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ABSTRACT

AN OPTIMIZED MULTIPLE RIGHT-HAND SIDE DSLASH
KERNEL FOR INTEL® XEON PHI�

Aaron Walden
Old Dominion University, 2016

Director: Dr. Mohammad Zubair

Lattice quantum chromodynamics (LQCD) stands unique as the only computa-

tionally tractable, non-perturbative, and model-independent quantum field theory

of the strong nuclear force. The computational core of LQCD is the Wilson Dslash

operator, a nearest neighbor stencil operator summing matrix-vector multiplications

over lattice points, whose performance is bandwidth-bound on most architectures.

Reportedly, up to 90% of LQCD running time may be spent computing Dslash. In

recent years, efforts have been made by researchers to optimize LQCD calculations

for floating point coprocessor cards such as GPUs and Intel Xeon Phi Knights Corner

(KNC), which boast powerful vector processing units. Most of these efforts in the

area of Dslash have focused on single right-hand side solvers. This thesis will present

two optimized Dslash kernels which simplify vectorization using multiple right-hand

sides and traverse lattices using novel methods. The speedups resulting from these

approaches will be explored in the context of KNC’s architecture.
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CHAPTER I

INTRODUCTION

Lattice quantum chromodynamics (LQCD) stands unique as the only computa-

tionally tractable, non-perturbative, and model-independent quantum field theory

of the strong nuclear force. LQCD simulations are thus needed for areas of re-

search at the frontiers of physics, including color confinement, exploration of the

early Universe, and physics beyond the Standard Model. LQCD achieves tractabil-

ity by discretizing our familiar space-time as a 4-dimensional hypercubic lattice. To

simulate larger lattices with shorter spacing, ever-increasing computing power is re-

quired. The computational core of LQCD with Wilson fermions is the Wilson Dslash

operator, a nearest neighbor stencil operator summing matrix-vector multiplications

over lattice points, whose performance is bandwidth-bound on most architectures

[1]. Reportedly, up to 90% of LQCD running time may be spent applying Dslash [2].

LQCD’s computational intensity is such that it has inspired the design of supercom-

puters [3] and accordingly, a significant fraction of supercomputing cycles are devoted

to LQCD simulation [4]. As of November 2015, 4 out of the 10 top supercomput-

ers in the world [5] employ coprocessor cards, which offer resource-efficient floating

point arithmetic and high memory bandwidth in comparison with general-purpose

CPUs. Intel® Xeon Phi� Knights Corner (KNC) is a line of such cards, and 2 of the

top 10 supercomputers are equipped with thousands of KNC coprocessors [6], [7].

Significant research has been devoted to exploring KNC’s potential to drive LQCD

simulations [4], [1], [8], [9], [10]. The bulk of this research in the area of Wilson

Dslash has involved single right-hand side (SRHS) solvers. In contrast, this thesis

describes a C++ Wilson Dslash kernel applied to multiple right-hand sides (MRHS)

in parallel on a single node. We employ vector register blocking and bandwidth opti-

mization via improved lattice traversal to achieve significant speedups over previous

implementations.

I.1 PROBLEM AND APPROACH

To maximize single-node performance, we must design an algorithm which fully

utilizes hardware capabilities while satisfying the constraints of LQCD theory. In
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the case of KNC, the arithmetic intensity of Wilson Dslash is such that unvectorized

code cannot reach anywhere near an adequate level of performance. This means we

must devise a method of computation using KNC’s 512-bit wide vector registers. In

single right-hand side cases, vectorization is typically achieved by loading multiple,

neighboring lattice points together with a structure of arrays approach [8]. This

thesis describes two different approaches to vectorization using multiple right-hand

sides instead of the multiple site method.

We must issue enough load instructions to saturate KNC’s considerable memory

bandwidth. This is known to require explicit software prefetching [11], and our

approach in this thesis is to experiment with all manner of prefetching in combination

with our other experimental parameters.

Finally, we must traverse the lattice in such a way as to maximize cache reuse of

neighbor data, thereby minimizing memory bandwidth requirements. In this thesis

we propose, implement, and evaluate three different approaches to lattice traversal.

We experiment with these schemes over several different problem sizes and in combi-

nation with different implementation options and even other traversal schemes, when

possible.

I.2 CONTRIBUTIONS

We make the following contributions with this research:

� Description and implementation of two different MRHS vectorization schemes

for LQCD’s Wilson Dslash operator on Xeon Phi� Knights Corner

� Description and implementation of three different (two novel) lattice traversal

schemes

� Description and implementation of several other program options designed to

increase the performance of the Wilson Dslash operator on Xeon Phi� Knights

Corner

� Experimentation which explores the behavior of every possible combination of

program options we have devised for real world single node problem sizes

� Explanation of the results we observe
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I.3 THESIS ORGANIZATION

The remainder of this thesis is organized as follows. Chapter II introduces de-

tails of LQCD relevant to calculation of the Dslash operator. It also discusses the

architecture of KNC relating to program optimization and outlines a theoretical per-

formance model for our approach. Finally, Chapter II gives an overview of the state

of the art of LQCD optimization. Chapter III explains what we refer to as the base

implementation, which includes how and why the program is written as it is and

introduces the experiments we conduct unrelated to lattice traversal. Chapter IV

explains the default and novel ways of traversing lattice sites with which we experi-

ment. Included is some discussion of the intuition behind and expected performance

of our proposed methods. Chapter V discusses our experimental setup and obser-

vations before providing our best explanations of these results. Finally, we compare

our results to similar Dslash implementations. Whenever the term Dslash is used

without qualification in this thesis, we refer to the Wilson formulation.
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CHAPTER II

BACKGROUND AND STATE OF THE ART

A full explanation of LQCD is well beyond the scope of this thesis. We instead

narrow our discussion to the mechanics of the Dslash operator insofar as they con-

strain the design of our algorithm. We begin the chapter by detailing the lattice over

which Dslash is applied. We explain the size and character of the input and output

data. We then explain in detail the Dslash operator itself. We give a numerical

model for the performance of MRHS Dslash relative to single RHS. We explain the

architecture of Xeon Phi� Knights Corner as it relates to our optimization efforts.

Finally, we give an overview of the state of the art of Dslash optimization.

LQCD exposition in this chapter based on [2] and [8] unless otherwise noted.

II.1 LATTICE

The substrate in which Dslash application takes place is the aforementioned dis-

cretized 4-dimensional hypercubic lattice from which LQCD takes its name. QCD

is a gauge theory of strong force interactions between quarks and gluons. One may

imagine the lattice as a series of linked points. In LQCD, quark fields are repre-

sented by lattice points and gluon fields by the links. Lattice points are separated

by some distance a (it is also possible to have different spacings in the same lat-

tice). This parameter a represents the discretization, in some sense; as a approaches

zero, LQCD approaches continuum QCD, which is not discretized. Computational

physicists use the lattice discretization to numerically integrate path integrals using a

Monte Carlo method. This introduces statistical errors in addition to the systematic

errors introduced by nonzero lattice spacing. The need to achieve a desired preci-

sion in the presence of these errors is one motivation for the optimization of LQCD

computations.

II.1.1 Sites

The number of sites on a lattice is given by V OL = LxLyLzLt, where Lµ is the

number of points on the lattice in a particular direction. In this thesis, we refer to
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a dimension (x, y, z, t) generically by µ. A site is defined by its coordinates in the 4

directions <x, y, z, t>. To facilitate linear memory storage and traversal, we linearize

lattice point coordinates with the following formula:

s =
Lx
2

(y + Ly (z + Lzt)) +
x

2
+
V OL

2
((x+ y + z + y) & 1)

Where & is the bitwise AND operator, which is used to test whether or not the

coordinate sum is even or odd. Sites have 2 neighbors in each direction, for a total

of 8. An important property of the lattice is that it is considered to wrap around in

the sense of neighbors. Consider a lattice with Lx equal to 8. Then, the positive and

negative x-direction neighbors of site <7, 0, 0, 0> are <0, 0, 0, 0> and <6, 0, 0, 0>,

respectively.

II.1.2 Checkerboarding

To facilitate some mathematical tricks, we may divide the lattice into even and

odd sites, where an even site means the sum of the direction indices is divisible by

2 (so, site <0, 0, 0, 0> would be even). This colors the lattice in a checkerboard

pattern, where an adjacent site is always of the opposite color. In this thesis, we

illustrate checkerboarding by coloring sites red and black or gray and white.

II.2 SPINORS

An entity of primary interest in QCD is the Dirac equation, Mψ = χ, which

gives the propagation of quarks in a gluon field. Here, M is the Wilson-Fermion

matrix, and ψ and χ are spinors ∈ C3×4 which represent color (3 indices) and spin (4

indices). As these are complex matrices, there are a total of 24 degrees of freedom.

For the purposes of our Dslash calculation, we can view ψ (along with gauge matrices)

as input data and χ as output data. Each lattice point (site) is assigned its own

ψ, χ ∈ C3×4. In this thesis, we sometimes use ψ and χ to refer to the entire collection

of ψs,χs over a lattice, where ψs,χs refer to the spinors for some site s. Thus, when

we refer to neighbors or neighbor data we refer to spinors (and usually to ψ).

II.3 GAUGE FIELDS

Returning to the Dirac equation, Mψ = χ, we focus on the Wilson-Fermion
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matrix M , which gives the interactions between quarks and gluons. M is given by:

M = (Nd +m)− 1

2
D

Where Nd is the number of dimensions (4) and m is a parameter related to quark

mass. The Wilson-Dslash term, D, is given by:

D =

Nd∑
µ=1

((1− γµ)⊗ Uµ
s δs+µ̂,s′ + (1 + γµ)⊗ Uµ†

s−µ̂δs−µ̂,s′) (1)

We’ll return to this equation to explain D in Section II.4. For now, we need only

understand that the gluonic gauge fields formulate D, and consequently M , and are

ultimately multiplied by ψ to form our output, χ.

The gauge fields U are SU(3) complex matrices ∈ C3×3 which means they have

several important properties. U is unitary, and its Hermitian conjugate is its inverse

(UU † = I). The columns and rows of U form an orthonormal basis of C3. Of special

interest to optimization of Dslash is the latter property. It allows us to compute the

3rd row or column of U given the first 2. This gauge compression allows us to trade

bandwidth for FLOPs, which can be exploited to our advantage.

We can think of a complete set of gauge matrices over a lattice as a configuration.

A property of LQCD computations is that it is perfectly useful to compute Mψ = χ

for the same M but different ψ. This is the basis of our multiple right-hand side ap-

proach. We can compute several χ simultaneously, using the same U , which increases

the arithmetic intensity of our computation, saving precious memory bandwidth.

There is a different gauge matrix for each site and forward direction, meaning

the link along the positive direction of an (x, y, z, or t) axis. The gauge matrix for a

backward link of site s is the Hermitian conjugate of the matrix for the forward link

of the neighbor of s in that direction. Figure 1 shows an example planar slice of the

lattice which should make this clear. In the figure, we show only the data relevant

to applying Dslash to site s.

II.4 DSLASH OPERATOR

Recall from Equation 1 the Wilson-Dslash term, D. Here δi,j is the Kronecker-

delta function and the indices i and j refer to sites:

δi,j =

1 if i = j

0 otherwise
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FIG. 1: A planar slice of the lattice in two arbitrary directions, µ1 and µ2. Here s± µ̂
refers to the neighbor site of s in the positive or negative direction µ. χ is shown for
site s instead of ψ because these are the data of interest for computing Dslash for
site s.

D is thus a large and sparse matrix. (1 ± γµ) are special projector operators which

act only upon spin indices. After a 4-spinor has been projected, it has only two

independent spin degrees of freedom, which are combinations of the original 4 spins.

We can take advantage of this fact by constructing the two independent degrees of

freedom for a given projector, multiplying only these with the gauge matrix U , and

then reconstructing the 4 spin components of the product. In other words, we can

say P±µ = R±µQ
±
µ where Q is referred to as the spin projection operation and R is

called reconstruction. Since R and Q act trivially on color indices we can then write

UµP±µ ψ = UµR±µQ
±
µψ = R±µU

µQ±µψ (2)

Implementing the projector operators in this way that halves the number of matrix-

vector multiplications needed.

We compute the reduced then reconstructed matrix product RUQψ and sum the
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results over all ±µ (8 directions, in the case we describe in this thesis). A high-level

pseudocode description of our algorithm appears below. In this code, R̂ refers to a

version of the reconstruction operator above which acts on a half-spinor, the result

of UQψ. In the remainder of the thesis, we will sometimes refer to Qψ as ψ′.

Algorithm 1 WilsonDslash
1: for all sites s do

2: χu ← 0

3: χl ← 0

4: for µ← 1 to Nd do

5: /* Compute forward direction */

6: va ← Uµ
s Q

+
µψs+µ̂

7: χu ← χu + va

8: χl ← χl + R̂+
µ va

9:

10: /* Compute backward direction */

11: va ← Uµ†
s−µ̂Q

−
µψs−µ̂

12: χu ← χu + va

13: χl ← χl + R̂−µ va

14: end for

15: χs = [χu, χl]

16: end for

Computational physicists refer to Dslash plus and Dslash minus. In this thesis,

we implement and refer to Dslash plus. Dslash minus is the Hermitian conjugate of

Dslash plus and so they differ only in sign flips and matrix transpositions. In terms

of arithmetic operations and memory access patterns, they are identical, and so our

Dslash plus implementation results are applicable to a Dslash minus implementation

created from our Dslash plus code.

II.5 MULTIPLE RIGHT-HAND SIDE PERFORMANCE MODEL

The approach of computing multiple right-hand sides is an established technique

in LQCD research [12], [9]. We create a new operator with lower bandwidth needs

than N applications of the original operator. Application of Dslash to a single site

performs 1320 FLOPs. Because we assume the operator is bandwidth-bound [1], we
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can analyze the expected speedup for different numbers of right-hand sides if we take

the performance to be equal to:

FLOPs

byte
× bandwidth

Then, we need only divide the MRHS FLOPs/byte by the single right-hand side

FLOPs/byte to compute speedup. We begin by defining variables:

F = sizeof(float)

S is the number of entires of ψ ∈ C3×4 (24)

U is the number of entries of U ∈ C3×3 (18, 16, or 12)

R1 is the reuse factor for SRHS neighbor spinors

RN is the reuse factor for MRHS neighbor spinors

N is the number of right-hand sides

SRHS FLOPPB =
1320

8UF + (8−R1)SF + SF

MRHS FLOPPB =
1320N

8UF +N((8−RN)SF + SF )

speedup =
MRHS FLOPPB

SRHS FLOPPB

=
N(8UF + (8−R1)SF + SF )

8UF +N((8−RN)SF + SF )

If we take F to be 4, U to be 12 (assuming full compression, see Section III.7), S to

be 24, and R1 to be 7, said to be borne out in practice [13], we have:

speedup =
576N

384 +N(96(8−RN) + 96)

In Figure 2, we plot the speedup equation for values of N on the x-axis and speedup

on the y-axis with a curve for each value of RN ∈ {0, 1, . . . , 7}. We note that the

higher the reuse factor, the greater the discrepancy between 8 and 16 RHS. We

additionally note that RN must be > 3 to expect any speedup, which may limit our
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FIG. 2: MRHS scaling for values of N (number RHS) and RN (neighbor reuse factor).

performance gains for lattices of medium to large size, where reuse may be difficult

to achieve with spinor data scaling by N and a fixed size cache.

This performance model is based on [14].

II.6 XEON PHI� KNIGHTS CORNER

Knights Corner is a (relatively) nascent line of many-core PCIe coprocessor cards

in the Intel® Xeon Phi� family. KNC cards are analogous to modern GPUs in the

sense that they are massively parallel chips with high memory bandwidth suited

for scientific computing applications. KNC differs from GPUs in that its many-core

integrated architecture (MIC) consists of x86 compatible in-order cores with speeds

of 1 to 1.238 GHz. One of its most touted features is the ability to run code written

for general purpose x86 CPUs. In practice, however, code must be specifically crafted
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to take advantage of KNC’s unique architecture. This combination of features sows a

field which has become ripe for experimentation. Information in this section is taken

from [15] unless otherwise noted.

Knights Corner chips feature up to 61 cores running at the aforementioned speeds.

Each core possesses 32KB 8-way set associative L1 instruction and data caches and

a 512KB unified L2 cache. Each L2 cache is joined through a bidirectional ring

interconnect system, pictured in Figure 3. L2 caches achieve global coherence through

connection to a series of 64 tag directories. They are capable of cache-to-cache

transfers which bypass main memory. Each cache line is 64B. Evictions from cache

occur according to the least recently used line. Notably, KNC is capable of explicit

evictions from cache using the mm clevict intrinsic.

FIG. 3: Xeon Phi� Knights Corner architectural overview.

A key feature of KNC is its vector processing unit (VPU). KNC boasts 512-bit

vector registers, capable of SIMD operations on 16 single precision numbers simul-

taneously. Individual cores can support up to 4 hardware threads, each with a full

context of registers, including vector registers, of which there are 32. The primary

motivation of our MRHS scheme is to fully exploit KNC’s VPU in a way minimally
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restrictive to experimenters. To facilitate this, Intel® provides a set of C style func-

tions they call intrinsics, which act directly on vector registers in an assembly-like

way. KNC can only issue one vector instruction every 2 cycles. Thus, at least 2

threads are required to achieve full performance. On top of this, arithmetic instruc-

tions have a latency of 4 cycles, which means the full number of hardware threads is

necessary to hide all latency where a kernel is arithmetically intense.

KNC coprocessors are equipped with up to 16 GB GDDR5 SDRAM. With 8

memory controllers capable of 5.5 GT/s , KNC has a peak theoretical memory band-

width of 352 GB/s. As our operator is bandwidth-bound, memory performance is of

great interest to us. In [11], researchers report read bandwidth up to 164 GB/s and

write bandwidth up to 76 GB/s for a total observed bandwidth of 240 GB/s. Our

own results echo these. It should be noted, however, that Dslash is much more re-

liant on read bandwidth and our performance will be constrained by that lower value.

Additionally, KNC provides streaming store instructions which bypass cache when

writing to memory. KNC is capable of hardware and software prefetches to increase

memory bandwidth utilization. To our advantage, software prefetch instructions may

be issued alongside other instructions as a consequence of KNC’s instruction pipeline.

KNC coprocessors run an embedded Linux µOS which communicates with the

host and runs native applications. When running an application of the card, it is

conventional to leave a single core idle to handle these OS functions, lest program

performance be affected.

Finally, applications for KNC may be run in either offload or native mode. Of-

fload mode refers to applications which are run by a conventional CPU and specific

sections of code are offloaded onto the card. We are primarily concerned with native

applications which run directly on the card. Our focus is to optimize a very specific

KNC kernel.

II.7 STATE OF THE ART

The state of the art of LQCD optimization is diverse. Kernels have been variously

optimized for supercomputers, server CPUs (Xeon�, Opteron�), and coprocessors.

We examine the approaches to each in turn.

In [16], the authors compose an LQCD solver for the BlueGene/L supercomputer.

They acknowledge that the bulk of computation takes place when applying Dslash,

and optimize accordingly. They hand-optimize Dslash, paying special attention to
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BlueGene/L’s hardware features, such as fused multiply-add instructions. They op-

timize the memory layout so that accesses are sequential. Some attention is given

to site traversal, but the authors are more concerned with shared neighbor commu-

nication between nodes, something beyond the scope of this work. Overall, their

approach is rather similar to our own, which is not surprising, given that the critical

kernel is the same and that memory bandwidth growth is still being outpaced by

growth of CPU speeds.

The authors of [17] use a different approach. They create a library which writes

optimized assembly code for different supercomputing platforms, including the Blue-

Gene/L. The authors highlight the fact that general-purpose C++ compilers do not

optimally exploit the large numbers of registers available to RISC chips. Our own

code relies heavily on register blocking for performance.

In a similar vein, the authors of [18] have written a code generator for their own

C++ QCD software package, QPhiX [19]. The code generator outputs optimized

vector intrinsics for modern architectures (AVX, AVX2, AVX512, SSE, KNC, etc)

which execute the Dslash kernel and other parts of the LQCD solvers. These intrinsics

are hidden under a layer of abstraction and plugged into QPhiX, which handles higher

level functions like parallelization and cache-blocking. [20] experiments with QPhiX-

codegen and verifies its strong performance on both CPUs and Xeon Phi� KNC.

Our own code is essentially a handwritten version of the KNC kernel generated by

QPhiX-codegen.

In [8], the authors describe the implementation of an optimized Dslash for Intel®

Xeon� nodes. What is of interest is the 3.5D blocking scheme it employs, the source

of which is an earlier paper [21]. After implementing our cache-controlling traversal

(see Section IV.2), we came to realize that the blocking strategy is the same as that

used in [8], [21]. We were beaten to the punch by at least 6 years, apparently. Our

own idea is still novel in that it attempts to implement the cache-controlling evictions,

which, perhaps not coincidentally, emulate the perfect LRU which is assumed in [8].

There are at least several existing MRHS approaches in the area of LQCD solvers.

[12] and [22] are a series of papers by several Japanese authors exploring a new method

which is mainly a mathematical tweak to a known solver. The MRHS concerns they

express are how the MRHSs affect the convergence of solutions. Though interesting,

it is mostly unrelated to our own work. A more pertinent MRHS paper is [9]. In this

paper the authors directly compare MRHS implementations of their Highly Improved
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Staggered operator kernel for KNC and NVIDIA� GPUs. They implement kernels for

1 to 8 right hand sides, employing site fusion grouping strategies when the number

of RHS is smaller than the vector length (which is to say, always, in this case). They

discuss register strategies and it seems likely that their 8 RHS approach is similar

to our own. Devising schemes to implement 1–8 RHS must have taken considerable

effort, as the vectorization is far from obvious. They achieve results similar to our

naive traversal for 8 RHS, though we must bear in mind that this is a different

kernel with a different arithmetic intensity. What’s interesting about this paper are

the GPU results. Without any complex blocking strategies, a K40 can reach 450

GFLOPS computing the operator on very large lattices (e.g. 483 × 12). This is

perhaps not all that surprising, given the K40’s much higher bandwidth.

There are numerous GPU implementations of Dslash and related LQCD solvers.

Some take advantage of half precision calculations that result in double and single

precision solution accuracy [23]. Though this is intriguing, such full solvers are

beyond the scope of this thesis.

II.8 SUMMARY

In this chapter, we discussed the mechanics of the Dslash operator insofar as they

constrain the design of our algorithm. We described the lattice over which Dslash

is applied. We explained the size and character of the input and output data. We

explained in detail the Dslash operator itself. We gave a numerical model for the

performance of MRHS Dslash relative to single RHS. We explained the architecture

of Xeon Phi� Knights Corner as it relates to our optimization efforts. Finally, we

gave an overview of the state of the art of LQCD optimization.
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CHAPTER III

BASE IMPLEMENTATION

In this chapter we will discuss implementation unrelated to lattice traversal, in-

cluding all options tested. We discuss in depth our vectorization schemes for 8 and

16 RHS, including our adaptation of these algorithms for KNC’s hardware.

We should note that the implementation described herein is strictly for single

precision, otherwise the descriptions for 8 and 16 RHS would not be apt.

III.1 MULTIPLE RIGHT-HAND SIDE VECTORIZATION

In this section we discuss our scheme for exploiting KNC’s vector processing unit.

Recall from section Section II.6 that KNC’s vectors are 512 bits in length, enough to

hold 16 4-byte floats. Consequently, vectorization using 16 RHS is simple. Optimal

vectorization using 8 RHS, however, presents several challenges, our solutions to

which we discuss in Subsection III.1.1. We follow that with a discussion of the

implementation of 16 RHS.

III.1.1 8 RHS

A multiple RHS approach is the computation of the Dslash operator for many

independent input ψ simultaneously. Each operator acts upon a separate ψ, but

shares the same gauge fields, or links, U (see Chapter II). This approach suggests a

simple vectorization – namely, when a component of some ψ is used in computation,

the vector lanes will be filled by the component in question belonging to each RHS.

This leaves half of the vector register empty, unfortunately. To fill the remaining

lanes, the obvious solution is to load them with a different component of ψ, as

individual spinors (ψ) are made up of an even number of components. The problem is

how to pair these components in such a way that extraneous operations are minimized

and correctness is preserved.

The desired characteristics for such an 8 RHS vectorization are as follows:
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00r 10r   00i 10i   20r 30r   20i 30i 

                      

01r 11r   01i 11i   21r 31r   21i 31i 

                      

02r 12r   02i 12i   22r 32r   22i 32i 

FIG. 4: 8 RHS vectorization layout. Each component represents 8 4-byte floats, each
corresponding to a different RHS.

1. Paired components should interact with other paired components at the same

time.

If a vector register v0 contains the two components [00r|10r] (i.e. there are

8 copies of 00r in the first 8 32-bit lanes, one from each RHS) and vector v1

contains [20i|30i], then, if the computation calls for 00r + 20i, it should also

call for 10r + 30i to avoid wasted operations.

2. Each component should appear in at most a single pairing.

For example, if v0 contains [00r|10r], v1 should not contain [00r|20r].

3. When projected (Section II.4), the resulting pair should form a row of the

projected matrix.

Say, for example, a projection is calculated as follows: 00rproj = 00r + 20i and

01rproj = 10r + 30i. Then, we must have vectors (say, v0 and v1) contain-

ing [00r|10r] and [20i|30i] or [00r|30i] and [20i|10r] so that vproj = v0 + v1.

This characteristic is necessary because computation of Uψ′ will require these

components to be multiplied by the same entries of U .

Recall from Section II.4 that by transforming input ψ by a projection operator,

we can (nearly) halve the number of arithmetic operations necessary to compute

Dslash. Each direction of Dslash requires different combinations of ψ’s components

when projecting. See Appendix A for a full listing of the projection combinations.

Luckily, there exists a layout that satisfies the three desirable characteristics spec-

ified in this section. There is a minor caveat, however. Projection operations require

a permutation or sign flip of half of a vector register. KNC provides vector intrinsics

to permute across 256-bit lanes in this way. The layout is given in Figure 4.
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III.1.2 16 RHS

KNC’s vector length is 64 bytes or 16 4-byte floats. This completely simplifies

the vectorization scheme for 16 RHS. Each component of ψ fills one vector register,

so there is no need to worry about how different components will interact during

projection and multiplication. Thus, all of the difficulties of the 8 RHS scheme

vanish, and we simply place each component of ψ in its own register.

III.2 REGISTER BLOCKING

KNC vector intrinsic instructions provide a level of assembly-like control over

KNC’s vector registers, which allows us to accumulate the upper and lower sums in

registers before storing, ensuring there are no unnecessary writes to memory. We

refer to this as a register blocking approach.

Recall from Section II.6 that KNC provides a set of 32 vector registers per hard-

ware thread. A single hardware thread will apply Dslash to a single lattice point at

a time, so we assume 32 vector registers will be available to our algorithm. In the

following sections, we discuss how this constraint affects the design of our algorithm

for the two different RHS implementations.

III.2.1 8 RHS Algorithm

For 8 RHS, the upper and lower sums occupy 12 vector registers (24 components,

2 components per register). The projected matrix occupies 6 registers. Components

of the projection sharing a vector register are column-wise adjacent. Thus, they will

multiply the same components of U when computing Uψ′. Then, we must broadcast

each component of U to fill an entire vector register (recall from Section II.3 that

gauge fields can be reused by every lattice). To put every component of U in a vector

register, then, would require 18 registers, which brings the total over 32. Recall from

Section II.4 that the lower sum components are some permutation of upper sum

components. In the simplest case, we need to maintain a separate register which

accumulates each addition to the upper sum (from each direction) so we can manip-

ulate it before adding it to the appropriate lower sum component. We have (at least)

these two options, then (with v representing a vector register, r and i indicating real

and imaginary components, respectively):



18

� 1. Load all projection components (vproj as appropriate).

2. Moving row-wise (within a row), broadcast a component of U into vu.

3. Multiply vuvproj for appropriate vproj and accumulate in var or vai .

4. When finished with the row of U , add var and vai to upper and lower sums

appropriately.

This approach requires 1 (u) + 6 (projections) +2 (accumulators) = 9 registers.

� 1. Load a row of projection components.

2. Moving column-wise, broadcast a component of U into vu.

3. Multiply vuvproj for appropriate vproj and accumulate in some va (because

we move column-wise in U , we need to keep an accumulator for every

component of the upper sum).

4. When finished with all U , add all va to upper and lower sums appropri-

ately.

This approach requires 1 (u) + 2 (projections) +6 (accumulators) = 9 registers.

We chose the first option for no reason in particular. We did not implement the second

as it necessitates rewriting the entire program by hand. Algorithm 2 illustrates our

chosen 8 RHS Dslash application for a single direction at the register level. In this

pseudocode, vX represents some subset of a thread’s set of vector registers and viX

refers to some specific register in that set. Letters r and i always refer to the real

and imaginary components, respectively, of some matrix. The function load proj(. . . )

loads all 6 projections into vp and the details are unnecessary here.
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Algorithm 2 8RHSDIRSUM
1: vp ← load proj(. . . )

2: for ρ← 1 to 3 do . for each row of U

3: for c← 1 to 3 do . for each col of U

4: vu ← uρ,c,r

5: vra ← vra + vuv
c,r
p

6: via ← via + vuv
c,i
p

7: vu ← uρ,c,i

8: vra ← vra − vuvc,ip
9: via ← via + vuv

c,r
p

10: end for

11: vρ,rχu ← vρ,rχu + vra

12: vρ,iχu ← vρ,iχu + via

13: v
R̂(ρ,µ,r)
χl ← v

R̂(µ,d,r)
χl + R̃(ρ, µ, d, r)vra . µ ∈ {all directions}

14: v
R̂(ρ,µ,i)
χl ← v

R̂(µ,d,i)
χl + R̃(ρ, µ, d, i)via . d ∈ {forward, back}

15: end for

16: function R̂(ρ, µ, h) . h ∈ {r, i}
17: return appropriate χl index based on parameters

18: end function

19: function R̃(ρ, µ, d, h) . h ∈ {r, i}
20: return 1 or −1 based on parameters

21: end function

III.2.2 16 RHS Algorithm

16 RHS register blocking requires a different approach than the one we use for

8 RHS. We must necessarily keep the upper and lower sums in registers and this

requires 24, leaving only 8 for calculations. Looking at the simple options we used

for 8 RHS, we can see that neither of these will work. For the first we require 12

registers to hold all the projection components and for the second we require 12

registers for temporary sum accumulation.

The problem lies in the temporary accumulation of sums. What we can do to

solve this is propagate the sign changes required by the lower sum down to the lower

level multiplies, changing fmadds to fnmadds where appropriate. Then we no longer
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Algorithm 3 16RHSDIRSUM
1: for cu ← 1 to 3 do . for each col of U

2: vu ← load u row(. . . )

3: for cψ ← 1 to 2 do . for each col of Qψ

4: for hψ ← 1 to 2 do . h ∈ {r, i}
5: vψ ← proj(Qψ, µ, d, cu, cψ, hψ)

6: for all vρ,cu,huu do . 6 nums in col cu, ρ = row

7: v
ρ,cψ ,H(hu,hψ)
χu ← v

ρ,cψ ,H(hu,hψ)
χu + vρ,cu,huu vψŜ(hu, hψ)

8: i← R̂(µ, ρ, cψ, H(hu, hψ)) . saving space on page

9: viχl ← viχl + vρ,cu,huu vψR̃(µ, d, ρ, cψ, H(hu, hψ))

10: end for

11: end for

12: end for

13: end for

14: function Ŝ(hu, hψ)

15: if hu = i AND hψ = i then

16: return -1

17: else

18: return 1

19: end if

20: end function

21: function H(hu, hψ)

22: if hu 6= hψ then

23: return i

24: else

25: return r

26: end if

27: end function

28: function R̂(µ, ρ, cψ, H(hu, hψ))

29: return appropriate χl index based on parameters

30: end function

31: function R̃(µ, d, ρ, cψ, H(hu, hψ))

32: return 1 or −1 based on parameters

33: end function
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require any intermediate accumulation registers. We can add directly to the upper

and lower sums when computing Uψ′. Algorithm 3 illustrates the looping used to

keep register use down to 31. The pseudocode is Byzantine in its indexing (it would

be 4 pages long without it), so we offer a practical example to aid in understanding.

For each direction, we add to χu00r the real part of the complex dot product of the

first row and column of U and Qψ (ψ′), respectively.

χu00r ← χu00r + u00rψ
′
00r − u00iψ′00i + u01rψ

′
10r − u01iψ′10i + u02rψ

′
20r − u02iψ′20i

This is straightforward. Let us assume we are computing for the first direction

backward. Then, we subtract 00r of the accumulated sum from 01i of the lower, so:

χl01i ← χl01i +−(u00rψ
′
00r − u00iψ′00i + u01rψ

′
10r − u01iψ′10i + u02rψ

′
20r − u02iψ′20i)

This is how we go about unrolling the multiplication so we don’t need intermediate

sums. We can just compute the dot product twice, using fmadd and fnmadd where

appropriate to account for the sign changes.

This approach results in extra instructions compared to the 8 RHS approach, but

we can find no way to avoid this, given only 32 registers. Table 1 gives a breakdown

of the intrinsic counts for the two approaches.

Intrinsic 8 RHS 16 RHS

fmadd ps 168 698
sub ps 52 48
fnmadd ps 48 472
mul ps 50 0
add ps 124 49
permutevar 49(×1.5) 0

Total 515.5 1267

TABLE 1: Intrinsic counts for 8 RHS and 16 RHS.

If we double the total number of intrinsics for 8 RHS, the two approaches do the

same amount of work. We also consider that permutevar instructions have 6 cycle

latency, 50% more than arithmetic instructions [11]. In that case, 16 RHS performs

23% more cycles’ worth of intrinsics, in some sense.
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III.3 MEMORY LAYOUT

In this section, we describe how the values of U and ψ are stored in physical

memory. Because KNC loads vector registers with 64-byte aligned chunks, our vec-

torization layout dictates the memory layout. As explained in Section II.1.1, each

lattice point has a linearized index calculated from its coordinates. In the cases of

both U and ψ, we store the data for each site in a one-dimensional array indexed by

these linearized values. We access values in this array by casting its base address to

a multi-dimensional array.

III.3.1 ψ

We require that values of ψ are grouped into 64-byte chunks in the order that they

are expected to appear in vector registers (see Figure 4). Accordingly, we organize

ψ first by site, then by paired components, with 8 different RHS values for each

component. An illustration of the layout appears in Figure 5.

site 0 . . . site s . . . site VOL - 1 

00r 10r 20r 30r 01r 11r 21r 31r 02r 12r 22r 32r 00i 10i 20i 30i 01i 11i 21i  31i 02i 12i 22i 32i 

64B aligned 

32r0 . . . 32ri . . . 32r7 
64B 

4B 

768B 

FIG. 5: 8 RHS ψ in physical memory.

16 RHS ψ is stored analogously to 8, except that each component holds 16 floats,

and the order of the components (per site) is arbitrary.

III.3.2 χ

χ is stored similarly to ψ in both the cases of 8 and 16 RHS, with one caveat. For

8 RHS, χ is not stored in the special pairs as it is in ψ, but in pairs of components

that share the same row and type (real/imaginary). Thus, [00r|01r] would be one

such pair and together occupy 64 contiguous bytes of memory. This is a consequence



23

of the algorithm used to calculate χ (see Algorithm 1). In a full solver, it would

be necessary to store ψ and χ in the same layout, as χ will become a future input.

We can slightly modify our algorithm to achieve this by using the KNC intrinsic

mm512 mask blend ps to restore the original pairings shown in Figure 4. As we hold

all results in registers already, this adjustment should not be costly.

III.3.3 U

We only require that values of any single U ∈ C3×3 are stored contiguously. Thus,

we store four gauge matrices at every index of U . These correspond to the forward

links for the indexed site (see Section II.3). The storage scheme is much like that of

ψ in Figure 5, but with four gauge matrices for every site index. U does not change

with the number of RHS. Since values of U are broadcast to fill vector registers, their

ordering in memory is arbitrary.

III.4 INDEX CALCULATION

To apply Dslash for some site, we need its linear site index to access ψ in memory

and its coordinates to determine neighboring sites. We linearize neighbor coordinates

(see Subsection II.1.1) to access neighboring ψ. These calculations can be expensive.

If, however, the computation is memory bandwidth bound, the cost may be hidden.

To test this hypothesis, we add a shift table option to the program. The shift table

contains precomputed neighbor indices and, in the worst case, occupies less space

than a single cache line, so its effect on memory bandwidth saturation should be

minimal. In our experiments, we observe the effect of using the shift table instead of

computing neighbor indices on the fly.

III.5 SYNCHRONIZATION BARRIERS

We parallelize the computation using the OpenMP library, binding OpenMP

threads to hardware threads. We divide the linearized sites among the threads ac-

cording to some scheme, we call this a lattice traversal. The default style, which we

refer to as default chunking, of traversal uses a #pragma omp parallel for direc-

tive and loops over all lattice sites. OpenMP will break the sites into chunks and

distribute them in numerical order to the different threads. For example, if there

were 100 sites and 20 threads, thread 0 would process the first 5 sites, thread 1 the
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next 5, and so on. There will be a default OpenMP synchronization barrier after the

for loop over sites.

Our experimental styles of traversal launch all threads with a #pragma omp

parallel and manually assign a range of sites to apply Dslash over. Using this

style, we explicitly call a synchronization barrier after a thread has called Dslash

for its allotment of sites. This method of synchronization allows us to make use of

a special barrier written for KNC (Barrier mic.h [24]) to test its effects on syn-

chronization latency. However, we have to spend FLOPs explicitly calculating site

indices.

III.6 PREFETCHING

Achieving maximum memory throughput on KNC requires prefetching [11]. We

cannot reliably know what sites are being processed by other threads at a given

moment. A thread only has definite knowledge of what sites it will load, so we must

prefetch using this information. We choose to prefetch into L1 ψ for the current

direction before issuing loads and arithmetic intrinsics. If fetched any earlier, the

data might spill from L1, as four threads share an L1 of only 32 KB.

A thread also knows what site it will process on its next call to Dslash. We can

L2 prefetch all the data needed by the next call far in advance, as the size of L2 is 512

KB, enough to hold nearly 700 ψ for 8 RHS (ignoring that L2 is unified instruction

and data).

We experiment with prefetching by selectively disabling the software prefetching

of specific neighbors and by disabling L1 or L2 prefetching altogether. Hardware

prefetching is left at its default setting.

III.7 GAUGE FIELD COMPRESSION

We can take advantage of the fact that the third column of any U is the cross

product of the first two columns. Instead of storing all 18 values, we need at most

12 and can compute the rest. In the case of a bandwidth-bound computation, this

seems advantageous.

We experiment with gauge matrices of sizes 18, 12, and 16. We refer to the

act of reducing gauge matrices to hold 12 and 16 values as 12-compression and 16-

compression, respectively. Though 16-compression would seem at first superfluous,
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it creates gauge matrices the size of a cache line. This may positively affect perfor-

mance because backward neighbor U are not stored contiguously (though they can

be if storing 8 U per site). Figure 6 illustrates physical memory with and without

compression.
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FIG. 6: U in physical memory with and without compression.

III.8 PAGE SIZE

For good performance, it can be necessary to enable 2MB memory pages on the

coprocessor itself. For applications such as ours which execute in native mode, this

must be done manually, either by adding specific code or through a library [25]. For

the majority of (our) cases, the page size makes little difference, but it is necessary

in one instance (see Chapter V).

III.9 SUMMARY

In this chapter, we detailed our implementation strategy for 8 and 16 RHS. We

explained the challenges of filling vector registers completely presented by 8 RHS

and how we overcame them. We described how we used a register blocking approach

to store intermediate sums and avoid extra memory writes. We then discussed the

challenges register blocking presents for a 16 RHS implementation due to the limited

number of registers available to hardware threads and how we overcame them. We

contrasted our 8 and 16 RHS approaches, which differ as a consequence of KNC’s
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architectural characteristics. We detailed our approach to memory layout in context

of the needs of our algorithm. Finally, we introduced several experimental aspects of

our implementation: index calculation, synchronization barriers, prefetching, com-

pression, and TLB page size.



27

CHAPTER IV

LATTICE TRAVERSAL EXPERIMENTS

In this chapter, we present experimental strategies for lattice traversal, which is

the order in which threads process sites. Our general motivation when designing

traversals is to minimize the number of ψ which are reloaded. To reload some ψ

means to, during a single iteration, load ψ from main memory after having already

loaded it from memory and evicted it from cache. In the typical case of a large lattice

and small cache, reuse of ψ will be very low without a clever traversal strategy (we

know this from our own experiments).

IV.1 LEXICOGRAPHICAL TRAVERSAL

We call the processing of sites in numerical order of their linearized site index (see

Subsection II.1.1) lexicographical traversal. Assuming we are computing Dslash over

even ((x+y+z+t) | 2) and odd sites separately and that even sites are processed first,

then, beginning with site <0, 0, 0, 0>, we traverse along the x direction, processing

even values of x. After exhausting x, we increment y and traverse along x again,

beginning at <0, 1, 0, 0> and processing odd values of x. When we reach the highest

value of y, we increment z and the process repeats. Figure 7 illustrates the pattern

of lexicographical traversal.

IV.2 CACHE-CONTROLLING TRAVERSAL

To improve upon naive lexicographical traversal, we propose a method to mini-

mize main memory accesses by controlling the contents of L2 cache. KNC cores are

capable of L2 cache-to-cache transfers, allowing cores to treat non-local L2 caches as

a pseudo third level of cache. Among KNC’s intrinsics is a function, mm clevict,

which evicts a block from both levels of cache. Using this instruction, threads make

room for their site’s neighbors in cache by evicting sites that will not be loaded again

in the near future. Though the latency of cache-to-cache transfers and memory-to-

cache transfers is nearly the same (memory is reportedly 17% slower [11]), our hy-

pothesis is that memory bandwidth is the limiting factor of Dslash performance for
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FIG. 7: An example of lexicographical site traversal of even sites beginning with site
0.

large lattices, so diverting memory transfers to cache may increase overall through-

put.

To explain cache-controlling traversal, we think of the lattice as a series of slices

in the time dimension. Each time slice is of size LxLyLz and there are Lt of them.

We process each cube in order of increasing t, evicting sites from t − 2 (wrapping

around as necessary) as we go. To accomplish this, we synchronize the threads with

a barrier after each slice, then divide the cube between the threads as in default

chunking (see Section III.5). For example, assume L2 will hold three slices’ worth of

ψ, neglecting U , which can be loaded non-temporally. After processing the sites at

t, t, t+ 1, and t− 1 will reside in L2. Threads then synchronize and begin to process

t+ 1. Before site <i, j, k, t+ 1> loads a forward time neighbor from t+ 2, which will

cause an uncontrolled eviction, we evict ψ from <i, j, k, t − 1>, and so do not risk

evicting a neighbor needed to process the sites of t+ 1.

Because thread scheduling is essentially random, the least recently used ψ cannot

reliably be determined. Thus, when processing a site at t, it is possible to evict a

site from t itself, t− 1 or t− 2. Cache-controlling traversal ensures the site is evicted

from t− 2. Edges evicted in this way will be reused, unlike most sites we evict, but

they would need to be reloaded anyway once we reach the opposite end of the lattice.

For a direct performance comparison, let us consider a synchronized traversal
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along t as described in the preceding paragraphs but without deliberate evictions.

We hypothesize that the difference in performance will depend on the amount of

memory bandwidth saved by increasing cache-to-cache transfers and thus decreasing

main memory traffic. As stated above, an uncontrolled eviction may remove a block

containing data from t, t − 1, or t − 2. We consider evictions from t − 2 desirable

and others undesirable. We can conduct a simulation of our hypothetical traversal

and determine the rate at which undesirable evictions are made. Table 2 shows the

relationship between lattice size and rate of undesirable evictions. Interestingly, the

rate changes with lattice volume, but not in a wholly predictable way. This result

may be worth further inquiry.

Lattice Volume % Undesirable Evictions

84 31.5
164 16.3
244 10.6
324 12.7

TABLE 2: Percentage of undesirable evictions in simulations traversing lattices of
various volumes.

For our cache-controlling traversal to pay off, the amount of bandwidth

saved must increase effective memory throughput enough to overcome the cost of

mm clevict, additional synchronization barriers, and the index calculation for the

evicted site. Unfortunately for our scheme, the percentage of evictions which are

undesirable decreases significantly for larger lattices.

IV.3 INTERLEAVING

By default, OpenMP divides the lattice into congruent chunks of lexicographically

contiguous sites and assigns one chunk to each thread, which is traversed lexicograph-

ically. Recall that each core supports four hardware threads. If the lattice is large

enough, even two adjacent threads will never share a neighbor. In other words, by

the time thread 1 loads a site with a neighbor in chunk 2 (traversed by thread 2),

that site will already have been evicted from L2. Figure 8 contrasts the two traver-

sal strategies. Note that although the figure may suggest that interleaved sites are

traversed in y and then x, this is not the case. Each thread still traverses in order of

increasing x, y, z, then t.

We estimate that, for large lattices (e.g. 324), interleaved traversal will result in
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increased cache hit rates, as the size of the cache is effectively quadrupled compared

to the default case. Simulations predict a gain in L2 hit rate of over 10% for 324.

(a) (b) 

Thread 1 Thread 2 Thread 3 Thread 4 

FIG. 8: (a) Default chunking. Threads process their chunks lexicographically. (b)
Interleaved traversal. Threads alternate sites, but they are still traversed lexico-
graphically.

IV.4 SUMMARY

In this chapter, we described three proposals for lattice traversal. We described

a lexicographically chunked traversal equivalent to a #pragma omp parallel for

loop. We then proposed a novel traversal technique designed to maximize the effi-

ciency of KNC’s interconnected L2 caches. Finally, we described a traversal which

interleaves threads bound to the same core to take advantage of their shared cache.
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CHAPTER V

RESULTS AND DISCUSSION

In this chapter, we describe the experimental procedure used to test our kernel

and discuss the results thereof. For aesthetic purposes, numerical values appearing

in this section have been rounded to the nearest integer toward zero.

V.1 EXPERIMENTAL SETUP

To evaluate our different approaches to Dslash implementation, we test every

combination of the following options (refer to Chapter III for descriptions):

� Number of RHS (8/16)

� Lattice size (84/164/244/324)

� Shift table (ST/default)

� Thread interleaving (interleaving/default)

� Compression (12/16/default)

� Cache-controlling traversal (CCT/default)

These 192 different combinations make up the main experiment which generates the

majority of our analysis. Before performing these tests, we evaluate Barrier mic

versus the OpenMP synchronization barrier and test the effects of prefetching on

the various lattice sizes. We proceed in this way because the results are quite clear

in these two cases and it allows us to reduce the number of results we present to a

manageable number.

We run each program for a number of iterations based on lattice size

(5000/500/100/50 for 84/164/244/324, respectively), recording the run time of the

iterations (excluding the setup of ψ and U), and divide the number of FLOPs per-

formed (1320 × #RHS × V OL
2

) by this time. The first few iterations are thrown

out, which, to the best of our knowledge, is the convention when timing for perfor-

mance. We perform a number of such trials based on lattice size (20/15/10/5) and
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take the average to be our result. One may wonder why we do not simply perform

more iterations and this is because we observe a variance in the GFLOPS which is

inexplicably unchanged by adding iterations to the trials. We use Intel® Vtune� to

measure memory bandwidth.

Our code is compiled by the Intel® C++ compiler version 16.0.0 and run in native

mode, directly on the KNC card. In addition to the experimental options, every test

program uses the following optional switches (required switches e.g. -mmic -openmp

are omitted):

-O3 -no-opt-prefetch -fno-alias -mcmodel=large

The machine on which we test is equipped with a Xeon Phi� KNC 7120P which

has a theoretical peak performance of 2.4 teraFLOPS (single precision) and 352

GB/sec memory bandwidth. Xeon Phi� KNC 5110P read bandwidth is reported to

be 164 GB/s by the STREAM benchmark [11], and our own testing confirms this

result. The 7120P’s bandwidth should be within 10% of the 5110P, as Intel® gives

their max memory bandwidth as 352 and 320, respectively.

We run all tests with 4 threads per core to minimize the latency of 4 cycle arith-

metic instructions and 60 cores, leaving the last to handle OS functions. We find

that in all tested cases these settings produce the best results.

We ensure correctness by first calculating a checksum for a particular lattice size

using QDP++ [26]. We compare this sum to our own output.

V.2 RESULTS

V.2.1 Prefetching

We begin our presentation of the experimental results by discussing L1 and L2

prefetching.

The results here are clear, save a single caveat we discuss below. L1 prefetching

improves performance without exception, and dramatically so in the case of 84. L2

prefetching improves performance dramatically for the bandwidth-bound larger lat-

tices of 244 and 324. L2 prefetching is not required in the case of 84, as the entire

lattice is L2 resident. There is a caveat to this, however. Disabling L2 prefetching

improves performance for 84 lattices only when 2MB pages are enabled (see Section
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VOL 84 164 244 324

RHS 8 16 8 16 8 16 8 16

L1P 651 708 419 473 337 375 346 387
No L1P 571 565 362 389 298 325 311 329
L2P 582 618 419 473 337 375 346 388
No L2P 651 708 300 327 228 233 218 244

TABLE 3: L1 and L2 prefetch experimental results. Values are in GFLOPS. The
results compared here are the fastest case for each lattice size (see Table 5).

III.8). If huge pages are not enabled, L2 prefetching strongly improves performance

for 84, but overall performance is significantly lower.

Experiments that follow can be assumed to use the optimal prefetching strategy

based on lattice size.

V.2.2 Barriers

The test of synchronization barriers yields another clear result.

VOL 84 164 244 324

RHS 8 16 8 16 8 16 8 16

Barrier mic 651 708 419 473 337 375 346 387
OpenMP 520 630 409 467 323 371 338 383

difference 131 78 10 6 14 4 8 4

TABLE 4: Comparison (in GLFOPS) of the effects of two different barriers on re-
sults. Barrier mic is a specialized barrier designed for KNC. OpenMP is the default
OpenMP synchronization barrier. Difference is positive when Barrier mic is higher.

The results here are as one would expect. Barrier length is sufficiently short that

choice of barrier has little effect on results for lattices larger than 84, but a profound

effect on lattices of that size, as the barrier time is large relative to iteration time.

Similarly, the effect of a slower barrier is doubly negative for 8 RHS, as the amount

of work done between barriers is half that of 16 RHS. Barrier mic is intended to be

a fast barrier for KNC and it succeeds in this capacity.

Experiments that follow can be assumed to use Barrier mic exclusively.

V.2.3 Main Results

With barriers and prefetching out of the way, we present the main results in
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Table 5. Build options appear on the left side of the table. There are 4 categories of

build option: shift table, interleaving, compression, and cache-controlling traversal.

Presence of an S indicates the shift table was used. Letter i indicates interleaving

was used. A 12 indicates 12-compression and a 16 16-compression. C indicates

cache-controlling traversal. Absence of an indicator for any category implies the

default value (see Chapter III). The maximum values for each lattice size and RHS

value are indicated in bold and in the final row of the table.

In the following sections we attempt to explain the observed results for each

category.

VOL 84 164 244 324

RHS 8 16 8 16 8 16 8 16

Si12C 155 226 313 352 325 341 317 357
Si12 521 638 342 368 315 354 284 292
Si16C 170 243 332 372 335 354 338 379
Si16 614 708 357 390 328 375 294 305
SiC 160 232 334 367 327 343 314 365
Si 651 694 339 373 315 357 275 288
S12C 135 178 303 357 312 331 290 276
S12 495 605 383 439 314 327 258 246
S16C 149 191 336 374 337 349 314 284
S16 568 670 411 464 336 340 278 252
SC 142 181 329 374 310 341 283 279
S 600 656 398 462 307 328 248 239
i12C 152 225 301 348 284 317 314 355
i12 495 608 334 367 293 337 285 290
i16C 167 247 334 369 314 328 346 387
i16 581 703 363 393 319 354 299 303
iC 164 236 332 365 307 327 323 373
i 625 671 343 378 307 348 281 295
12C 134 176 298 349 283 315 288 273
12 466 577 377 434 290 320 262 243
16C 146 194 335 380 310 323 318 285
16 549 668 419 473 315 331 281 255
C 141 184 332 371 297 329 293 279
default 579 640 405 463 300 326 255 235

max 651 708 419 473 337 375 346 387

TABLE 5: Main experimental results. The option key is as follows: S=shift ta-
ble, i=interleaving, 12 =12-compression, 16 =16-compression, C =cache-controlling
traversal. Absence of a key category implies a default value (see Chapter III).
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V.2.4 Compression

The effects of compression are easily understood, for the most part. 16-

compression ensures gauge matrices are the size of cache lines, so never is extra

data loaded. Use of uncompressed and 12-compressed gauge matrices always results

in superfluous memory traffic due to the layout of U . There are 4 forward links

associated with the site being processed. These are stored contiguously. Backward

links are indexed by the backward neighbor, which is different for each direction.

This results in extra traffic for every load of a backward link. In the uncompressed

case, this results in 32 bytes of extra data loaded from the forward links and 56 bytes

per backward link, for a total of 200 bytes per site. This adds 10% memory traffic

overhead (for 16 RHS). In the 12-compressed case, we’re required to load an entire

cache line for each access, so while this does not hurt for the forward links (because

12× 4 is a multiple of 16, the number of floats in a cache line), it costs 16 bytes per

backward link, for a total of 64 bytes. This means the total amount of data loaded

in the 12-compressed case is equal to the 16-compressed case, but 12-compression

introduces additional arithmetic instructions in the calculation of the extra 4 gauge

matrix entries, which is why 12-compression fails to beat 16-compression in any case

we tested. This effect can be mitigated by storing back-link U contiguously with

forward U in the order of access, but this doubles the amount of data stored and is

not the approach that we chose.

In the case of 84 we see a different pattern. Uncompressed wins for 8 RHS and

16-compressed wins for 16 RHS. In the case of 8 RHS, this is seemingly because the

lattice is cache-bound and we have no reason to increase the arithmetic intensity. In

the case of 16 RHS, we surmise the reason for 16-compression’s victory is that the

lattice in this case is very close to busting L2, and the 10% overhead of uncompressed

gauge matrices is enough to push it over, causing the drop in performance observed

for lack of compression.

VOL 84 164 244 324

RHS 8 16 8 16 8 16 8 16

12 466 577 377 434 290 320 262 243
16 549 668 419 473 315 331 281 255
default 579 640 405 463 300 326 255 235

TABLE 6: Compression comparison (GFLOPS).
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V.2.5 Interleaving

There are consistent patterns observed across our tests of thread interleaving.

The patterns are consistent for a particular lattice, however there is no clear trend

in the data based on lattice size. Table 7 shows the average change in GFLOPS by

lattice size and traversal strategy. Because CCT changes access patterns, there is an

influence on the performance of interleaving (which also changes access patterns). Use

of the average difference is appropriate here because the trends are consistent across

lattice sizes and traversal strategies. There are no swings concealed by considering

the average.

VOL 84 164 244 324

RHS 8 16 8 16 8 16 8 16

C 20 50 2 -5 7 3 27 90
default 38 34 -53 -77 2 25 22 50

TABLE 7: Average change in GFLOPS for interleaved threads versus non-interleaved
by lattice size and traversal strategy. Here, default refers to all non-CCT results.

Based on the results in Table 7, we conclude that the effect of interleaving is

based on access pattern, but not necessarily predictable, given a lattice and traversal

strategy. The idea behind interleaved traversal is to increase locality by having

threads that share a cache work in the same area, where spatial neighbors are shared.

Why this strategy should be so effective for small and large lattices, but ineffective to

detrimental for medium-sized lattices, is not clear. Additionally, we see that CCT has

a pronounced effect on the results of interleaving, lending more credence to the idea

that interleaving results are based on access pattern. We also observe a pattern where

interleaving has a stronger influence, positive and negative, on 16 RHS. Again, this

behavior is mysterious. Further discussion is devoted to the confluence of interleaving

and CCT in Subsection V.2.8.

V.2.6 Shift Table

Use of a shift table for neighbor indices should increase memory traffic and provide

greater speedup to lattices which are not bandwidth-bound. We find this to be the

case with one exception, 244. There is a rather large bump in performance for lattices

of size 244 for unknown reasons. The effect is increased by CCT. Why this should

be the case is not clear.
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Use of a shift table does not significantly alter speeds for 164 and 324, which is

expected. In the case of 84, the shift table predictably increases speed modestly as

we desire lowered arithmetic intensity in this cache-bound region. Shift table usage

does nothing for 84 CCT, but speeds there are presumably flattened by barriers.

VOL 84 164 244 324

RHS 8 16 8 16 8 16 8 16

C 1 -1 2 2 25 20 -4 -2
default 25 17 -1 -2 15 10 -4 0

TABLE 8: Average change in GFLOPS for shift table versus on-the-fly index cal-
culation by lattice size and traversal strategy. Here, default refers to all non-CCT
results.

V.2.7 Number of RHS

We expect 16 RHS to outperform 8 RHS in every case. This is what we find, but

the situation is not so simple. We compare the two implementations, splitting the

table into interleaved and non-interleaved traversal in Table 9.

VOL 84 164 244 324 84 164 244 324

Si12C 71 39 16 40 S12C 43 54 19 -14
Si12 117 26 39 8 S12 110 56 13 -12
Si16C 73 40 19 41 S16C 42 38 12 -30
Si16 94 33 47 11 S16 102 53 4 -26
SiC 72 33 16 51 SC 39 45 31 -4
Si 43 34 42 13 S 56 64 21 -9
i12C 73 47 33 41 12C 42 51 32 -15
i12 113 33 44 5 12 111 57 30 -19
i16C 80 35 14 41 16C 48 45 13 -33
i16 122 30 35 4 16 119 54 16 -26
iC 72 33 20 50 C 43 39 32 -14
i 46 35 41 14 default 61 58 26 -20

avg 81 34 30 26 avg 68 51 20 -18

TABLE 9: Difference between 16 RHS and 8 RHS (GFLOPS). A positive value
indicates a higher speed for 16 RHS. The left table shows interleaved traversals. The
right, default.

For a lattice of size 84, barrier length dominates and 16 RHS outperforms 8 RHS

accordingly. At this size, the entire lattice fits into L2, so reuse is not a strong factor,

as 8 RHS 84 is already busting L1. We see a sharp reduction in 16 RHS advantage
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after 84. Barrier length matters little even at 164 (see Subsection V.2.2), but reuse

factor is dropping for 16 RHS as lattices grow in size. Reuse is so low at 324 non-

interleaved that 8 RHS outperforms 16 in every case. Recall that even if reuse were

similar, 8 RHS has an advantage in instruction efficiency (see Subsection III.2.2).

However, interleaving increases reuse for 324 so powerfully that the performance of

16 RHS overcomes the deficit and even surpasses 8 RHS (though not by much, except

in the case of CCT, which is discussed in depth in Subsection V.2.8).

V.2.8 Cache-controlling Traversal

The most important result we have to discuss is that of cache-controlling traversal.

Recall (from Section IV.2) that our intention with CCT was to explicitly ensure that

sites evicted from cache would be those not needed by the sites currently being

processed. To do this, it was necessary to both explicitly control the contents of

cache by using an eviction instruction, mm clevict, and to implicitly control do so

by forcing threads to work together on sequential subsections of the lattice.

It turns out that only implicit control is necessary to increase performance. The

first tests of CCT showed a huge performance gain for 324. We realized that we had

in fact introduced two different variables, the explicit and implicit control. Explicit

evictions cannot be done without sequential sublattice traversal, so the only test

to perform was disabling the explicit evictions and leaving the controlled traversal.

Doing so further increased performance (by 10 GFLOPS). The evictions were only

wasting CPU cycles.

Table 10 shows the average change in speed by lattice size and number of RHS.

Results are consistent other than 244 8 RHS, where there are a few small gains but

mostly small losses.

VOL 84 164 244 324

RHS 8 16 8 16 8 16 8 16

C -410 -443 -49 -52 0 -8 36 54

TABLE 10: Average change in GFLOPS when employing cache-controlling traversal.

For small lattices, CCT’s extra barriers cripple performance. At 164, it’s an

open question whether or not the barriers or the change in access patterns (or both)

degrade performance. We performed a test, including a single barrier at half volume

for a lattice of 164 16 RHS, which similarly degraded performance by approximately



39

50 GFLOPS. This is a strong indication that 164 16 RHS is very sensitive to access

pattern.

For 244, little change in speed occurs when using CCT. Performance for 324, how-

ever, is dramatically increased, more so when combined with thread interleaving, even

eliciting a synergistic response. Interleaving increases 324 16 RHS by 60 GFLOPS

and CCT alone increases performance by 44 GFLOPS. Together, performance is in-

creased by 152 GFLOPS. Because the only variable that could be changing here is

reuse, we must conclude that interleaving and CCT together greatly increase reuse

by altering the site access pattern. This makes intuitive sense, as CCT forces threads

to work closer to each other than they would otherwise, increasing the potential for

neighbor reuse via cache-to-cache transfers and standard cache behavior. We can

also view CCT as resynchronizing threads 32 times per iteration. For a larger lat-

tice, the chance for interleaved threads to desynchronize due to the random nature of

thread scheduling is increased. CCT puts a bound on how far out of synchronization

threads can fall.

We are lucky, in some sense, that the performance gains seen by CCT are not de-

pendent on mm clevict because this instruction is (for Xeon Phi�) exclusive to KNC

and nowhere to be found in the next generation of KNC’s intrinsic set (AVX/2/512).

In light of the failure of explicit eviction, we should perhaps rename CCT to reuse-

controlling traversal or synchronization-controlling traversal, but we prefer the ring

of the original name.

V.3 PERFORMANCE COMPARISON

It is difficult to directly compare our work to most of the published kernels in

Section II.7 because their kernels and solvers are generally of different arithmetic

intensity ([9], for example). We can, however, compare directly to soon-to-be pub-

lished results from an optimized a 16 RHS Dslash kernel using QPhiX and its code

generator [27]. We can also compare directly to the results of a single RHS Dslash

[13].

We observe speedups of at least 20% over the best previous performance in all

cases. QPhiX 16 RHS does not implement register blocking, which gives the compiler

control of how register spilling occurs (our implementation should not spill). For

larger lattices, we presume this to account for the difference in performance between

the two implementations, which are otherwise very similar at the KNC intrinsic level.



40

VOL Our 16 RHS QPhiX + CG 16 RHS Single RHS

84 708 411 low
164 473 402 251
244 375 306 255
324 387 282 315

TABLE 11: Results comparison (GFLOPS).

We see such a large performance difference at 84 because our code places the OpenMP

thread spawn outside of the iteration loop, so the QPhiX+CG implementation pays

the cost of the thread spawn for every iteration.

V.4 SUMMARY

In this chapter we described our experimental setup and results before offering

our interpretation thereof. We first presented experiments in which we determined

the optimal use of prefetching and synchronization barriers. We then presented the

results of a series of 192 different experiments using our programs. We described

the effects of gauge compression on various lattices and explained the behavior we

observed. We determined that compression into a size equal to a cache line is ideal

unless all U are stored contiguously, which necessitates double the data stored for U .

We described the effects of interleaving and their seemingly unpredictable nature.

We presented the differences between the results of 8 RHS and 16 and noted that

they were essentially as predicted. We described the results of our cache-controlling

traversal. We discovered that the evictions were unnecessary and actually a hindrance

to performance. We described how CCT and interleaving used together synergize to

greatly increase data reuse. Finally, we compared our performance to similar Dslash

implementations and showed that our methods resulted in strong speedups in all

tested cases.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

LQCD simulations remain a computation of profound importance. Precision im-

provements to LQCD calculations that will require exascale computing have been

identified [28]. Thus, the need for more efficient algorithms is clear. Performance

improvements like those achieved in this thesis will only increase in significance as

the gap between CPU and memory speeds continues to grow. In this thesis we have

contributed the following:

� Implemented two novel register blocking algorithms for 8 and 16 RHS Dslash

kernels

� Achieved speedups of 1.2 to 1.87 in real world single node lattice sizes

� Showed that with 4 U stored per site, gauge compression should be to chip

cache line size

� Reported the effects of numerous variables on KNC Dslash performance

� While exploring these variables, we raised a number of interesting questions

(see future work below)

In the future, we plan to address the following:

� An expanded implementation of CCT which includes traversal and eviction

based on cache size

� CCT techniques may fail for lattices with relatively large spatial dimensions.

For example, 483×16 is not much larger than 324, but performance is reduced.

We can retool CCT to take advantage of a short time dimension.

� Expand the kernel beyond a single node

� Explore new traversal experiments. For example: two chunks allocated to

adjacent (in number) cores might traverse in opposite directions and meet in

the middle. Another example is a more advanced form of CCT which aims to

avoid reloading of ψ (almost) entirely



42

� CCT has hinted at a lower bound for cache size needed to completely avoid

reloads of ψ, in the future we intend to prove this bound analytically

The following questions were raised during our experiments and we plan to answer

them:

� Why does the CCT percentage of undesirable evictions change based on lattice

size?

� What interaction is there between 2MB pages and prefetching for 84?

� If it is true that access pattern is the determining factor which explains many

of our performance results, how exactly do these patterns change performance?

� Why is thread interleaving detrimental for lattices of size 164 specifically?

� Why is shift table use surprisingly effective for 244?

� Why does CCT not benefit 244, which should be bandwidth-bound and in need

of extra reuse from locality?
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APPENDIX A

INTERACTING COMPONENTS

µ

1 2 3 4

00r 30i 00r 30r 00r 20i 00r 20r
00i 30r 00i 30i 00i 20r 00i 20i
10r 20i 10r 20r 10r 30i 10r 30r
10i 20r 10i 20i 10i 30r 10i 30i

01r 31i 01r 31r 01r 21i 01r 21r
01i 31r 01i 31i 01i 21r 01i 21i
11r 21i 11r 21r 11r 31i 11r 31r
11i 21r 11i 21i 11i 31r 11i 31i

02r 32i 02r 32r 02r 22i 02r 22r
02i 32r 02i 32i 02i 22r 02i 22i
12r 22i 12r 22r 12r 32i 12r 32r
12i 22r 12i 22i 12i 32r 12i 32i

TABLE 12: Components of ψ which interact during projection, which is relevant to
8 RHS pairing (see Subsection III.1.1)
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APPENDIX B

COMPILATION VARIABLES

Variable Range Description (with implicit if defined)

BARR – Synchronize with Barrier mic.h

CCT – Enables cache-controlling traversal
COMPRESS12 – Enables 12-compression, mutually exclusive

with COMPRESS16
COMPRESS16 – Enables 16-compression
HUGEPAGES – Enables 2MB memory pages
ITER INT+ Dslash will be applied to the entire lattice

ITER number of times
ITT – Enables Vtune� resume/pause around timing
L1PREFETCH – Disables L1 prefetch if set to 0
L2PREFETCH 0-255 Bitwise enable L2 prefetch for directions
LX, LY, LZ, LT INT+ Set lattice dimensions
NEI0 – Set neighbor indices to 0. Used for testing

maximum performance
NOCHECKOUT – Do not display checksum after execution
NOFLIP – Disable permutes for testing (8 RHS)
QUICKSET – Disable initialization of ψ, χ, and U
SEED1 INT+ Set seed for ψ init
SEED2 INT+ Set seed for U init
SHIFTTABLE – Enables shift table, disabling index calc
SKIP INT+ Determines how many iterations to perform

without timing
THREADSITEREPORT – Output a list of sites processed by threads in

numerical order separated by a newline
TIMEOUT – Output iteration time elapsed in seconds with

setprecision(12)

TABLE 13: Compilation variables (C preprocessor). A range of – indicates a
variable which can only be either defined or undefined. A range of INT+ indicates a
variable may be set to any positive integer (without considering overflow).
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APPENDIX C

8 RHS EXAMPLE CODE

1 v1 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 6 ] ) ) ;

2 v13 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 7 ] ) )

;

3 #i f n d e f NOFLIP

4 v1 = mm512 add ps ( v1 , pm( f l i p ( v13 ) ) ) ;

5 #e l s e

6 v1 = mm512 add ps ( v1 , v13 ) ;

7 #end i f

8 v7 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 0 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

9 v14 = mm512 mul ps ( v7 , v1 ) ;

10

11 v0 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 0 ] ) ) ;

12 v13 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 1 ] ) )

;

13 #i f n d e f NOFLIP

14 v0 = mm512 add ps ( v0 , pm( f l i p ( v13 ) ) ) ;

15 #e l s e

16 v0 = mm512 add ps ( v0 , v13 ) ;

17 #end i f

18 v15 = mm512 mul ps ( v7 , v0 ) ;

19

20 v6 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 0 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

21 v14 = mm512 fmsub ps ( v6 , v0 , v14 ) ;

22 v15 = mm512 fmadd ps ( v6 , v1 , v15 ) ;

23

24 v2 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 2 ] ) ) ;

25 v13 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 3 ] ) )

;

26 #i f n d e f NOFLIP

27 v2 = mm512 add ps ( v2 , pm( f l i p ( v13 ) ) ) ;

28 #e l s e

29 v2 = mm512 add ps ( v2 , v13 ) ;
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30 #end i f

31

32 v8 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 0 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

33 v14 = mm512 fmadd ps ( v8 , v2 , v14 ) ;

34

35 v3 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 8 ] ) ) ;

36 v13 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 9 ] ) )

;

37 #i f n d e f NOFLIP

38 v3 = mm512 add ps ( v3 , pm( f l i p ( v13 ) ) ) ;

39 #e l s e

40 v3 = mm512 add ps ( v3 , v13 ) ;

41 #end i f

42 v15 = mm512 fmadd ps ( v8 , v3 , v15 ) ;

43

44 v9 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 0 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

45 v14 = mm512 fnmadd ps ( v9 , v3 , v14 ) ;

46 v15 = mm512 fmadd ps ( v9 , v2 , v15 ) ;

47

48 v4 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 4 ] ) ) ;

49 v13 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 5 ] ) )

;

50 #i f n d e f NOFLIP

51 v4 = mm512 add ps ( v4 , pm( f l i p ( v13 ) ) ) ;

52 #e l s e

53 v4 = mm512 add ps ( v4 , v13 ) ;

54 #end i f

55

56 #i f d e f COMPRESS16

57 v10 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 3 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

58 #e l i f d e f i n e d (COMPRESS12)

59 v10 = mm512 set1 ps ( pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ RE ] − pgud1f

[ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ IM ] − ( pgud1f [ 0 ] [ 2 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ RE ]

− pgud1f [ 0 ] [ 2 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ IM ] ) ) ;

60 #e l s e

61 v10 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 0 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

62 #end i f
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63 v14 = mm512 fmadd ps ( v10 , v4 , v14 ) ;

64

65 v5 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 1 0 ] ) )

;

66 v13 = mm512 load ps ( &(((( f l o a t (* ) [ 1 2 ] [ 1 6 ] )&p s i [ 0 ] ) [ f s i t e 1 ] ) [ 1 1 ] )

) ;

67 #i f n d e f NOFLIP

68 v5 = mm512 add ps ( v5 , pm( f l i p ( v13 ) ) ) ;

69 #e l s e

70 v5 = mm512 add ps ( v5 , v13 ) ;

71 #end i f

72 v15 = mm512 fmadd ps ( v10 , v5 , v15 ) ;

73

74 #i f d e f COMPRESS16

75 v11 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 3 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

76 #e l i f d e f i n e d (COMPRESS12)

77 v11 = mm512 set1 ps ( −(pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ IM ] + pgud1f

[ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ RE ] ) + ( pgud1f [ 0 ] [ 2 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ IM

] + pgud1f [ 0 ] [ 2 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ RE ] ) ) ;

78 #e l s e

79 v11 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 0 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

80 #end i f

81 v14 = mm512 fnmadd ps ( v11 , v5 , v14 ) ;

82 v15 = mm512 fmadd ps ( v11 , v4 , v15 ) ;

83

84 v16 = mm512 add ps ( v16 , v14 ) ; // upper 00 r | 01 r

85 #i f n d e f NOFLIP

86 v22 = mm512 add ps ( v22 , mp( f l i p ( v14 ) ) ) ;

87 #e l s e

88 v22 = mm512 add ps ( v22 , v14 ) ;

89 #end i f

90

91 v17 = mm512 add ps ( v17 , v15 ) ;

92 #i f n d e f NOFLIP

93 v23 = mm512 add ps ( v23 , mp( f l i p ( v15 ) ) ) ;

94 #e l s e

95 v23 = mm512 add ps ( v23 , v15 ) ;

96 #end i f

97
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98 v7 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 1 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

99 v14 = mm512 mul ps ( v7 , v1 ) ;

100 v15 = mm512 mul ps ( v7 , v0 ) ;

101 v6 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 1 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

102 v14 = mm512 fmsub ps ( v6 , v0 , v14 ) ;

103 v15 = mm512 fmadd ps ( v6 , v1 , v15 ) ;

104 v8 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 1 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

105 v14 = mm512 fmadd ps ( v8 , v2 , v14 ) ;

106 v15 = mm512 fmadd ps ( v8 , v3 , v15 ) ;

107 v9 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 1 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

108 v14 = mm512 fnmadd ps ( v9 , v3 , v14 ) ;

109 v15 = mm512 fmadd ps ( v9 , v2 , v15 ) ;

110 #i f d e f COMPRESS16

111 v10 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 3 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

112 #e l i f d e f i n e d (COMPRESS12)

113 v10 = mm512 set1 ps ( pgud1f [ 1 ] [ 0 ] [ RE]* pgud1f [ 0 ] [ 2 ] [ RE ] − pgud1f

[ 1 ] [ 0 ] [ IM ]* pgud1f [ 0 ] [ 2 ] [ IM ] − ( pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ RE ]

− pgud1f [ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ IM ] ) ) ;

114 #e l s e

115 v10 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 1 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

116 #end i f

117 v14 = mm512 fmadd ps ( v10 , v4 , v14 ) ;

118 v15 = mm512 fmadd ps ( v10 , v5 , v15 ) ;

119 #i f d e f COMPRESS16

120 v11 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 3 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

121 #e l i f d e f i n e d (COMPRESS12)

122 v11 = mm512 set1 ps ( −(pgud1f [ 1 ] [ 0 ] [ RE]* pgud1f [ 0 ] [ 2 ] [ IM ] + pgud1f

[ 1 ] [ 0 ] [ IM ]* pgud1f [ 0 ] [ 2 ] [ RE ] ) + ( pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ IM

] + pgud1f [ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ RE ] ) ) ;

123 #e l s e

124 v11 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 1 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

125 #end i f

126 v14 = mm512 fnmadd ps ( v11 , v5 , v14 ) ;
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127 v15 = mm512 fmadd ps ( v11 , v4 , v15 ) ;

128

129 v18 = mm512 add ps ( v18 , v14 ) ;

130 #i f n d e f NOFLIP

131 v24 = mm512 add ps ( v24 , mp( f l i p ( v14 ) ) ) ;

132 #e l s e

133 v24 = mm512 add ps ( v24 , v14 ) ;

134 #end i f

135 v19 = mm512 add ps ( v19 , v15 ) ;

136 #i f n d e f NOFLIP

137 v25 = mm512 add ps ( v25 , mp( f l i p ( v15 ) ) ) ;

138 #e l s e

139 v25 = mm512 add ps ( v25 , v15 ) ;

140 #end i f

141

142 v7 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 2 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

143 v14 = mm512 mul ps ( v7 , v1 ) ;

144 v15 = mm512 mul ps ( v7 , v0 ) ;

145 v6 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 2 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

146 v14 = mm512 fmsub ps ( v6 , v0 , v14 ) ;

147 v15 = mm512 fmadd ps ( v6 , v1 , v15 ) ;

148 v8 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 2 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

149 v14 = mm512 fmadd ps ( v8 , v2 , v14 ) ;

150 v15 = mm512 fmadd ps ( v8 , v3 , v15 ) ;

151 v9 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 2 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

152 v14 = mm512 fnmadd ps ( v9 , v3 , v14 ) ;

153 v15 = mm512 fmadd ps ( v9 , v2 , v15 ) ;

154 # i f d e f i n e d (COMPRESS16) | | d e f i n e d (COMPRESS12)

155 v10 = mm512 set1 ps ( pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ RE ] − pgud1f

[ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ IM ] − ( pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 0 ] [ RE ]

− pgud1f [ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 0 ] [ IM ] ) ) ;

156 #e l s e

157 v10 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 2 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

158 #end i f

159 v14 = mm512 fmadd ps ( v10 , v4 , v14 ) ;

160 v15 = mm512 fmadd ps ( v10 , v5 , v15 ) ;
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161 # i f d e f i n e d (COMPRESS16) | | d e f i n e d (COMPRESS12)

162 v11 = mm512 set1 ps ( −(pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ IM ] + pgud1f

[ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ RE ] ) + pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 0 ] [ IM ]

+ pgud1f [ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 0 ] [ RE ] ) ;

163 #e l s e

164 v11 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 2 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HINT NONE) ;

165 #end i f

166 v14 = mm512 fnmadd ps ( v11 , v5 , v14 ) ;

167 v15 = mm512 fmadd ps ( v11 , v4 , v15 ) ;

168 v20 = mm512 add ps ( v20 , v14 ) ;

169 #i f n d e f NOFLIP

170 v26 = mm512 add ps ( v26 , mp( f l i p ( v14 ) ) ) ;

171 #e l s e

172 v26 = mm512 add ps ( v26 , v14 ) ;

173 #end i f

174

175 v21 = mm512 add ps ( v21 , v15 ) ;

176 #i f n d e f NOFLIP

177 v27 = mm512 add ps ( v27 , mp( f l i p ( v15 ) ) ) ;

178 #e l s e

179 v27 = mm512 add ps ( v27 , v15 ) ;

180 #end i f

Listing C.1: 8 RHS code for direction 1 forward. The variables are unfortunately

named, but think of v0–v5 as holding projections, v6–v11 U , v12–v15 temporary,

v16–v21 upper sum, v22–27 lower sum.
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APPENDIX D

16 RHS EXAMPLE CODE

1 #undef t h e s i t e

2 #de f i n e t h e s i t e f s i t e 1

3 #de f i n e r00 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 0 ] ) )

4 #de f i n e r01 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 ] ) )

5 #de f i n e r02 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 2 ] ) )

6 #de f i n e r10 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 3 ] ) )

7 #de f i n e r11 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 4 ] ) )

8 #de f i n e r12 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 5 ] ) )

9 #de f i n e r20 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 6 ] ) )

10 #de f i n e r21 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 7 ] ) )

11 #de f i n e r22 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 8 ] ) )

12 #de f i n e r30 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 9 ] ) )

13 #de f i n e r31 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 0 ] ) )

14 #de f i n e r32 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 1 ] ) )

15 #de f i n e i 0 0 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 2 ] ) )

16 #de f i n e i 0 1 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 3 ] ) )

17 #de f i n e i 0 2 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 4 ] ) )

18 #de f i n e i 1 0 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 5 ] ) )
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19 #de f i n e i 1 1 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 6 ] ) )

20 #de f i n e i 1 2 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 7 ] ) )

21 #de f i n e i 2 0 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 8 ] ) )

22 #de f i n e i 2 1 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 1 9 ] ) )

23 #de f i n e i 2 2 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 2 0 ] ) )

24 #de f i n e i 3 0 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 2 1 ] ) )

25 #de f i n e i 3 1 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 2 2 ] ) )

26 #de f i n e i 3 2 mm512 load ps ( &(((( f l o a t (* ) [ 2 4 ] [ 1 6 ] )&p s i [ 0 ] ) [ t h e s i t e

] ) [ 2 3 ] ) )

27 // p r o j r 0 0 f i r s t

28 p r o j = mm512 add ps ( r00 , r30 ) ;

29 u r0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 0 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

30 uppe r r 00 = mm512 fmadd ps ( p ro j , u r0 , uppe r r 00 ) ;

31 l ow e r r 0 1 = mm512 fmadd ps ( p ro j , u r0 , l ow e r r 0 1 ) ;

32 u i 0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 0 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

33 upp e r i 0 0 = mm512 fmadd ps ( p ro j , u i 0 , u pp e r i 0 0 ) ;

34 l o w e r i 0 1 = mm512 fmadd ps ( p ro j , u i 0 , l ow e r i 0 1 ) ;

35 u r1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 1 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

36 uppe r r 10 = mm512 fmadd ps ( p ro j , u r1 , uppe r r 10 ) ;

37 l ow e r r 1 1 = mm512 fmadd ps ( p ro j , u r1 , l ow e r r 1 1 ) ;

38 u i 1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 1 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

39 upp e r i 1 0 = mm512 fmadd ps ( p ro j , u i 1 , u pp e r i 1 0 ) ;

40 l o w e r i 1 1 = mm512 fmadd ps ( p ro j , u i 1 , l ow e r i 1 1 ) ;

41 u r2 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 2 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

42 uppe r r 20 = mm512 fmadd ps ( p ro j , u r2 , uppe r r 20 ) ;

43 l ow e r r 2 1 = mm512 fmadd ps ( p ro j , u r2 , l ow e r r 2 1 ) ;

44 u i 2 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 2 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

45 upp e r i 2 0 = mm512 fmadd ps ( p ro j , u i 2 , u pp e r i 2 0 ) ;
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46 l o w e r i 2 1 = mm512 fmadd ps ( p ro j , u i 2 , l ow e r i 2 1 ) ;

47

48 // p r o j i 0 0

49 p r o j = mm512 add ps ( i00 , i 3 0 ) ;

50 uppe r r 00 = mm512 fnmadd ps ( p ro j , u i 0 , uppe r r 00 ) ;

51 l ow e r r 0 1 = mm512 fnmadd ps ( p ro j , u i 0 , l ow e r r 0 1 ) ;

52

53 upp e r i 0 0 = mm512 fmadd ps ( p ro j , u r0 , u pp e r i 0 0 ) ;

54 l o w e r i 0 1 = mm512 fmadd ps ( p ro j , u r0 , l ow e r i 0 1 ) ;

55

56 uppe r r 10 = mm512 fnmadd ps ( p ro j , u i 1 , uppe r r 10 ) ;

57 l ow e r r 1 1 = mm512 fnmadd ps ( p ro j , u i 1 , l ow e r r 1 1 ) ;

58

59 upp e r i 1 0 = mm512 fmadd ps ( p ro j , u r1 , u pp e r i 1 0 ) ;

60 l o w e r i 1 1 = mm512 fmadd ps ( p ro j , u r1 , l ow e r i 1 1 ) ;

61

62 uppe r r 20 = mm512 fnmadd ps ( p ro j , u i 2 , uppe r r 20 ) ;

63 l ow e r r 2 1 = mm512 fnmadd ps ( p ro j , u i 2 , l ow e r r 2 1 ) ;

64

65 upp e r i 2 0 = mm512 fmadd ps ( p ro j , u r2 , u pp e r i 2 0 ) ;

66 l o w e r i 2 1 = mm512 fmadd ps ( p ro j , u r2 , l ow e r i 2 1 ) ;

67

68 // p r o j r 0 1

69 p r o j = mm512 sub ps ( r10 , r20 ) ;

70 uppe r r 01 = mm512 fmadd ps ( p ro j , u r0 , uppe r r 01 ) ;

71 l ow e r r 0 0 = mm512 fnmadd ps ( p ro j , u r0 , l ow e r r 0 0 ) ;

72

73 upp e r i 0 1 = mm512 fmadd ps ( p ro j , u i 0 , u pp e r i 0 1 ) ;

74 l o w e r i 0 0 = mm512 fnmadd ps ( p ro j , u i 0 , l ow e r i 0 0 ) ;

75

76 uppe r r 11 = mm512 fmadd ps ( p ro j , u r1 , uppe r r 11 ) ;

77 l ow e r r 1 0 = mm512 fnmadd ps ( p ro j , u r1 , l ow e r r 1 0 ) ;

78

79 upp e r i 1 1 = mm512 fmadd ps ( p ro j , u i 1 , u pp e r i 1 1 ) ;

80 l o w e r i 1 0 = mm512 fnmadd ps ( p ro j , u i 1 , l ow e r i 1 0 ) ;

81

82 uppe r r 21 = mm512 fmadd ps ( p ro j , u r2 , uppe r r 21 ) ;

83 l ow e r r 2 0 = mm512 fnmadd ps ( p ro j , u r2 , l ow e r r 2 0 ) ;

84

85 upp e r i 2 1 = mm512 fmadd ps ( p ro j , u i 2 , u pp e r i 2 1 ) ;

86 l o w e r i 2 0 = mm512 fnmadd ps ( p ro j , u i 2 , l ow e r i 2 0 ) ;
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87

88 // p r o j i 0 1

89 p r o j = mm512 sub ps ( i10 , i 2 0 ) ;

90 uppe r r 01 = mm512 fnmadd ps ( p ro j , u i 0 , uppe r r 01 ) ;

91 l ow e r r 0 0 = mm512 fmadd ps ( p ro j , u i 0 , l ow e r r 0 0 ) ;

92

93 upp e r i 0 1 = mm512 fmadd ps ( p ro j , u r0 , u pp e r i 0 1 ) ;

94 l o w e r i 0 0 = mm512 fnmadd ps ( p ro j , u r0 , l ow e r i 0 0 ) ;

95

96 uppe r r 11 = mm512 fnmadd ps ( p ro j , u i 1 , uppe r r 11 ) ;

97 l ow e r r 1 0 = mm512 fmadd ps ( p ro j , u i 1 , l ow e r r 1 0 ) ;

98

99 upp e r i 1 1 = mm512 fmadd ps ( p ro j , u r1 , u pp e r i 1 1 ) ;

100 l o w e r i 1 0 = mm512 fnmadd ps ( p ro j , u r1 , l ow e r i 1 0 ) ;

101

102 uppe r r 21 = mm512 fnmadd ps ( p ro j , u i 2 , uppe r r 21 ) ;

103 l ow e r r 2 0 = mm512 fmadd ps ( p ro j , u i 2 , l ow e r r 2 0 ) ;

104

105 upp e r i 2 1 = mm512 fmadd ps ( p ro j , u r2 , u pp e r i 2 1 ) ;

106 l o w e r i 2 0 = mm512 fnmadd ps ( p ro j , u r2 , l ow e r i 2 0 ) ;

107

108 // p r o j r 1 0

109 p r o j = mm512 add ps ( r01 , r31 ) ;

110 u r0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 0 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

111 uppe r r 00 = mm512 fmadd ps ( p ro j , u r0 , uppe r r 00 ) ;

112 l ow e r r 0 1 = mm512 fmadd ps ( p ro j , u r0 , l ow e r r 0 1 ) ;

113 u i 0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 0 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

114 upp e r i 0 0 = mm512 fmadd ps ( p ro j , u i 0 , u pp e r i 0 0 ) ;

115 l o w e r i 0 1 = mm512 fmadd ps ( p ro j , u i 0 , l ow e r i 0 1 ) ;

116 u r1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 1 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

117 uppe r r 10 = mm512 fmadd ps ( p ro j , u r1 , uppe r r 10 ) ;

118 l ow e r r 1 1 = mm512 fmadd ps ( p ro j , u r1 , l ow e r r 1 1 ) ;

119 u i 1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 1 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

120 upp e r i 1 0 = mm512 fmadd ps ( p ro j , u i 1 , u pp e r i 1 0 ) ;

121 l o w e r i 1 1 = mm512 fmadd ps ( p ro j , u i 1 , l ow e r i 1 1 ) ;

122 u r2 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 2 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;
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123 uppe r r 20 = mm512 fmadd ps ( p ro j , u r2 , uppe r r 20 ) ;

124 l ow e r r 2 1 = mm512 fmadd ps ( p ro j , u r2 , l ow e r r 2 1 ) ;

125 u i 2 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 2 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

126 upp e r i 2 0 = mm512 fmadd ps ( p ro j , u i 2 , u pp e r i 2 0 ) ;

127 l o w e r i 2 1 = mm512 fmadd ps ( p ro j , u i 2 , l ow e r i 2 1 ) ;

128

129 // p r o j i 1 0

130 p r o j = mm512 add ps ( i01 , i 3 1 ) ;

131 uppe r r 00 = mm512 fnmadd ps ( p ro j , u i 0 , uppe r r 00 ) ;

132 l ow e r r 0 1 = mm512 fnmadd ps ( p ro j , u i 0 , l ow e r r 0 1 ) ;

133

134 upp e r i 0 0 = mm512 fmadd ps ( p ro j , u r0 , u pp e r i 0 0 ) ;

135 l o w e r i 0 1 = mm512 fmadd ps ( p ro j , u r0 , l ow e r i 0 1 ) ;

136

137 uppe r r 10 = mm512 fnmadd ps ( p ro j , u i 1 , uppe r r 10 ) ;

138 l ow e r r 1 1 = mm512 fnmadd ps ( p ro j , u i 1 , l ow e r r 1 1 ) ;

139

140 upp e r i 1 0 = mm512 fmadd ps ( p ro j , u r1 , u pp e r i 1 0 ) ;

141 l o w e r i 1 1 = mm512 fmadd ps ( p ro j , u r1 , l ow e r i 1 1 ) ;

142

143 uppe r r 20 = mm512 fnmadd ps ( p ro j , u i 2 , uppe r r 20 ) ;

144 l ow e r r 2 1 = mm512 fnmadd ps ( p ro j , u i 2 , l ow e r r 2 1 ) ;

145

146 upp e r i 2 0 = mm512 fmadd ps ( p ro j , u r2 , u pp e r i 2 0 ) ;

147 l o w e r i 2 1 = mm512 fmadd ps ( p ro j , u r2 , l ow e r i 2 1 ) ;

148

149 // p r o j r 1 1

150 p r o j = mm512 sub ps ( r11 , r21 ) ;

151 uppe r r 01 = mm512 fmadd ps ( p ro j , u r0 , uppe r r 01 ) ;

152 l ow e r r 0 0 = mm512 fnmadd ps ( p ro j , u r0 , l ow e r r 0 0 ) ;

153

154 upp e r i 0 1 = mm512 fmadd ps ( p ro j , u i 0 , u pp e r i 0 1 ) ;

155 l o w e r i 0 0 = mm512 fnmadd ps ( p ro j , u i 0 , l ow e r i 0 0 ) ;

156

157 uppe r r 11 = mm512 fmadd ps ( p ro j , u r1 , uppe r r 11 ) ;

158 l ow e r r 1 0 = mm512 fnmadd ps ( p ro j , u r1 , l ow e r r 1 0 ) ;

159

160 upp e r i 1 1 = mm512 fmadd ps ( p ro j , u i 1 , u pp e r i 1 1 ) ;

161 l o w e r i 1 0 = mm512 fnmadd ps ( p ro j , u i 1 , l ow e r i 1 0 ) ;

162
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163 uppe r r 21 = mm512 fmadd ps ( p ro j , u r2 , uppe r r 21 ) ;

164 l ow e r r 2 0 = mm512 fnmadd ps ( p ro j , u r2 , l ow e r r 2 0 ) ;

165

166 upp e r i 2 1 = mm512 fmadd ps ( p ro j , u i 2 , u pp e r i 2 1 ) ;

167 l o w e r i 2 0 = mm512 fnmadd ps ( p ro j , u i 2 , l ow e r i 2 0 ) ;

168

169 // p r o j i 1 1

170 p r o j = mm512 sub ps ( i11 , i 2 1 ) ;

171 uppe r r 01 = mm512 fnmadd ps ( p ro j , u i 0 , uppe r r 01 ) ;

172 l ow e r r 0 0 = mm512 fmadd ps ( p ro j , u i 0 , l ow e r r 0 0 ) ;

173

174 upp e r i 0 1 = mm512 fmadd ps ( p ro j , u r0 , u pp e r i 0 1 ) ;

175 l o w e r i 0 0 = mm512 fnmadd ps ( p ro j , u r0 , l ow e r i 0 0 ) ;

176

177 uppe r r 11 = mm512 fnmadd ps ( p ro j , u i 1 , uppe r r 11 ) ;

178 l ow e r r 1 0 = mm512 fmadd ps ( p ro j , u i 1 , l ow e r r 1 0 ) ;

179

180 upp e r i 1 1 = mm512 fmadd ps ( p ro j , u r1 , u pp e r i 1 1 ) ;

181 l o w e r i 1 0 = mm512 fnmadd ps ( p ro j , u r1 , l ow e r i 1 0 ) ;

182

183 uppe r r 21 = mm512 fnmadd ps ( p ro j , u i 2 , uppe r r 21 ) ;

184 l ow e r r 2 0 = mm512 fmadd ps ( p ro j , u i 2 , l ow e r r 2 0 ) ;

185

186 upp e r i 2 1 = mm512 fmadd ps ( p ro j , u r2 , u pp e r i 2 1 ) ;

187 l o w e r i 2 0 = mm512 fnmadd ps ( p ro j , u r2 , l ow e r i 2 0 ) ;

188

189 // p r o j r 2 0

190 p r o j = mm512 add ps ( r02 , r32 ) ;

191 #i f d e f COMPRESS16

192 u r0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 3 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

193 #e l i f d e f i n e d (COMPRESS12)

194 u r0 = mm512 set1 ps ( pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ RE ] − pgud1f

[ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ IM ] − ( pgud1f [ 0 ] [ 2 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ RE ]

− pgud1f [ 0 ] [ 2 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ IM ] ) ) ;

195 #e l s e

196 u r0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 0 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

197 #end i f

198 uppe r r 00 = mm512 fmadd ps ( p ro j , u r0 , uppe r r 00 ) ;

199 l ow e r r 0 1 = mm512 fmadd ps ( p ro j , u r0 , l ow e r r 0 1 ) ;
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200 #i f d e f COMPRESS16

201 u i 0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 0 ] [ 3 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

202 #e l i f d e f i n e d (COMPRESS12)

203 u i 0 = mm512 set1 ps ( −(pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ IM ] + pgud1f

[ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ RE ] ) + ( pgud1f [ 0 ] [ 2 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ IM

] + pgud1f [ 0 ] [ 2 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ RE ] ) ) ;

204 #e l s e

205 u i 0 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 0 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

206 #end i f

207 upp e r i 0 0 = mm512 fmadd ps ( p ro j , u i 0 , u pp e r i 0 0 ) ;

208 l o w e r i 0 1 = mm512 fmadd ps ( p ro j , u i 0 , l ow e r i 0 1 ) ;

209 #i f d e f COMPRESS16

210 u r1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 3 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

211 #e l i f d e f i n e d (COMPRESS12)

212 u r1 = mm512 set1 ps ( pgud1f [ 1 ] [ 0 ] [ RE]* pgud1f [ 0 ] [ 2 ] [ RE ] − pgud1f

[ 1 ] [ 0 ] [ IM ]* pgud1f [ 0 ] [ 2 ] [ IM ] − ( pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ RE ]

− pgud1f [ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ IM ] ) ) ;

213 #e l s e

214 u r1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 1 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

215 #end i f

216 uppe r r 10 = mm512 fmadd ps ( p ro j , u r1 , uppe r r 10 ) ;

217 l ow e r r 1 1 = mm512 fmadd ps ( p ro j , u r1 , l ow e r r 1 1 ) ;

218 #i f d e f COMPRESS16

219 u i 1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 1 ] [ 3 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

220 #e l i f d e f i n e d (COMPRESS12)

221 u i 1 = mm512 set1 ps ( −(pgud1f [ 1 ] [ 0 ] [ RE]* pgud1f [ 0 ] [ 2 ] [ IM ] + pgud1f

[ 1 ] [ 0 ] [ IM ]* pgud1f [ 0 ] [ 2 ] [ RE ] ) + ( pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 2 ] [ IM

] + pgud1f [ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 2 ] [ RE ] ) ) ;

222 #e l s e

223 u i 1 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 1 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

224 #end i f

225 upp e r i 1 0 = mm512 fmadd ps ( p ro j , u i 1 , u pp e r i 1 0 ) ;

226 l o w e r i 1 1 = mm512 fmadd ps ( p ro j , u i 1 , l ow e r i 1 1 ) ;

227 # i f d e f i n e d (COMPRESS16) | | d e f i n e d (COMPRESS12)



61

228 u r2 = mm512 set1 ps ( pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ RE ] − pgud1f

[ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ IM ] − ( pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 0 ] [ RE ]

− pgud1f [ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 0 ] [ IM ] ) ) ;

229 #e l s e

230 u r2 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 2 ] [ 0 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

231 #end i f

232 uppe r r 20 = mm512 fmadd ps ( p ro j , u r2 , uppe r r 20 ) ;

233 l ow e r r 2 1 = mm512 fmadd ps ( p ro j , u r2 , l ow e r r 2 1 ) ;

234 # i f d e f i n e d (COMPRESS16) | | d e f i n e d (COMPRESS12)

235 u i 2 = mm512 set1 ps ( −(pgud1f [ 0 ] [ 0 ] [ RE]* pgud1f [ 1 ] [ 1 ] [ IM ] + pgud1f

[ 0 ] [ 0 ] [ IM ]* pgud1f [ 1 ] [ 1 ] [ RE ] ) + pgud1f [ 0 ] [ 1 ] [ RE]* pgud1f [ 1 ] [ 0 ] [ IM ]

+ pgud1f [ 0 ] [ 1 ] [ IM ]* pgud1f [ 1 ] [ 0 ] [ RE ] ) ;

236 #e l s e

237 u i 2 = mm512 ext load ps (&(UCAST( uc [ s i t e ] [ 1 ] ) ) [ 2 ] [ 2 ] [ 1 ] ,

MM UPCONV PS NONE, MM BROADCAST 1X16 , MM HILT NONE) ;

238 #end i f

239 upp e r i 2 0 = mm512 fmadd ps ( p ro j , u i 2 , u pp e r i 2 0 ) ;

240 l o w e r i 2 1 = mm512 fmadd ps ( p ro j , u i 2 , l ow e r i 2 1 ) ;

241

242 // p r o j i 2 0

243 p r o j = mm512 add ps ( i02 , i 3 2 ) ;

244 uppe r r 00 = mm512 fnmadd ps ( p ro j , u i 0 , uppe r r 00 ) ;

245 l ow e r r 0 1 = mm512 fnmadd ps ( p ro j , u i 0 , l ow e r r 0 1 ) ;

246

247 upp e r i 0 0 = mm512 fmadd ps ( p ro j , u r0 , u pp e r i 0 0 ) ;

248 l o w e r i 0 1 = mm512 fmadd ps ( p ro j , u r0 , l ow e r i 0 1 ) ;

249

250 uppe r r 10 = mm512 fnmadd ps ( p ro j , u i 1 , uppe r r 10 ) ;

251 l ow e r r 1 1 = mm512 fnmadd ps ( p ro j , u i 1 , l ow e r r 1 1 ) ;

252

253 upp e r i 1 0 = mm512 fmadd ps ( p ro j , u r1 , u pp e r i 1 0 ) ;

254 l o w e r i 1 1 = mm512 fmadd ps ( p ro j , u r1 , l ow e r i 1 1 ) ;

255

256 uppe r r 20 = mm512 fnmadd ps ( p ro j , u i 2 , uppe r r 20 ) ;

257 l ow e r r 2 1 = mm512 fnmadd ps ( p ro j , u i 2 , l ow e r r 2 1 ) ;

258

259 upp e r i 2 0 = mm512 fmadd ps ( p ro j , u r2 , u pp e r i 2 0 ) ;

260 l o w e r i 2 1 = mm512 fmadd ps ( p ro j , u r2 , l ow e r i 2 1 ) ;

261

262 // p r o j r 2 1
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263 p r o j = mm512 sub ps ( r12 , r22 ) ;

264 uppe r r 01 = mm512 fmadd ps ( p ro j , u r0 , uppe r r 01 ) ;

265 l ow e r r 0 0 = mm512 fnmadd ps ( p ro j , u r0 , l ow e r r 0 0 ) ;

266

267 upp e r i 0 1 = mm512 fmadd ps ( p ro j , u i 0 , u pp e r i 0 1 ) ;

268 l o w e r i 0 0 = mm512 fnmadd ps ( p ro j , u i 0 , l ow e r i 0 0 ) ;

269

270 uppe r r 11 = mm512 fmadd ps ( p ro j , u r1 , uppe r r 11 ) ;

271 l ow e r r 1 0 = mm512 fnmadd ps ( p ro j , u r1 , l ow e r r 1 0 ) ;

272

273 upp e r i 1 1 = mm512 fmadd ps ( p ro j , u i 1 , u pp e r i 1 1 ) ;

274 l o w e r i 1 0 = mm512 fnmadd ps ( p ro j , u i 1 , l ow e r i 1 0 ) ;

275

276 uppe r r 21 = mm512 fmadd ps ( p ro j , u r2 , uppe r r 21 ) ;

277 l ow e r r 2 0 = mm512 fnmadd ps ( p ro j , u r2 , l ow e r r 2 0 ) ;

278

279 upp e r i 2 1 = mm512 fmadd ps ( p ro j , u i 2 , u pp e r i 2 1 ) ;

280 l o w e r i 2 0 = mm512 fnmadd ps ( p ro j , u i 2 , l ow e r i 2 0 ) ;

281

282 // p r o j i 2 1

283 p r o j = mm512 sub ps ( i12 , i 2 2 ) ;

284 uppe r r 01 = mm512 fnmadd ps ( p ro j , u i 0 , uppe r r 01 ) ;

285 l ow e r r 0 0 = mm512 fmadd ps ( p ro j , u i 0 , l ow e r r 0 0 ) ;

286

287 upp e r i 0 1 = mm512 fmadd ps ( p ro j , u r0 , u pp e r i 0 1 ) ;

288 l o w e r i 0 0 = mm512 fnmadd ps ( p ro j , u r0 , l ow e r i 0 0 ) ;

289

290 uppe r r 11 = mm512 fnmadd ps ( p ro j , u i 1 , uppe r r 11 ) ;

291 l ow e r r 1 0 = mm512 fmadd ps ( p ro j , u i 1 , l ow e r r 1 0 ) ;

292

293 upp e r i 1 1 = mm512 fmadd ps ( p ro j , u r1 , u pp e r i 1 1 ) ;

294 l o w e r i 1 0 = mm512 fnmadd ps ( p ro j , u r1 , l ow e r i 1 0 ) ;

295

296 uppe r r 21 = mm512 fnmadd ps ( p ro j , u i 2 , uppe r r 21 ) ;

297 l ow e r r 2 0 = mm512 fmadd ps ( p ro j , u i 2 , l ow e r r 2 0 ) ;

298

299 upp e r i 2 1 = mm512 fmadd ps ( p ro j , u r2 , u pp e r i 2 1 ) ;

300 l o w e r i 2 0 = mm512 fnmadd ps ( p ro j , u r2 , l ow e r i 2 0 ) ;

Listing D.1: 16 RHS code for direction 1 forward. As the second code, it’s better

organized.
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