” attribute to be

adequately fulfilled by either subclass.

51

1 SocialMediaWebsite facebook = new SocialMediaWebsite(homepage =>

2 "http://www.facebook.com")

3 facebook->decorate([

4 new SocialMediaWebsiteSectionPersonalStream(

5 name => "Wall",

6 url => "http://www.facebook.com/profile.php?sk=wall",

7 preprocessor => new SocialMediaScrollPrepreprocessor(

8 timeBetweenFirings => 0,

9 maxFirings = 0,

10 conditionBeforeSubsequentFirings = null

11)

12),

13 new SocialMediaWebsiteSectionUserInfo(

14 name => "Info",

15 url => "http://www.facebook.com/profile.php?sk=info"

16),

17 new SocialMediaWebsiteSectionMultimediaCollection(

18 name => "Photos",

19 url => "http://www.facebook.com/profile.php?sk=photos",

20 proprocessor => new SocialMediaScrollPreprocessor(

21 timeBetweenFirings => 0,

22 maxFirings => 0,

23 conditionBeforeSubsequentFirings = null

24)

25),

26 new SocialMediaWebsite(

27 name => "Notes",

28 url => "http://www.facebook.com/profile.php?sk=notes",

29 preprocessor => new SocialMediaScrollPreprocessor(

30 timeBetweenFirings => 0,

31 maxFirings => 0,

32 conditionBeforeSubsequentFirings = null

33)

34]);

Fig. 19. A SocialMediaWebsite object can be decorated (in the spirit of Design

Patterns [24]) to only contain the child objects that are pertinent to that website.

Here, the sections of Facebook have been added as children to the parent SocialWeb-

siteWebsite object. Using this method allows for prototype-driven objectification

of websites, aligning with Javascript’s ability to extend objects in this way. Also

interesting to note is the ability of section objects (here, the “Notes” section) to

implement the general SocialMediaWebsiteSection object if they have no further

functional require beyond what the class defines.

52

Fig. 20. While simple in definition, the inheritance chain of the defined classes that

represent the different section types are sufficient for describing the hierarchy of

many social media websites. Much of the power in this hierarchical chain comes

from the common traits that many sections have and are defined in the abstract

SocialMediaWebsiteSection class.

By defining this class hierarchy, we can convert our specification into an XSD

specification. The specification can then be used as a basis for creating instantiations

through definitions of social media websites that conform to the specification (see the

correlative Facebook example in Appendix A). Externalizing the definition and site-

specific specifications from tools allows tools to be adaptive as the websites change

designs. The potential for breaking would be greatly reduced, as tools would be

adaptive. Less time would then need to be spent on maintaining tools to correspond

with target website design changes and instead focused on efforts of evolving the

WARC format to appeal to facets of personal web archiving, especially for those

websites whose content is not currently being preserved.

V.1 SUMMARY

Any means to access a webpage (e.g., browser, crawler, other scraping tool) should

be able to parse out its contents or scrape out the data necessary from a webpage on

a social media website’s to determine the site’s section breakup. Though the section

53

hierarchy of the target website may not be completely apparent from the naviga-

tional elements of a certain page, abstracting the breakup to an external document

removes any complications that would arise in the site obfuscating the hierarchy.

The web browser is particularly suitable for process this hierarchy because it, like

other tools, contains the ability to fetch, cross-reference and manipulate data pre-

sented to it. Unlike crawlers and scraping tools, however, the web browser is the

primary context in which the content is originally experienced. Its native support

for XML and Javascript make it friendly to specifications of the type constructed in

this chapter. As the specification is based on currently existing social media websites,

its correctness can be tested, and this is done in Chapter VII.

54

CHAPTER VI

IMPLEMENTATION DETAILS

Two use cases previously mentioned will be discussed here to show that imple-

mentation of the specification is feasible if considerations of applying the abstraction

are addressed. Each of Archive Facebook and WARCreate exhibit a lacking trait that

causes the output to be less than ideal for what I hope to accomplish: to represent

the content in a personal web archive accurately in the WARC format.

Archive Facebook suffers in that its output, while comprehensive, is in a format

more similar to a conventional file structure and lacks much metadata. The former

problem can be tackled by packaging resources in a way described by the WARC

format while the former requires more data to be collected at the time of archiving.

WARCreate suffers from the opposite problem of Archive Facebook, so it works as

a good use case in showing the robustness and wide applicability of the specification

toward various software packages whose archiving procedure and output are sub-par.

The primary downside of WARCreate is its limitation to a single web page and its

inability to comprehensively create a WARC file that consists of a cohesive set of

data representative of the pertinent content on the target website. This shortcoming

will be addressed along with the concept of sequential archiving as is implemented in

Archive Facebook. Unlike Archive Facebook’s implementation, however, the imple-

mentation to be added to WARCreate will look to the guidance of the site-specific

specification.

VI.1 USE CASE A: ADAPTING ARCHIVE FACEBOOK

The ideal archiving procedure to preserve social media websites is similar to that

of Archive Facebook’s in that it is comprehensive. A downside of Archive Facebook is

that the preservation format is sub-optimal and an insufficient quantity of metadata

is retained. Translating Archive Facebook to a better tool for archiving requires

addressing the output issue as well as preserving metadata about the archive and

converting the resources preserved into a more portable, self-contained format (i.e.,

the resource packaging problem). It is worthwhile to consider this tool further,

55

as it operates on a set list of URIs to poll and iteratively preserve (henceforth,

“sequential archiving”). In this use case, I will discuss how this tool can be improved

so its sequential archiving procedure can be leveraged and its shortcomings can be

addressed and overcome. The improvements needed will be juxtaposed to the feature

set initially programmed into WARCreate.

Archive Facebook does a good job of collecting all of the resources defined within

the extension and writing them to the user’s disk. What needs to be collected further

to be able to create a WARC file from an archiving session initiated from Archive

Facebook is to collect the HTTP headers for the requests of the resources, convert

binary data collected to a portable form to be included in a WARC file, attribute the

headers to the resources, generate information about the archiving session as WARC

metadata and finally wrap all of the content together in a WARC file.

Converting the data to the appropriate form is only the first challenge in the task

in allowing Archive Facebook originating archives to be able to take advantage of the

specification. The URIs needed to successfully archive a user’s profile, as defined in

Archive Facebook, are hard-coded in the Firefox add-on, which is the reason for its

breaking when Facebook changes its design or structure of resources.

Fig. 21. Archive Facebook allows users to specify which parts of their profile they

would like archived. Each checkbox user interface element directly translates into a

conditional clause in code containing the target UI representative of the section of

the user’s profile.

The order in which sections of Facebook are loaded and captured by the Firefox

add-on is defined within the add-on. Conditionals are used (see Figure 21) for each

section to determine if further processing is needed to capture all of the content,

56

and recursion is used where applicable. In the instance of a Facebook user’s info,

for example, two pages are collected: the user’s wall and the “Info” section on the

user’s profile. The latter is merely a matter of loading the page and collecting all

of the content, as before, except assuring that the headers are also captured. The

former requires preprocessing before all of the content is displayed. The preprocessing

needed, in this case, is to continue to scroll the page vertically until no further Ajax

request is pending or until the threshold of unrolls, as defined by the user, has been

met. This type of dynamic loading is common with social media websites that only

load data when necessary to reduce wasted bandwidth and/or load times.

Other sections of Facebook require some form of recursion or consist of resources

with more complicated data structures for which I have accounted in the class model.

The Photos section consists of resources to be converted in its root as previews in

addition to pages containing the full-size resource displayed and albums that can

recursively be treated in the same way as the Photos section itself.

57

1 getCurrentSiteSpec : function(step,urlIn,hostIn){

2 switch(step){

3 case 0:

4 var xhr = new XMLHttpRequest();

5 var siteSpec = "", uriOut = "";

6 $.ajax({

7 url: urlIn,

8 success: function(data){

9 var host = "www.facebook.com"; //hostIn n/a here

10 var parser = new DOMParser();

11 var socialMediaWebsites = $(data.childNodes[0]).children();

12 for(var i=0; i<socialMediaWebsites.length; i++){

13 var smw = socialMediaWebsites[i];

14 if($(smw).find("homepage").text().indexOf(host) != -1){

15 siteSpec = $(smw).find("specification").text();

16 getCurrentSiteSpec(1,siteSpec,host);

17 } //fi

18 } //rof

19 }, error: function(){}

20 }); //xaja

21 break;

22 case 1:

23 $.ajax({

24 url: urlIn,

25 success: function(data){

26 var ls = window.content.localStorage;

27 ls.setItem("spec", (new XMLSerializer()).serializeToString(data)

);

28 archivefbBrowserOverlay.capture(ls.getItem("spec"));

29 }, error : function(){}

30 };

31 break;

32 }

33 }

34 var t = "http://www.facebook.com";

35 var protocolTrimmed = t.substr(t.indexOf("//")+2);

36 var host = protocolTrimmed.substr(0,protocolTrimmed.indexOf("/"));

37 getCurrentSiteSpec(0,"http://spec.socialstandard.org",host); //init

Fig. 22. The Ajax request for the specification file can neglect some of the edge case

handling that would come about in needing to tailor the code to multiple browsers.

Utilization of the jQuery library can be see in the general purpose $() selector function

as well as in simplified iteration schemes.

58

Javascript normally has to be written to account for various browsers’ quirks.

Because the environment of execution will remain static in Mozilla (Archive Facebook

is a Mozilla Firefox add-on), less overhead is needed in fetching the specification.

Utilizing the jQuery1 Javascript library, which would normally be a way to assure

cross-browser compatibility, allows the adaptive code in Figure 22 to be simpler.

Providing simpler examples of adapting tools will increase the appeal of conforming

to the specification, as less overhead and a lower ad hoc learning curve will be needed.

VI.1.1 ADDRESSING THE RESOURCE PACKAGING PROBLEM

Acquiring representations of all of the resources used to generate a page is ac-

complished by querying the web page’s document object model (DOM) once the

page has been preprocessed to the degree specified, however this is problematic for

resources that have already loaded. Often, because of security limitations, acquiring

the encoded form of binary resources, like images, produces a security violation when

the canvas-based approach show in Figure 23 is used.

1 function getBase64DataOf(img,imgType){

2 var canvas = document.createElement(’canvas’);

3 canvas.width = img.width;

4 canvas.height = img.height;

5 var context = canvas.getContext("2d");

6 context.drawImage(img,0,0);

7 return canvas.toDataURL("image/"+imgType);

8 }

Fig. 23. Binary data must be converted to an encoded form in order to store its

contents inline with ASCII data. An HTML5 canvas-based approach works well

for simple conversion but XSS concerns should be addressed is fetching and storing

content across multiple domains.

Archiving tools that attempt to capture image content after the page has loaded

will encounter a cross-site scripting (XSS) error when the the tool attempts to convert

the image data from another domain to an encoded, binary form. The drawImage

function at the end of the function in Figure 23 causes this violation. An alternative

approach would be to capture the data prior to it being written to the DOM (which

1http://jquery.com/

59

would negate the requirement of converting to base64, as the data is already in

that form) though the facilities to accomplish this are not necessarily accessible to

a browser’s extension API (e.g., Firefox’s add-on API can do this but Chrome’s

extension API cannot).

VI.1.2 COLLECTING METADATA

While the Google Chrome API has the experimental webRequest2, Mozilla’s ap-

proach at retaining information beyond what is displayed and necessary for a WARC

file (namely, the HTTP headers) is retained through the visitRequestHeaders() and

visitResponseHeaders() of the nsIHttpChannel interface3. Further metadata can be

generated using a templating system consisting of time of archive, derived content

length of generated records and a UUID string to uniquely identify records and at-

tribute records to one another.

A warcinfo record describes the file to be generated. An example template for a

warcinfo record that complies with the WARC specification is shown in Figure 24.

Further, a WARC metadata record, which describes a set of WARC records and not

the WARC file itself, can use a template like in Figure 25. A ’metadata’ record

contains content created in order to further describe, explain, or accompany a har-

vested resource and will almost always refer to another record of another type, with

that other record holding original harvested or transformed content [35]. Because of

this, retaining perspective data in this record type would be the appropriate place

to preserve it in a generated WARC file.

2http://code.google.com/chrome/extensions/webRequest.html
3https://developer.mozilla.org/en/XPCOM Interface Reference/nsIHttpChannel

60

1 WARC/1.0

2 WARC-Type: warcinfo

3 WARC-Date: {ISO8601 formatted time}

4 WARC-Filename: {generate warc filename}

5 WARC-Record-ID: <urn:uuid:{unique id}>

6 Content-Type: application/warc-fields

7 Content-Length: {length of following record}

8

9 software: {archiving tool information}

10 format: WARC File Format 1.0aco

11 conformsTo: http://bibnum.bnf.fr/WARC/

WARC_ISO_28500_version1_latestdraft.pdf

12 http-header-user-agent: {user-agent information}

Fig. 24. An example warcinfo record describes the WARC file itself in contrast to

all of the other records in a warcfile describe contents of the archive or metadata for

other records.

61

1 WARC/1.0

2 WARC-Type: metadata

3 WARC-Target-URI: {target URI}

4 WARC-Date: {ISO8601 formatted time}

5 WARC-Concurrent-To: <urn:uuid:{collective identifier between all

records representing this resource}>

6 WARC-Record-ID: <urn:uuid:{unique identifier attacked to this

metadata record}>

7 Content-Type: application/warc-fields

8 Content-Length: {length of meta info below}

9

10 outlink: {reference URI for wayback to quick attribute the resources}

Fig. 25. Internally, WARCreate is template driven. WARC data that relies on the

context of the target page is captured as appropriate. WARC data that is normally

generated by the capture tool, (e.g., Heritrix) is fabricated by WARCreate. The crux

of WARCreate lies in ensuring that all data in the records that consist of fabricated

identifiers and experienced data are aggregated correctly to produce a valid WARC

file.

VI.2 USE CASE B: ADAPTING WARCREATE

Unlike ArchiveFacebook, WARCreate was created to archive a single webpage

and all of the resources to correctly re-display the webpage, including HTTP headers,

into a single WARC file. The Chrome extension also provides a way to append new

content onto an existing WARC file. For WARCreate to require all content in the

generated or manipulated file to have the same domain origin would be against the

nature of the WARC files, which frequently are very large in size in the use cases

of Archive-It and the Internet Archive, and so likely contain archived pages from

various domains. The extension does not provide the facilities of archiving all content

associated with a user on a social media website without manually first loading each

webpage. Still, the archive is only as comprehensive as Archive Facebook (which

outputs the correct amount of content but in the wrong form) if the user visits every

62

page and performs the “Create WARC” procedure.

VI.2.1 SEQUENTIAL ARCHIVING

A sequential model similar to what Archive Facebook performs can be used as a

basis for the procedure needed in applying the “archive whole website” or “cohesive

website archiving” concept but abstracting the procedure to be applicable to all

websites defined as instantiations of the specification. The initial approach is näıve

about URL ordering [15] for simplicity, as a website-specific study would have to be

done to prioritize target resources. Conventional methods of establishing priority [64]

are likely not applicable due to the unique nature of pages in the Deep Web. Most web

crawler strategies download the most important pages or retrieve the most frequently

changed pages [64]. Facebook consists of a limited number of sections that are

attributed to a particular user. Retaining this listing allows each to be accessed, pre-

processed and captured iteratively until the list has been exhausted [15]. Though the

sections could likely be executed concurrently with this process, it is in the nature

of a website to block a large number of requests that occur at one time due to the

potential of the requests being the start of a denial of service (DoS) attack. Opting

for a sequential approach assures that the crawl is polite and avoids unduly high load

on the target site’s server [48]. Another concern is that, because of the controversial

nature of data ownership [46,47], the website will block this sequence of page accesses

if it happens from a specific source frequently. A website will use this method in an

attempt to prevent this type of automated querying, which are likely violates the

respective website’s terms of service. As an example, Facebook’s terms state, “You

will not collect users’ content or information, or otherwise access Facebook, using

automated means (such as harvesting bots, robots, spiders, or scrapers) without our

permission” [21]. Considering this further, a page access might have side effects on

that page, causing another page’s contents to be modified if, say, the page accessed

second in a series has a, “pages recently visited” navigational item. These concerns

are out of the scope of this research, as the primary objective is to capture this

content. The latter problem does not compromise the archive integrity but shows

that sequential archiving is problematic because of said side effects. Overcoming this

problem would require techniques attributed to debugging self-modifying code.

VI.2.2 PRE-PROCESSING AND LIMITATIONS OF CONVENTIONAL

63

CRAWLING TECHNIQUES

A conventional approach, as is seen by Googlebot and Heritrix alike, is to gather

all links on a webpage while potentially filtering for those within the same domain,

set of pertinent sub-domains or some other cohesion metric [15]. A limitation to

crawlers’ approach is overcome in the pre-processing concept that is present in the

specification defined in this thesis. Archive Facebook leverages this concept in its

loop unrolling. The gist of this procedure is to perform an action on a page to cause

all desired content to be displayed prior to initiating the archiving procedure. This

pre-processing varies between websites, can be changed over time by the service and is

not usually performed by web crawlers because of its ad hoc relevance to a particular

webpage. WARCreate was originally designed simply to capture the content behind

authentication into the WARC format and does not do any such unrolling like Archive

Facebook. The specification addresses these sort of procedures that are relevant to

any webpage that dynamically loads content though is particularly useful in social

media webpages that benefit greatly from only loading content as-needed because of

the volume of users served.

WARCreate currently does not pull an entire website into a WARC file but it could

if it had a sequence of sections and operations to be performed on a target website,

which is what the spec would provide. The Chrome Extension Tabs4 module provides

the facilities to load new URIs. In conjunction with the webRequest module, new

pages that are loaded can have their headers retained and attributed to the resulting

content once the load operation has finished. A restriction on synchronicity exists in

attributing the headers retrieved with the resulting content. The simplest approach is

to implement sequential archiving (Figure 26): loading a page, capturing the headers,

generating the metadata then combining subsequent repetitions of this process while

adjusting the warcinfo metadata appropriately if to be combined into a single file.

4http://code.google.com/chrome/extensions/tabs.html

64

1 var requestHeaders = [], responseHeaders = [];

2

3 function sequentialArchive(urisFromSpec}{

4 var dataStr = "";

5 foreach(uri in urisFromSpec){

6 chrome.tabs.create({url:uri});

7 dataStr += createWARCStringFrom(dom.content,requestHeaders,

responseHeaders);

8 // ˆ pseudocode to abbreviate actual WARCreate implementation,

which is lengthy and complex

9 requestHeaders = []; responseHeaders = [];

10 }

11 dataStr = prependWARCInfoRecord(dataStr) + dataStr;

12 return dataStr;

13 }

14

15 chrome.webRequest.onSendHeaders.addListener(function(){

16 //logic to capture request headers

17 //populate requestHeaders array

18 }{ urls: [’http://*/*’] }, [’requestHeaders’,’blocking’]);

19

20 chrome.webRequest.onResponseStarted.addListener(function(){

21 //logic to capture response headers

22 //populate responseHeaders array

23 }{ urls: [’http://*/*’] }, [’responseHeaders’]);

Fig. 26. A single iterative loop utilizing the Chrome Extension API is sufficient for

implementing sequential archiving into the tool. A more ideal approach would be to

nest a second level of indirection into the associative arrays representing the headers.

The first level’s key would be the URI and the value another associative array with

each key being the header name. This would allow a more concurrent approach at

archiving to be used but for the sake of simplicity, a more rudimentary set-then-clear

sequence was used to demonstrate the implementation.

VI.3 IMPLEMENTATION-SPECIFIC CAVEATS

The browser extension/add-on architecture of the Google Chrome and Firefox

have built-in addressing of security concerns that arose as the browsers evolved.

65

Each browser extension is primarily written in Javascript and because of the limita-

tions of the allowed scope of the language (in regard to interacting with the user’s file

system), the implementation and further maintenance of the extensions is becoming

more browser-specific with time. APIs common to both the Chrome extension and

Firefox add-on APIs (e.g., NPAPI5) are helping standardize the methods needed to

implement a common feature-set across browsers. However, the independent devel-

opment of each browser and the competitive need of each browser to offer features

not present in others is causing the intersection of a common API to shrink as each

browser further matures.

VI.3.1 INTERACTING WITH THE FILE SYSTEM

The method that Archive Facebook uses does not allow files to be written to a

chosen location on disk but rather must reside in a specific “sandboxed” location, as

enforced by the browser6. While developing WARCreate in support of this research,

an alternative method of allowing a user to interact with the local file system, partic-

ularly to save WARC files to disk, needed to be explored. HTML5’s File API [59] is

implemented almost in full in each of Firefox and Chrome at the time of this writing,

though it is insufficient for the degree of file system interaction required. The file

system exposed to the user in the HTML5 file system API is sandboxed away from

the conventional file system, preventing the user from storing generated WARCs in

an arbitrary folder on disk that is specific for WARC processing by a local wayback

instance.

WARCreate interfaces with the currently displayed webpage by capturing the

HTML, HTTP headers and images as Javascript strings, with the latter being first

converted to base64 binary data for portability. Javascript is unable to write strings

to an un-sandboxed part of the user’s disk and (as of this writing) cannot provide a

“Save as” dialog to the user to save the string as a file to disk. Ways to overcome this

limitation in the implementation of the language in Google Chrome proved fruitless,

so a server-based approach was used instead with the hope that the HTML5 API

provides a means in the future. The server-side approach consisted of sending the

Javascript string data to a script on a server that then processes the data and serves

it back as a file with the correct content types specified in the HTTP headers.

5https://wiki.mozilla.org/NPAPI
6https://developer.mozilla.org/en/Code snippets:File I/O

66

The server-side approach comes with advantages and disadvantages. Firstly, be-

cause the browser extension is reliant on a server-side script, a single point of failure

is introduced. Further, the requirement to create WARCs from any arbitrarily web-

page is no longer met, as machines that are not connected to the Internet (e.g., a user

trying to create a WARC from an intranet page while not having Internet access)

are no longer capable of accomplishing the sole purpose of the extension.

Fig. 27. Utilizing technologies that are more fit for a server than a user’s machine does

not necessarily imply that a remote machine must be used. Some of the difficulties

of interacting with the file system are overcome by providing server-like functionality

onto a user’s machine. XAMPP, a package suitable to accomplish this, allows just

this and is discussed more in Section IV.3. By utilizing their web browser (marker

1), a user allows WARCreate to capture the HTTP headers of a browsed webpage

(marker 2) and optionally tell the Chrome extension to generate a WARC from this

page (marker 3). The extension sends this WARC to a localized server (marker 4)

to be validated, integrated with other technologies and optimized (marker 5) and

saves it to a local directory (marker 6). This directory is accessible to the user’s local

Wayback instance to have its contents indexed (marker 7) and served through replay

to the user (marker 8).

Going the server-side route (Figure 27) provides some advantages that far out-

weighed the above limitations. As discussed in Sections III.4.1 and III.4.2, a decen-

tralized approach is ideal but requires a compromise in the security of the encoded

data, as the performance hit is moved to the client. By accepting that a centralized

approach is required due to the limitations in Javascript, we might also embrace the

67

centralized approach and integrate the encryption of the data with methods more

conventional to enterprise web services. In the hope that the Chrome extension API

and/or Javascript will eventually allow direct file system interaction or another se-

cure means can be used, this higher degree of security has not been adopted simply

to prevent too tight of a coupling with the server implementation.

Another opportunity that makes the server-side approach much more advanta-

geous for the initial WARCreate implementation is WARC validation. While wayback

provides some leeway in deviation from the WARC standard (it tries to recover if

the files are not 100 percent compliant), there is no guarantee that other tools that

implement the WARC standard will be as forgiving. WARCreate currently does not

provide any way to ensure that its output complies with the WARC standard. A

means to verify completeness and correctness is needed [67]. A way that an end-

user of the open source wayback package could normally accomplish this is to run a

program that is packaged with wayback, cdx-indexer, with the WARC file as input.

Any errors in the file could be noted and the file manually repaired. This process

is tedious and error-prone. My hope is to integrate cdx-indexer into WARCreate in

the future but until then, validation of compliance of the generated output with the

WARC standard is critical. By using the server-side approach, the data passed to the

server can be validated and automatically repaired prior to being returned to the user

to be saved to his file system. Further processing and analysis (e.g., WARC cohesion

visualizations [66]) can be performed if the server-side approach is embraced.

Archive Facebook was originally developed based on the Mozilla Firefox exten-

sion Scrapbook [57]. Scrapbook [25] uses Javascript code modules to allow direct

interaction with a user’s file system thus allowing the downloaded resources to be

directly written to the file system outside of the scope of the the HTML File API

sandbox. Originally writing WARCreate for the Mozilla add-on API would have

allowed a completed decentralized approach to be used but doing so might not have

exposed some of the other shortcomings documented that are only pertinent to the

Chrome extension API7.

VI.3.2 LIMITATIONS OF THE EXTENSION API

As of this thesis’ writing, the webRequest module of the Google Chrome Exten-

sion API (first mentioned in Section VI.1.2) is still fairly new and slightly problematic

7http://code.google.com/chrome/extensions/api index.html

68

in retaining HTTP headers to record in WARC request and response records. For

example, the documentation for webRequest8 states “The following headers are cur-

rently not provided to the onBeforeSendHeaders event. This list is not guaranteed to

be complete nor stable.” The document then proceeds with a bulleted list of HTTP

headers. Attempts at capturing the response headers received results in a similar

subset of headers from webRequest that actually resided in the response and are

subsequently handled by Chrome. Because that which can be captured is not repre-

sentative nor comprehensive of what the user experienced, the WARC files generated

from WARCreate suffer from the limitations of the API. With the rapid evolution

of the Chrome extension API, however, this issue is likely to be resolved as the once

experimental webRequest module matures.

The Chrome extension’s offerings also suffer in that the raw data cannot be

retained prior to being forwarded to the browser. Subsequent to loading, the DOM

is captured by WARCreate. Though this allows user interactivity prior to capture,

having the ability to capture data prior to being interpreted by the browser would

simplify the extension’s implementation and would allow for the capture of everything

that is intended to be interpreted by the browser. Mozilla Firefox does not suffer

from these issues with its more mature nsIHttpChannel9 interface.

VI.4 SUMMARY

Chapter VI applied what had been built in previous chapters to show that the

specification in this thesis is not only easy to implement but that current tools can

be easily adapted to conform to the specification and receive the benefits it pro-

vides. Archive Facebook was adapted in Section VI.1 to utilize the specification with

special concern toward some of the tool’s shortcomings, namely its output format

(Section VI.1.1) and its potential (yet non-utilized) opportunity to collect metadata

(Section VI.1.2).

In Section VI.2, WARCreate was shown to be a better archiving tool when utiliz-

ing the specification and its primary shortcoming of lacking the ability to sequentially

archive websites (Section VI.2.1) was highlighted but shown to easily be overcome.

An advantage of WARCreate over Archive Facebook and the entirety of the class of

crawlers was described in Section VI.2.2 where, by WARCreate being absolved of the

8http://code.google.com/chrome/extensions/webRequest.html
9https://developer.mozilla.org/en/NsIHttpChannel

69

sequential archiving functionality, it allows a user to manipulate a webpage’s content

prior to archiving. Because this is especially important in websites whose content

may not be shown until a user interacts with it, this was a large contribution of the

software package in capturing content as prescribed by the specification.

Section VI.3 considered personal web archiving from the browser as a whole and

some additional problems it faces but will be overcome as technology evolves. The

limitations of Javascript in interacting with the file system were described in Sec-

tion VI.3.1. The current state of the Google Chrome extensions API was described

in Section VI.3.2 by highlighting that, though the webRequest module of the API is

not yet mature, the facilities to accomplish the task to which I originally employed

the module already exists in other browsers.

70

CHAPTER VII

EVALUATION

In this chapter, I will evaluate the effectiveness of tools that use the proposed spec-

ification to preserve content behind authentication. To demonstrate the increased

robustness that implementing the conformity to the specification into web archiving

tools provides, a certain amount of näıveté on the part of the tools should be put in

place so as to assure that that which should be evaluated is being evaluated. Aside

from not being website agnostic and the output being more akin to a backup than an

archiving procedure, Archive Facebook is the most suitable candidate of the software

packages to be adapted to evaluate the result of conformity to the specifications. Per

the table in Appendix B, WARCreate and “Save Webpage As” also appear to retain

the traits that should be exhibited by personal web archiving tools, yet neither tools’

encouragement of cohesion (established through sequential archiving as conveyed in

Section VI.2.1) make them both sub-standard for testing the adaptability of a tool

when the target site changes and the subsequently, the specification is adjusted.

Archive Facebook relies on a series of hard-coded Facebook-specific URIs to define

the content that is to be preserved. In Section VI.1 I adapted the tool to make

these URIs dynamic. Changing the source implementation of the specification and

removing some Facebook-specific functionality from the tool will allow the save-

to-disk capability of the tool to be utilized without deviating completely from the

program’s procedural flow.

This evaluation qualifies the success of the primary objective of instilling adapt-

ability has been achieved through conforming to the specification.

VII.1 EXPERIMENTAL SETUP

I first setup a generic social media website at http://test.socialstandard.org for

use in this phase of the evaluation. I will be investigating the degree of robustness of

archiving tools when the hierarchy of the target website changes. This synthetic web-

site consists of three sections, with one of the sections having two levels of additional

depth in the hierarchy:

71

• Peer Stream - an amalgam of information and posts created by a user’s peer

on a social media website. It frequently resides at the target website’s homepage

(e.g., Facebook’s “News Feed” at http://www.facebook.com). See Figure 28.

• Personal Stream - those posts and submissions created by the user and dis-

played on a single page. An example can be seen with Facebook’s “Wall”,

residing at http://www.facebook.com/profile.php.

• Photo Albums - a page consisting of a means to reference other encapsulated

resources exemplified by multimedia collections. For example, a user’s photo

albums can be accessed on Facebook at http://www.facebook.com/profile.php?

sk=photos.

Fig. 28. The synthetic social media website setup for experimentation is database

driven and consists of a hierarchy similar to conventional social media websites per

Table I. Shown here is the aggregate feed of a user named Lorem Ipsum’s “friends”’

information temporally intertwined with his own posts.

To demonstrate the hierarchical section breakup that is common with social media

websites, a Photo Album sub-section as well as a Photo sub-section will also be

used. The general “photo albums” section on a social media website, in this case,

consists of links to individual photo albums. Each Photo Album sub-section consists

of links to photos.

72

A tool setup to archive the social media website at test.socialstandard.org would

first reference spec.socialstandard.org, which contains an XML listing of all social

media websites for which a specification exists. This definition would look similar to

that shown in Figure 29.

1 <socialMediaWebsites>

2 <socialMediaWebsite>

3 <homepage>http://www.facebook.com</homepage>

4 <specification>http://spec.socialstandard.org/facebook.xml</

specification>

5 <version>1.0</version>

6 </socialMediaWebsite>

7 <socialMediaWebsite>

8 <homepage>http://test.socialstandard.com</homepage>

9 <specification>http://spec.socialstandard.org/test.xml</

specification>

10 <version>1.0</version>

11 </socialMediaWebsite>

12 ...

13 </socialMediaWebsites>

Fig. 29. The root of the specification website contains an XML document that

provides references to all of the site-specific specifications. Determining the applicable

specification is as simple as first querying this document, matching up the target site

to the “homepage” field and then acquiring the correct specification by fetching the

subsequent XML document in the “specification” field.

The <homepage> tag serves as a reference for tools to use as a filter in ac-

quiring the relevant specification definition. In the case of the previously de-

fined test social media website, the definition of the section breakup resides at

http://spec.socialstandard.org/test.xml.

Tools then access the location indicated in the <specification> tag to obtain an

XML page with a definition describing the respective website’s content hierarchy, as

shown in Figure 30.

73

1 <socialMediaWebsite>

2 <homepage>http://test.socialstandard.com</homepage>

3 <sections>

4 <socialMediaWebsiteSection

5 type="SocialMediaWebsiteSectionPersonalStream">

6 <name>Personal Stream</name>

7 <url>http://test.socialstandard.org/personal</url>

8 <preprocessor type="SocialMediaScrollPreprocessor">

9 <timeBetweenFirings>0</timeBetweenFirings>

10 <maxFirings>0</maxFirings>

11 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

12 </preprocessor>

13 </socialMediaWebsiteSection>

14 <socialMediaWebsiteSection

15 type="SocialMediaWebsiteSectionMultimediaCollection">

16 <name>Photo Albums</name>

17 <url>http://test.socialstandard.org/albums</url>

18 <preprocessor type="SocialMediaScrollPreprocessor">

19 <timeBetweenFirings>0</timeBetweenFirings>

20 <maxFirings>0</maxFirings>

21 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

22 </preprocessor>

23 </socialMediaWebsiteSection>

24 <socialMediaWebsiteSection

25 type="SocialMediaWebsiteSectionPeerStream">

26 <name>Peer Stream</name>

27 <url>http://test.socialstandard.org/</url>

28 <preprocessor type="SocialMediaScrollPreprocessor">

29 <timeBetweenFirings>0</timeBetweenFirings>

30 <maxFirings>0</maxFirings>

31 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

32 </preprocessor>

33 </socialMediaWebsiteSection>

34 </sections>

35 </socialMediaWebsite>

Fig. 30. The document at spec.socialstandard.org/test.xml contains the specification

for the synthetic social media website created for this thesis.

74

VII.2 EXPERIMENTAL HYPOTHESIS

A tool configured to use a specification like the one in Figure 30 for archiving

the contents of the target website (i.e., test.socialstandard.org) may or may not

function when the target website’s hierarchy changes. The tool’s functionality will

be restored to at least the same degree (potentially becoming aware of previously

nonexistent sections) when the specification is updated to reflect the target website’s

new hierarchy.

VII.3 TOOL SELECTION TO VALIDATE POTENTIAL

ADAPTABILITY

Integrating the specification with crawler-like tools may be inappropriate because

pages that should not be included will be crawled. An example of this is exhibited

in the hypothetical use of a crawler on Facebook, naively assuming that issues of

perspective, authentication, user-interactivity, etc. do not inhibit its functionality.

A crawler with a domain restriction would follow links unless otherwise directed not

to do so (via the “nofollow” attribute). Without the domain restriction, the cohesion

(Section VI.2.1) relative to the target website would be quickly broken. Without the

intervention of the target website in directing the crawler through supplying nofollow

to content that should not be archived, the crawler will add the discovered URIs to its

list of URIs to crawl. Because crawlers would either break cohesion or archive beyond

necessary scope (introducing excessive noise in the result), they are unsuitable for

specification-driven archiving. Another type of tool should be chosen without these

limitations, namely one that possesses a sequential archiving procedure.

To test whether a tool has become more adaptable to a website’s hierarchy change

after integration with the specification would be as simple as inducing a change in

the Facebook website after having adapted Archive Facebook to use the specification

(Section VI.1), a sort of Focused Crawling [14]. This is not possible from an end-user

perspective and attempts to simulate this by URI rewriting, system-level hosts file1

manipulation, or another means would leave open the question of whether the same

functionality would work without this needed implementation prefacing.

I again modified Archive Facebook based on the version created in Section VI.1

to no longer reference the Facebook remote specification but instead to reference

1This file allows a system to artificially map any hostname, valid or otherwise, to a chosen IP
address

75

the specification that corresponds to test.socialstandard.org. I also removed the ad

hoc nature of Archive Facebook to allow it to be applicable to websites beyond its

original intention. Other archiving tools (e.g., Heritrix, WARCreate) already meet

this requirement of website agnosticism but do not execute using a sequential archiv-

ing (Section VI.2.1) scheme. They instead rely on a recursive crawling scheme (i.e.,

like Heritrix) or do not perform a series of iterative (e.g., processing a list of URIs)

processing that would maximize the cohesion of the resulting URIs. Frequently, a

list of URIs is provided and crawled with no guarantee that these URIs relate or

are representative of a single website. Archive Facebook’s ad hoc (in respect to the

target website as explained in Section IV) iterative procedure is not coupled to Face-

book URIs but instead to any arbitrary collection of URIs, be it defined within the

add-on itself or remotely. Ironically enough2, this makes Archive Facebook the most

suitable tool in determining the success of applying the specification. The form of

the preserved content can be neglected here as only the adaptability of the tool is

being determined.

VII.4 PROCEDURE TO EVALUATE THE EFFECT OF A

SOCIAL MEDIA WEBSITE’S CHANGE IN HIERARCHY

The simple social media website hierarchy described in Section VII.1 allows the

base case of hierarchy change to be easily observable. I initially validated the func-

tionality of the tools to ensure their capacity to create an archive with the changes

needed to modify the tools to reference the specification.

The following are the steps required in performing the evaluation:

1. For a chosen archiving tool, run the primary archiving procedure with the

target being a website where the site’s hierarchy can be modified. This should

result in an archive/backup of the site’s contents, BaseArchive.

2. Modify the source of the tool to pull the URIs, which are hard-coded into the

tool, instead from the specification with correct correlative substitution to the

target website.

3. Re-run the procedure as in Step 1 to cause the primary archiving functionality

to be performed, generating the output ArchiveFromAdapted.

2Ironic because Archive Facebook produces backups and not archives as in Section III.3.

76

4. Verify that ArchiveFromAdapted matches BaseArchive.

• If results do not match, experimental setup was not performed correctly.

This step serves as validation.

5. Modify the target website’s hierarchy by performing a URI replacement change

e.g., http://test.socialstandard.org/personal to http://test.socialstandard.org/

myfeed

6. Perform Step 1 again, generating the output IncompleteArchive.

7. Compare IncompleteArchive to ArchiveFromAdapted and BaseArchive, noting

the incomplete contents of the result.

8. Modify the specification of the hierarchy to represent the new structure of

the target website by changing http://test.socialstandard.org/personal to http:

//test.socialstandard.org/myfeed

9. Again perform Step 1 to generate the output ArchivedFromSpec.

10. Compare the result of ArchivedFromSpec to ArchiveFromAdapted and

BaseArchive. If the newly generated result matches those previously produced

and declared correct, consider the tool adaptive.

VII.5 FROM ARCHIVE FACEBOOK TO COHESIVE SOCIAL

MEDIA SITE BACKUP

Archive Facebook’s primary interactivity code resides in the file overlay.js. When

a user initiates the command for the add-on to start the archiving process, the user is

presented with a DOM-based user interface (Figure 21 in Chapter V) generated by the

add-on that allows the user to select which section of the user’s profile the user wants

archived. An anonymous Javascript function is tied to the “Begin Archiving” button

that is selected after the user is satisfied with the options chosen in the generated UI.

The function analyzes the selected options and iterates through a series of mapping

a section (represented as a form selection in the generated UI) to a URI or regular

expression based URI scheme (to account for dynamic data residing in a URI) that

is defined within the add-on. Sections that have subsections are extracted through

similar regular expression based scraping schemes and added to the front of the queue

(Figure 31) of URIs to be processed.

77

(a) (b) (c)

Fig. 31. URIs are iteratively processed in a mutable queue (31a to 31b). When a

URI is encountered that represents a section that contains subsections (e.g., “albums”

section contains multiple “album” subsections abstractly shown as URI2 in 31b), the

discovered URIs are placed at the front of the queue (31c) to be processed before

URIs that were siblings to URI2. This process can be recursively repeated, essentially

representing depth-first processing.

78

1 var capturedURIContentPairs = [];

2 function execCapture(uri){

3 loadURI(uri);

4 content = saveContentOnPage(uri);

5 capturedURIContentPairs[uri] = content;

6 subsectionsFound = findSubsectionsIn(content);

7 foreach(subsection in subsectionsFound){

8 execCapture(uri);

9 }

10 }

11

12 foreach(sectionURI in websiteSections){

13 execCapture(sectionURI);

14 }

15 convertAbsoluteToRelativeLinks(capturedURIContentPairs);

16 writeToSandboxedDiskspace(capturedURIContentPairs);

Fig. 32. Abstracting the Javascript code of the original Archive Facebook’s into more

generic pseudocode shows that its logic is generally applicable, even with hard-coded

URIs. Note that Javascript’s allowance of scope violation is exploited to retain a

reference to all of the archived content and URI identifiers so that a cross-referencing

URI-replacement scheme can be used to rewrite URIs that were absolute on the

target pages to URIs that are local to the archive.

Figure 32 shows Javascript-like pseudocode of Archive Facebook’s sequential

archiving capture routine, which is representative of the graphical procedure of re-

cursive queueing of Figure 31. Changing the mappings of the hard-coded URIs that

would populate “websiteSections” set of URI strings in the code is a simple fetch,

extract, and replace procedure. The crux of abstracting Facebook’s section types

into a descriptor that will be applicable to other sites, namely the synthetic social

media website, is ensuring that the type of media to be archived and the respec-

tive hierarchical schemes are accurately represented. For the sake of simplifying the

implementation, the step present in Archive Facebook wherein a user is given the

option to exclude certain items from the archiving process was excluded from the

adaptation of Archive Facebook to test.socialstandard.org. Table I from Chapter V

can be modified into Table II to show where the two websites align in hierarchy.

79

TABLE II

Much has been stripped away to reduce redundancy of media types

that are similar.

Abstracted media type Facebook Test.SocialStandard

personal stream wall My Stream

global stream news feed Peer Stream

multimedia - photos photos Photos

multimedia - videos videos N/A

photo collection albums Albums

posts notes N/A

friends friends N/A

VII.6 RUNNING THE EXPERIMENT

From Step 1 in Section VII.4, the tools base implementation verified that with the

current state of the target website, the tool is capable of archiving comprehensively.

A page (part of BaseArchive) archived with the base implementation of Archive

Facebook conforming to the test.socialstandard.org spec is shown in Figure 33a.

80

(a)

(b)

Fig. 33. A test-run of the tool to be used to show the instilled adaptability has

resulted in this local copy of the test.socialstandard.org website (33a). This page is

part of BaseArchive. The detail of the URI in 33b shows that this resource is locally

stored as well as the timestamp representing the date of execution.

Step 2 requires the internal code of the tool to be modified to pull the target URIs

from the specification instead of being hard-coded. An example implementation of

how to accomplish this via Javascript is shown in Appendix C.

Step 3 validates that no changes were caused by conforming the tool’s archiving

procedure to the specification. The result matches that of Figure 33a, which shows

that the archiving procedure again created an archive (ArchiveFromAdapted) of the

user’s profile on test.socialstandard.org.

Step 4 required manual verification with no deviation on the HTML or binary

data preserved outside of timestamps generated for each respective session. The

verification process showed that the results matched.

Step 5 requires the target website to be modified to simulate the event where

81

a social media website implements a hierarchical change. The synthetic website,

created for this thesis, uses Apache .htaccess directives to prettify URIs to all

direct to a single script handler. The directive originally used to remap http:

//test.socialstandard.org/personal is:

1 RewriteRule ˆpersonal$ index.php?section=personal [NC]

Simply changing the redirect condition is sufficient to produce an HTTP 404 error

when the aforemented URI is accessed.

1 RewriteRule ˆmyfeed$ index.php?section=personal [NC]

Step 6 consists of running the archive procedure again and Step 7 of verifying

that making this change causes the tool to break. This behavior was common to

the version of Archive Facebook that did not reference the specification and instead

relied on a set of URIs to archive. Figure 34 shows that the output obtained in all

of the previous steps is no longer achievable.

Fig. 34. The target website’s URI scheme has changed. The new URI for the

content that was previously at http://test.socialstandard.org/personal is now at

http://test.socialstandard.org/myfeed.

Per Step 8, the remote specification is modified to reflect this change in the

website’s hierarchy. The change needed is shown in Figure 35, lines 3 and 4.

82

1 ...

2 <socialMediaWebsiteSection type="

SocialMediaWebsiteSectionPersonalStream">

3 <name>Personal Stream</name>

4 <url>http://test.socialstandard.org/personal</url>

5 <preprocessor type="SocialMediaScrollPreprocessor">

6 <timeBetweenFirings>0</timeBetweenFirings>

7 <maxFirings>0</maxFirings>

8 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

9 </preprocessor>

10 </socialMediaWebsiteSection>

11 ...

(a)

1 ...

2 <socialMediaWebsiteSection type="

SocialMediaWebsiteSectionPersonalStream">

3 <name>My Stream</name>

4 <url>http://test.socialstandard.org/myfeed</url>

5 <preprocessor type="SocialMediaScrollPreprocessor">

6 <timeBetweenFirings>0</timeBetweenFirings>

7 <maxFirings>0</maxFirings>

8 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

9 </preprocessor>

10 </socialMediaWebsiteSection>

11 ...

(b)

Fig. 35. A subtle change (lines 3 and 4) was made (from Figure 35a to Figure 35b)

to the synthetic website’s specification to change the location of the user’s personal

stream/feed as well as the name of the resource at the new location.

Proceeding with the last two steps results in the same screenshot as in Figure 36a.

83

(a)

(b)

Fig. 36. After conforming to the specification, the modified version of Archive Face-

book is able to fetch and preserve any arbitrary collection of URI and associate

them with one another through URIs rewriting. The end-result is a local navi-

gable version of the specified website. Figure 36a shows the synthetic website at

test.socialstandard.org has been preserved. Note the URI (annotated in 36a, shown

more clearly in 36b) implicitly stored the date and time of archiving through the

name of the directory created on the local machine.

VII.7 SUMMARY

In Chapter VII, an evaluation procedure is performed on aspects pertaining to

this thesis using a synthetic social media website for which the hierarchy could be

manipulated for the sake of testing. In Section VII.1, the synthetic site is described

and the experiment setup. Section VII.2 proposed a hypothesis that the experiment

is to validate. Section VII.3 discussed the applicable tool used for the experimenta-

tion. Section VII.4 formalized the experimental procedure to be run. Section VII.5

discussed in detail the changes made to the tool to make it more general purpose

and more effective at accomplishing its task. Section VII.6 executed the experimental

84

procedure and expressed the results.

85

CHAPTER VIII

CONCLUSION AND FUTURE WORK

Content on the web residing behind authentication is not currently archived in a

way that makes it accessible to tools like the Internet Archive’s Wayback Machine.

Social media websites require authentication, therefore, social media websites are

not currently being archived in the same manner as the surface web. Tools that

attempt to backup and archive social media content frequently do so in a manner

that produces non-standard output. This makes them prone to breaking when the

target websites’ design or structure evolves.

The contributions of this thesis are as follows:

• Highlight difficulties in personal web archiving that until now have not been

addressed.

• Recognize that many social media websites contain some degree of commonality

in their respective hierarchical navigation schemes.

• Propose a way (Chapter V) to resolve the primary difficulty of personal web

archiving tool breaking through the utilization of a remote specification.

• Evaluate the effectiveness of the specification through implementing confor-

mance into an existing tool.

• Provide a reference implementation (WARCreate) for getting content behind

the walled garden of authentication into a form (WARC) recognized as a stan-

dard for archiving content on the surface web.

• Leverage a client-side server suite (XAMPP) to execute scripts, normally re-

quiring a separate server, to support personal web preservation initiated from

a browser.

This thesis proposes a way to resolve the problem of archiving tools frequently

breaking via the abstract specification and site-specific instantiation of the structure

of these websites. By having tools use this specification as a source for what to archive

86

and how to do so (e.g., with the necessary preprocessing), the implementation of these

tools will become more robust and standardized.

To demonstrate the robustness of the specification, I simulated a change (Chapter

VII) to a synthetic website’s hierarchy. The tools are shown to no longer function

though they conform to the website-specific instance of the specification. The speci-

fication is then changed and the tool is shown to function again without the need to

modify the tool’s underlying code.

To overcome the problem of the preserved content not being in a standard portable

format, I developed a tool (WARCreate) to convert any webpage, including those

behind authentication, into a format consumable by wayback. This tool, too, was

made to conform to the specification via the integration of procedures to sequentially

archive pages (Section VI.2.1) based on the website currently being viewed. The

success of this tool and the specification can be shown in the adaptability of a tool’s

code to the change of a target website (as previously mentioned) and the ability to

replay content archived by WARCreate in wayback, respectively. The latter, though

not the primary intent of this thesis, has a great potential for expansion, as the

ability to archive this content in this way did not exist prior to the developments of

this work.

Beyond WARCreate, this thesis also resolves other issues in personal web archiv-

ing (e.g., bringing wayback to the masses through the easy installer in Section IV.3)

and validates its processes through integration with secondary technologies (e.g.,

Memento) beyond the initial scope of this research. The primary objective of this

research was to resolve the issue personal web archiving tools have in ceasing to func-

tion when the target changes. By conforming tools to the specification, this problem

is mitigated and in some cases, resolved.

Outstanding work remaining beyond the initial scope of this thesis is as follows:

• Expand the applicability of the specification to other social media websites

• Account for websites that do not follow a good accessibility model (e.g., sites

that do not provide a unique URI for each section)

• Mature the development of WARCreate by leveraging the full WARC standard,

directly implementing the wayback WARC library, improving user interface,

etc.

87

• Account for more preprocessing actions in the specification

• Address facets of personal web archiving relating to perspective that were ex-

plored in Sections II.1, III.1 and III.2.

88

REFERENCES

[1] “PKCS #1 v2.3: RSA Cryptography Standard,” RSA Laboratories, Tech.

Rep., June 2002. [Online]. Available: ftp://ftp.rsasecurity.com/pub/pkcs/

pkcs-1/pkcs-1v2-1.pdf

[2] “The web robots pages,” 2007. [Online]. Available: http://www.robotstxt.org

[3] “Class AggressiveURLCanonicalizer,” Internet Archive, Tech. Rep., Jan

2011, http://archive-access.sourceforge.net/projects/wayback/apidocs/index.

html?org/archive/wayback/util/url/AggressiveUrlCanonicalizer.html.

[4] “DOMCrypt API Spec,” Mozilla Foundation, Septmber 2011, https://wiki.

mozilla.org/Privacy/Features/DOMCryptAPISpec/Latest.

[5] “Wayback Administrator Manual,” Jan 2011, http://archive-access.sourceforge.

net/projects/wayback/administrator manual.html.

[6] “Wget with WARC Output,” Archive Team, 2012, http://www.archiveteam.

org/index.php?title=Wget with WARC output.

[7] S. Ainsworth, A. AlSum, H. SalahEldeen, M. Weigle, and M. Nelson, “How much

of the Web is Archived,” in Proceedings of the ACM/IEEE Joint Conference on

Digital Libraries (JCDL), vol. 11, 2011.

[8] M. K. Bergman, “The Deep Web: Surfacing Hidden Value,” Journal of Elec-

tronic Publishing, vol. 7, no. 1, 2001.

[9] T. Berners-Lee, L. Masinter, and M. Mccahill, “RFC 1738: Uniform Resource

Locator (URL),” http://www.ietf.org/rfc/rfc1738.txt.

[10] J. Bormans and K. Hill, “MPEG-21 Overview v.5,” Organisation Internationale

De Normalization, October 2002. [Online]. Available: http://mpeg.chiariglione.

org/standards/mpeg-21/mpeg-21.htm

[11] R. G. Capra, C. A. Lee, G. Marchionini, T. Russell, C. Shah, and F. Stutzman,

“Selection and Context Scoping for Digital Video Collections: An Investigation

of YouTube and Blogs,” in Proceedings of the ACM/IEEE Joint Conference on

Digital Libraries (JCDL), 2008, pp. 211–220.

89

[12] K. Carpenter Negulsecu, “The Internet Archive - an Unorthodox Digital

Repository Strategy,” in Future Perfect 2012, March 2012. [Online]. Available:

http://youtu.be/M9xifl3Ppnk

[13] C. Castillo, “Effective Web Crawling,” SIGIR Forum, vol. 39, no. 1, pp. 55–56,

Jun. 2005.

[14] S. Chakrabarti, M. Van den Berg, and B. Dom, “Focused Crawling: a New

Approach to Topic-Specific Web Resource Discovery,” vol. 31, no. 11. Elsevier,

1999, pp. 1623–1640.

[15] J. Cho, H. Garcia-Molina, and L. Page, “Efficient Crawling Through URL Or-

dering,” Computer Networks and ISDN Systems, vol. 30, pp. 161–172, 1998.

[16] J. Cho and H. Garcia-Molina, “The Evolution of the Web and Implications

for an Incremental Crawler,” in Proceedings of the Twenty-sixth International

Conference on Very Large Databases, 2000, pp. 200–209.

[17] “Reference Model for an Open Archival Information System (OAIS),”

Consultative Committee for Space Data Systems, January 2002. [On-

line]. Available: http://www.library.cornell.edu/dlit/MathArc/web/resources/

OAISReferenceModel--Jan2002--CCSDS650.0-B-1.pdf

[18] E. Crook, “Web Archiving in a Web 2.0 World,” Electronic Library, The, vol. 27,

no. 5, pp. 831–836, 2009.

[19] M. Dougherty, E. Meyer, C. Madsen, C. Van den Heuvel, A. Thomas, and

S. Wyatt, “Researcher Engagement with Web Archives: State of the Art,”

August 2010. [Online]. Available: http://papers.ssrn.com/sol3/papers.cfm?

abstract id=1714997

[20] P. Eckersley, “How Unique Is Your Web Browser?” in Privacy Enhancing Tech-

nologies, vol. 6205. Springer, 2010, pp. 1–18.

[21] “Statement of Rights and Responsibilities,” Facebook, Mar 2012. [Online].

Available: http://www.facebook.com/legal/terms

[22] “Introduction to Fedora Object XML (FOXML),” Fedora Project, Jan

2005. [Online]. Available: http://fedora-commons.org/download/2.0/userdocs/

digitalobjects/introFOXML.html

90

[23] D. Fetterly, M. Manasse, M. Najork, and J. Wiener, “A Large-Scale Study of the

Evolution of Web Pages,” in In Procoeedings of the Twelfth WWW Conference,

2003, pp. 669–678.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Addison-

Wesley Professional, 1995.

[25] Gomita, “Scrapbook Firefox extension,” 2011, http://amb.vis.ne.jp/mozilla/

scrapbook/?lang=en.

[26] J. Gunderson, “W3C User Agent Accessibility Guidelines 1.0 for Graphical Web

Browsers,” Universal Access in the Information Society, vol. 3, no. 1, pp. 38–47,

2004.

[27] E. Hammer-Lahav, “The OAuth 1.0 Protocol, Internet RFC-5849,” April 2010.

[28] G. Hodge, “Best Practices for Digital Archiving: An Information Life Cycle

Approach,” D-Lib Magazine, vol. 6, no. 1, 2000.

[29] Internet Archive - About IA. Internet Archive. [Online]. Available: http:

//www.archive.org/about/about.php

[30] B. Kahle, “Preserving the Internet,” Scientific American, vol. 276, no. 3, pp.

82–83, Mar. 1997.

[31] M. Kelly and M. C. Weigle, “WARCreate - Create Wayback-Consumable WARC

Files from Any Webpage,” in Proceedings of the ACM/IEEE Joint Conference

on Digital Libraries (JCDL), Washington, DC, June 2012, pp. 437–438.

[32] M. Klein and M. L. Nelson, “Evaluating Methods to Rediscover Missing Web

Pages from the Web Infrastructure,” in Proceedings of the ACM/IEEE Joint

Conference on Digital Libraries (JCDL), 2010, pp. 59–68.

[33] M. Klein, M. Aly, and M. L. Nelson, “Synchronicity: Automatically Rediscover

Missing Web pages in Real Time,” in Proceedings of the ACM/IEEE Joint

Conference on Digital Libraries (JCDL), 2011, pp. 475–476. [Online]. Available:

http://doi.acm.org/10.1145/1998076.1998193

91

[34] M. Klein, J. L. Shipman, and M. L. Nelson, “Is This a Good Title?” in Pro-

ceedings of the 21st ACM Conference on Hypertext and Hypermedia, 2010, pp.

3–12.

[35] J. A. Kunze, A. Arvidson, G. Mohr, and M. Stack, “WARC file format,” Tech.

Rep. ISO 28500:2009, 2009.

[36] S. Lawrence and C. Giles, “Searching the World Wide Web,” Science, vol. 280,

no. 5360, pp. 98–100, 1998.

[37] “Digital Natives Explore Digital Preservation,” Library of Congress, 2010.

[Online]. Available: http://www.digitalpreservation.gov/multimedia/videos/

students10.html

[38] “Metadata Encoding and Transmission Standard (METS) Official Website,”

Library of Congress, June 2012. [Online]. Available: http://www.loc.gov/

standards/mets/

[39] P. Maniatis, M. Roussopoulos, T. J. Giuli, D. S. H. Rosenthal, and M. Baker,

“The LOCKSS Peer-to-Peer Digital Preservation System,” ACM Transactions

on Computer Systems, vol. 23, no. 1, pp. 2–50, 2005.

[40] C. C. Marshall, “Rethinking Personal Digital Archiving, Part 1: Four Challenges

from the Field,” D-Lib Magazine, vol. 14, no. 3/4, p. 2, 2008.

[41] ——, “Rethinking Personal Digital Archiving, Part 2: Implications for Services,

Applications, and Institutions,” D-Lib Magazine, vol. 14, no. 3/4, p. 2, 2008.

[42] ——, “Challenges and Opportunities for Personal Digital Archiving.” Society

of American Archivists, Chicago, IL, 2011, pp. 90–114.

[43] ——, “Ownership, Aggregation and Re-use of Personal Data.” Presented

at the 3rd Annual Conference on Personal Digital Archiving, San Francisco,

CA, 2012. [Online]. Available: http://ia600807.us.archive.org/15/items/

personaldigitalarchiving2012pt2/pda2012-17cathymarshall.ogv

[44] C. C. Marshall, S. A. Bly, and F. Brun-Cottan, “The Long Term Fate of

Our Digital Belongings: Toward a Service Model for Personal Archives,”

in Proceedings of IS&T Archiving 2006, May 2006. [Online]. Available:

http://www.csdl.tamu.edu/∼marshall/archiving2006-marshall.pdf

92

[45] C. C. Marshall, F. McCown, and M. L. Nelson, “Evaluating Personal Archiving

Strategies for Internet-based Information,” in Proceedings of IS&T Archiving

2007, May 2007, pp. 151–156, (Also available as arXiv:0704.3647v1).

[46] C. C. Marshall and F. M. Shipman, “Attitudes About Institutional

Archiving of Social Media.” Presented at Archiving 2011, Salt Lake

City, Utah, 2011. [Online]. Available: http://www.csdl.tamu.edu/∼marshall/

Archiving2011-Marshall-Shipman.pdf

[47] ——, “The Ownership and Reuse of Visual Media,” in Proceedings of the

ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2011, pp. 13–17.

[48] J. Masanès, “Web Archiving: Issues and Methods,” Web Archiving, pp. 1–53,

2006.

[49] Matasano Security, “Javascript Cryptography Considered Harmful,” 2010, http:

//www.matasano.com/articles/javascript-cryptography/.

[50] F. McCown and M. Nelson, “A Framework for Describing Web Repositories,” in

Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL),

2009, pp. 341–344.

[51] ——, “What Happens When Facebook is Gone?” in Proceedings of the

ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2009, pp. 251–254.

[52] F. McCown, C. C. Marshall, and M. L. Nelson, “Why Web Sites Are Lost (and

How They’re Sometimes Found),” Communications of the ACM, vol. 52, no. 11,

pp. 141–145, 2009.

[53] F. McCown and M. L. Nelson, “Agreeing to Disagree: Search Engines and Their

Public Interfaces,” in Proceedings of the ACM/IEEE Joint Conference on Digital

Libraries (JCDL), New York, NY, USA, 2007, pp. 309–318.

[54] F. McCown, J. A. Smith, M. L. Nelson, and J. Bollen, “Lazy Preservation:

Reconstructing Websites by Crawling the Crawlers,” in WIDM ’06: Proceedings

of the 8th Annual ACM International Workshop on Web Information and Data

Management, 2006, pp. 67–74.

[55] J. McHugh, “Should Web Giants Let Startups Use the Information They Have

About You,” Wired Magazine (16.01), vol. 20, 2007.

93

[56] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic, “Introduction to Heritrix, an

Archival Quality Web Crawler,” in 4th International Web Archiving Workshop

(IWAW04), Sep. 2004.

[57] C. Northern. (2009, September) Announcing ArchiveFacebook - A Firefox

Add-on for Archiving Facebook Accounts. [Online]. Available: http:

//ws-dl.blogspot.com/2009/09/archivefacebook.html

[58] S. Raghavan and H. Garcia-Molina, “Crawling the Hidden Web,” in Proceedings

of the Twenty-seventh International Conference on Very Large Databases, 2001,

pp. 129–138. [Online]. Available: citeseer.ist.psu.edu/raghavan01crawling.html

[59] A. Ranganathan, “File API,” W3C Working Draft, Nov 2009, http://www.w3.

org/TR/2009/WD-FileAPI-20091117/.

[60] D. Recordon and D. Hardt, “The OAuth 2.0 Authorization Framework, Internet

Draft,” May 2012.

[61] D. Rosenthal, “Harvesting and Preserving the Future Web,” http://blog.dshr.

org/2012/05/harvesting-and-preserving-future-web.html.

[62] ——, “JCDL 2010 Keynote,” in Proceedings of the ACM/IEEE Joint

Conference on Digital Libraries (JCDL), June 2010. [Online]. Available:

http://blog.dshr.org/2010/06/jcdl-2010-keynote.html

[63] J. Rothenberg, “Avoiding Technological Quicksand - Finding a Viable Techni-

cal Foundation for Digital Preservation,” Council on Library and Information

Resources, Tech. Rep., January 1999.

[64] M. B. Saad and S. Gançarski, “Archiving the Web Using Page Changes Patterns:

A Case Study,” in Proceedings of the ACM/IEEE Joint Conference on Digital

Libraries (JCDL), 2011, pp. 113–122.

[65] M. Smith, “Eternal Bits [Digital Files Preservation],” IEEE Spectrum, vol. 42,

no. 7, pp. 22–27, 2005.

[66] M. Spaniol, A. Mazeika, D. Denev, and G. Weikum, “‘Catch Me If You Can’:

Visual Analysis of Coherence Defects in Web Archiving,” in Proceedings of the

9th International Web Archiving Workshop (IWAW), 2009, pp. 27–37.

94

[67] S. Strodl, P. Beran, and A. Rauber, “Migrating Content in WARC Files,” in

Proceedings of the 9th International Web Archiving Workshop (IWAW), 2009,

pp. 43–49.

[68] A. Thomas, E. Meyer, M. Dougherty, C. Van den Heuvel, C. Madsen,

and S. Wyatt, “Researcher Engagement with Web Archives: Challenges and

Opportunities for Investment,” Final Report for the JISC-funded project

’Researcher Engagement with Web Archives’, Tech. Rep., 2010. [Online].

Available: http://papers.ssrn.com/sol3/papers.cfm?abstract id=1715000

[69] H. Van de Sompel, M. L. Nelson, R. Sanderson, L. L. Balakireva, S. Ainsworth,

and H. Shankar, “Memento: Time Travel for the Web,” Tech. Rep.

arXiv:0911.1112, 2009. [Online]. Available: http://arxiv.org/pdf/0911.1112

[70] P. Windrum, “Leveraging Technological Externalities in Complex Technologies:

Microsoft’s Exploitation of Standards in the Browser Wars,” Research Policy,

vol. 33, no. 3, pp. 385–394, 2004.

[71] A. Wright, “Exploring a ‘Deep Web’ That Google Can’t Grasp,” New York

Times, vol. 23, p. B1, Feburary 22, 2009.

95

APPENDIX A

SPECIFICATION XML FOR FACEBOOK

The contents of this appendix consist of an XML representation of the content

breakup of Facebook as of early 2012. An updated version of this definition is avail-

able at http://spec.socialstandard.org/facebook.xml. Reference to other instantia-

tions can be found at http://spec.socialstandard.org.

1 <?xml version="1.0" ?>

2 <?xml-stylesheet type="text/xsl" href="socialStandard.xslt" ?>

3 <socialMediaWebsite>

4 <homepage>http://www.facebook.com</homepage>

5 <sections>

6 <socialMediaWebsiteSection type="

SocialMediaWebsiteSectionPersonalStream">

7 <name>Wall</name>

8 <url>http://www.facebook.com/profile.php?sk=wall</url>

9 <preprocessor type="SocialMediaScrollPreprocessor">

10 <timeBetweenFirings>0</timeBetweenFirings>

11 <maxFirings>0</maxFirings>

12 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

13 </preprocessor>

14 </socialMediaWebsiteSection>

15 <socialMediaWebsiteSection type="

SocialMediaWebsiteSectionUserInfo">

16 <name>Info</name>

17 <url>http://www.facebook.com/profile.php?sk=info</url>

18 </socialMediaWebsiteSection>

19 <socialMediaWebsiteSection type="

SocialMediaWebsiteSectionMultimediaCollection">

20 <name>Photos</name>

21 <url>http://www.facebook.com/profile.php?sk=photos</url>

22 <preprocessor type="SocialMediaScrollPreprocessor">

23 <timeBetweenFirings>0</timeBetweenFirings>

24 <maxFirings>0</maxFirings>

25 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

96

26 </preprocessor>

27 </socialMediaWebsiteSection>

28 <socialMediaWebsiteSection type="

SocialMediaWebsiteSectionMultimediaCollection">

29 <name>Notes</name>

30 <url>http://www.facebook.com/profile.php?sk=notes</url>

31 </socialMediaWebsiteSection>

32 <socialMediaWebsiteSection type="SocialMediaWebsiteFriends">

33 <name>Friends</name>

34 <url>http://www.facebook.com/profile.php?sk=friends</url>

35 <preprocessor type="SocialMediaScrollPreprocessor">

36 <timeBetweenFirings>0</timeBetweenFirings>

37 <maxFirings>0</maxFirings>

38 <conditionBeforeSubsequentFiring></

conditionBeforeSubsequentFiring>

39 </preprocessor>

40 </socialMediaWebsiteSection>

41 </sections>

42 </socialMediaWebsite>

97

APPENDIX B

TABULAR COMPARISON OF TOOLS IN EVALUATION

Users currently have access to a wide array of tools to accomplish the task of

preserving their personal data. Listed here is a high-level comparison of these tools

in tabular form.

98

w
eb

si
te

ag
n

os
ti

c

au
to

m
at

ed

se
q
u

en
ti

al

ar
ch

iv
in

g

p
re

se
rv

es

lo
o
k
-a

n
d

-f
ee

l

co
n
te

n
t

co
m

p
re

h
en

si
ve

(n
o

ex
cl

u
si

o
n

s)

A
n

a
rc

h
iv

e
ra

th
er

th
a
n

a
b

a
ck

u
p

B
ro

w
se

r-
b

a
se

d

E
x
ec

u
ti

o
n

B
ro

w
se

r-
b

a
se

d

re
p

la
y

F
ac

eb
o
ok

D
at

a
D

u
m

p
#

N
/A

#
#

(a
ge
n
cy
)

#
#

(s
er
ve
r)

!

G
o
og

le

T
ak

eo
u

t
#

N
/A

#
#

(a
ge
n
cy
)

#
#

(s
er
ve
r)

!

W
A

R
C

re
at

e
!

#
!

(C
h
ro
m
e)

!
!

!
#

A
rc

h
iv

e

F
ac

eb
o
ok

#
!

!
F
ir
ef
o
x

!
#

!
!

(F
ir
ef
o
x)

“S
av

e

W
eb

p
ag

e
A

s”
!

#
!

!
#

!
!

O
p

en
S

o
ci

al
#

N
/A

w
ge

t
w

it
h

au
th

en
ti

ca
ti

on
!

#
#

w
ge
t
u
se
r
a
ge
n
t

!
#

#
#

w
ge

t-
w

ar
c

!
#

#

w
ge
t
u
se
r
a
ge
n
t

!
!

#
#

99

APPENDIX C

CODE TO CAPTURE ANY SPEC-DEFINED SITE

1 ssCapture : function(specIn) {

2 var parser = new DOMParser();

3 var xml = parser.parseFromString(specIn, "text/xml");

4

5 function SocialMediaWebsiteSection(asElement){

6 this.element = asElement;

7 var urls = this.element.getElementsByTagName("url");

8

9 this.url = $(urls[0]).text(); //potentially a regex

10 var childrenElements = this.element.getElementsByTagName("

children");

11 var childrenElement, names;

12 if(childrenElements.length > 0){

13 childrenElement = childrenElements[0];

14 names = childrenElement.getElementsByTagName(’name’);

15 this.childName = $(names[0]).text();

16 this.subsections = [];

17 }

18 }

19

20 SocialMediaWebsiteSection.prototype.isARegEx = function (){

21 return (this.url.indexOf("[") != -1

22 || this.url.indexOf("(") != -1

23 || this.url.indexOf("%5B") != -1

24 || this.url.indexOf("%5D") != -1);

25 };

26

27 SocialMediaWebsiteSection.prototype.addSubSection = function() {

28 for(var i=0; i<subsections.length; i++){

29 if(!(this.subsections[i])){ //associate child with parent

30

31 }

32 }

33 };

100

34

35 var sectionsElements = xml.getElementsByTagName("

socialMediaWebsiteSection");

36 var sections = [];

37 for(var i=0; i<sectionsElements.length; i++){

38 var potentialSection = new SocialMediaWebsiteSection(

sectionsElements[i]);

39 var obj;

40 if(potentialSection.isARegEx()){sections.push(potentialSection)

;

41 }else {

42 obj = potentialSection;

43 sections.push(obj);

44 }

45 }

101

APPENDIX D

SAMPLE WARC FILE

1 WARC/1.0

2 WARC-Type: warcinfo

3 WARC-Date: 2012-07-25T02:51:27.573Z

4 WARC-Filename: 2fd0e5b61c911f11c167ddec14320a73.warc

5 WARC-Record-ID: <urn:uuid:b53124ec-7496-1438-d4d1-74c3e32b552e>

6 Content-Type: application/warc-fields

7 Content-Length: 483

8

9 software: WARCreate/0.2012.7.23 http://matkelly.com/warcreate

10 format: WARC File Format 1.0

11 conformsTo: http://bibnum.bnf.fr/WARC/

WARC_ISO_28500_version1_latestdraft.pdf

12 description: recurrence=ANNUAL, maxDuration=432000, maxDocumentCount

=1000000, isTestCrawl=false, seedCount=61, accountId=89

13 robots: classic

14 http-header-user-agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit

/536.11 (KHTML, like Gecko) Chrome/20.0.1132.57 Safari/536.11

15 http-header-from: warcreate@matkelly.com

16

17

18 WARC/1.0

19 WARC-Type: request

20 WARC-Target-URI: https://twitter.com/#!/search/#digpres12

21 WARC-Date: 2012-07-25T02:51:27.573Z

22 WARC-Concurrent-To: <urn:uuid:9cb4670a-98cc-8748-d93a-9b55f53cfb0d>

23 WARC-Record-ID: <urn:uuid:8cdcac72-5518-6b1d-e9f4-c12ded15a0e9>

24 Content-Type: application/http; msgtype=request

25 Content-Length: 327

26

27

28 GET /#!/search/#digpres12 HTTP/1.1

29 Host: twitter.com

30 Connection: close

31 User-Agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.11 (KHTML,

like Gecko) Chrome/20.0.1132.57 Safari/536.11

102

32 Accept-Encoding: gzip

33 Accept-Charset: ISO-8859-1,UTF-8;q=0.7,*;q=0.7

34 Cache-Control: no-cache

35 Accept-Language: de,en;q=0.7,en-us;q=0.3

36

37 WARC/1.0

38 WARC-Type: metadata

39 WARC-Target-URI: https://twitter.com/#!/search/#digpres12

40 WARC-Date: 2012-07-25T02:51:27.573Z

41 WARC-Concurrent-To: <urn:uuid:dddc4ba2-c1e1-459b-8d0d-a98a20b87e96>

42 WARC-Record-ID: <urn:uuid:6fef2a49-a9ba-4b40-9f4a-5ca5db1fd5c6>

43 Content-Type: application/warc-fields

44 Content-Length: 49

45

46 outlink: https://twitter.com/#!/search/#digpres12

47

48 WARC/1.0

49 WARC-Type: response

50 WARC-Target-URI: https://twitter.com/#!/search/#digpres12

51 WARC-Date: 2012-07-25T02:51:27.573Z

52 WARC-Record-ID: <urn:uuid:83431648-8236-7d75-f8aa-fd1c371dfe09>

53 Content-Type: application/http; msgtype=response

54 Content-Length: 142997

55

56 HTTP/1.1 200 OK

57 Content-Type: text/html

58 Date: Tue Jul 24 2012 22:51:27 GMT-0400 (Eastern Daylight Time) GMT

59 Last-Modified: Tue Jul 24 2012 22:51:27 GMT-0400 (Eastern Daylight

Time) GMT

60 Server: Apache/2.2.17 (Unix) PHP/5.3.5 mod_ssl/2.2.17 OpenSSL/0.9.8q

61 Accept-Ranges: bytes

62 Content-Type: text/html

63

64 <html class=" js"><head>

65

66 <title>Twitter / Search - #digpres12</title>

67 <meta http-equiv="X-UA-Compatible" content="IE=edge">

68 <meta charset="utf-8">

69

70 (content removed for ease of viewing)

71

103

72

73

74 </body></html>

75

76

77 WARC/1.0

78 WARC-Type: request

79 WARC-Target-URI: https://twimg0-a.akamaihd.net/a/1343165977/t1/css/

t1_more.bundle.css

80 WARC-Date: 2012-07-25T02:51:27.573Z

81 WARC-Concurrent-To: <urn:uuid:9cb4670a-98cc-8748-d93a-9b55f53cfb0d>

82 WARC-Record-ID: <urn:uuid:39a45298-ea73-7103-8afe-62876587a0f2>

83 Content-Type: application/http; msgtype=request

84 Content-Length: 370

85

86

87 GET /a.akamaihd.net/a/1343165977/t1/css/t1_more.bundle.css HTTP/1.1

88 Host: twimg0-a.akamaihd.net

89 Connection: close

90 User-Agent: Mozilla/5.0 (Windows NT 5.1) AppleWebKit/536.11 (KHTML,

like Gecko) Chrome/20.0.1132.57 Safari/536.11

91 Accept-Encoding: gzip

92 Accept-Charset: ISO-8859-1,UTF-8;q=0.7,*;q=0.7

93 Cache-Control: no-cache

94 Accept-Language: de,en;q=0.7,en-us;q=0.3

95

96 WARC/1.0

97 WARC-Type: response

98 WARC-Target-URI: https://twimg0-a.akamaihd.net/a/1343165977/t1/css/

t1_more.bundle.css

99 WARC-Date: 2012-07-25T02:51:27.573Z

100 WARC-Record-ID: <urn:uuid:ce07dfc4-7b08-c8c1-b310-f55d3529a443>

101 Content-Type: application/http; msgtype=response

102 Content-Length: 125861

103

104 HTTP/1.1 200 OK

105 Content-Type: text/css

106 Date: Tue Jul 24 2012 22:51:27 GMT-0400 (Eastern Daylight Time) GMT

107 Last-Modified: Tue Jul 24 2012 22:51:27 GMT-0400 (Eastern Daylight

Time) GMT

108 Server: Apache/2.2.17 (Unix) PHP/5.3.5 mod_ssl/2.2.17 OpenSSL/0.9.8q

104

109 Accept-Ranges: bytes

110 Content-Type: text/css

111

112 .btn{position:relative;display:inline-block;overflow:visible;padding

:5px 10px;font-size:13px;font-weight:bold;line-height:18px;color

:#333;text-shadow:0 1px 0 rgba(255,255,255,.5);background-color:#

ccc;background-repeat:no-repeat;border:1px solid #ccc;cursor:

pointer;-webkit-border-radius:4px;-moz-border-radius:4px;border-

radius:4px;border-radius:0 \0;-webkit-box-shadow:0 1px 0 rgba

(255,255,255,.5);-moz-box-shadow:0 1px 0 rgba(255,255,255,.5);box

-shadow:0 1px 0 rgba(255,255,255,.5);}

113

114 (content removed for ease of viewing)

105

VITA

Matthew Ryan Kelly

Department of Computer Science

Old Dominion University

Norfolk, VA 23529

EDUCATION

M.S. in Computer Science, Old Dominion University, 2012

B.S. in Computer Science, University of Florida, 2006

EMPLOYMENT
6/11 to Present Mobile Applications Developer/Programmer for NASA Langley

Research Center via Science Systems and Applications, Inc. (Hampton, Virginia)

5/11 to Present Research Assistant for Old Dominion University (Norfolk, Virginia)

8/09 to 12/09 Research Intern for BMW Group (Greenville, South Carolina)

4/06 to Present Web Programmer for Blade Agency (Gainesville, Florida)

4/06 to 2/07 Web Developer for & MindSolve Technologies/SumTotal Systems, Inc.

(Gainesville, Florida)

5/05 to 4/06 Web Designer for Center for Instructional Technology and Training

at University of Florida (Gainesville, Florida)

7/04 to 1/06 Managing Editor, New Media at The Independent Florida Alligator

(Gainesville, Florida)

7/04 to 5/05 Web Designer for Office of Student Activities at University of Florida

(Gainesville, Florida)

PUBLICATIONS AND PRESENTATIONS

A complete list is available at http://matkelly.com/pubs

PROFESSIONAL AFFILIATIONS

Association for Computing Machinery (ACM)

Permalinks

Homepage: http://matkelly.com

Email: me@matkelly.com

Typeset using LATEX.

	An Extensible Framework for Creating Personal Archives of Web Resources Requiring Authentication
	Recommended Citation

	tmp.1463423555.pdf.iMC4k

