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ABSTRACT 

BIOENERGETICS: EXPERIMENTAL DEMONSTRATION OF EXCESS PROTONS 
AND RELATED FEATURES 

Haitham A. Saeed 
Old Dominion University, 2016 

Director: Dr. James W. Lee 

Over the last 50 years, ever since the Nobel-prize work of Peter Mitchell’s Chemiosmotic 

theory, the question whether bioenergetics energy transduction occurs through localized or 

delocalized protons has been a controversial issue among scientists. Recently, a proton-

electrostatics localization hypothesis was formulated which may provide a new and clear 

understanding of localized and delocalized proton-coupling energy transduction in many 

biological systems. The aim of this dissertation was to test this new hypothesis.  

To demonstrate the fundamental behavior of localized protons in a pure water-

membrane-water system in relation to the newly derived pmf equation, excess protons and 

excess hydroxyl anions were generated and their distributions were tested using a proton-sensing 

aluminum membrane. The proton-sensing film placed at the membrane-water interface displayed 

dramatic localized proton activity while that placed into the bulk water phase showed no excess 

proton activity during the entire experiment. These observations clearly match with the 

prediction from the proton-electrostatics localization hypothesis that excess protons do not stay 

in water bulk phase; they localize at the water-membrane interface in a manner similar to the 

behavior of excess electrons in a conductor.  

In addition, the effect of cations (Na+ and K+) on localized excess protons at the water-

membrane interface was tested by measuring the exchange equilibrium constant of Na+ and K+ in 



exchanging with the electrostatically localized protons at a series of cations concentrations. The 

equilibrium constant 𝐾𝑃𝑁𝑎+  for sodium (Na+) cations to exchange with the electrostatically 

localized protons was determined to be (5.07 ± 0.46) x 10-8 while the equilibrium 

constant 𝐾𝑃𝐾+  for potassium (K+) cations to exchange with localized protons was determined to 

be (6.93 ± 0.91) x 10-8.  These results mean that the localized protons at the water-membrane 

interface are so stable that it requires a ten millions more sodium (or potassium) cations than 

protons in the bulk liquid phase to even partially delocalize them at the water-membrane 

interface. This provides a logical experimental support of the proton electrostatic localization 

hypothesis.  

One of the basic assumptions of proton-electrostatics localization hypothesis is that it 

treats liquid water as a proton conductor and that the proton conduction along the water-

membrane interface might be a favored pathway for the proton energy coupling bioenergetics 

across biological membranes. In this study, experimental evidences discussing water acting as a 

proton conductor were discussed and the conductivity of water with respect to excess protons 

was estimated. Overall, these findings have significance not only in the science of bioenergetics 

but also in the fundamental understanding for the importance of water to life in serving as a 

proton conductor for energy transduction in living organisms. 
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CHAPTER 1 

INTRODUCTION 

1.1 BIOENERGETICS, ATP SYNTHESIS AND PROTON GRADIENT 

Bioenergetics is a field in biochemistry and biophysics that is concerned with the study of energy 

conversion processes that occur within or across the biological membranes such as bacterial 

membranes, mitochondrial membranes, and thylakoid membranes in the chloroplast of plants (1, 

2). Biological membranes play an important role in energy transduction and production of 

adenosine triphosphate (ATP) which is the main energy currency in any biological cell. 

Biological membranes have protein structures and components that catalyze the ATP synthesis 

and transport of ions and metabolites across them.  In plants, for example, photosynthesis takes 

place in small organelles called chloroplasts. Chloroplasts have disc-like structures called 

thylakoids which consist of lipid bilayer membrane surrounding a liquid phase named the lumen.  

The thylakoid membrane has protein embedded structures called photosystem I (PS I) and 

photosystem II (PS II) -shown in Figure 1- that capture light during photosynthesis to drive the 

electron transport chain and generate the proton gradient across the membrane that drives the 

synthesis of ATP in cells (3, 4). 

Across the thylakoid membrane, light-dependent reactions of photosynthesis take place 

as shown in Figure 1. It begins when a photon of light energizes the reaction center of 

photosystem (II) resulting in a primary charge separation event that vectorially release electrons 

from the reaction center to electron acceptors along the photosynthetic electron transport chain. 

  

This dissertation was formatted based on Proceedings of the National Academy of Sciences journal.  
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The photochemically oxidized reaction centers are then reduced by the electrons that are 

acquired through the oxidation of water molecules that produces molecular oxygen and protons 

at the oxygen evolution complex of photosystem (II). The light energized electrons leaving 

photosystem (II) is transferred to Plastoquinone (PQ). The reduced Plastoquinone passes these 

electrons to a proton pump protein structure embedded in the thylakoid membrane named 

cytochrome b6f complex causing it to pump protons from an external aqueous phase named 

stroma into the internal liquid lumen. At the same time, when photosystem (I) absorbs a photon 

of light its reaction center releases energetic electrons to a small protein structure called 

ferredoxin (Fd) that passes it to make NADPH from NADP+ at the NADP reductase. Electrons 

lost from photosystem (I) are replaced by electrons generated from photosystem (II) as the 

electron carrier –Plastocyanin (PC)- carries the electrons from cytochrome b6f complex to 

photosystem (I). During the process of electron transport chain, that takes place along the 

thylakoid membrane via a cascade of membrane proteins, protons are pumped into the lumen 

from the stroma. Consequently, a proton gradient is generated across the thylakoid membrane. 

The proton gradient is generated also from the release of two protons in the lumen for each water 

molecule which is photosynthetically oxidized at photosystem (II) and from the consumption of 

protons in the stroma to make NADPH from NADP+ with the NADP reductase (1, 5-8). 

The thylakoid membrane is mainly composed of phospholipids and galactolipids 

structure which are impermeable to ions including protons. Since the lipid bilayer structure of 

thylakoid membrane is considered as an osmotic barrier for ion diffusion, the protons must pass 

from high proton concentration in the lumen to low proton concentration in the stroma through 

specific channels embedded in the membrane called ATP synthase (9, 10). The diffusion force of 

protons from lumen into stroma due to concentration gradient generates a proton motive force 
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(pmf) that drive the synthesis of ATP molecule from adenosine diphosphate (ADP) and 

inorganic phosphate (Pi) in a process called photosynthetic phosphorylation (6, 11, 12). Each 

ATP molecule requires 3 protons to be synthesized (13). This process is a dynamic process in 

which ATP is continuously removed for stromal ATP-consuming reactions, while the proton 

gradient is continuously replenished by the photosynthetic electron-transfer chains. The overall 

photosynthetic phosphorylation equation (3, 14) for the light dependent reactions in green plants 

can be represented as: 

2𝐻2𝑂 + 2𝑁𝐴𝐷𝑃+ + 3𝐴𝐷𝑃 +  3𝑃𝑖 + 𝑙𝑖𝑔ℎ𝑡 → 2𝑁𝐴𝐷𝑃𝐻 + 2𝐻+ + 3𝐴𝑇𝑃 +  𝑂2(𝑔)     (1.1) 

 

 

 

Figure 1. The mechanism of photophosphorylation at the thylakoid membrane showing the 
electron transport chain and the proton gradient across the photosynthetic membrane that drives 
the chemiosmotic ATP synthesis (15). (Modified with permissions from Lee 2012)  
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1.2 BACKGROUND INFORMATION 

 1.2.1 Peter Mitchell chemiosmotic theory and proton motive force  

Back in the 1960s Peter Mitchell introduced the chemiosmotic theory which is a major milestone 

in the history of bioenergetics (12, 16). He put forward the idea that ATP synthesis is driven by a 

proton electrochemical gradient between two cellular compartments across the biological 

membrane. This proton electrochemical gradient (∆𝝁𝑯+ ), which is often expressed as proton 

motive force (pmf), is generated across biological membranes by electron-transport-linked 

proton translocation. Mitchell developed his famous proton motive force equation which is still 

being used in many biochemistry text books (1-3, 5, 17-19). It represents a quantitative 

thermodynamic measurement of the proton gradient across the biological membrane and can be 

expressed by  

𝑝𝑚𝑓 = −
∆𝜇𝐻+

𝐹
=  ∆ψ −

2.3 𝑅T
 F 

× ∆𝑝𝐻           (1.2) 

Where ∆𝝁𝑯+ is the proton electrochemical gradient that has two components: an electrical 

component represented by ∆ѱ, which is the trans-membrane potential generated due to the 

difference in electrical potential across the membrane, and a chemical component represented by 

∆pH which is the difference of protons concentration between the two bulk aqueous phases 

separated by the membrane. R is the gas constant, T is the absolute temperature, and F is the 

Faraday constant. It should be mentioned that the trans-membrane potential is the dominant 

component in mitochondria while the pH gradient is the dominant component in Thylakoids. In 

another words, chloroplasts rely more on the chemical potential (proton gradient) to generate the 

potential energy required for ATP synthesis (13).  
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In 1978, Peter Mitchell received the Nobel Prize for his chemiosmotic theory and his 

leading contribution to the field of bioenergetics. However, his conceptual scheme for proton 

coupling mechanism in the ATP formation has remained a controversial issue among 

biochemists till this day (15, 20-22).  

1.2.2 The problem in Mitchell proton delocalization coupling mechanism 

Mitchell’s chemiosmotic theory was widely accepted as the best conceptual scheme to explain 

the formation of ATP in oxidative or photosynthetic phosphorylation. Nevertheless, his 

chemiosmotic theory couldn’t explain many bioenergetics experimental observations due to his 

“delocalized” mechanism involving proton movements in the bulk aqueous phases (13, 15, 20).  

Mitchell has suggested that the ATP synthase is coupled to redox proton pumps via bulk phase-

to-bulk phase delocalized proton electrochemical potential gradients that is generated across the 

biological membrane as shown in Figure 2. He assumed the membrane acts as an insulator 

between the two bulk phases that plays no role in the lateral transduction of the protons to the 

ATP synthase (15). 

The most clear-cut observations that Mitchellian “delocalized” mechanism cannot 

explain are in alkalophilic bacteria (23-25) such as Bacillus pseuodofirmus. B. pseuodofirmus is 

a soil bacterium living in high alkaline environment and is intended to protect plant roots from 

nematode infestation. These bacteria keep their internal pH about 2.3 pH units more acidic than 

the ambient one, while Δψ is about 180 mV. The application of equation (1.2) with the 

experimentally measured membrane potential and pH values yields a pmf around 50 mV that is 

too small to drive the synthesis of ATP (23-34).  Thus, it has remained an enigmatic problem for 

decades as how alkalophilic bacteria and similar organisms can carry out phosphorylation 

process with such low pmf value to synthesize ATP molecules (24, 29, 34). 
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Another piece of evidence was reported by Michel et al that the proton motive force was 

too small to account for the synthesis of ATP in the cells of H. salinarium (13, 35, 36). They 

concluded that “pumped protons can be used for ATP synthesis before they equilibrate with the 

protons in the extracellular bulk phase” (35). This contradicts with the basic premise of 

chemiosmotic theory and Mitchell’s delocalization view. Moreover, Heberle et al. (37) reported 

that upon pumping of protons by the proton pumps across the membrane, protons diffuse along 

the membrane surface faster and more efficiently than proton exchange with bulk aqueous phase. 

In other words, protons might translocate from their source to the ATP synthase along the 

surface of the membrane without being equilibrated with the bulk aqueous phase. Their results 

showed that proton diffusion in the bulk phase has been significantly retarded by about eight-fold 

relative to proton translocation along the membrane surface. However, the physical basis for the 

retardation is not yet understood.   

Dilley and Ort (20) observed some experimental observations that contradict with the 

classical chemiosmotic theory. They observed that photophosphorylation in chloroplasts happens 

even in the presence of permeable buffers that abolish the proton gradient between the two bulk 

aqueous phases across the thylakoid membrane. Also Boyer group observed that 

photophosphorylation begins before protons diffusion and before equilibration with the bulk 

phase take place (38).  
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Figure 2. Description of the chemiosmotic theory that was proposed by Peter Mitchell showing 
delocalized proton (H+) distribution and coupling (15). (Adapted with permissions from Lee, 
2012) 
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1.2.3 Previous hypotheses for proton transfer pathway 

There have been many hypotheses trying to explain the aforementioned long-standing 

bioenergetic conundrum. Williams (39-41) was the first one who thought that the pumped 

protons prefer a localized pathway through the membrane rather than being delocalized within 

the two bulk aqueous phases on each side of the membrane. He proposed proton sub-

compartments that hinder protons from reaching the bulk aqueous phases (41). Kell has 

considered the probability that the ejected protons are spread on the surface of the membrane but 

are somehow prevented from prompt equilibration with the bulk aqueous phase, so that 

membrane surface pH might differ from the bulk phase pH at steady state (42, 43). He attributed 

the reason to the presence of Helmholtz layer that forms a kinetic (or thermodynamic) diffusion 

barrier which insulates the protons streaming on the membrane-water interface from diffusing 

into the bulk aqueous phase.  Dilley proposed a protein structure with obstructed domains along 

the thylakoid membrane through which protons can diffuse laterally along the membrane surface 

from the source to the sink (ATP synthase) without entering into the aqueous bulk (44). 

However, after the advancement of electron microscopy, these occluded protein domains have 

never been found. 

Recently, Cherepanov et al. proposed an interfacial proton barrier (45, 46). They 

suggested that there is an interfacial potential barrier that separates the membrane surface from 

the bulk aqueous phase.  This barrier is formed as a result of water polarization at the negatively 

charged phospholipids of the membrane surface owing to the low dielectric permittivity (ɛ) of 

water. They argued that this potential barrier restricts the diffusion of protons from entering the 

bulk phase. Their model predicted a potential barrier of about 0.12 eV for the protons which 

located 0.5-1 nm away from the membrane surface (28, 47-49).  This proposed interfacial 
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potential barrier might be true for pure water systems that lack the presence of other ions. 

However, this might not be satisfactory for explaining the complex energy transduction process 

that occurs in biological systems which has other non-protonic cations. Applying the potential 

barrier concept on biological systems will not only restrict protons but also restrict other ions 

(charged molecules) from reaching the bulk aqueous phase. In addition, based on their model one 

would expect a localized proton-coupling would take place whether the trans-membrane 

potential difference (Δψ) is involved or not. In fact, Davenport-MaCarty et al (50) demonstrated 

that by eliminating the membrane potential Δψ (thylakoids in presence of valinomycin and 50 

mM KCl), the imidazole permeable buffer resulted in a delay in the onset of photosynthetic 

phosphorylation indicating delocalized proton coupling. Moreover, their described interfacial 

proton barrier model might have a futile proton escape as fast as a microsecond/millisecond as 

reported by the authors (49). It is known that oxidative or photosynthetic phosphorylation is a 

recurring process that takes hours to synthesize sufficient amounts of ATP and other 

biomolecules for cell growth. Therefore, if protons escape through the barrier to the periplasmic 

bulk aqueous phase, it would be hard to explain the observed growth of alkalophilic bacteria.    

Brändén et al proposed that the hydrophilic phospholipid head groups could act as a 

proton-collecting antenna that accelerate the proton uptake from the bulk water phase to the 

membrane surface which act as a proton acceptor (21, 51).  The proposed proton-collecting 

antenna could be true in attracting protons and other cations to its surface forming electric double 

layer along the membrane negatively charged surface as expected by the Debye-Hückel theory 

(52). However, this double layer always exists at all time during light and dark conditions even 

when the proton motive force (pmf) is zero. This means that the protons and/or cations attracted 

to the membrane surface forming the double layer couldn’t contribute to the proton motive force 
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that drives the flow of protons across the membrane for two reasons: first, the protons forming 

the double layer are not dynamic. Second, there would be no need for light (photosynthetic) 

and/or chemical (respiratory) energy to create excess protons and establish the proton gradient 

across the membrane as it would violate the fundamental principles of thermodynamics by 

driving work without requiring external energy (53). 

There have been some simulation modeling efforts using ab initio and classical molecular 

dynamics simulations for water with solvated H3O+ and OH- ions (54, 55). These models 

predicted that the surface of pure water has lower pH (pH<4.8) than its bulk phase. They 

attributed the reason due to stabilization of protons at the surface (56, 57). However, to our 

knowledge experimental demonstration of the distribution excess protons in pure water-

membrane system hasn’t been studied.  

1.2.4 Water at membrane interface  

In an effort to investigate the physical properties of water adjacent to solid surfaces, Pollack 

reported a new phase of water that he considered it a fourth phase of water and he named it “the 

exclusion zone” (58). The exclusion zone is a large zone of water 10 to 100 μm wide that forms 

adjacent to hydrophilic surfaces such as Nafion which has Teflon like backbone that contains 

negatively charged sulfonic acids groups. It was named Exclusion Zone (EZ zone) because it 

excludes practically anything suspended or dissolved in water like suspended microsphere in 

pure water or red blood cells in blood vessels (58, 59). The EZ has more ordered hexagonal 

structured water molecules and contains lots of negative charges due to high oxygen to hydrogen 

ratio which is 2:3. Consequently, it exhibits different properties than that of the bulk water.  

Pollack reported experimental data that even conflict with the concept of electric double layer. In 
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his experiments, suspended microsphere particles were observed distancing themselves away 

from the hydrophilic surface by 100,000 times the Debye length (Debye length = 10-9 meter). He 

found that hydrophilic surfaces impact the nearby water in a way that makes it different in 

properties from bulk water. For example, the water adjacent to hydrophilic surfaces (EZ water) 

was more viscous, more stable, and more structurally ordered than bulk water. Its IR spectra and 

UV-visible light absorption spectra were higher than the bulk water. It has a higher refractive 

index than bulk water. Overall, Pollack has reported results showing that EZ water hardly 

resembles liquid water at all (60, 61). 

Gilbert Ling proposed that water adjacent to hydrophilic membrane would have a stacked 

dipole arrangement of water ordering. This arrangement begins at the surface where water 

dipoles would stack one upon another to a certain distance away from the surface until ordered 

growth is limited by disruptive forces of thermally induced motion (62). Lippincott et al had 

proposed a hexagonal structure for the water adjacent to the surface. They stated that the 

substance is built of oxygen and hydrogen in a hexagonal lattice arrangement. This substance 

resembles water but its properties are not like water. Water to this substance is like ethylene gas 

to poly-ethylene polymer. They found that the ratio of hydrogen atoms to oxygen atoms in this 

hexagonal structure is 3:2 unlike bulk water which is 2:1 ratio (63). 

Researchers reported that water adjacent to many diverse surfaces including quartz, 

proteins subunits and metals has a hexagonal arrangement of atoms (64-67). They confirmed the 

hexagonal structure using a scanning electron microscope, a transmission electron microscope, 

and UV absorption spectra. The EZ water absorbs at 270 nm (UV region) which is expected 

when electrons are delocalized as in the case of the hexagonal benzene ring (58, 59, 68-70). 
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What’s interesting is that it was found that water adjacent to certain polymers and metals had a 

positively charged Exclusion Zone (61).  

1.2.5 Revised proton motive force equation (Proton-electrostatics localization hypothesis) 

It is important to be skeptical about hypotheses in sciences, because it helps moving the field 

forward and encourages others to develop critical tests to investigate and sometimes alter the 

conventional generally accepted schemes. 

J. W. Lee recently published a new hypothesis named proton-electrostatics localization 

hypothesis (15). This hypothesis provides a possibly unified explanation of the proton 

localization and/or delocalization in all bioenergetics systems within bacteria, mitochondria and 

thylakoid structure in the chloroplast of plants without requiring any proton sub-compartments or 

interfacial proton barrier. The proton-electrostatics localization hypothesis is based on two 

assumptions: The first assumption is that excess protons in aqueous phase can quickly transfer 

among water molecules throughout the hydrogen bond network by “hops and turns” mechanism 

which was first outlined by Grotthuss two centuries ago (71, 72). The second assumption is that 

liquid water can be considered as a proton conductor. Since the excess protons mobility in water 

is very fast, excess protons in liquid water can be treated like the excess electric charges in a 

metallic conductor where Gauss law can be applied on them. According to Gauss law, for 

electrostatic charge distribution in a general conductor, excess electric charge in a conductor at 

equilibrium will reside on the surface of the conductor body and not in the bulk. This is expected 

because the freely moving excess electrons repel one another and arrange themselves on the 

surface to suffer the minimum possible repulsion.  Similarly, applying Gauss law on excess 

protonic charge in the aqueous proton conductor will lead to electrostatic localization of excess 



13 
 

protons on the water surface along the water-lumenal interface of the thylakoid membrane as 

shown in the Figure 3. 

According to the proton-electrostatics localization hypothesis (15, 22), Mitchell’s proton 

motive force equation (Equation 1.2) should be revised by adding a new term in the equation 

accounting for the effective concentration of the localized protons at the membrane-water 

interface [H+]L
eff   as follows: 

 

𝑝𝑚𝑓 (∆𝑝) =  ∆ψ +  
2.3 RT

F
  �𝑝𝐻𝑛𝐵 + 𝐿𝑜𝑔�[𝐻+]𝑒𝑓𝑓𝐿 +  [𝐻+]𝑝𝐵��                   (1.3) 

 

Where Δψ is the transmembrane electrical potential difference;  pHnB is the stroma bulk 

phase pH; [H+]L
eff  is the effective concentration of the localized protons at the membrane-water 

interface; [H+]pB is the proton concentration in the lumen bulk aqueous phase inside the thylakoid 

structure; F is the Faraday constant; R the gas constant; and T the temperature. 
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Figure 3. Proton-electrostatics model illustrating the electrostatic localization of excess protons 
(H+) and hydroxyl ions (OH–) ions at the water-membrane interface along the two sides of the 
thylakoid membrane in a theoretically pure water-membrane system forming a proton capacitor 
(15). (Adapted with permissions from Lee 2012) 

 

 

As mentioned previously, according to the proton-electrostatics localization hypothesis 

(15, 22), when excess protons are created in the lumen due to the photosynthetic proton pump 

from the stroma into the lumen, the excess protons in the lumen will not stay in the bulk water 

phase because of their mutual repulsion.  However, they distribute themselves to the water-

membrane interface at the lumenal side of the membrane where they attract electrostatically the 

excess hydroxyl anions at the stromal side of the membrane, forming an “excess protons-

membrane-excess anions” capacitor-like system as shown in Figure 3. Therefore, a proton 

capacitor concept can be used to determine the effective localized proton concentrations [𝐻𝐿+]0 at 

the membrane-water interface. By assuming a pure water-membrane-water system and a 
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reasonable thickness (l) for the localized proton layer, the effective localized proton 

concentrations in absence of other cations [𝐻𝐿+]0 can be calculated using the following equation:  

 

[𝐻𝐿+]0 =
𝐶
𝑆
∙  
∆ψ
𝑙 ∙ F

=
∆ψ ⋅ κ ⋅ εo
𝑑 ⋅ 𝑙 ∙ F

                            (1.4) 

 

Where C/S is the membrane capacitance per unit surface area; ∆ψ is the electrical potential 

difference across the membrane; F is the Faraday constant; κ is the dielectric constant of the 

membrane; εo is the dielectric permittivity; d is the thickness of the membrane; and l is the 

thickness of the localized proton layer. 

In a pure water membrane system, the effective localized proton concentrations [𝐻𝐿+]0 

can be calculated using equation (1.4). However, multiple non-proton cations in the bulk aqueous 

phase could exchange and compete with the protons at the localized proton layer as shown in 

Figure 4. Therefore, Lee22 further pointed out that the effective concentration of the 

electrostatically localized protons at equilibrium with non-proton cations [𝐻+]𝑒𝑓𝑓𝐿   can be 

expressed as:  

[𝐻+]𝑒𝑓𝑓𝐿 =
[𝐻𝐿+]0

∏  (𝐾𝑃𝑖 �
[𝑀𝑝𝐵

𝑖+ ]
[𝐻𝑝𝐵+ ]� +𝑛

𝑖=1 1) 
                          (1.5) 

Where, [𝐻𝐿+]0 is the effective concentration of localized protons without cation exchange, as 

expressed in equation (1.4); the 𝐾𝑃𝑖 is the equilibrium constant for non-proton cations (𝑀𝑖+) to 

exchange with the localized protons at the water-membrane interface; [𝑀𝑝𝐵
𝑖+ ] is the concentration 

of the non-proton cations in the liquid culture medium; and [𝐻𝑝𝐵+ ] is the concentration of protons 

in the bulk phase of the liquid culture medium. Since protons can transfer so quickly among 
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water molecules (72), their conduction is much faster than that of any other cations. In addition, 

being so small in size, protons may be distributed electrostatically at the water-membrane 

interface faster than any other large cations such as Mg++, K+, or Na+. Therefore, it is expected 

that the equilibrium constant  𝐾𝑃𝑖 for non-proton cations such as Na+ or K+ to delocalize the 

localized protons from the membrane-water interface should be far much less than one. 

 

 

Figure 4. Proton-electrostatics model elucidating the effect of high salt treatment: High 
concentration of K+ cations could partially delocalize via cation exchange the electrostatically 
localized protons at the water-membrane interface of the thylakoid membrane (15). (Copied 
with permissions from Lee 2012) 

 

 

Consequently, according to the proton-electrostatics localization hypothesis (15, 22),   

Mitchell’s pmf equation (1.2) should now be modified to account for the effective localized 
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proton concentrations at the membrane-water interface and that is by substituting equation (1.4) 

in equation (1.5) then substituting equation (1.5) in equation (1.3). The revised new pmf 

equation(22) has now been written as: 

  

pmf (∆𝑝) = ∆ψ +
2.3 RT

F
 

⎝

⎜
⎛
𝑝𝐻𝑛𝐵 + log10

⎝

⎜
⎛𝐶
𝑆
∙  

∆ψ

𝑙 ∙ 𝐹 �∏ (𝐾𝑃𝑖 �
�𝑀𝑝𝐵

𝑖+�
�𝐻𝑝𝐵+ �
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              (1.6) 

 

Where ∆ψ is the electrical potential difference across the membrane; pHnB
 is pH of the stromal 

bulk phase; [H+
pB] is the proton concentration in the lumenal bulk aqueous phase; C/S is the 

specific membrane capacitance; l is the thickness for localized proton layer; KPi is the 

equilibrium constant for non-proton cations (Mi+
pB) to exchange for localized protons; and 

[Mi+
pB] is the concentration of non-proton cations in liquid culture medium. 

The modified pmf equation (1.6) agrees perfectly with the Mitchellian pmf equation (1.2) 

when the membrane potential ∆ψ is zero. This means that Mitchell’s chemiosmotic theory is not 

entirely wrong and is still a significant milestone in the history of bioenergetics (22).  However, 

Mitchell’s pmf equation (1.2) underestimates the true transmembrane proton motive force (pmf) 

which is due to the delocalization view of excess protons that was postulated by Mitchell in his 

theory. Furthermore, Mitchell’s chemiosmotic theory does not clearly explain what really define 

or contribute to the membrane potential ∆ψ.  On the other hand, according to Lee’s equations 

(1.4) and (1.5) as shown above, it is now quite clear that there is a close relationship between the 

localized excess proton concentrations [𝐻𝐿+]0 and the membrane potential ∆ψ: it is the localized 

excess protons, the thickness for localized proton layer and the membrane capacitance that define 
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the membrane potential ∆ψ. Therefore, the proton-electrostatics localization hypothesis can be 

considered as a significant development over the chemiosmotic theory.   

1.2.6 Proton-electrostatics localization predictions (Bioenergetics explanation using Lee’s 

hypothesis) 

The implications from the proton-electrostatics localization hypothesis may have significance to 

the fundamentals of bioenergetics. For example, the new pmf equation (Equation 1.6) could now 

help solve the enigmatic problems in the bioenergetics of alkalophilic bacteria which is shown in 

Figure 5.  Its application (22) has recently yielded an overall pmf (∆𝑝) value (215~233 mV) that 

is nearly 4 times more than that (50 mV) calculated from the Mitchellian equation (equation 1.2) 

for the alkalophilic bacteria growing at pH 10.5. This pmf value (215~233 mV) is sufficient to 

drive the synthesis of ATP in alkalophilic bacteria and hence elucidates the 30-year-longstanding 

bioenergetics conundrum in alkalophilic bacteria as how they are able to synthesize ATP (22).  
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Figure 5. Proton-electrostatics model for Alkaliphilic bacterial cell showing the electrostatic 
localization of excess protons (H+) and hydroxyl ions (OH–) at the water-membrane interface 
along the two sides of the bacterial cell membrane in a theoretically pure water-membrane-
water system (22). (Copied with permissions from Lee, 2015) 
 

 

The proton-electrostatics localization hypothesis also predicts that high concentration of 

other cations (in form of salt with high ionic strength) could partially delocalize via cation 

exchange the electrostatically localized protons at the water-membrane interface (15). This is 

because the cation (K+) from the added salt could replace some of the protons along the water-

membrane interface as illustrated in Figure 4. As a result, some of the protons could stay in the 
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bulky water phase in the lumen. The hypothesis predicts that the cation exchange equilibrium 

constant for other cations to delocalize the localized excess protons from the water-membrane 

interface would be far less than one. In addition, introducing high salt concentration (such as 100 

mM KCl) could enhance the movement of some ions including, but not limited to, Cl- and K+ 

across the thylakoid membrane.  This ion migration would neutralize the electrostatic protons 

charges and thus cause proton delocalization. The hypothesis further explains Dilley’s 

experimental observation (73) that the illumination time required for the onset of ATP synthesis 

is longer for thylakoids in the presence of high salt concentration (KCl salt solution) than that 

with low salt concentration. This is because at high salt concentration, K+ cations could exchange 

with some of the localized protons resulting partial proton delocalization (15). 

1.2.7 Comparison of electrochemical and protochemical circuits 

Nicholls presented a good simple analogy for the protochemical cells and the proton motive 

force which he named it “a proton circuit” (1, 74). He mentioned that there is an analogy 

between the electrical circuits and the proton circuits (Figure 6). Both can be used to provide 

power (lighting the bulb in electric circuit is equivalent to making ATP in proton circuit). Both 

have an applied voltage (potential difference (V) of power source in electric circuit is equivalent 

to pmf in proton circuit), both have current (electric current (I) is equivalent to proton flux), and 

both can have a conductance which is reciprocal of resistance (electrical conductance through 

electrical wires is equivalent to proton conductance in aqueous phase).  Both can produce useful 

work (illuminating the light bulb in electrical circuit and ATP synthesis in proton circuit).  Both 

can be short circuited where short circuit in electrical circuit is equivalent to proton leak in 

proton circuit. Accordingly, for a closed functional circuit, insulation is needed in electrical 

circuit. Similarly, the lipid bilayer membrane in the proton circuit can be considered as an 
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insulator of high resistance between positive and negative charges to prevent short circuit of 

protons (proton leak). Overall, the laws govern the energy flow around both circuits are similar. 

 

   

Figure 6. Comparison of electric circuit and proton circuit. Proton circuits (on right) is 
analogous to electric circuit (on left) in terms of voltage (pmf is equivalent to potential), current 
(proton flux is equivalent to electric current (I)), and conductance (proton conductance in water 
is equivalent to electrical conductance in metallic wire). (Copied with permissions from Nicholls 
et al, Bioenergetics. 2013)  

 

 

 

 

1.3 DISSERTATION HYPOTHESES 

a) In this dissertation the proton-electrostatics localization hypothesis will be tested in 

relation to the revised pmf equation (Equation 1.6) and the fundamental knowledge of 

proton energy coupling over Mitchell’s classic Chemiosmotic theory described above. 

The proton-electrostatics localization hypothesis (15) predicts that excess protons do not 

stay in water bulk phase; they localize at the water-membrane interface in a manner 

similar to the behavior of excess electrons in a conductor. 
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b) The proton-electrostatics localization model would predict that the addition of a higher 

ionic strength (such as 100 mM Potassium salt solution) may partially delocalize protons 

from the water-membrane interface via cation exchange with protons as shown in Figure 

4. This would result that some protons could stay in the bulky water phase in the 

thylakoid lumen. Since protons can transfer so quickly among water molecules via 

Grotthuss mechanism (72), their conduction is much faster than that of any other cations. 

In addition, being so small in size protons as part of water molecules may be distributed 

electrostatically at the water-membrane interface faster than any other large cations such 

as K+, or Na+. Therefore, it is expected that the equilibrium constant  𝐾𝑃𝑖 for non-proton 

cations such as Na+ to delocalize the localized protons from the membrane-water 

interface should be far much less than one.  

c) Water is a proton conductor. Excess proton in water usually forms a weak chemical 

bond with an adjacent water molecule to make a hydronium ion (H3O+). The transfer of 

proton across water molecule is much faster compared to other cations. There have been 

many efforts describing the mechanism of proton kinetics in water (75-78). In fact 

protons may move by mechanisms not available to other cations such as sodium ion and 

potassium ion. It has been simulated via computer simulations (Ab intio) that excess 

protons mobility is five to seven times higher than that of similarly sized cations. The 

reason of the high mobility of excess protons is attributed to a chemical transfer 

mechanism rather than hydrodynamic diffusion. Excess protons shuttle quickly through 

the water molecules via hops and turns mechanism that involve an exchange of hydrogen 

and covalent bonds. This structural diffusion process of excess protons among water 

molecules is known as Grötthus mechanism. Zundel et al (79) have described that the 
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excess proton tunnels so quickly between two water molecules through the hydrogen 

bond forming a complex named Zundel cation (H5O2
+ ). However, Eigen considered that 

hydrated excess proton is coordinated to three water molecules forming a complex named 

Eigen cation (H9O4
+). It was found that there is a rapid inter-conversion between the 

Zundel (H5O2
+ ) and the Eigen cations (H9O4

+) in solutions (80, 81). 

 

1.4 GOALS AND OBJECTIVES OF STUDY 

The primary goal of this thesis study is to test the proton-electrostatics localization hypothesis in 

relation to the revised pmf equation (Equation 1.6) and the fundamental knowledge of proton 

energy coupling over Mitchell’s classic Chemiosmotic theory described above. The following 

are the specific goals and objectives of the thesis study:  

Goal 1: Experimental demonstration of localized excess protons at a water-membrane 

interface 

As discussed above that proton motive force and proton movements in cells is analogous to 

electric current in electric circuits.  So, the first goal of this dissertation is to create excess 

protons in pure water via electrolysis process then track their distribution pattern within the bulk 

aqueous phase and on the water surface. According to the proton electrostatic effect, the excess 

protons should be distributed along the outer surface of the water body. Also when two aqueous 

phases are separated by a membrane, the excess protons are expected to distribute themselves at 

the water-membrane interface at the P side.  Therefore, by tracking the distribution of the excess 

protons, we should be able to test the proton-electrostatics localization hypothesis. With the 

assumption that excess protons are localized on the surface and not equilibrated with the bulk 

aqueous phase, the conventional pH potentiometric electrode measurements will not be capable 
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of detecting the surface protons. Consequently, the best way to detect and track the distribution 

of excess protons would be by using a solid state proton indicator. The work of Chapter 2 in this 

dissertation has for the first time experimentally demonstrated the localized excess protons at a 

water-membrane interface with a pure water-membrane-water system in relation to equation 

(1.6) to test the proton-electrostatics localization hypothesis.  

Goal 2: Testing the effect of cations (Na+ and K+) on localized excess protons at a water-

membrane interface 

The proton-electrostatics localization hypothesis further predicts that high concentration of other 

cations (in form of salt solutions with high ionic strength) could partially delocalize via cation 

exchange the electrostatically localized protons at the water-membrane interface (15). Our goal 

is to test the effect of cations (Na+ and K+) on localized excess protons at the water-membrane 

interface by measuring the exchange equilibrium constant of  Na+ and K+ cations in exchanging 

with the electrostatically localized protons with a series of cation concentrations. Determination 

of the cation exchange equilibrium constant is another significant way to test and validate the 

proton-electrostatics localization hypothesis. The work presented in Chapter 3 details the effect 

of cations (Na+ and K+) on localized excess protons at the water-membrane interface. 

 

Goal 3: Measuring the conductivity of water with respect to excess protons 

It is well known that pure water (free of any dissolved ionic salt) is nonconductive with respect 

to electrons. How about the proton conduction in pure (deionized) water with respect to excess 

protons? Is it conductive to protons? And if it is, how could the proton conductivity be measured 

knowing that neither the conventional conductivity probe nor the pH meter could detect the 

excess protons? Chapter 4 of this dissertation will experimentally answer these questions by 
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innovatively measuring proton conduction through a water column. In addition, certain related 

evidences from literature will be also discussed.  In brief, measurement of the proton conduction 

was done by joining two separate chambers containing ultrapure water by a water column 

contained in a silicon tube with series of different lengths. This silicon tube that was filled with a 

continuous column of water constituted the water proton-conduction wire. The experiment was 

performed under Direct Current (DC) by sweeping voltage starting with low non water-

electrolyzing potential and ending with high water-electrolyzing potential. By this setup, we 

were able to measure the proton conductivity of water with respect to excess protons. The 

experimental current and resistance were measured, compared to the theoretical value and the 

DC proton conductivity was determined.   
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CHAPTER 2 

EXPERIMENTAL DEMONSTRATION OF LOCALIZED EXCESS 

PROTONS AT A WATER-MEMBRANE INTERFACE 

 

Preface 

The contents of this chapter were published in 2015 in Bioenergetics journal and are reformatted 

to fit this thesis. Below is the full citation. 

Saeed HA, Lee JW (2015) Experimental Demonstration of Localized Excess Protons at a Water-

Membrane Interface. Bioenergetics 4: 127. doi:10.4172/2167-7662.1000127 

 

2.1 INTRODUCTION 

Peter Mitchell’s work on his chemiosmotic theory (16, 82, 83) won the 1978 Nobel prize in 

chemistry and his bioenergetics (proton motive force) equation since then was introduced in 

many textbooks (3, 5, 84). One of the forms of the Mitchellian bioenergetics equation is 

expressed as free energy difference ∆µ̃H+(also known as the Gibbs energy change (∆𝐺)) for 

protons across a biological membrane including a term for the concentration difference and a 

term for the electrical potential: 

 

 ∆µ̃H+ =  ∆𝐺 = 𝑅𝑇 ln [𝐶2]
[𝐶1]

 + 𝑍𝐹∆ψ                                           (2.1) 

Where 𝐶1and 𝐶2 are the proton concentrations on the two sides of the membrane, 𝑍 is the charge 

on a proton (1 for a proton), 𝐹 is the Faraday’s constant, ∆ψ is the electrical potential difference 

across the membrane, R is the gas constant, and T is the absolute temperature. 
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 This Mitchellian equation (2.1), sometimes, is written also as the equation for the proton 

motive force (pmf) ∆p that drives the protons through the ATP synthase: 

 

pmf (∆p) = –∆μ̃H+ /F = ∆ψ – 2.3RT/F×∆pH                                    (2.2) 

 

Where ∆pH is the pH difference between the two bulk aqueous phases separated by the 

membrane.  

 From equation (2.1), one can clearly see that Mitchell treated the protons as solutes such 

as sugar molecules that are delocalized and can stay everywhere in the bulk aqueous phase. 

Consequently, the Mitchellian delocalized proton-coupling view is that the ATP synthase is 

coupled to the redox proton pumps via bulk phase-to-bulk phase proton electrochemical potential 

gradients generated across the biological membrane; while the membrane is regarded as an 

insulator between the two bulk phases that plays no role in the lateral transduction of the protons 

to the ATP synthase.  

The chemiosmotic theory was a major milestone in the history of bioenergetics when the 

early bioenergeticists including the “metabolic enzymologists” were still using substrate-level 

phosphorylation as a model to seek some kind of “chemical coupling” for “phosphorylated 

intermediate” with “energy-rich” squiggle (~) bonds (11, 83). The chemiosmotic theory provided 

a revolutionary concept that the enigmatic link between electrogenic proton pumps and a proton-

translocating ATP synthase is a proton gradient across the membrane (85). Its revolutionary 

significance or influence to the field of bioenergetics could be hardly overstated, which is almost 

something like the Schrodinger equation to the modern quantum mechanics. It generated 

continuous discussions and sometimes heated debates that energized the entire field of 
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bioenergetics. As a result, biochemists can now understand the biological energy transduction 

processes far better than before the era of the chemiosmotic theory (85).  

However, the question of whether the proton pathway is delocalized throughout the bulk 

aqueous volume or is localized at its membrane surface has remained open to discussion since it 

was first raised in 1961 by Williams (20, 38, 44, 86, 87). He rightly pointed out the deficiency of 

the Mitchellian delocalized proton-coupling view by stating (39): “If charge is thrown out into 

the medium, as in osmotic theories, then we face the problem of equilibration of the energy of 

single cell on its outside with the whole of the volume in which it is suspended, say the Pacific 

Ocean.”  

This statement made by Williams 40 years ago remains as a valid criticism to the 

Mitchellian chemiosmotic theory even of today. Unfortunately, probably because of the “Storm 

and Stress” period in the history of bioenergetics where the debates among disjunctive factions 

of bioenergeticists were so fiercely that the opposing parties with such deep emotions apparently 

lost the ability to objectively consider other’s points including Williams′ “Pacific Ocean” 

arguments (88). Hopefully, our new generation of scientists who are not emotionally attached 

with any of the opposing factions and bear none of the historical baggage will be able to restore 

the scientific civility and help move the field forward. Let’s think about a bacterial cell growing 

in liquid culture medium in a flask. It is known that bacterial cell membrane is energized by 

pumping protons across the cellular membrane from the inside to the outside of the cell, which 

creates a proton motive force across the membrane. However, according to the Mitchellian 

equation (2.1 or 2.2) to create a proton motive force across the membrane, the bacterial cell in a 

liquid culture flask would have to cause a bulk-phase pH change in the entire volume of its liquid 

culture medium, which physically is impossible. From here, we can also understand that there is 



29 
 

something missing in the Mitchellian equation (2.1 and 2.2) since it does not fit with the known 

physical reality here.  

Perhaps, the most well-established scientific observations that showed the failure of the 

Mitchellian delocalized proton view are in alkalophilic bacteria, such as Bacillus pseuodofirmus 

(23-25). These bacteria keep their internal pH about 2.3 pH units more acidic than the ambient 

bulk pH 10.5, while ∆ψ is about 180 mV in the direction from outside across the cellular 

membrane to the cytoplasm (26, 27, 31). The application of equation (2.2) in this case would 

yield a pmf (∆𝑝) value so small (44.3 mV at T = 298K) that it has remained as a mystery for the 

last three decades as to how these organisms can synthesize ATP (29, 30, 34).  

This long-standing unresolved energetic conundrum (32, 33) can now be explained by the 

proton-electrostatics localization hypothesis (15). Recently, we elaborated the proton-

electrostatics localization hypothesis and derived the following new proton motive force (pmf) 

equation: 

      pmf (∆𝑝) = ∆ψ + 2.3 RT
F

 �𝑝𝐻𝑛𝐵 + log10 �
𝐶
𝑆
∙  ∆ψ

𝑙∙𝐹�∏ [𝐾𝑃𝑖�
�𝑀𝑝𝐵

𝑖+ �

�𝐻𝑝𝐵
+ �

�+𝑛
𝑖=1 1]�

+ �𝐻𝑝𝐵+ ���              (2.3)  

 

Where ∆ψ is the electrical potential difference across the membrane; pHnB
 is pH of the 

cytoplasmic bulk phase; [H+
pB] is the proton concentration in the periplasmic bulk aqueous 

phase; C/S is the specific membrane capacitance; l is the thickness for localized proton layer; KPi 

is the equilibrium constant for non-proton cations (Mi+
pB) to exchange for localized protons; and 

[Mi+
pB] is the concentration of non-proton cations in liquid culture medium. 

The use of this newly derived equation has recently yielded an overall pmf (∆𝑝) value 

(215~233 mV) that is 4 times more than that (44.3 mV) calculated from the Mitchellian equation 
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for the alkalophilic bacteria growing at pH 10.5 (22). This newly calculated value is sufficient to 

overcome the observed phosphorylation potential ∆Gp of −478 mV to synthesize ATP in the 

bacteria. Therefore, we have explained the 30-year-longstanding bioenergetics conundrum in 

alkalophilic bacteria as how they are able to synthesize ATP.  

The core concept of the proton-electrostatics localization hypothesis is built on the 

premise that a water body, such as the water within a bacterial cell, can act as a proton conductor 

in a manner similar to an electric conductor with respect to the electrostatic behavior and charge 

conduction. This is consistent with the well-established knowledge that protons can quickly 

transfer among water molecules by the “hops and turns” mechanism that has been first outlined 

by Grotthuss two centuries ago (76, 89, 90). By applying Gauss Law equation to a water-

membrane-water system, it was found mathematically that the excess protons are localized at the 

water-membrane interface, forming a proton-capacitor-like structure: the localized excess 

protons-membrane-anions system (22). Therefore, we may use the proton capacitor concept to 

calculate the effective concentration of the localized protons [𝐻𝐿+]0 at the membrane-water 

interface in a pure water-membrane-water system assuming a reasonable thickness (l) for the 

localized proton layer using the following equation:  

[𝐻𝐿+]0 =
𝐶
𝑆
∙  
∆ψ
𝑙 ∙ F

=
∆ψ ⋅ κ ⋅ εo
𝑑 ⋅ 𝑙 ∙ F

                            (2.4) 

where C/S is the membrane capacitance per unit surface area; F is the Faraday constant; κ is the 

dielectric constant of the membrane; εo is the electric permittivity; d is the thickness of the 

membrane; and l is the thickness of the localized proton layer.  

This proton-capacitor equation (2.4) is the foundation for the revised pmf equation (2.3), 

which has an additional term that accounts for the effect of non-proton cations exchanging with 

the localized protons. An experimental demonstration of the proton capacitor concept with a pure 
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water-membrane-water system in relation to equation (2.4) is fundamentally important to testing 

the proton-electrostatics localization hypothesis. In this chapter, recent experimental study is 

reported in which the distribution of localized excess protons at a water-membrane interface was 

demonstrated for the first time.  

 

2.2 MATERIALS AND METHODS 

2.2.1 Excess protons generation 

Two ElectroPrep electrolysis systems (Cat no. 741196) purchased from Harvard Apparatus Inc. 

were used with one of them as a control. Each of these ElectroPrep electrolysis systems (Figure 

7.) comprised a cathode chamber, a small Teflon center chamber and an anode chamber. The 

small Teflon center chamber was inserted to the middle of the inter-chamber wall with O-ring 

fitting (and with silicon-seal when necessary) that separates the cathode and anode water 

chambers. To test the proton capacitor concept predicted by the proton-electrostatics localization 

hypothesis, a 25-µm thick aluminum membrane (Al) was sandwiched in between two pieces of 

impermeable 75-µm thick Teflon (Tf) membrane (all with a diameter of 2.35 cm), forming a Tf-

Al-Tf membrane as shown in Figure 8. Membrane thickness measurements were performed 

using a Mitutoyo micrometer. Unlike the conventional water electrolysis application, the 

objective of our experiments was to determine whether the excess protons (created by the 

electrolytic water oxidation) in the anode chamber would behave like solutes, such as sugar 

molecules, and stay in the bulk phase as in the Mitchellian delocalized view or would distribute 

themselves only to the water-membrane interface as predicted by the proton-electrostatics 

localization hypothesis. Therefore, in many of our experiments, excess protons and excess 

hydroxyl anions were generated in two water bodies separated by a membrane through the use of 

“open-circuit” water-electrolysis. When the proton capacitor across the membrane was charged 
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up by the excess protons generated in the anode chamber and excess hydroxyl anions in the 

cathode chamber, the electric current of the water electrolysis process would approach zero, 

which can be analogous to a respiratory membrane system such as mitochondria with a fully 

charged membrane potential at its respiratory “state 4” resting stage (91). 
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Figure 7. Illustration on how excess protons and excess hydroxyl anions were generated by 
utilizing an ElectroPrep “open-circuit” water-electrolysis system comprising a cathode chamber, 
a Teflon center chamber assembly, and an anode chamber. The excess protons in the anode water 
were electrostatically localized at water-membrane interface (PI) along the membrane surface 
while the excess hydroxyl anions in the cathode water chamber (at the left) were electrostatically 
attracted to the water-membrane interface (NI) on the other side of membrane, forming a 
“hydroxyl anions-membrane-excess protons” capacitor-like system (see Inset). Pieces of proton-
sensitive Al films were applied on the anode water surface (PS), the cathode water surface (NS), 
in the middle of the anode chamber water bulk phase (PB) and in the middle of the cathode 
chamber water bulk phase (NB). 
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Figure 8. (a) A top view photograph showing the ElectroPrep apparatus. Pieces of proton-
sensitive films were applied on the water surface and in the middle (bulk phase) of both the 
anode and cathode water chambers. Nylon strings were used to anchor the pieces of proton-
sensitive films that were suspended in the middle of both the anode and cathode water chambers. 
(b) Teflon center chamber assembly with a Tf-Al-Tf membrane. (c) Teflon center chamber 
assembly with a proton-sensing Al-Tf-Al membrane.  

 

 

 

 

  



35 
 

2.2.2 Bulk-phase water pH measurement 

The proton-electrostatics localization hypothesis predicts that the excess protons could not be 

detected by a bulk-phase pH measurement with a pH meter; whereas the Mitchellian delocalized 

view would predict the opposite. Therefore, water bulk-phase pH was measured to test the 

predictions. In each experiment, about 2 liters of ultrapure MilliQ-deionized water (Millipore, 

18.2 MΩ.cm at 22.5 ºC) were generated through a Millipore NanoPure Water filtration system 

(Model SYNS00000) and collected in a 4-L beaker. To ensure the quality of the ultrapure 

MilliQ-deionized water, the pH of the deionized water source was checked separately by pouring 

a small fraction of the water into two separate 50-ml beakers ( in duplicate) and measuring the 

water pH (recording 6 stable pH readings per replicate water sample) using Inlab pure pro ISM 

pH probe (Mettler Toledo)  integrated with IQ scientific Instruments handheld pH meter 

designed to measure pH for aqueous samples with very low ionic strength, including ultra-pure 

water.  In this way, the deionized water that was used to fill the anode and cathode chambers had 

never been contacted with any pH electrode to eliminate any possible contamination of Cl− ions 

from the glass pH electrode. We have noticed that Cl− ions could interfere with the proton-

sensing Al film activity.  

After the Teflon center chamber was placed into the inter-chamber wall, the two 

compartments of each ElectroPrep electrolysis system were filled with ultrapure MilliQ-

deionized water (Millipore, 18.2 MΩ.cm at 22.5 ºC): 300 ml in the cathode chamber and about 

600 ml in the anode chamber rendering an equal water level in both chambers (Figure 7). The 

bulk phase pH values in the anode and cathode chambers were measured at the end of each 10-

hour experiment by inserting the glass pH electrode into the bulk water phase in each of the 
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water chambers and recording at least 6 stable pH readings for each of the water bulk aqueous 

phase.  

2.2.3 Detection of localized excess protons with a proton-sensing film 

In our preliminary experiment, it was discovered that aluminum metal can be used as a sensor to 

detect the excess protons by its corrosion-associated color change. Therefore, extra heavy duty 

aluminum membrane purchased from VWR was cut into round disks with a diameter of 2.35 cm.  

A Teflon membrane disk (Tf) was sandwiched in between a pair of aluminum (Al) membrane 

disks with an equal-diameter of 2.35 cm, forming a proton-sensing Al-Tf-Al membrane 

assembly. This assembly was then fit with the small Teflon center chamber (Figure 8c). In 

addition, pieces of proton-sensing Al film were placed on the water surfaces (PS and NS), and 

more importantly into the water bulk-water phase (PB and NB) near the middle of both the anode 

and cathode water chambers (Figure 7 and Figure 8) to track the distribution of the created 

excess protons.  

After the apparatus was set up as shown in (Figure 7), 200 V of electrolysis voltage was 

applied to the system for 10 hours using a Source Voltage/digital multi-meter system (Keithley 

instruments series 2400S-903-01 Rev E). The resulting electric current was measured as a 

function of time using the digital multi-meter interfaced with a PC computer using LabVIEW 

software. The area under the current versus time curve was integrated using Originpro 8.6 and 

LabVIEW program to calculate the amount of the total charges (coulombs) that passed through 

the electrolysis process in relation to the production of excess protons. 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Localized excess protons demonstrated with a proton-sensing film 
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During the open-circuit electrolysis of ultrapure water, excess protons were produced in the 

anode (P) chamber while excess hydroxyl anions were generated in the cathode (N) chamber 

(Figure 7). According to the proton-electrostatics localization hypothesis, the free excess protons 

in the anode water body would not stay in the bulk liquid phase; they would localize to the 

water-membrane (Teflon) interface (the PI site) in the anode (P) chamber and attract the excess 

hydroxyl ions of the cathode water body to the NI site at the other side of the membrane, forming 

an “excess anions-membrane-excess protons” capacitor-like system (as shown in the inset of 

Figure 7). According to this prediction, the bulk pH in either the anode water body or the cathode 

water body would not be affected by the excess protons or the excess hydroxyl ions created by 

the water electrolysis process. These predicted features were indeed observed in this 

experimental study. It is known that aluminum surface can begin to be corroded by protons when 

the effective proton concentration is above 0.1 mM (equivalent to a pH value below 4) as shown 

in (Appendix B, Figure S2) (92, 93). This property was therefore employed as a proton-sensing 

mechanism in combination with the bulk phase pH electrode measurement to determine the 

distribution of excess protons in the water-membrane-water system (Figure 7). In the first set of 

experiments (performed in triplicate), small pieces of aluminum film were employed as a proton 

sensor at a number of locations in both of the water chambers to serve as an indicator for the 

excess protons. As illustrated in Figure 7 and Figure 8c, a Teflon membrane (Tf) was 

sandwiched in between two pieces of aluminum film (Al), forming a proton-sensing Al-Tf-Al 

membrane system that separate the two water bodies: the cathode water body on the left and the 

anode water body on the right. The result of the “cathode water Al-Tf-Al water anode” 

experiment showed that only the proton-sensing film placed at the PI site facing the anode liquid 

showed proton-associated corrosion (see the dark brownish grey on the exposed part of the 
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proton-sensing film in Figure 9) while the proton-sensing film placed in the bulk liquid phase 

(PB) of the anode chamber or floated on the top surface (PS) of the anode water body showed no 

proton-associated corrosion activity. This is a significant observation since it indicates that 

excess protons are localized primarily along the water-membrane interface at the PI site, but not 

in the bulk liquid phase (PB). This observation agrees with the proton-electrostatics localization 

hypothesis perfectly. Also as expected, all pieces of proton-sensing film placed at the NI, NB, and 

NS sites of the cathode liquid showed no-proton-associated corrosion activity as well.  

 

 

 

Figure 9. Observations of proton-sensing Al films after 10 hours of “cathode water Al-Tf-Al 
water anode” experiment with water electrolysis (200 V). NI: proton-sensing film at the N side of 
Teflon membrane detected no proton activity. PI: proton-sensing film at the P side of Teflon 
membrane detected dramatic activity of localized protons (dark grey color). NB: proton-sensing 
film suspended inside the water of the cathode chamber. NS: proton-sensing film floating on the 
water surface of cathode chamber. PS: proton-sensing film floating on the water surface of anode 
chamber. PB: proton-sensing film suspended inside the water of the anode chamber. 

NI PI 

NB NS PS PB 



39 
 

According to the Mitchellian proton delocalized view, the excess protons in a water body 

would behave like a solute such as a sugar molecule which can stay anywhere in the liquid 

including its bulk liquid phase. Certain commonly heard arguments in favor of the Mitchellian 

proton delocalized view even as of today seem still believe that the excess protons would behave 

like solutes that could delocalize into the bulk liquid phase somehow by “proton solvation” or 

“electro diffusion”. If that delocalized view is true, it would predict that all the proton-sensing 

films in the anode water chamber including the one placed in the bulk liquid (PB) should be able 

to detect the excess protons. The observation that the proton sensor placed into the anode 

chamber bulk water phase (PB) could not detect any excess protons while the proton sensor 

placed at the PI site showed proton-associated aluminum corrosion activity clearly rejects the 

Mitchellian proton delocalized view. 

 

2.3.2 Result of bulk-phase pH measurements 

During a 10-hour experiment with 200V-driven water electrolysis, it was noticed, as expected, 

the formation of small gas bubbles at both the anode and cathode platinum electrodes. This 

observation is consistent with the well-known water electrolysis process in which water is 

electrolytically oxidized to molecular oxygen (gas) producing protons in the anode water 

compartment while protons are reduced to molecular hydrogen (gas) leaving more hydroxyl 

anions in the cathode water compartment. If the Mitchellian proton delocalized view is true, it 

would predict that the production of excess protons in the anode water compartment would result 

in a lower pH value for the bulk water body while the generation of excess hydroxyl anions in 

the cathode water body would result in a higher pH in its bulk water body. That is, if the proton 

delocalized view is true, it would predict a significant bulk-phase pH difference (∆pH) between 
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the anode and the cathode water bodies. Our experimental result with the bulk-phase pH 

measurements demonstrated that the Mitchellian proton delocalized view is not true. As shown 

in Table 1, after the 10-hour experiment with the water Al-Tf-Al (membrane) water system, the 

measured pH value in the anode bulk water body (5.76± 0.09) remained essentially the same as 

that of the cathode bulk water phase (5.78± 0.14). These bulk water phase pH values averaged 

from 3 replication experiments (each replication experiment with at least 6 reading of pH 

measurement in each chamber water, n= 3 x 6 = 18 as shown in Appendix C, Table S1-Table S4) 

were statistically also the same as those (5.78± 0.04 and 5.76± 0.02) in the control experiments 

in absence of the water electrolysis process. This is a significant experimental observation since 

it confirmed the prediction of the proton-electrostatics localization hypothesis that the excess 

protons do not stay in the bulk water phase and thus cannot be measured by a pH electrode in the 

bulk phase. 
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Table 1. Averaged pH values that were measured in bulk water phase before and after 10 hours 
experimental run with “cathode water membrane water anode” systems.  

Experiments pH of Cathode Water pH of Anode Water 

With (Al-Tf-Al) 

200 V 

Before 6.89± 0.03 6.89± 0.03 

After 5.78± 0.14 5.76± 0.09 

With (Tf-Al-Tf)  

200 V 

Before  6.71± 0.10 6.71± 0.10 

After  5.81± 0.04 5.76± 0.03 

With (Al-Tf-Al) 

control (0V) 

Before 6.89± 0.03 6.89± 0.03 

After 5.68± 0.06 5.78± 0.02 

With (Tf-Al-Tf) 

control (0V) 

Before 6.71± 0.10 6.71± 0.10 

After 5.76± 0.02 5.78± 0.04 

*The averaged pH values and standard deviation (± sign) were calculated from the original data of bulk water phase. 

pH measurements presented in detail in the Appendix C (Table S1-Table S6). 

 

 

This observation can also explain why in certain bioenergetic system such as thylakoids 

where ATP synthesis through photophosphorylation sometimes can occur without measurable 

∆pH across the thylakoid membrane between the two bulk aqueous phases (38). As shown in the 

present study, although the bulk-phase pH difference (∆pH) between the anode chamber water 

and the cathode chamber water is zero, the excess protons were localized at the water-membrane 

interface as demonstrated by the dramatic proton activity on the proton-sensing film placed at the 

PI site (Figure 9). This indicated that the concentration of localized excess protons was much 

higher than 0.1 mM. 
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Furthermore, the measured pH value of 5.76± 0.09 in the anode bulk water phase was 

also consistent with the observation that the piece of proton-sensing film placed in the anode 

bulk water phase (PB) showed no sign of proton-associated corrosion activity while the proton-

sensing film placed at PI site had dramatic proton-associated corrosion (Figure 9). This indicated 

that the generated excess protons are localized primarily at the water-membrane interface at the 

PI site resulting in a proton surface density that is high enough (pH < 4) to cause the aluminum 

corrosion there.  

The pH measurements also showed that the freshly deionized water had an average pH 

value of 6.89± 0.03 before being used in the experiments (Table 1). Since the experiments were 

conducted with the laboratory ambient air conditions, the gradual dissolution of atmospheric CO2 

into the deionized water during a 10-hour experiment period resulted in water pH change from 

6.89± 0.03 to 5.68± 0.06, which was observed in the control experiment with the same “cathode 

water Al-Tf-Al water anode” setup except without turning on the electrolysis voltage (0 V). 

Therefore, this bulk water pH change had little to do with the 200V-driven water electrolysis 

process. The same magnitude of bulk water pH change before and after the experiment was 

observed for the deionized water in both the anode and cathode chambers, which also supports 

the understanding that this bulk water pH change from the beginning to the end of the 

experiment was due to the gradual dissolution of atmospheric CO2 into the deionized water 

during the 10-hour experiment period. There was no difference between the bulk-phase pH of 

anode chamber water (pH 5.76± 0.09) and that of the cathode chamber water (5.78± 0.14) at the 

end of the experiment. This result also points to the same underline understanding that the excess 

protons do not behave like typical solute molecules. Excess protons do not stay in the water bulk 
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phase; they localize at the water-membrane interface at the PI site so that they cannot be detected 

by the bulk-phase pH measurement.  

A further set of experiments with the setup of “cathode water Tf-Al-Tf water anode” was 

also conducted in triplicate.  In this set of experiments, Tf-Al-Tf membrane system was used 

instead of the Al-Tf-Al membrane system.  Since the Teflon membrane is chemically inert to 

protons, the use of the Tf-Al-Tf membrane system eliminated the consumption of excess protons 

by the aluminum corrosion process at the PI site that was demonstrated above.  In this set of the 

experiments, no bulk-phase pH difference (∆pH) between the anode and cathode water bodies 

was observed as well. As shown in Table 1, after 10 hours run at 200V with the “cathode water  

Tf-Al-Tf water anode” system, the measured pH value in the anode bulk water phase (5.76± 

0.03) was essentially the same as that of the cathode bulk water phase (5.81± 0.04). This 

experimental observation again indicated that the excess protons do not stay in the bulk water 

phase and thus cannot be measured by the bulk liquid phase pH measurement. Since liquid water 

is an effective proton conductor as discussed above, the excess protons produced in the anode 

water compartment electrostatically localize to the water-membrane interface at the PI site. 

2.3.3 Excess protons assessed with water electrolysis electric current 

The proton-charging-up process in this “excess hydroxyl anions Tf-Al-Tf excess protons” 

capacitor system was monitored by measuring the electric current of the 200V-driven water 

electrolysis process as a function of time during the entire 10-hour experimental run. The data in 

the inset of Figure 10 showed that the electric current of the water electrolysis process decreased 

with time as expected. That is, when the excess protons were generated in the anode water 

compartment (while the excess hydroxyl anions were generated in the cathode water 

compartment), this “excess hydroxyl anions Tf-Al-Tf excess protons” capacitor is being charged 
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up by localization of the excess protons at the PI site and the excess hydroxyl anions at NI site 

(Figure 7). According to our analysis, this process reached thermodynamic equilibrium after 

about 1500 seconds (shown in the inset of Figure 10) under this experimental condition where 

the curve of the water electrolysis current quickly became flat indicating the completion of the 

water electrolysis-coupled proton-charging-up process. 

  



45 
 

 

 

Figure 10. The electric current of water electrolysis measured as a function of time with 200 V 
during 10 hours experimental run. The black curve shows average of three experiments with 
“cathode water Al-Tf-Al water anode”. The blue line shows average of three experiments with 
“cathode water Tf-Al-Tf water anode”; and its initial part within the first 2000 seconds is plotted 
in an expanded scale showing the integration for the area under the curve (Inset). More detailed 
data is shown in (Appendix B, Figure S1). 
 

 

By calculating the area under the water-electrolysis current curve above the flat baseline 

as shown in the inset of Figure 10, the amount of excess protons loaded onto the “excess 

hydroxyl anions Tf-Al-Tf excess protons” capacitor was estimated to be 2.98 x 10-13 moles 
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(Table 2). The area of the Teflon membrane surface exposed to the anode water at the PI site was 

measured to be 2.55 cm2. If that amount of excess protons were loaded at the PI site onto the 

Teflon membrane surface exposed to the anode water, the maximal localized excess proton 

density per unit area was estimated to be 1.19 nanomoles H+/m2. Although the exact thickness of 

the localized excess proton layer at the PI site is yet to be determined, our recent study (22) 

indicated that the effective thickness for this type of the electrostatically localized excess proton 

layer may be about 1±0.5 nm. If that is the case, then the localized excess proton density of 1.19 

nanomoles H+/m2 would translate to a localized excess proton concentration of 1.19 mM H+ 

(equivalent to a localized pH value of 2.92 as calculated in Table 2) at the PI site, which can 

explain why they can be detected by the proton-sensing Al film there.  

 

 

Table 2. Calculation of localized proton density per unit area in “cathode water Tf-Al-Tf water 
anode” experiment. 

 Area under the 
curve 

(Coulombs) 

Moles of excess 
protons H+  

(mol) 

Localized proton 
density per unit area 

(mole H+/m2) 
 

pH at PI of the  
Tf-Al-Tf 

Replicate 1 3.03 x 10-8 3.14 x 10-13 1.25 x 10-9 2.90 

Replicate 2 2.25 x 10-8 2.33 x 10-13 9.33 x 10-10 3.03 

Replicate 3 3.35 x 10-8 3.47 x 10-13 1.38 x 10-9 2.85 

Average 2.88 x 10-8  2.98 x 10-13 1.19 x 10-9 2.92 ± 0.09 
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The water electrolysis current in the “cathode water Al-Tf-Al water anode” experiment 

was also monitored. As shown Figure 10, after about 5000 seconds, the water electrolysis 

electric current at the steady state of this experiment reached around 6.5 x 10-5 A, which was 

much bigger than that (below 1 x 10-10 A) of the “cathode water Tf-Al-Tf water anode” 

experiment.  This large water electrolysis electric current can be attributed to the consumption of 

excess protons by the proton-sensing Al film at the PI site. As the proton-sensing film at the PI 

site consumes the excess protons, more excess protons can then be produced at the anode 

electrode, resulting in a significant water-electrolysis electric current. The high concentration of 

the electrostatically localized excess protons at the PI site thermodynamically drives the 

aluminum corrosion reaction in which aluminum atoms are oxidized by protons resulting in 

evolution of molecular hydrogen gas. During the experiment, we indeed noticed the formation of 

gas bubbles on the aluminum membrane surface at the PI site (Figure 11). 

 

 

 

Figure 11. Teflon center chamber (with Al-Tf-Al membrane) after 10 hours electrolysis. 
Formation of gas bubbles and significant proton activity was noticed on the aluminum film 
surface at the PI site.  
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By calculating the area under the water-electrolysis current curve from the “cathode 

water Al-Tf-Al water anode” experiment and subtracting that of the “cathode water Tf-Al-Tf 

water anode” experiment, we were able to calculate the amount of excess protons that were 

generated by the anode and consumed by the proton-sensing film at the PI site. As shown in 

Table 3, during the 10-hr “cathode water Al-Tf-Al water anode” experiment, a total of 2.11x 10-5 

moles of excess protons were generated by the anode platinum electrode. These excess protons 

were apparently translocated to the proton sensing film surface at the PI site and consumed there 

by the corrosion reaction as shown in Figure 9. The amount of protons consumed per unit area 

was calculated to be 8.29 x 10-6 moles per cm2 as shown in Table 3.  

 

 

Table 3. Calculation* of the amount of protons consumed in proton-sensing-associated corrosion 
process in the “cathode Al-Tf-Al water anode” experiment. The surface area of Al exposed to the 
localized proton attack was Л r2 = 2.545 cm2= 2.5 x 10-4   m2. 

 

Area under the 
curve 

(Coulombs) 

Moles of excess 
protons H+ = 

(mol) 

Observance 
of corrosion 

Amount of 
protons 
consumed 
(moles H+ /m2) 

 

Replicate 1 2.01 2.07x10-05 Yes 0.0833 

Replicate 2 2.10 2.17x10-05 Yes 0.0871 

Replicate 3 2.01 2.08x10-05 Yes 0.0833 

Average 2.04 ± 0.05 2.11x10-05 Yes 0.0846 ± 0.0022 

 

*Moles of excess protons H+ = 𝐴𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑐𝑢𝑟𝑣𝑒
96485
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2.4 CONCLUSION 

The experimental results reported above clearly demonstrated that excess protons were localized 

at the water-membrane interface in the anode water-membrane-water cathode system. The most 

remarkable evidence for the localized excess protons came from the observation that the proton-

sensing film placed at the PI site of Teflon membrane showed dramatic excess proton activity 

(corrosion) while the proton-sensing film placed into the anode chamber water bulk phase (PB) 

showed no proton activity during the entire experiment. The density of localized excess protons 

created in this experiment was estimated to be about 1.19 mM H+ (pH value of 2.92) at the water-

membrane interface (PI site), which explains why it can be sensed by the proton-sensing Al 

membrane. Furthermore, the bulk-phase pH measurements in both anodic and cathodic water 

chambers also confirmed that excess protons do not stay in the bulk aqueous phase, which 

clearly rejects the Mitchellian proton delocalized view. These observations clearly match with 

the predictions from the proton-electrostatics localization hypothesis: excess protons do not stay 

in the water bulk phase; they localize at the water-membrane interface in a manner similar to the 

behavior of excess electrons in a conductor. This finding has significance not only in the science 

of bioenergetics but also in the fundamental understanding for the importance of water to life. It 

is now quite clear that water serves not only as a solvent and substrate but also as a proton 

conductor for proton coupling energy transduction in living organisms. 

Furthermore, the localized excess protons that have now been demonstrated for the first 

time through this research may have practical implications as well. For example, the utilization 

of localized excess protons that can be created in pure water may lead to clean “green chemistry” 

technologies for industrial applications such as metal acid washing and/or protonation of certain 

micro/nanometer materials without requiring the usage of conventional acid chemicals such as 

nitric and sulfuric acids.  
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CHAPTER 3 

THE EFFECT OF CATIONS (Na+ AND K+) ON LOCALIZED EXCESS 

PROTONS AT A WATER-MEMBRANE INTERFACE  

Preface 

This chapter is the basis of the paper which is in preparation to be submitted to physical 

chemistry B journal. The title of the paper will be as follows: 

Saeed HA, Lee JW. The Effect of Cations (Na+ and K+) on Localized Excess Protons at a Water-

Membrane Interface. 

 

3.1 INTRODUCTION 

Peter Mitchell’s work on chemiosmotic theory (16, 82, 83) won him the 1978 Nobel prize in 

chemistry, and its central bioenergetics equation has been incorporated into many textbooks (3, 

5, 84). In one of its forms, this equation is expressed as the proton motive force across a 

biological membrane that drives protons through the ATP synthase: 

pmf = ∆ψ +
2.3 𝑅𝑇
𝐹

 ∆pH              (3.1) 

Where ∆ψ is the electrical potential difference across the membrane, R is the gas constant, T is 

the absolute temperature, and ∆pH is the pH difference between the two bulk aqueous phases 

separated by the membrane. In this framework, the protons are considered to be solutes, similar 

to sugar molecules, that are delocalized, existing everywhere in the bulk aqueous phases. 

Consequently, the Mitchellian view of bioenergetics is that the ATP synthase is coupled to the 

redox proton pumps via bulk phase-to-bulk phase proton electrochemical potential gradients 

generated across the biological membrane. The chemiosmotic theory was a major milestone in 
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the history of bioenergetics; its significance to the field could hardly be overstated.  

However, the question as to what extent the proton coupling pathway for producing ATP 

is delocalized throughout the bulk aqueous volume or localized at the membrane surface has 

remained under discussion since it was first raised in 1961 by Williams (20, 38, 44, 86, 87). He 

(39) pointed out a deficiency of the delocalized proton-coupling view by stating: “If charge is 

thrown out into the medium, as in osmotic theories, then we face the problem of equilibration of 

the energy of a single cell on its outside with the whole of the volume in which it is suspended, 

say the Pacific Ocean.” Perhaps the most well-established observations that disagree with the 

Mitchellian equation (3.1) are in alkalophilic bacteria, such as Bacillus pseuodofirmus (23-25). 

These bacteria keep their internal pH about 2.3 units more acidic than the ambient bulk pH of 

10.5, while its membrane potential is about 180 mV (26, 27, 31). The use of the Mitchellian 

equation (3.1) in this case would yield a pmf value so small (44 mV at T = 298K) that it has 

remained a mystery for the last three decades as how these organisms are able to synthesize ATP 

(29, 30, 34). Also notable are the elegant measurements on thylakoids by Dilley et al. (73), who 

measured photosynthetic ATP production in the presence of a bulk proton permeable buffer 

(pyridine) and found that protons in the bulk phase were not governing the ATP synthesis 

process in thylakoids under low salt conditions. Dilley et al. (44, 73, 94) conjectured that a 

hypothetical proteins-occluded space along the membrane surface could provide a localized 

proton pathway to the ATP synthase, but no evidence for such a protein system has been found. 

Similarly, other conjectured explanations for protons being localized at membrane surfaces have 

not gained acceptance. 

Biological membranes are made of phospholipids which have negatively-

charged phosphate groups. The presence of a net negative charge on the biological membrane 
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surfaces produce an electrical potential that attracts the counter-ions (of opposite charges) and 

repels ions carrying the same charge as that of the surface. Several theories have been introduced 

in an attempt to determine the surface potential of charged surfaces and to describe the electrical 

phenomena at the surfaces of the biological membranes. Helmholtz recognized that the charges 

that are fixed on a solid surface immersed in an electrolyte solution attract counter-ions via the 

Coulomb force from the aqueous phase (95). He said that both the fixed charges and the counter-

ions form what he named an electrical double layer. Unfortunately, the Helmholtz electrical 

double layer model does not adequately explain all the features, since it hypothesizes rigid layers 

of opposite charges.   

In order to describe the electrostatic attraction of the counter-ions to the charged solid 

surface such as the phospholipid membrane, Gouy and Chapman have used the Poisson equation 

(96, 97). Unlike the earlier considerations of Helmholtz, Gouy suggested that counter ions are 

not rigidly held, but tend to diffuse into the liquid phase. As a result, the thickness of the 

resulting diffused double layer will be affected by the kinetic energy of the counter ions.  Gouy 

and Chapman developed the diffuse double layer theory in which the change in concentration of 

the counter ions near a charged surface and the charge distribution of ions as a function of 

distance from the charged surface follow the Boltzmann distribution. They have used Boltzmann 

equation to describe the statistical tendency of the counter-ions to diffuse away from a region of 

high concentration. However, since the Boltzmann distribution assumes that activity is equal to 

molar concentration there would be an error in evaluating and describing the effective charge 

distribution near the biological membrane surface. It was found experimentally that the thickness 

of the double layer that reflects the extensiveness of the counter-ion clouds is always greater than 

the calculated one (58).  The Gouy-Chapman theory is not entirely accurate as it assumes that 
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ions behave as point charges and that there is no physical limits for the ions in their approach to 

the surface (98). Clearly, it is known that ions have a finite size which is determined by their 

ionic radius and degree of hydration. Also the Gouy-Chapman model assumes that the rigid 

charged surface has planar surface which cannot be applied for the biological membranes 

because they are not smooth due to the presence of integral proteins protruding from their 

surfaces (99, 100). Stern, therefore, modified the Gouy-Chapman diffuse double layer (99). He 

considered that ions have a finite size and cannot approach the surface closer than few nanometer 

which was described by Debye length. Stern also assumed that there is a possibility for some 

ions and dipolar molecules to be specifically adsorbed by the surface, and this layer has become 

known as the Stern Layer (101). Electrochemists have highlighted for many years the short 

comings of the Gouy- Chapman theory as it ignored some important effects such as specific ion 

binding, ionic sizes, oriented dipoles, and hydration effects (99-101).  

For solutions adjacent to charged surfaces like electrodes, the potential of the electrode 

becomes proportional to the surface charge density which is similar to a capacitor whose plates 

has specific charge densities and separated by a distance (rD). As mentioned before that the 

diffuse electric double-layer presented by Gouy-Chapman is currently the model being used for 

describing the ionic atmosphere near a charged surface whose thickness is estimated as the 

Debye length (rD). The magnitude of the Debye length ─which appears as the characteristic 

decay length of the surface potential─ depends only on the properties of the solution not on the 

properties of the charged surface (102). For example, a monovalent electrolyte like NaCl 

solution at 25 ºC, the Debye length is 30.4 nm at 10-4 M, 0.96 nm at 0.1 M and 0.3 nm at 1 M. 

This means that the Debye length decreases by increasing the concentration of the electrolytes 

(103).  
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Unfortunately, the Debye length cannot be used to estimate the thickness of the localized 

excess protons because the equations used in calculating the Debye length can be applied only to 

charge-balanced solutions including 1:1 electrolyte solutions such as NaCl, 2:1 electrolytes such 

as CaCl2 and 1:2 electrolytes such as Na2SO4 (104). That is, the Debye length equations cannot 

be applied to estimate the thickness of the localized excess protons (layer) that does not have 

counter ions. Consequently, it is necessary to develop more appropriate equations to describe the 

nature and the thickness of localized excess protons on the charged and the uncharged membrane 

interface. 

Recently, Lee has put forward  the proton electrostatic localization hypothesis for a 

natural mechanism to produce surface membrane localized protons (15, 105), which is built on 

the premise that a water body acts as a proton conductor. This premise is consistent with the 

well-established knowledge that protons quickly transfer among water molecules by the “hops 

and turns” mechanism first outlined by Grotthuss two centuries ago (76, 89, 90). Considering a 

conceptualized system consisting of an impermeable membrane immersed in pure water with an 

excess number of free protons (H+) inside and an equal number of free hydroxyl ions (OH-) 

outside, and given that pure water acts as a proton conductor, it follows mathematically from 

applying the Gauss Law of electrostatics that the excess protons and ions are localized at the 

water-membrane interface, forming a capacitor-like structure (105). For an idealized proton 

capacitor, the concentration of the localized protons [𝐻𝐿+]0 at the membrane-water interface is 

related to the membrane electric potential difference by  

[𝐻𝐿+]0 =
𝐶
𝑆
∙  
∆ψ
𝑙 ∙ 𝐹

=
∆ψ ⋅ κ ⋅ εo
𝑑 ⋅ 𝑙 ∙ 𝐹

                            (3.2) 

Where C/S is the specific membrane capacitance per unit surface area, l is the thickness of the 
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localized proton layer, κ is the dielectric constant of the membrane, εo is the electric permittivity, 

and d is the membrane thickness. 

Considering biological systems, it is important to note that non-proton cations in the 

aqueous media may exchange with protons localized at the membrane surface and thereby 

reduce their concentration. According to the proton electrostatic localization hypothesis (22), 

such exchange effects can be expressed by augmenting equation (3.2) for the concentration of 

surface localized protons as 

[𝐻𝐿+] =
[𝐻𝐿+]0

∏  (𝐾𝑃𝑖 �
�𝑀𝑝𝐵

𝑖+ �
�𝐻𝑝𝐵+ �

�+𝑛
𝑖=1 1)

                          (3.3) 

Where [H+
pB] is the proton concentration in the bulk aqueous phase, �𝑀𝑝𝐵

𝑖+ � is the concentration 

of non-proton cations, and KPi is the equilibrium constant for non-proton cations to exchange 

with the localized protons. Thus, it is to be expected that the non-proton cation concentrations 

that occur in biological systems may play a significant role in modulating the proton motive 

force for varieties of biological functions including the production of ATP. 

 Furthermore, according to the proton electrostatic localization hypothesis (22) the proton 

motive force in equation (3.1) must be revised by combining the concentration of surface 

localized protons with the concentration of bulk phase protons; explicitly, 

pmf = ∆ψ +
2.3 𝑅𝑇
𝐹

 log10� ([𝐻𝐿+] + �𝐻𝑝𝐵+ �)/ [𝐻𝑛𝐵+ ] �               (3.4) 

Here, as in equation (3.3), �𝐻𝑝𝐵+ � is the proton concentration in the periplasmic bulk aqueous 

phase while [𝐻𝑛𝐵+ ] is the proton concentration in the cytoplasmic bulk phase. This pmf equation 

also adds clarification beyond equation (3.1) in which the electrical potential difference term 
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∆ψ  in equation (3.4) that helps to drive protons through the ATP synthase is the same factor (in 

equation (3.2)) that determines the concentration of surface localized protons which are available 

to the ATP synthase. Indeed, ∆ψ  exists precisely because of the excess cations (including H+) 

and the excess anions (such as OH-) charge layers localized on either sides of the membrane. 

Moreover, it is expected that the surface localized protons would make a very significant 

contribution to the protons available for driving ATP synthesis. In fact, applying equation (3.4) 

to the alkalophilic bacteria case noted above, using reasonable estimates for the quantities in 

equations (3.2) and (3.3), yields a pmf value of ~225 mV, which is 5 times larger than the value 

obtained from equation (3.1) and is sufficient to overcome the observed phosphorylation 

potential in order to synthesize ATP (105). 

The Lee proton electrostatic theoretical model which has a characteristic localized proton 

coupling feature does not necessarily contradict with the electric double layer theoretical model. 

These two models represent two different processes: the former describes the proton motive 

force with electrostatically localized excess proton coupling bioenergetics while the later belongs 

to the classic electric double layer phenomenon. For example, the negatively-charged phosphate 

groups of the biological membrane could attract protons and other cations to its surface forming 

an electric double layer along the membrane negatively charged surface as expected by the 

Gouy-Chapman theory (52). However, this double layer always exists at all time during light and 

dark conditions even when the proton motive force (pmf) is zero. This means that the protons 

and/or cations attracted to the membrane surface’s fixed charge forming the double layer 

couldn’t contribute to the proton motive force that drives the flow of protons across the 

membrane for two reasons: first, the protons forming the double layer are not dynamic. Second, 

there would be no need for light (photosynthetic) and/or chemical (respiratory) to create excess 
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protons and establish the proton gradient across the membrane as it would violate the 

fundamental principles of thermodynamics by driving work without requiring external energy 

(53). In fact, as described by the Lee proton electrostatic theoretical model, it is the free excess 

protons that have the dynamic ability to be coupled to the ATP synthase and are relevant to the 

proton motive force.  

As illustrated in Figure 12, our experimental work in Chapter 2 clearly demonstrated the 

formation of a localized excess protons layer at the water-membrane interface in an anode water-

membrane-water cathode system (106), where excess protons were generated by water 

electrolysis in an anode electrode chamber while excess hydroxyl anions were created in a 

cathode chamber. When a positive voltage is applied to the anode electrode in water, it first 

attracts the hydroxyl anions to anode electrode surface and then counter ions (protons) distribute 

themselves near the anions layer, forming a typical “electric double layer” on the anode surface 

(Figure 12a, right side).  When significant number of excess protons are produced by water 

electrolysis (in mimicking a biological proton production process such as the respiratory proton 

pumping system and the photosynthetic water-splitting process) in the anode chamber, the excess 

protons electrostatically distribute themselves at the water-surface (including the membrane 

surface) interface around the water body including a part of the “electric double layer” at the 

anode surface. From here, it can be seen that the excess proton layer at the water-membrane is 

apparently extended from the secondary (proton) layer of the “electric double layer” at the 

anode. The excess proton layer at the water-membrane interface attracts electrostatically the 

excess hydroxyl anions in the cathode chamber at the other side of the membrane, forming an 

“excess anions-membrane-excess proton” capacitor-like structure.  
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Since the membrane is just an insulator layer (not an electrode), the excess proton layer at 

the water-membrane interface is likely to be a special monolayer (with a thickness probably of 

about 1 nm), but definitely not an “electric double layer” as that of a typical electrode. The 

conclusion of excess proton monolayer is also consistent with the known “electric double layer” 

phenomenon since the excess proton layer can be treated as an extension from the second 

(proton) layer of the anode’s “electric double layer” (Figure 12a, right side) around the proton-

conductive water body.  

When the electrolysis voltage is turned off, the electric polarization at both anode and 

cathode disappears and so does the “electric double layer”, leaving only the excess proton layer 

around the anode chamber water body and the similarly formed excess hydroxyl (anions) layer 

around the cathode chamber water body as illustrated in Figure 12b. The excess anions-

membrane-excess proton capacitor (shown in the middle of Figure 12b) may represent a proof-

of-principle mimicking an energized biological membrane such as a mitochondrial membrane 

system at its energized resting state.  
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Figure 12. Schematic diagram showing experimental demonstration of a localized excess 
protons layer at the water-membrane interface in an “anode water-membrane-water cathode” 
system. Top (a): showing the excess proton monolayer is extended from a secondary proton layer 
of the “electric double layer” that covers the anode surface when electrolysis voltage is applied; 
Bottom (b): showing the likely distribution of excess protons and excess hydroxyl anions in the 
two water chambers separated by a membrane when electrolysis voltage is turned off. 
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The electrostatic localization conceptualization is quite general. It does not depend on 

biological scales or processes. Therefore, to provide a first proof-of-principle study (106), we 

have carried out laboratory bench experiments to create excess protons using an electrolysis set-

up with cathode and anode water chambers separated by an impermeable membrane.  

In Chapter 2, we experimentally demonstrated using a proton-sensing film that excess 

protons do not stay in water bulk phase; instead they localize at the water-membrane in a manner 

similar to the behavior of excess electrons in a metallic conductor (106). These observations 

clearly support the proton-electrostatics localization hypothesis (15, 105) which is a significant 

contribution in understanding the biological energy transduction processes and the distribution of 

protons across a biological membrane.  

In this Chapter, we report the effect of cations (Na+ and K+) on localized excess protons 

at the water-membrane interface by measuring the exchange equilibrium constant of  Na+ and K+ 

cations in exchanging with the electrostatically localized protons at a series of cations 

concentrations. The experimental determination of the cation exchange equilibrium constant with 

the localized protons reported here will provide a logical support for the electrostatic localized 

proton hypothesis and gain more fundamental understanding for the effect of non-proton cations 

on localized proton population density.   

 

3.2 MATERIALS AND METHODS 

Two ElectroPrep electrolysis systems (Cat no. 741196) purchased from Harvard Apparatus Inc. 

were used in this experimental study with one of them as a control. Each system comprised a 

cathode chamber, a small Teflon center chamber and an anode chamber as illustrated in Figure 

13. The small Teflon center chamber was inserted to the middle O-ring fitting channel of the 
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inter-chamber wall that separates the cathode and anode water chambers. The ElectroPrep 

electrolysis system was made of Teflon, a completely inert material that is unreactive under high 

power voltage. 

 

 

 

Figure 13. Schematic diagram of the system testing the effect of sodium cations on localized 
protons at the P′ side in the Teflon center chamber. The inset shows the exchange of the added 
sodium (Na+) cations with the electrostatically localized protons at the P′ side. A small piece of 
proton-sensing Al film was placed into the bulk liquid phase (the CB site) of the center chamber.  
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To test the effect of (K+ and/or Na+) salt concentration on localized excess protons, 1.5 

ml of pure water or salt solution was placed inside a 1500 µl Teflon center chamber (Harvard 

Apparatus) as shown in Figure 13. The Teflon center chamber was sealed at each of its two ends 

by Al-Tf-Al membrane assembly that is formed by sandwiching an impermeable 75-µm thick 

Teflon (Tf) membrane with two pieces of 25-µm proton-sensing aluminum (Al) films (having 

equal-diameter of 2.35 cm) placed at the two side ends of the Teflon center chamber (internal 

diameter 1.5 cm and length 0.9 cm). In addition, a small piece of aluminum was inserted in the 

middle liquid bulk phase of the Teflon center chamber. The small Teflon center chamber was 

then placed in between the anode and the cathode compartments of the apparatus as in Figure 13 

so that one end of the center chamber was in contact with cathode bulk liquid (denoted N side), 

while the other end was in contact with anode bulk liquid (denoted P side). 

The ultrapure MilliQ-deionized water (Millipore, 18.2 MΩ.cm at 22.5 ºC) used in this 

study was degased by boiling the water in an autoclave (Yamato, Model SM510) and then it was 

cooled down to room temperature before using.  The two compartments were then filled with 

ultrapure MilliQ-deionized water (Millipore, 18.2 MΩ.cm at 22.5 ºC): 300 ml in small 

compartment where the cathode electrode resides (cathodic compartment) and about 600 ml in 

large compartment where the anode electrode resides (anodic compartment), rendering an equal 

water level in both compartments (Figure 13 shows the schematic diagram of the system and a 

detailed description of the electrolysis process). This effectively created a “cathode water 

membrane (Al-Tf-Al) water membrane (Al-Tf-Al) water anode” system.  

The pH of the deionized water was measured separately in a small beaker using Orion™ 

ROSS Ultra™ pH Electrode (Thermo Scientific, Cat No. 8102BNUWP) that is designed to 

measure pH for aqueous samples with very low ionic strength, including ultra-pure water. Two 
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point calibrations were performed using a buffer of pH 7.00, and a buffer of pH 4.01, according 

to manufacturer instructions.   

Series of experiments with the above settings were performed comparatively in the 

presence (and absence) of NaHCO3 or KHCO3 solution at a series of the ionic salt concentrations 

(0, 10, 50, 100, 150, 200 & 400 mM) that was placed into the Teflon center chamber (Figure 13, 

inset bottom). These experiments were performed to test the effect of sodium (or potassium) 

cations on the electrostatically localized protons at the induced P′ side in the center chamber, in 

comparison with the unperturbed P side facing the anode water. After sealing one end of the 

Teflon center chamber with (Al-Tf-Al) membrane, 1.6 ml of liquid water or the ionic salt 

solution was introduced into the Teflon center chamber through the other end, which was then 

sealed with another (Al-Tf-Al) membrane. The ultrapure MilliQ-deionized water used in all 

experiments was pre-degassed to remove the excess dissolved air gases from the liquid water. 

The Teflon center chamber assembly was then fitted into the O-ring channel within the inter-

chamber wall that separates the cathode and anode water chambers. The apparatus was then 

rinsed with ultrapure MilliQ-deionized water to remove any possible salt contamination before 

loading ultrapure MilliQ-deionized water into cathode chamber (300 ml) and the anode chamber 

(600 ml). This setup created a “cathode water membrane (Al-Tf-Al) –salt solution−membrane 

(Al-Tf-Al) water anode” system.  

After the apparatus was set up as shown in Figure 13, an electrolysis voltage of 200 V 

was applied to the system for 10 hours using a digital multimeter system (Keithley instruments 

series 2400S-903-01 Rev E). To ensure safety, all experiments were performed inside a fume 

hood that has a built-in air-fan driven ventilation system to disperse the small amount of 

potentially explosive H2 and O2 gases generated from the water electrolysis process through the 
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fume hood ducts into the outside atmosphere. A second apparatus with the exactly same setup 

and liquid samples except without the 200 V electrolysis voltage was used as a control. The 

liquid pH was measured for the salt solution inside the Teflon center chamber after the 10-hour 

period for both the experiment and the control (recording 6 stable pH readings for each sample) 

using Orion™ ROSS Ultra™ pH Electrode (Thermo Scientific, Cat No. 8102BNUWP). Also the 

conductivity measurement for the water in each of the anode chamber and the cathode chamber 

at the end of the experiment was performed (recording 6 stable conductivity readings for each 

sample) using a Beckman coulter conductivity probe (Model 16 x 120 mm, item no. A57201). 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 Demonstration of electrostatically localized protons at the P and P′ interfaces in a 

“water-membrane-water-membrane-water” system 

In the system described above, water in the Electroprep apparatus was electrolyzed at 200 V, 

forming excess protons / O2 gas in the anode chamber (P) and excess hydroxyl anions / H2 gas in 

the cathode (N) chamber (Figure 13). Based on the proton-electrostatics localization hypothesis 

(15), it is predicted that the free excess protons in the anode chamber would migrate and localize 

themselves primarily at the water-membrane interface (the P site) in the anode (P) chamber. The 

excess protons localized at the P side would induce an electrostatic localization of hydroxide ions 

at the other side of the membrane (the N′ site) forming an “excess anions-membrane-excess 

protons” capacitor-like system (as shown in Figure 14 and on the right of the inset of Figure 13). 

Similarly, the excess hydroxide ions generated in the cathode chamber would migrate and 

localize primarily at the water-membrane interface (the N site) in the cathode (N) chamber. It is 
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predicted that this hydroxide ions localization at the N side would induce electrostatic 

localization of protons at the other side of the membrane (the P′ site) forming an “excess anions-

membrane-excess protons” capacitor-like system (as shown in Figure 14 and on the left of the 

inset of Figure 13).  

 

 

 

Figure 14. Schematic diagram showing the distribution of protons and hydroxide ions in the 
cathode, center and the anode water chambers under the influence of applying 200V when the 
electrodes are polarized. The inset shows the electrostatic distributions of protons and hydroxide 
ions on P′ and N′ sites respectively in a “water-membrane-water-membrane-water” system.  
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These predicted features were indeed demonstrated through observation of localized 

proton activity on Al films at the P and P′ sites while there were no observable proton activity at 

the N and N′ sites, and no observable excess proton activity in the bulk liquid phase at the PB, 

CB, and NB sites in the three liquid chambers (Figure 15).  As predicted by the hypothesis, it was 

noticed that the proton sensing films (Al-Tf-Al) at the two ends of the Teflon sample chamber 

had detection of protons on P and P′ sites that were adjacent to pure water (in absence of any 

salt) as shown in Figure 15. The proton-sensing detection employed here was in the form of Al 

surface corrosion (Equations 3.5 and 3.6) when the effective proton concentration was above 0.1 

mM (equivalent to a pH value below 4) as explained in (Appendix B, Figure S2) (92, 93). While 

the proton-sensing film placed at the N and/or N′ side of the Teflon membrane detected no 

significant proton activity so that its color remained unchanged (Figure 15).  

 

𝐴𝑙2𝑂3 + 6𝐻+(𝑙𝑜𝑐𝑎𝑙𝑧𝑖𝑒𝑑) ↔  2𝐴𝑙3+ + 3𝐻2𝑂                                                     (3.5) 

2𝐴𝑙 (𝑠) + 6𝐻+(𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑) + 6𝑂𝐻− →  2𝐴𝑙(𝑂𝐻)3 + 3𝐻2(𝑔)                          (3.6) 

 

It is worth to mention that the Al film in the Al-Tf-Al membrane does not serve as an 

electrode since the Al membrane itself was not connected to any external voltage source. It acted 

as part of  an insulating membrane where excess protons accumulate at the surface on the P site 

while excess hydroxides are localized at the N side as shown in the middle of Figure 14. 

Therefore, as discussed previously, there is a monolayer of protons localized at the Al membrane 

surface but there is no double layer formation as expected by Gouy-Chapman double layer 

theory due to the absence of counter-ions in the anode chamber. However, an electric double 
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layer is expected to be established on the charged electrode surfaces as illustrated in Figure 14.  

In this three-water-chambers system, we also demonstrated an induced proton layer at the 

membrane-water interface (the P′ site) in the center liquid chamber with the evidence of proton-

sensing film at the P′ site showing intense localized proton activity while those at CB and N′ sites 

showing no protonic activity (Figure 15).  
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Proton-sensing film placed at cathode (N) site. Proton-sensing film placed at cathode 

facing the solution in the center Teflon 
chamber (P′) site. 

  
Proton-sensing film placed at anode facing the 
solution in the center Teflon chamber (N′) site. 

Proton-sensing film placed at anode (P) 
site. 

  

 

Proton-sensing film suspended 
inside the cathode bulk water 

phase (NB) 

Proton-sensing film 
suspended inside the anode 

bulk water phase (PB) 

Proton-sensing film was 
placed into the bulk 
liquid phase of the 

center chamber (CB) 
Figure 15. Observation of proton-sensing films after 10 hours electrolysis (200 V) for the 
cathode water Al-Tf-Al-DI water- Al-Tf-Al water anode experiment. Images show proton-sensing 
films that were placed at N, P, N′, P′, NB, PB and CB sites.  
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Table 4. Three replicates of final pH measurements for experiments with arrangement “cathode 
water-Al-Tf-Al-DI water- Al-Tf-Al- water anode “after 10 hours electrolysis (see Appendix C, 
Table S7-Table S8). 

  Experiment (200v) Control (0V) 

Replicates 

Cathode 
chamber 

pH 
 

Center 
chamber 

pH 

Anode 
chamber 

pH 

Cathode 
chamber 

pH 

Center 
chamber 

pH 

Anode 
chamber 

pH 

Replicate 1 5.88 ± 0.13 7.28 ± 0.18 5.82 ± 0.09 5.78 ± 0.14 5.91 ± 0.06 5.70 ± 0.08 

Replicate 2 6.01 ± 0.09 7.04 ± 0.08 5.80 ± 0.01 5.75 ± 0.04 6.11 ± 0.05 5.89 ± 0.34 

Replicate 3 5.85 ± 0.10 7.27 ± 0.14 5.79 ± 0.08 5.71 ± 0.03 6.17 ± 0.03 5.72 ± 0.10 

Average 5.92 ± 0.12 7.20 ± 0.17 5.81 ± 0.07 5.75 ± 0.08 6.07 ± 0.13 5.77 ± 0.21 

 

 

Our bulk-phase pH measurements (Table 4) demonstrated that the Mitchellian proton 

delocalization view is not true. After the 10-hour water electrolysis, the measured pH value in 

the anode bulk water body (5.92 ± 0.12) remained nearly the same as that of the cathode bulk 

water phase (5.81 ± 0.07). If the Mitchellian proton delocalized view is true, there should be 

significant bulk-phase pH difference (∆pH) between the anode and the cathode water chambers; 

In contrast, the measured bulk pH data demonstrated again that the Mitchellian proton 

delocalized view is not true. These bulk water phase pH values averaged from 3 replication 

experiments (each replication experiment with at least 6 reading of pH measurement in each 

chamber water, n= 3 x 6 = 18) were statistically also the same as those (5.75± 0.08 and 5.77± 

0.21) in the control experiments in absence of the water electrolysis process. Notably, these 

results again show that excess protons do not stay in the water bulk phase; they localize at the 
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water-membrane interface at the P and P′ sites so that they cannot be detected by the bulk-phase 

pH measurement.  

These are significant observations, since both the proton-sensing film detection and bulk 

liquid pH measurement have now demonstrated, for the first time, that protons can be localized 

at a water-membrane interface through electrostatic induction at the P′ site in a “cathode water 

membrane (Al-Tf-Al) water membrane (Al-Tf-Al) water anode” system where the third water 

body (the center water chamber) was placed in between an anode water chamber and a cathode 

water chamber interacting in series (Figure 14). The operation of this setup resulted in the 

formation of two proton capacitors interacting in series: a proton capacitor across the membrane 

(Al-Tf-Al) with the N and P′ sites and another one across the other membrane (Al-Tf-Al) with 

the N′ and P sites as illustrated in (Figure 13 and Figure 14). This result again shows that liquid 

water bodies are proton conductors; the behavior of excess protons in proton conductors appears 

to be similar to that of excess electrons in electric conductors in forming capacitors across 

insulating membrane barriers.  

3.3.2 Equilibrium constant of sodium cation (Na+) in exchanging with electrostatically 

localized protons 

Demonstration of the localized protons at P′ site in the center chamber enabled us to evaluate the 

cation exchange of other cations with the localized protons by using salt solutions only in the 

center chamber without requiring the use of salts in the anode and cathode chambers (Figure 13 

and Figure 16). Use of salts in the anode and the cathode chambers which have large volumes 

would not only cost much more chemical materials but also might interfere with the electrolysis 

process complicating the interpretation of the experimental results. Therefore, the utilization of 

the localized protons demonstrated previously at P′ site with the use of salt solutions in the center 
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chamber provided an advantage for us to perform quite clean experiments in measuring the effect 

of other cations on localized protons including the determination of the cation exchange 

equilibrium constants with the localized proton population without requiring the use of any salt 

in the anode or the cathode chambers. 

 

 

 

Figure 16. Schematic diagram after introducing salt into Teflon center chamber showing the 
distribution of different ions in the cathode, center and the anode water chambers under the 
influence of applying 200V when the electrodes are polarized. The inset shows the exchange of 
the added sodium (Na+) cations with the electrostatically localized protons at the P′ side in a 
“water-membrane-sodium bicarbonate-membrane-water” system.   
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Our experimental results (Table 5) showed that the addition of 10 mM and/or 25 mM 

sodium ions (sodium bicarbonate solution) in the center chamber had no significant effect on the 

electrostatically localized protons at the P′ side facing the sodium salt solution. While the use of 

75 mM sodium ions (in the center chamber) led to the reduction of electrostatically localized 

protons populations at the P′ site by about 50%, which was monitored by the color change of the 

proton-sensing film at the P′ side in comparison with that of the proton-sensing film placed at the 

positive controls (0 mM sodium ions i.e.: water with no salt) P′ side site and the P site facing the 

anode liquid (also no salt). It required the use of 200 mM or higher sodium ion solution in Teflon 

center chamber to exchange out the localized protons at the P′ side to a level that could not be 

detected by the proton-sensing film (Table 5, row 7). Based on our analysis, this effect of sodium 

salt (NaHCO3) solution on the localized protons at the P′ side is probably owing to the sodium 

cations at higher concentrations (75 mM or above) that may partially exchange with the 

electrostatically localized protons at the P′ site.  

  



73 
 

Table 5. Observation of proton-sensing films after 10 hours electrolysis (200 V) for the “cathode 
water Al-Tf-Al- bicarbonate solution - Al-Tf-Al water anode” experiment. Images show proton-
sensing films that were placed at P′ sites for both sodium and potassium bicarbonate solutions. 
(See Appendix C, Table S9–S14 for more detailed data) 

Concentration 
of Salt solution 

Proton-sensing film placed at cathode 
(P′) site in contact with sodium 

bicarbonate solution 

Proton-sensing film placed at 
cathode (P′) site in contact with 
potassium bicarbonate solution 

0 mM 

  

10 mM 

  

25 mM 
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Table 5. Continued. 

Concentration 
of Salt solution 

Proton-sensing film placed at cathode 
(P′) site in contact with sodium 

bicarbonate solution 

Proton-sensing film placed at 
cathode (P′) site in contact with 
potassium bicarbonate solution 

50 mM 

 

  

75 mM 

  

100 mM 
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Table 5. Continued. 

Concentration 
of Salt solution 

Proton-sensing film placed at cathode 
(P′) site in contact with sodium 

bicarbonate solution 

Proton-sensing film placed at 
cathode (P′) site in contact with 
potassium bicarbonate solution 

200 mM 

  

500 mM 

 

  

 

 

One may think that the observed effect may be due to the bicarbonate anion not due to 

the sodium cation, so the cation exchange experiments (of different concentrations) were 

repeated again but with other cations such as K+ which showed the same effect on P′ side. But 

interestingly, in K+ salt solution, the 50% color change at the P′ site was observed at 50 mM 

(Table 5, row 4) instead of 75 mM. This additional observation further supports that the observed 
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effect was due to cation exchange and not due to a bicarbonate effect. It is well known that the 

size of potassium cation is bigger than sodium cation. However, in aqueous solution as a free 

ion, the small sodium ion attracts more water molecules giving it a larger effective diameter 

compared to the hydrated potassium ion. Since the hydrated radius of potassium ion is smaller 

than the hydrated radius of sodium ion; its diffusion mobility is faster compared to sodium.  It 

was determined that the mobility of sodium ions under the influence of unit potential gradient is 

(0.53 x 10-3 cm2 V-1 s-1) which is slower than potassium ion mobility (0.76 x 10-3 cm2 V-1 s-1) 

under the influence of unit potential gradient (107). That’s probably why it required higher 

concentration of sodium ions (75 mM) to delocalize 50% of the electrostatically localized 

protons on P′ site and 200 mM Na+ for nearly complete proton delocalization at the P′ site. 

Moreover, it was reported that fresh solutions of bicarbonate have practically no action on 

aluminum corrosion (108-111). 

The cation exchange equilibrium constant (Kp) can be expressed as:  

 𝐾𝑝 =
[𝑁𝑎𝐿+] ⋅ [𝐻+]
[𝐻𝐿+] ⋅ [𝑁𝑎+]

 (3.7) 

Where [𝑁𝑎𝐿+] is the localized sodium ions concentration on the water-membrane interface (P′ 

site); [H+] is the concentration of free delocalized protons in the bulk liquid phase; [𝐻𝐿+] is the 

localized protons concentration on the water-membrane interface (P′ site); and [Na+] is the free 

sodium ions concentration in the bulk liquid phase. 

At the midpoint with 50-50% cation/proton exchange at the localized proton layer, the 

concentration of the localized non-proton cation would be equal to the concentration of the 

localized protons. This means that when [𝑁𝑎𝐿+]  =[𝐻𝐿+], the cation exchange equilibrium constant 

(KP) would be 
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 𝐾𝑝𝑁𝑎+ =
[𝐻+]

[𝑁𝑎+]
 (3.8) 

We observed that the 50-50% cation/proton exchange was achieved when the sodium ion 

concentration was 75 mM as shown in Table 5 (and Appendix C, Table S13). At 75 mM of 

sodium ion concentration (the midpoint), the amount of localized protons on the proton sensitive 

membrane was decreased to half compared to that of the positive control in the absence of 

sodium ion. The pH of the sodium salt solution (75 mM) inside the Teflon center chamber before 

the sodium/proton exchange process was found to be (8.37 ± 0.09) as shown in Table 6 (and 

Appendix C, Table S23). By using this pH value for the bulk proton concentration [𝐻+] and the 

known sodium ion concentration (75 mM) in equation (3.8), the sodium/proton cation exchange 

equilibrium constant was calculated to be 10-(8.37 ± 0.09) M /0.075 M= (5.86 ± 1.2) x 10-8.  

We noticed that the pH of the sodium ion solution (75 mM) was slightly changed during 

the cation-proton exchange experiment using the Al film-based proton sensor (Equations 3.5 and 

3.6) at P′ site. The final pH value of the bulk sodium bicarbonate solution after 10 hours 

experimental run at 200V was 8.48 ± 0.07. Using this final pH value (8.48 ± 0.07) for the bulk 

proton concentration [𝐻+] and the known sodium ion concentration (75 mM) in equation (3.7), 

the 𝐾𝑝𝑁𝑎+ value was calculated to be 10-(8.48 ± 0.07) M /0.075 M= (4.45 ± 0.73) x 10-8, which is 

slightly smaller than that calculated using the initial pH (8.37 ± 0.09).  The true 𝐾𝑝𝑁𝑎+  value is 

likely to be in between with an average of (5.07 ± 0.46) x 10-8. 
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Table 6. pH measurements for a series of concentrations of freshly prepared sodium salt solution 
inside the Teflon center chamber after 10 hours open-circuit electrolysis at 200V. 

Concentration of sodium salt 
solutions (mM) 

pH after 10 hours 
experiment at 

200V 

pH after 10 hours 
experiment at 0V 

(control) 
0 mM 7.52 ± 0.02 6.41 ± 0.03 
10 mM 8.81 ± 0.05 8.42 ± 0.01 
25 mM 8.76 ± 0.11 8.61 ± 0.24 
50 mM 8.45 ± 0.02 8.39 ± 0.02 
75 mM* 8.48 ± 0.07 8.37 ± 0.09 
100 mM 8.30 ± 0.01 8.22 ± 0.02 
200 mM 8.19 ± 0.03 8.16 ± 0.01 
500 mM 8.14 ± 0.01 8.11 ± 0.02 

*pH measurement for 75 mM Sodium bicarbonate (midpoint with 50-50% sodium/proton exchange) is average of 4 
replications while the rest of pH measurements are averages of 2 replications. See Appendix C Tables S15-S18, S23 
for more detailed information. 

 

 

3.3.3 Equilibrium constant of potassium cation (K+) in exchanging with electrostatically 

localized protons  

Similarly, at 50 mM potassium ion concentration (the midpoint), the amount of localized 

protons on the proton sensitive membrane was decreased to half compared to that of the positive 

control in the absence of potassium ion (Table 5 and Appendix C, Table S14). The pH of the 

potassium salt solution (50 mM) inside the Teflon center chamber before the potassium/proton 

exchange process (Table 7 and Appendix C, Table S24) was determined to be 8.45 ± 0.03. By 

using this pH value for the bulk proton concentration [𝐻+] and the known potassium ion 
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concentration (50 mM) in 𝐾𝑝𝐾+ = [𝐻+]
[𝐾+]

, the potassium/proton cation exchange equilibrium 

constant was calculated to be 10-(8.45 ± 0.03) M /0.050 M= (7.20 ± 0.59) x 10-8.  

The final pH value of the bulk potassium bicarbonate solution after 10 hours 

experimental run at 200V was 8.48 ± 0.13. Using this final pH value (8.48 ± 0.13) for the bulk 

proton concentration [𝐻+] and the known potassium ion concentration (50 mM) in  𝐾𝑝𝐾+ = [𝐻+]
[𝐾+]

, 

the 𝐾𝑝𝐾+ value was calculated to be 10-(8.48 ± 0.13) M /0.050 M= (6.85 ± 1.99) x 10-8, which is 

slightly smaller than that calculated using the initial pH (8.45 ± 0.03).  The true 𝐾𝑝𝐾+  value is 

likely to be in between with an average of (6.93 ± 0.91) x 10-8. 

The bulk concentration of potassium ions after the potassium/proton exchange process 

used in determining the potassium cation exchange equilibrium constant was the concentration 

that resulted in 50-50% cation/proton exchange at the localized proton layer (ie: 50 mM K+). 

This is because the amount of localized protons that was exchanged out by the potassium ions 

was likely so small that it would not significantly reduce the 50 mM K+ concentration. In 

Chapter 2 we have determined the amount of localized proton density at the PI site that has an 

effective area 2.55 cm2 to be 1.19 x 10-9 mol/m2 which is equivalent to a localized pH value of 

2.92 assuming a 1 nm proton layer thickness. However, after 50-50% cation/proton exchange, 

the remaining amount of localized proton density on the P′ site would be 6.01 x 10-4 M. The 

remaining of the proton populations would be delocalized in the bulk salt solution (1.5 ml) rising 

the concentration of bulk protons by 1.02 x 10-7 mM which is so small compared to the K+ 

concentration (50 mM). 
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Table 7. pH measurements for a series of concentrations of freshly prepared potassium salt 
solution inside the Teflon center chamber after 10 hours open-circuit electrolysis at 200V. 

Concentration of potassium 
salt solutions (mM) 

pH after 10 hours 
experiment at 200V 

pH after 10 hours 
experiment at 0V 

(control) 
0 mM 7.86 ± 0.16 6.79 ± 0.07 
10 mM 8.85 ± 0.08 8.47 ± 0.05 
25 mM 8.61 ± 0.11 8.42 ± 0.03 
50 mM* 8.48 ± 0.13 8.45 ± 0.03 
75 mM 8.56 ± 0.03 8.37 ± 0.03 
100 mM 8.26 ± 0.03 8.30 ± 0.01 
200 mM 8.36 ± 0.01 8.26 ± 0.01 
500 mM 8.23 ± 0.03 8.19 ± 0.01 

*pH measurement for 50 mM potassium bicarbonate (midpoint with 50-50% potassium/proton exchange) is average 
of 4 replications while the rest of pH measurements are averages of 2 replications. See Appendix C, Tables (S19- 
S22, S24) for more detailed information. 

 

 

3.3.4 Other related observations with electrostatically localized protons  

During the experiments, we noticed the importance of using ultrapure Millipore water that does 

not contain too much dissolved gases. For example, during the winter season when the laboratory 

temperature (typically about 22 ºC) is significantly higher than the outside water supply, the 

Millipore water supplied from a cold air-saturated water source often contains too much 

dissolved air gases that may slowly release the excess gases due to gas solubility change in 

response to slight temperature changes, forming numerous tiny gas bubbles on the surfaces of the 

water chambers including the Al-Tf-Al membrane surface. These tiny gas bubbles can sometime 

be so problematic that they could negatively affect the formation and detection of localized 

protons on the Al-Tf-Al membrane surface because the gas bubbles apparently reside at the 
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water-membrane interface and form an air-gap barrier between the membrane and the liquid 

water phase. To eliminate this problem for improved reproducibility of experiments, a special 

effort was made to the laboratory water source: the Millipore water was degased by boiling the 

water through autoclave and then it was cooled down to room temperature before the 

experimental use.   

As part of the effort in tracking the integrity of the center chamber assembly’s fitting with 

the middle O-ring fitting channel of the inter-chamber wall and the sealing at the two ends of the 

center chamber with the Al-Tf-Al membranes, the conductivity of the water in each of the anode 

chamber and the cathode chamber was measured after each experiment (Appendix C, Table S17, 

S18, S21 and S22). The conductivity measurements for both the anode and the cathode water 

chambers were in the range from (1.004 ± 0.057) to (2.961 ± 1.130) µS which are acceptable 

values for pure water conductivity after equilibration with atmospheric carbon dioxide. This 

means that the salt leakage from the Teflon center chamber was negligible in our experiments 

and that the sealant was tight enough to keep the salt solutions trapped within the Teflon center 

chamber.  Electrolytic current was also monitored to ensure no significant salt leakage from the 

Teflon center chamber. The observed current in the given set up was in the range from 50 to 70 

µA. The experiments were redone again if any leakage was observed i.e.: if the current 

measurement in a magnitude of over 100 µA.  

The reason of using bicarbonate salt solutions in our cation exchange experiments was 

because it was noticed that proton-sensing film material (aluminum membrane) was sensitive not 

only to protons but also to a number of other chemical species including Cl–, NO3
–, SO4

–2, and 

CH3COO–. For example, it was reported that chloride ions have a high penetration power into the 

passive aluminum oxide film that protects the aluminum from corrosion (112, 113). This was 
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attributed to its small size that is close to the oxygen atoms in the oxide layer and its high 

mobility that makes it capable to substitute the oxygen atoms in the alumina network. 

Eventually, this may lead to a decrease in the film’s resistivity and hence the corrosion of the 

aluminum atoms that is beneath the protective layer (114). Similarly, it was reported that 

aggressive anions like chlorides, thiocyanate, hydroxide, sulfide, nitrate, formate and acetate are 

highly corrosive for aluminum (115). 

It is also important to use freshly prepared sodium bicarbonate solution because the pH of 

bicarbonate solution differs based on the concentration and temperature as well as its exposure to 

air. Increasing the concentration of the bicarbonate results in a decrease in the pH of the solution 

from 8.40 ± 0.00 (10 mM of sodium bicarbonate) to 8.21 ± 0.01 (700 mM of sodium 

bicarbonate). Moreover, exposure to atmospheric air, or excessive stirring, or being at relatively 

higher temperature (as in summer season) enhance the losing of CO2 content from the 

bicarbonate solution to the air. When the sodium bicarbonate solution loses its CO2 content, the 

solution becomes more alkaline and its pH increases (110). 

In our experiments, the sodium bicarbonate was trapped inside the Teflon center chamber 

where there was no contact with the atmospheric air. This was to ensure that the only factor that 

affects the corrosive activity on the aluminum surface is the electrostatic localized proton attack 

on P′ site in the center chamber and not the change in the pH of the solution due to the loss of its 

carbon dioxide content. A control experiment was performed to evaluate the effect of exposure 

of bicarbonate solution to the atmospheric air by introducing the bicarbonate solution in an open 

beaker. The bicarbonate solution (10 mM NaHCO3) that was in contact with atmosphere lost 

some of its carbon dioxide content and accordingly its pH changed from an initial pH of (8.40 ± 

0.00) to (8.86 ± 0.00) after 10 hours. 
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Another control experiment was performed to evaluate the effect of exposure of 

bicarbonate solution to the atmospheric air by introducing 10 mM of sodium bicarbonate that 

was freshly prepared (had initial pH (8.40 ± 0.00)) in the following and left for 10 hours: 1) 

Inside the Teflon center chamber that was sealed at both ends with Al along with a small piece of 

Al that was suspended inside, and 2) In a small glass beaker where pieces of Al were placed on 

the surface and suspended in the bulk of the solution. After 10 hours, the sodium bicarbonate 

solution that was trapped inside the Teflon center chamber had a pH (8.42 ± 0.01) which is 

nearly similar to the initial pH, while the pH of sodium bicarbonate solution in the open beaker 

rose to pH (8.78 ± 0.00). It was also observed that the aluminum pieces inside the Teflon center 

chamber had no change, while all the aluminum pieces with sodium bicarbonate solution 

exposed to the air in the open beaker had observable corrosion on their surfaces (Appendix B, 

Figure S3).  This observation indicates that sodium bicarbonate solution which is enclosed in a 

chamber or a bottle preserves its pH and accordingly no Al corrosion will be observed while 

sodium bicarbonate solution which is exposed to air for hours loses its carbon dioxide content 

and accordingly its pH rises to a higher value that could enable Al corrosion.  

It was also observed that the temperature has an effect on the pH of the bicarbonate 

solution (116-118). Sodium bicarbonate solution (10 mM) that was kept in a beaker at 16 ºC had 

a slight pH change (8.66 ± 0.00) from the freshly prepared solution (pH 8.40 ± 0.00) and a slight 

corrosive effect on the aluminum pieces compared to the pH (8.86 ± 0.00) of sodium bicarbonate 

solution that was kept in a beaker at room temperature 26 ºC (Appendix B, Figure S3). 

Under our experimental conditions we have observed a slight change in the pH of the 

bicarbonate salt solutions due to different concentrations (Table 6 and Table 7). Using a pH glass 

electrode would only detect the pH of the bulk medium without detecting the pH changes that 
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may have occurred at the membrane surface. Based on our results in absence of salt, the surface 

pH of the Al membrane was way below pH 4 as it was observed by the corrosion activity on P′ 

side (Table 5, row 1-6). However, salt addition into the center chamber induced an increase in 

the surface pH at the P′ site which is directly proportional to the concentrations of the cations 

added through cation exchange with the localized protons as discussed above. Consequently, 

altering the electrolyte composition and/or concentration of the bulk medium would cause 

significant changes in the local pH at the membrane surface with only minimum alteration in the 

bulk-phase pH of the bulk solution. These observations may have implications also in 

understanding the salinity tolerance in biological systems in relation to localized proton coupling 

bioenergetics.  

 

3.4 CONCLUSION 

The electrostatically localized excess protons are distinctly different from the fixed-charge-

attracted electric double layer phenomenon.  The proton electrostatic localization hypothesis 

predicts that the localized excess protons are likely to be in a monolayer at the water-membrane 

interface that may be exchanged with the non-proton cations in the liquid.  Our experimental 

results showed that there is an inverse proportionality between the concentration of the salt 

solution and the corrosion activity of the proton sensing film placed at P′ site.  By increasing the 

salt concentration inside the small Teflon center chamber, the proton-sensing corrosion activity 

of the aluminum membrane placed at P′ site would decrease till showing no proton associated 

corrosion activity when the salt concentrations are above 200 mM for both sodium and potassium 

salt solutions.  This was attributed to the delocalization of the localized protons at the membrane 

water interface through cation exchange by the added cations of the salt solution.   
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According to the proton electrostatic localization hypothesis (15, 22), the equilibrium 

constant for protons to electrostatically occupy the cation sites at the water-membrane interface 

(in any possible competition with any other cations) is likely to be extremely larger than one. 

Conversely, the equilibrium constant  𝐾𝑃𝑖 for non-proton cations such as Na+ to delocalize the 

localized protons from the membrane-water interface is expected to be extremely smaller than 

one. Through our experiments mentioned above, we have now determined experimentally for the 

first time that the equilibrium constant for non-proton monovalent cations to exchange with the 

electrostatically localized protons is indeed much less than one (likely on the order of 10-8).  The 

equilibrium constant 𝐾𝑃𝑁𝑎+  for sodium (Na+) cations to exchange with the electrostatically 

localized protons was determined to be (5.07 ± 0.46) x 10-8.  Similarly, the equilibrium 

constant 𝐾𝑃𝐾+  for potassium (K+) cations to exchange with the electrostatically localized protons 

was determined to be (6.93 ± 0.91) x 10-8.  These results mean that the localized protons at the 

water-membrane interface are so stable that it requires ten millions more sodium (or potassium) 

cations than protons in the bulk liquid phase to even partially delocalize the localized protons at 

the water-membrane interface. This provides a logical experimental support of the proton 

electrostatic localization hypothesis. It may also have fundamental implications in understanding 

the salinity tolerance in biological systems in relation to localized proton coupling bioenergetics. 
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CHAPTER 4 

EXCESS PROTON CONDUCTION IN PURE WATER 

 

4.1 INTRODUCTION 

4.1.1 Nature of excess protons 

Excess proton in water usually forms a weak chemical bond with an adjacent water molecule to 

form what is named a hydronium ion (H3O+) with C3v symmetry (119). The transfer of proton 

across water molecule is so fast compared to other cations. It has been simulated via computer 

simulations (Ab intio and MS-EVB) (120) that excess protons mobility is five to seven times 

higher than that of similarly sized cations. The reason of the high mobility of excess protons is 

attributed to a chemical transfer mechanism rather than hydrodynamic diffusion (121, 122). 

Excess protons shuttle through the water molecules via hops and turns mechanism that involve 

an exchange of hydrogen and covalent bonds. This structural diffusion process of excess protons 

among water molecules is known as a "hop-turn" mechanism or Grötthus mechanism for Von 

Grötthus who first suggested proton transfer mechanism in pure water systems (71, 72, 123). 

Contrary to what is taught in many textbooks, the hydrated excess proton does not exist as a 

simple hydronium cation (H3O+) (124). Zundel et al (79) have described that the excess proton 

tunnels so quickly between two water molecules through the hydrogen bond forming a complex 

named Zundel cation (H5O2
+) (125). However, Eigen considered that hydrated excess proton 

(H3O+) is coordinated to three water molecules forming a complex named Eigen cation (H9O4
+) 

(107, 126, 127). It was found that there is a rapid inter-conversion between the Zundel (H5O2
+) 

and the Eigen cations (H9O4
+) in solutions which is governed by the dynamics of the local 

solvent structure in the second solvation shell of the hydronium cation (H3O+) (76, 80, 128). 
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Using the multistate empirical valence bond (MS-EVB) methodology in a reactive molecular 

dynamics simulations, Mark et al found that excess proton is a dynamic electrical charge defect 

that is delocalized over several water molecules (76).  

4.1.2 Evidences that water is a proton conductor 

It is well known that ultrapure water that is free of ions is electronically nonconductive since it is 

lacking the charge carriers for electrons. However, Fuchs et al (129, 130) have reported an 

unusual effect of liquid water when exposed to a Direct Current (DC)  electric field. They 

noticed that when a high voltage (~15 kV cm−1) is applied to two beakers filled with ultrapure 

liquid water, a horizontal bridge of semi liquid water forms between the two beakers. They 

named this bridge “the floating water bridge”. The floating water bridge is a special case of an 

electrohydrodynamic (EHD) liquid bridge which was first discovered in 1893 by Sir William 

Armstrong (131). 

This water bridge has unique properties that are different from liquid water and solid ice 

(132, 133). When the pH in both beakers was measured after applying the high voltage it was 

found to be nearly the same (134). It was also observed that the level of water in the cathode 

beaker was higher than that in the anode beaker due to a mass transfer from the anolyte to the 

catholyte (134, 135). It was reported that only solutions with low conductivities can form this 

floating water bridge, while water solutions with high conductivities due to different ions in it 

will not form the floating water bridge.  

It has been simulated that water can conduct protons due to the nature of protons that can 

transfer via an interchange of chemical and hydrogen bonds across water molecules (136). Lee 

(15) suggested that water with excess protonic charges is a good conductor of protons and this 

makes water has a unique physiological properties. Contrary to Mitchell’s delocalized proton 
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view, Lee postulated that excess protons may electrostatically localize at the water-membrane 

interface instead of staying in the bulk aqueous phase due to electrostatic repulsion effect and the 

fast mobility of excess protons through the hydrogen bond network. It was suggested that the 

proton conduction along the water-membrane interface might be a favored pathway for the 

proton energy coupling bioenergetics across biological membranes (15, 22, 53). Furthermore, it 

has been experimentally demonstrated in Chapter 2 that excess protons indeed do not stay in 

water bulk phase; they localize at the water-membrane interface in a manner similar to the 

behavior of excess electrons in a conductor (106). This experimental finding supported Lee’s 

proton-electrostatic localization model that excess protons do not stay in the water bulk phase; 

they localize at the water-membrane interface. 

Conductance is the reciprocal of electric resistance (ohm) and its units is in Siemen. 

When dealing with bulk material it is convenient to measure its specific conductance rather than 

just conductance. Specific conductance of a substance is commonly known as conductivity 

which is the electrically measured conductance of the material of 1 cm length having 1 square 

cm as area of cross section. Conductivity of water can be defined as the ability of water to 

conduct electric current. It increases with increasing the amount of mobile ions in water which 

are the electric charge carriers. Its unit is in microsiemen per centimeter and it is the reciprocal of 

resistivity (Ω-cm). For example, fresh ultrapure water has a conductivity of 0.055 µS/cm which 

can also be expressed as (1/ (0.055x10-6 Scm-1)) that is 18.2 x10-6 ohms-cm (18.2 MΩ-cm). 

It is worthwhile to note that the conventional electrical resistivity of water is measured 

typically with non-electrolytic high frequency AC probing voltage which does not drive water 

electrolysis process. Because of the use of non-electrolytic high-frequency AC probing voltage 

that does not electrolyze water; no excess protons are generated in the water body during 
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conventional electrical resistivity measurement. Therefore, the conventional water electrical 

resistivity measurement would not accurately measure the conductivity of water with respect to 

excess protons. 

The purpose of this work is to further demonstrate the behavior of excess protons in a pair 

(anodic and cathodic) of separated water bodies and then to measure the DC conductivity of 

water with respect to excess protons using a water column inside a silicon tube that connects two 

chambers of pure deionized water. The conductivity of any conducting material can be 

determined by measuring the resistance of the material (or solution) in a cell of predefined length 

and cross sectional area. Therefore, measurement of the proton conduction in ultrapure water 

was performed by joining two separate chambers containing pure water by a bridge (silicon tube) 

of variable predefined lengths and diameter. This silicon tube had a continuous column of water 

that was free from any gas bubbles. The experiment was performed under Direct Current (DC) 

by sweeping voltage starting with low non water-electrolyzing potential (voltages) and ending 

with high water-electrolyzing potential. By this setup, we were able to measure the DC 

conductivity of water with respect to excess protons. The experimental current and resistance 

were measured, compared to the theoretical value and the DC proton conductivity was estimated. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Demonstration of localized excess protons on proton sensing film using two isolated 

water chambers 

Two Teflon chambers (Hoefer®, ElectroPrep SP-741196) were placed 30 cm apart and filled 

with 550 ml of ultrapure de-ionized water (Figure 17). Proton sensitive membrane (Al) were 

applied in both chambers on the chamber side and suspended in the middle bulk aqueous phase.  

In the anode chamber small amount of sodium bicarbonate salt was added every hour to reach 



90 
 

(50 mM, 100 mM, 200 mM, 300 mM, 400 mM, 500 mM, 600 mM and 700 mM) concentrations. 

After each addition, 200V was applied to the two isolated water chambers. 

The initial pH of the deionized water was measured separately in a small beaker using 

Inlab pure pro ISM pH probe (Mettler Toledo Cat. No. 51344172) designed to measure pH for 

aqueous samples with very low ionic strength, including ultra-pure water. The final pHs of the 

solutions in both chambers were measured at the end of experiment by recording 6 pH readings 

for each sample and averaging them to minimize uncertainty.  

 

 

Figure 17. Schematic diagram of experimental apparatus, consisting of two Teflon chambers 
that were placed 30 cm apart, filled with 550 ml of ultrapure water showing distribution of 
excess protons and excess hydroxides in both the anode and the cathode chambers under the 
influence of applying electrolyzing potential when the electrodes are polarized. 
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4.2.2 Evaluating the conductivity of water with respect to excess protons 

Two chambers made of Teflon were filled with 600 ml of ultrapure de-ionized water (MilliQ, 

Millipore Corporation, USA) at room temperature 22.5 ºC. The initial conductivity of the 

ultrapure deionized water was measured with an AC conductivity meter integrated within the 

Millipore synergy water system and was determined to be 0.055 μS cm-1 (resistivity 18.2 

MΩ.Cm at 22.5 ºC). This conductivity increased to 0.75 – 0.80 μS cm-1 due to equilibration with 

the atmospheric carbon dioxide (137).  The two water chambers were positioned 30 cm apart 

(away from one another with 30 cm air gap) and were connected together through a tube (made 

of silicon) that has a continuous column of water (Appendix B, Figure S4). Tube lengths of (50, 

100, 150, 200, 275, 350 cm) and of diameter (0.3 cm) were used as shown in Figure 18. The 

opening of each of these tubes was immersed in the liquid water at a distance 5 cm away from 

the electrode surface.  The experiment was performed under Direct Current (DC) by sweeping 

voltage using digital multimeter system (Keithley instruments series 2400S-903-01 Rev E). 

Different voltages were applied, starting with low non water-electrolyzing potential 0.2 V, and 

ending with high water-electrolyzing potential 210V. In all experiments, the resulting electric 

current (I) and resistance (R) were measured using the same digital electrometer integrated -via 

GPIB cable - with KickStart (version 1.8.0) software. The voltages applied were (0.2, 0.3, 0.6, 1, 

1.3, 1.5, 3, 6, 12, 25, 50, 100, 120, 150, 175, 200, and 210V) with 217 measurements (I and R) 

each and 0.5 second time delay between each measurement. The electric current and the 

resistance measurement were recorded for a period of 120 seconds. When the measurement 

reached equilibrium state (usually happens after 20 sec), the measured current/resistance in the 

steady state region (from time 20s to 120s) were averaged and this was done for each applied 

voltage. 
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Figure 18. Schematic diagram of experimental apparatus, consisting of two Teflon chambers 
that were placed 30 cm apart, filled with 600 ml of ultrapure water. The figure shows the 
protonic movement from the anode to the cathode to maintain electro-neutrality under the 
influence of applying electrolyzing potential when the two Teflon chambers are connected with a 
continuous column of water in a silicon tube bridge of 0.3 cm diameter. 
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The conventional conductivity measurement for the liquid water samples was performed 

using a Beckman coulter conductivity probe (Model 16 x 120 mm, item no. A57201). To ensure 

the quality of the ultrapure MilliQ-deionized water, the pH of the source deionized water was 

checked separately by pouring a small fraction of it into a separate 50-ml beaker and measuring 

its pH using Inlab pure pro ISM pH probe (Mettler Toledo Cat. No. 51344172). This pH 

electrode is mainly designed to measure pH for aqueous samples with very low ionic strength, 

including ultra-pure water. In addition, since pure water have very low ionic strength, pHISA pH 

ionic strength adjustor (Cat. No. 700003 Thermo Fisher Scientific Chelmsford, MA 01824 USA) 

was added to the small fraction of water in order to get a rapid, stable and precise pH 

measurement. The sample was prepared by adding 0.5 ml of pHISA pH ionic strength adjustor to 

50 ml water sample. Two point calibrations were performed using a buffer of pH 7.00, and a 

buffer of pH 4.01, according to manufacturer instructions. Also the bulk phase pH of the 

deionized water was measured in the anode and cathode chambers at the end of each experiment. 

Six pH readings were recorded and the averages were taken to minimize uncertainty.     

For visual evaluation of pH in both chambers, 5 ml aliquots from both the catholyte and 

the anolyte were added in two small 50 ml beakers. 5 drops of universal pH indicator solution 

(Cat. No. 36828 Farbskala, Fluka analytical, Germany) of pH range 4 to 10 were added to the 5 

ml aliquots in each beaker. Both the pH and the conductivity of a reference water sample were 

measured during the period of the experiments. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Demonstration of localized excess protons on proton sensing film using two isolated 

water chambers  
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When 200V was applied to the two isolated water chambers that were placed 30 cm apart in 

which the anode chamber had sodium bicarbonate solution (700 mM final concentration as 

shown in the methods section), the proton sensing films placed at side surface of the anode 

chamber solution integrated within one end of the center chamber assembly showed -after 10 

hours- localized proton activity.  Meanwhile there was no observable proton activity for the 

proton sensing film suspended in the bulk liquid phase of the anode as shown in Figure 19. The 

proton-sensing detection employed here was in the form of Al surface corrosion when the proton 

concentration was above 0.1 mM (equivalent to a pH value below 4) (92, 93). This indicated that 

excess protons were distributed at the water surface in the anode chamber as predicted by proton 

electrostatics localization hypothesis and not in the bulk aqueous phase, which clearly rejects the 

Mitchellian proton delocalized view.  

Interestingly, when 200V was applied to the two isolated water chambers that were filled 

with 550 ml of ultrapure de-ionized water (without the addition of sodium bicarbonate), the 

proton sensing films placed at side surface of the anode chamber solution had no change after 10 

hours. This indicates the localized excess proton population density at the anode chamber 

solution side surface is not high enough to be sensed by the Al film. This could be attributed to 

the relatively limited production of excess protons in pure water compared to that of the 

bicarbonate solution in the anode chamber during the open-circuit electrolysis. In the latter, the 

so-created localized proton population density in the isolated bicarbonate solution was high 

enough to be detected by the Al film placed at the anode chamber solution side surface. We 

believe that adding bicarbonate salt to pure water (pH 5.87 ± 0.01) would slightly raise the water 

pH value (in a range from pH 8.41 to 8.31) creating more hydroxyl groups that could be oxidized 
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at the anode to O2 gas and protons, and hence increasing the excess proton production which can 

be detected by the proton sensing films. 

 

 

 

Figure 19. Observations of the proton-sensing Al films that were placed in the two isolated 
water chambers experiment after applying 200 V. N: Proton-sensing film placed at the N side 
surface facing the catholyte water that has excess hydroxides detected no proton activity. P: 
Proton-sensing film placed at the P side surface facing the anolyte chamber detected significant 
activity of localized protons. NB: Proton-sensing film suspended inside the water of the cathode 
chamber. PB: Proton-sensing film suspended inside the water of the anode chamber. The initial 
water pH at the beginning of the experiment was 5.87 ± 0.02. While at the end of the experiment, 
the pH of the catholyte (water) was 5.84 ± 0.01 and the pH of the anolyte containing sodium 
bicarbonate solution was 8.31 ± 0.01 (See Appendix C, Table S25 for more detailed 
information). 

 

  

4.3.2 Evaluating the conductivity of water with respect to excess protons 

The initial conductivity of the ultrapure deionized water was measured with an AC conductivity 

meter integrated within the Millipore synergy water system and was determined to be 0.055 μS 

cm-1 (resistivity 18.2 MΩ.cm at 22.5 ºC). This conductivity was due to the equilibrium 

concentration of H3O+ and OH- that results from the self-dissociation of water (107). This 

conductivity value was also matching the theoretical value for the pure water conductivity when 
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using the ionic equivalent conductivities of the self-dissociation products and the dissociation 

constant of water at 25 ºC (138, 139). 

Although glass is considered inert and unreactive material, Hench et al (140) have 

showed that there is trace amounts of (Na+, K+, Mg2+, Zn2+ and Ca+) dissolve from the glass 

beaker into the ultrapure water. However, their concentrations are negligible and would not 

contribute to the overall water conductivity but their diffusion/leaching might increase when high 

voltage is applied to pure water in glass containers. In order to prevent this, we have carried our 

experiments in inert Teflon chambers instead of glass beakers. 

During electrolysis process, excess protons were produced in the anode chamber where 

they reside at the water-membrane interface rather than the bulk water as we demonstrated 

before in Chapter 2. If the anode water chamber was connected to the cathode via a column of 

water, we expect that the protonic excess charges will transfer rapidly through the water column 

(bridge) and be reduced to molecular hydrogen or recombine in the cathode water chamber with 

the negative hydroxide charges to form water molecule and to maintain electro-neutrality. This 

transfer mechanism is shown in Figure 18 and was confirmed by the pH measurements that 

showed no difference between the anode (5.73 ± 0.048) and the cathode (5.73 ± 0.06) chambers 

as shown in Table 8. This protonic movement was also hypothesized by Sammer et al when they 

observed a mass transfer of water from the anolyte to the catholyte under the influence of very 

high applied potential (~30 kV) (141). It is important to mention that the pH for the anode 

chamber and the cathode chamber was nearly the same at the end of the experiment regardless 

the tube was connected or quickly removed. 
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Table 8. Averaged pH values measured in bulk water phase before and after the experiment. 

Experiments (tube 

length) 

pH of Cathode 

Water 

pH of Anode 

Water 
pH of control 

50 cm 
Before 5.82 ± 0.17 5.82 ± 0.17 5.82 ± 0.17 

After 5.73 ± 0.06 5.73 ± 0.05 5.72 ± 0.00 

100 cm 
Before 5.93 ± 0.21 5.93 ± 0.21 5.93 ± 0.21 

After 5.75 ± 0.07 5.75 ± 0.06 5.85 ±0.01 

150 cm 
Before 6.05 ± 0.23 6.08 ± 0.23 6.08 ± 0.23 

After 5.72 ± 0.01 5.65 ± 0.04 5.71 ± 0.01 

200 cm 
Before 6.18 ± 0.02 6.18 ± 0.02 6.18 ± 0.02 

After 5.64 ± 0.08 5.60 ± 0.07 5.69 ± 0.01 

275 cm 
Before 6.09 ± 0.03 6.09 ± 0.03 6.09 ± 0.03 

After 5.67 ± 0.07 5.67 ± 0.06 5.67 ± 0.11 

350 cm 
Before 6.21 ± 0.01 6.21 ± 0.01 6.21 ± 0.01 

After 5.73 ± 0.02 5.70 ± 0.00 5.72 ± 0.00 

 

   

When applying voltages below 1.23V, the electrode surface started to be polarized by 

attracting H+ and OH- ions resulting from the natural self-dissociation of pure water and forming 

Gouy-Chapman-stern double layer at the charged electrode-water interface as illustrated in 

Figure 17. To determine the conductivity of water with respect to excess protons, the first 20 sec 

of current versus time measurements were excluded since they represent the charging current in 

which the counter ions bearing opposite charges tend to accumulate on the charged electrode 

surface forming a stationary stern layer. For example, in the anode chamber the HCO3
- from the 

atmospheric carbon dioxide and the OH- ions form the self- dissociation of water molecules 

could migrate and accumulate at the surface of the anode forming the first layer (stern layer) of 
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the diffused double layer. Since we are not interested in the current in the first 20 seconds, we 

have averaged the current measured after 20 seconds when it reached steady state as shown 

Figure 20. The measurements averaged (from 20 sec to 120 sec) after the elapse of the first 20 

sec represented the current due to proton conductance under DC voltage. 

 

 

Figure 20. Example for current measurement versus time for the 350 cm tube length when 12 V 
was applied. After the elapse of 20 seconds, the current steady state was reached which 
represented the current due to proton conductance under DC applied voltage.  

 

 

It is well known that water electrolysis which entails molecular hydrogen and oxygen 

evolution occurs thermodynamically when the applied potential difference is above 1.23V. 
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Accordingly, significant DC electric current started to be observed when the applied potential is 

above 1.23V as shown in Figure 21. Electrolytic ionization of water created excess protons and 

excess hydroxides which were carriers for electric charge. Excess protons are fast carriers that 

transfer the electric charge so quickly producing electrolytic current flow.  Increasing the voltage 

created more mobile ions in form of excess protons in anode chamber and excess hydroxyl 

anions in cathode chamber which were electric charge carriers that resulted in electric current 

increase. The water column in the silicon tube was acting as an aqueous protonic resistor limiting 

the current and the movement of protons. The effect of the tube length containing the water 

column on the current measurement was observed in which shorter tubes made shorter bridges 

with low protonic resistance and hence more proton conductance (more proton flow) while 

longer tubes made longer bridges with high protonic resistance and hence lower proton 

conductance (Low proton flow) as shown in (Appendix B, Figure S6). When plotting the 

measured resistance versus the applied voltage, it was noticed that the resistance slightly 

decreased when the applied voltage was above 1.23 V, indicating that our system behaved in a 

non-ohmic manner. In addition, longer water columns were observed to have higher protonic 

resistance while shorter water columns were observed to have lower resistance as shown in 

(Appendix B, Figure S7). 
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Figure 21. Plot of current versus voltage showing the electric current was increasing gradually 
above 1.3V due to water electrolysis into H2 and O2 by increasing the voltage. Ionization of 
water created excess protons and excess hydroxides which were carriers for electric charge. 
Excess protons are fast carriers that carry the electric charge so quickly producing electrolytic 
current flow.  Increasing the voltage created more mobile ions which were the electric charge 
carriers and this lead to an increase in the electric current. The effect of tube length including the 
water column on the detected current was well observed. Shorter tubes constituted shorter 
bridges of lower resistance and hence more proton conductance (more proton flow) while longer 
tubes constituted longer bridges of higher resistance and hence lower proton conductance (Low 
proton flow). 

 

 

The water pH measurements were performed before the electrolysis process in a separate 

beaker. While after electrolysis, the pH was measured for 5 ml aliquots from both the anode and 

cathode chambers that were introduced into two small 50 ml beakers as reported in the method 
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section. It is worth mentioning that regular pH electrodes response in pure water is usually slow, 

drifting and unstable since pure water has very low conductivity and low ionic strength. In order 

to better measure the pH of pure water, a low resistance glass pH electrode (Mettler Toledo inlab 

pure pro) was used. This electrode showed improved stability and response especially after 

adding ionic strength adjustor (Thermo Scientific Orion pHISA). The ionic strength adjustor 

increases the ionic strength of the sample without altering its pH (shift was only 0.005-0.01 pH 

units which was negligible). Also 6 pH readings were recorded and the averages were taken to 

minimize uncertainty. As shown in Table 8, pH values for both the anode and the cathode 

chamber water at the end of the experiment were in the range from (5.60 ± 0.07) to (5.75 ± 0.06) 

which was quite similar to the control pH. The drop in the pH was due to the atmospheric carbon 

dioxide dissolution into the water samples. This physical phenomenon of equilibrated 

atmospheric carbon dioxide in the aqueous phase was described by Henry’s law (142): 

[𝐶𝑂2(𝑎𝑞)] =  𝐾𝐻(𝐶𝑂2) 𝑃𝐶𝑂2                      (4.1) 

Where:  [CO2] (mol/L) is the equilibrium concentration of carbon dioxide in the aqueous phase, 

KH is the Henry’s law constant for carbon dioxide (3.38 x 10-2 mol/L.atm at 25 °C), and PCO2 is 

the partial pressure of the gas in the bulk atmosphere (atm). Under standard atmospheric 

conditions, the equilibrium concentration of carbon dioxide in the aqueous phase[𝐶𝑂2 (𝑎𝑞)] can 

be easily calculated using henry’s law (equation 4.1). Since on average, carbon dioxide make up 

0.0355% of atmosphere, the partial pressure of carbon dioxide (PCO2) in the atmosphere would be 

0.000355 atm. Therefore, the concentration of the dissolved carbon dioxide in aqueous phase 

[𝐶𝑂2 (𝑎𝑞)] would be 1.2 x 10-5 mol/L. Carbon dioxide in aqueous phase could form small 

amount of carbonic acid that has two protons and consequently two dissociation constants. 
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However, the second dissociation constant of carbonic acid (equation 4.3) is so small compared 

to the first dissociation constant (equation 4.2) and therefore it can be neglected. Since the first 

acid equilibrium reaction is the predominant one, the equilibrium expression (equation 4.4) could 

be simplified to equation 4.5 because both the proton and the bicarbonate concentrations are 

equal. The theoretical [H+] can now be determined from equation 4.5 when [𝐶𝑂2 (𝑎𝑞)] = 1.2 x 

10-5 mol/L is substituted. Solving for the pH, one would get a theoretical pH of 5.64. Our 

reference water pH was measured to be in the range 5.6 to 5.8 as shown in Table 8 which was in 

agreement with the theoretical pH. The conventional electrolysis which entails pH change was 

not observed during our experiment which was also reported by Fuchs etal (143). This 

observation was also so clear upon investigation of the color of the universal pH indicator 

solution (pH range 4-10) when added to 5 ml aliquots from the anolyte and the catholyte. Both 

solutions had the same pH in the range from 5.5 to 6.0 as indicated in the pH color chart which is 

shown in Figure 22.          

𝐶𝑂2 (𝑔) ↔ 𝐶𝑂2 (𝑎𝑞) + 𝐻2𝑂 ↔ 𝐻2𝐶𝑂3 ↔ 𝐻+ + 𝐻𝐶𝑂3−       (4.2) 

𝐻𝐶𝑂3− ≠  𝐻+ + 𝐶𝑂32−              (4.3) 

𝐾𝐴1 =   [𝐻+][𝐻𝐶𝑂3−]
[𝐶𝑂2(𝑎𝑞)] = 4.45 ×  10−7      (4.4) 

𝐾𝐴1 =  [𝐻+]2

[𝐶𝑂2(𝑎𝑞)]                   (4.5)  
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Figure 22. Aliquots from the anolyte (beaker on the right side) and the catholyte (beaker on the 
left side) after applying universal indicator solution (pH 4-10). Both solutions have the same pH 
in the range from 5.5 to 6.0 as indicated in the pH color chart. 

 

 

Excess protons are fast charge carriers that transfer the electric charge so quickly 

producing electrolytic current flow. The mobility of the hydronium ion (3.62 x 10-3 cm2 V-1 s-1 ) 

itself is relatively high, being five to seven times that of similarly sized cations (107, 122). H+ 

and OH– can move through water very rapidly and are very good charge carriers. However, not 

all ions can carry charge equally. For example, Na+ (ionic mobility 0.53 x 10-3 cm2 V-1 s-1) and 

HCO3
- (ionic mobility 0.46 x 10-3 cm2 V-1 s-1) move in solution slower than H+ (ionic mobility 

3.62 x 10-3 cm2 V-1 s-1) and therefore doesn’t conduct electricity as efficient as protons. 

Accordingly, water with excess protons has high proton-electrical conductance than any water 

with any other charge. But the problem is that these excess protons couldn’t be measured by 

conventional ways. Consequently the water electrical conductance with respect to these excess 
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protons is so challenging to evaluate. It is worthwhile to note that the conventional electrical 

resistivity of water is measured typically with non-electrolytic high frequency AC probing 

voltage which does not drive electrolysis of water. Because of the use of non-electrolytic high-

frequency AC probing voltage that does not electrolyze water; no excess protons are generated in 

the water aqueous phase during conventional electric resistivity measurement. Therefore, the 

conventional water electrical resistivity measurement would not accurately measure the protonic 

conductivity of water as it would significantly underestimate the true conductivity of water with 

respect to excess protons. In our experiment, DC protonic conductivity was determined by 

plotting specific resistance (R/L) versus (1/L) as shown in (Appendix B, Figure S5). The 

intercept was then determined by extrapolation of the straight line for each applied voltage. Then 

the intercept (R/L) was plotted versus (1/V) as shown in Figure 23. The resistivity which is (R/L) 

multiplied by cross sectional area and the conductivity which is the reciprocal of resistivity were 

determined and plotted versus applied voltage. For example, the intercept (R/L) for the 200 V 

series of the “(R/L) versus (1/L)” plot was determined to be 11677856.08 Ω/cm. From this value 

the resistivity was determined by multiplying it with the cross sectional area (0.071 cm2) and it 

was found to be 829127.7817 Ω-cm. Then the conductivity (the reciprocal of resistivity) was 

determined to be 1.206 x 10-6 S/cm which was 22 times higher than the conventionally pure DI 

water conductivity measurement. It was found that the DC conductivity of excess protons 

increased slightly upon increasing the applied voltage as shown in Figure 24. This also explains 

why our observed experimental conductivity (0.990 x 10-6 S/cm) measured at 3V DC is 18 times 

more than the conventional AC conductivity measurement (0.055x10-6 S/cm) as shown in Figure 

24. In fact, this discrepancy may be explained by understanding that liquid water is a proton 

conductor, where the “hop and turns” conduction of excess protons generated by electrolysis 
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may contribute to a much greater conductivity. To estimate the proton conductivity at extremely 

high voltage (> 210V), DC proton conductivity was plotted verses (1/V) (Figure 25) and the 

intercept was determined from the linear equation. The intercept represents the protonic 

conductivity at extremely high voltage which was estimated to be 1.28 x 10-6 S/cm by 

extrapolation. To get a better representative intercept, it is recommended to acquire data points at 

extremely high voltage magnitude (kilo volts) which requires a new experimental design that 

ensures safety of the operator. 

 

 

 

Figure 23. Shows a plot of intercept R/L versus 1/V. (average of three trials) 
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Figure 24. Plot of DC protonic conductivity (specific conductance) versus electrolytic voltage in 
a range from 3V to 210V. Conductivity increases by increasing voltage due to the conductivity 
of excess protons. (Average of three trials) 
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Figure 25. Plot of DC proton conductivity versus 1/V. The data points were fitted with a linear 
equation and the intercept was determined. The top graph shows the liner fitting with all data 
points. The bottom left graph shows the liner fitting with only the first 4 data points. The bottom 
right graph shows the linear fitting with only the last 4 data points. The intercept represents the 
linear extrapolation for the proton conductivity at extremely high voltage. 
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4.4 CONCLUSION 

In this study we demonstrated experimentally that water is a proton conductor and we showed 

that there is a protonic charge transfer from anode water chamber to cathode water chamber via 

the water tube connection. Although the protonic current conduction mechanism is still unclear 

so far, we demonstrated that the water protonic conductivity increases with increasing the 

applied voltage. This indicates that the mobility of excess protons exceeds the mobility of any 

other ions in liquid water. This could explain why the DC experimental conductivity (1.206 x 10-

6 S/cm) measured at 200V is 22 times more than the conventionally measured water conductivity 

(0.055x10-6 S/cm). Our results and findings provide further evidences that excess protons in 

water is behaving like electrons in metallic conductor with a difference in the conduction 

mechanism. That is to say that ultrapure water is a good proton conductor although it is an 

insulator with low electric conductivity. The experimental result demonstrated that ultrapure 

water with excess protons can conduct electric/protonic charges so rapidly. 

Our quantitative estimations for conductivity of water with respect to excess protons are 

still preliminary, because of some technical limitations in the present experiment. One of these 

limitations is the effect of the atmospheric carbon dioxide which contributes significantly to the 

overall water conductivity. Another limitation is the DC applied voltage which could lead to 

some polarization effects. Using high frequency AC applied voltage would eliminate the 

polarization effects. However, high frequency AC applied voltage would not create excess 

protons. Overall, this study demonstrated that water is a proton conductor with respect to excess 

protons. This supports Lee’s assumption in proton-electrostatics localization hypothesis that 

liquid water can be treated as a proton conductor for proton coupling energy transduction in 

living organisms.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 CONCLUSIONS 

This study aims to seek fundamental understanding of the complex processes that convert and 

store energy in living systems. The Lee proton-electrostatics localization hypothesis with its 

associated new pmf equation (1.6) would significantly modify Mitchell’s classic chemiosmotic 

theory in many textbooks. This dissertation attempts to verify the proton-electrostatics 

localization hypothesis which could help understanding the importance of water not only as a 

solvent and substrate but also as a proton conductor for proton coupling energy transduction. The 

knowledge gained from this work will certainly increase our understanding of the processes and 

mechanisms of biological energy transduction and storage, which could improve biochemical 

pathways for biofuel production, and next generation energy conversion/storage devices. 

The experimental results reported in Chapter 2 clearly demonstrated that excess protons 

were localized at the water-membrane interface in the anode water-membrane-water cathode 

system. The most remarkable evidence for the localized excess protons came from the 

observation that the proton-sensing film placed at the PI site of Teflon membrane facing the 

anode liquid showed proton-associated corrosion while the proton-sensing film placed in the 

bulk liquid phase (PB) of the anode chamber showed no proton-associated corrosion activity 

during the entire experiment. This is a significant observation since it indicates that excess 

protons are localized primarily along the water-membrane interface at the PI site, but not in the 

bulk liquid phase (PB). The density of localized excess protons created in this experiment was 

estimated to be about 1.19 mM H+ (pH value of 2.92) at the water-membrane interface (PI site), 

which explains why it can be sensed by the proton-sensing Al membrane. Furthermore, the bulk-
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phase pH measurements in both anodic and cathodic water chambers also confirmed that excess 

protons do not stay in the bulk aqueous phase, which clearly rejects the Mitchellian proton 

delocalized view. These observations clearly match with the predictions from the proton-

electrostatics localization hypothesis that excess protons do not stay in the water bulk phase; they 

localize at the water-membrane interface in a manner similar to the behavior of excess electrons 

in a conductor.  

The next step was testing the effect of other non- proton cations on the stability of the 

localized excess protons at a water–membrane interface and determining their exchange 

equilibrium constant.  The experimental results reported in Chapter 3 showed that there is an 

inverse proportionality between the concentration of the salt solution and the corrosion activity 

of the proton sensing film placed at P′ site. By increasing the salt concentration inside the small 

Teflon center chamber, the proton-sensing corrosion activity of the aluminum membrane placed 

at P′ site would decrease till showing no proton activity when the salt concentrations are above 

200 mM for both sodium and potassium salt solutions. This was attributed to the delocalization of 

the localized protons at the water–membrane interface through cation exchange by the added 

cations of the salt solution.   

According to the proton electrostatic localization hypothesis, the equilibrium constant for 

protons to electrostatically occupy the cation sites at the water-membrane interface (in any 

possible competition with any other cations) is likely to be extremely larger than one. 

Conversely, the equilibrium constant  𝐾𝑃𝑖 for non-proton cations such as Na+ to delocalize the 

localized protons from the membrane-water interface is expected to be extremely smaller than 

one. Through our experiments mentioned in Chapter 3, we have now determined experimentally 

for the first time that the equilibrium constant for non-proton monovalent cations to exchange 
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with the electrostatically localized protons is indeed much less than one (likely on the order of 

10-8).  The equilibrium constant 𝐾𝑃𝑁𝑎+  for sodium (Na+) cations to exchange with the 

electrostatically localized protons was determined to be (5.07 ± 0.46) x 10-8.  Similarly, the 

equilibrium constant 𝐾𝑃𝐾+  for potassium (K+) cations to exchange with the electrostatically 

localized protons was determined to be (6.93 ± 0.91) x 10-8.  These results mean that the 

localized protons at the water-membrane interface are so stable that it requires ten million more 

sodium (or potassium) cations than protons in the bulk liquid phase to even partially delocalize 

the localized protons at the water-membrane interface. This provides a logical experimental 

support of the proton electrostatic localization hypothesis. It may also have fundamental 

implications in understanding the salinity tolerance in biological systems in relation to localized 

proton coupling bioenergetics. 

The final goal in this dissertation was to test the first assumption of the proton 

electrostatic hypothesis that “liquid water is a proton conductor”. In Chapter 4 we demonstrated 

experimentally that water is a proton conductor and we showed that there is a rapid protonic 

charge transfer from anode water chamber to cathode water chamber. We also demonstrated that 

the protonic conductivity increases with increasing the applied voltage and that the mobility of 

excess protons exceeds the mobility of any other ions in liquid water. This could explain why the 

experimental conductivity (1.206 x 10-6 S/cm) measured at 200V is 22 times more than the 

conventional conductivity measurement (0.055x10-6 S/cm). Our results and findings provide 

further evidences that excess protons in water is behaving like electrons in metallic conductor 

with differences in the conduction mechanism. That is to say that ultrapure water with excess 

protons can no longer be considered just as an insulator of low electric conductivity. The 

experimental result demonstrated that ultrapure water with excess protons can conduct 
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electric/protonic charges so rapidly. Our quantitative estimations for conductivity of water with 

respect to excess protons are still preliminary, because of some technical limitations in the 

present experiment. One of these limitations is the effect of the atmospheric carbon dioxide 

which may contribute significantly to the overall water conductivity. Another limitation is the 

DC applied voltage which could lead to some polarization effects. Using high frequency AC 

applied voltage would eliminate the polarization effects. However, high frequency AC applied 

voltage would not create excess protons.  

In conclusion, these findings have significance not only in the science of bioenergetics 

but also in the fundamental understanding for the importance of water to life. The experimental 

findings presented in this research support Lee’s assumption in proton-electrostatics localization 

hypothesis that water can be treated as a proton conductor for proton coupling energy 

transduction in living organisms.  

 

5.2 FUTURE WORK 

There are multiple research directions that would be logical extensions to this research. The most 

intriguing expansion would be to continue the work that focuses on detection of localized excess 

protons in living cells on the phospholipids membrane during the photosynthetic or oxidative 

phosphorylation process using 31P-NMR. For example, chloroplasts can be prepared by gentle 

homogenization of fresh leaves (e.g., spinach, peas, or lettuce) using cold isolation buffer 

(isotonic sucrose or 0.33M sorbitol,  2 mM Ascorbic acid, 5 mM MgCl2, and 10 mM Na4P2O7. 

10H2O) adjusted to pH 6.5. After removal of cell debris and broken cells via filtration, the 

chloroplasts can be precipitated by low-speed centrifugation. The thylakoids can be then 
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extracted from the chloroplasts and further purified using washing buffer (0.05 M Sorbitol, 2 

mM EDTA, 1 mM MgCl2, 50 mM HEPES)  of low sorbitol concentration that can cause 

chloroplast rupture by osmotic shock. Multiple re-suspensions/centrifugations in the washing 

buffer would be necessary to precipitate out starch form the thylakoids. The percentage of 

thylakoid intactness can be then determined from the ratio of ferricyanide reduction before and 

after osmotic shock (144). It is important to ensure careful and rapid preparation of thylakoids on 

cold ice environment to yield high proportion of intact thylakoids capable of reducing NADP+ 

and driving the photosynthetic photophosphorylation (1, 73). Chlorophyll concentration can be 

determined spectrophotometrically and biological activity can be determined using Clark oxygen 

electrode to measure photosynthetic oxygen evolution in thylakoids (145, 146).  

Once the thylakoids are isolated and their photosynthetic activities are characterized, 

nuclear magnetic resonance especially 31P-NMR can be used to detect electrostatically localized 

excess protons on phospholipid membrane surface. DTT (electron donor to PS II), methyl 

viologen (electron acceptor from PS I), and reaction medium (50 mM Tricine- KOH, 10 mM 

sorbitol, and 3 mM MgCl2.6H2O) should be added to the thylakoid structure in order to induce 

the electron transport chain which generates proton gradient across the membrane.  

It is known that 31P-NMR is an insensitive technique. That’s means that the acquisition 

time and the number of scans have to be increased significantly to increase signal to noise ratio. 

Accordingly, the following modifications can be done in order to achieve high signal to noise 

ratio and to shorten the experimental run to less than an hour instead of 12 hours: 

1) Increasing the sample volume by using 15 mm outer diameter NMR tubes instead of the 

regular 5mm. 
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2) Running sample containing highly concentrated thylakoid suspension (∼ 2 mg 

chlorophyll/ml) (147). 

3) Running the sample at lower temperature (<7 ᵒC) to enhance the signal strength. Chillers will 

be needed to cool down the sample during acquisition. At low temperature the spin of molecules 

and their nuclei decreases and when put in magnetic field the only thing affects the spin would 

be the magnetic strength not the temperature (148).   

    Actually, 31P-NMR technique can be used to get information about bulk properties, but in 

such a complex thylakoid mixture, it does not reveal specific molecular properties. Therefore, the 

thylakoid sample should be run in presence and in absence of light. In dark condition, it is 

expected to get a signal close to 0.5 ppm due to membranous phosphorus (phosphate group of 

the lipid bilayer membrane) and another signal at higher chemical shift due to the inorganic 

phosphate (Pi). However, in light conditions in presence of electron donor (DTT) and electron 

acceptor compounds (Methyl Violgen), the phosphorus of the lipid bilayer membranous 

phosphate signal is expected to shift differently (to the right). This signal shift is expected due to 

the proton gradient generation across the membrane and consequently the presence of excess 

proton environment adjacent to phospholipid membrane. These excess protons are expected to 

reduce the de-shielding effect for the phosphorus nucleus. Consequently, the electron density 

around the 31P nucleus would increase and shield it from the applied field, making the effective 

field experienced by the nucleus smaller. In order to proof that the membranous phosphorus shift 

is due the excess protons environment, another sample can be run in presence of ionophore such 

as valinomycine and KCl to eliminate the membrane potential. The valinomycine is expected to 

allow the migration of certain ions including Cl- and K+ across the thylakoid membrane, which 

would neutralize the electrostatic protons and thus cause proton delocalization as well.  
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To investigate the lateral proton diffusion (149) at a water-membrane interface, scanning 

electrochemical microscopy (SECM) can be used to determine the rate of proton transfer along 

phospholipid and mixed phospholipid/protein monolayers.  The SECM is a powerful technique 

that can help resolving the longstanding controversy regarding the movement of protons between 

source and sink sites in biological membranes (150-152). 

Another aspect of research interest would be the demonstration of the proton electrostatic 

effect by injecting protons using a proton beam into a biologically-relevant small water body. It 

is possible to determine charges on solid surfaces with definite domains by using scanning 

electric charge or potential measurement techniques like Kelvin force microscopy (153, 154). 

However, it is very challenging to apply these techniques to determine excess charges on liquid 

surfaces. Therefore, additional ways can be employed to detect localized protons within single 

and multi-water bodies such as the use of radiochromic film dosimetry (155)  that has been used 

in measuring protons in the field of nuclear physics or using a Faraday Cup type charge 

collection detector that is specific to our apparatus (156). To perform this detection, it requires 

injecting considerable amount of excess protons into a small volume of water and subsequently 

monitoring their distribution using these techniques.  This can be done by using a proton beam 

that can be generated by a proton accelerator machine as a source of excess protons for this 

experiment. The benefit of using a proton beam as a source of protons is that the proton dosage 

amount can be controlled by setting specific beam energy. A lower-energy proton beam at an 

energy level ~0.1-10 MeV is preferred to avoid undesirable nuclear physics-related secondary 

effects such as the generation of neutrons or x-rays when the high-energy proton beam interacts 

with the target water body. According to the proton electrostatic effect, the excess protons after 

injection should be distributed along the outer surface of the water body. Therefore, by 
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monitoring the distribution of the excess protons after their injection into the water body, we 

should be able to test the proton-electrostatics localization bioenergetics hypothesis and 

quantitatively determine the amount of excess protons on the surface in relation to the amount of 

excess protons in the bulk aqueous phase without worrying about any side reactions that could 

happen during the generation of excess protons using electrolysis process. In addition, it may 

also become possible to measure how long it takes for the protons to move to the surface by 

performing a pulsed beam cyclotron measurement.   

To further analyze proton electrostatic localization and delocalization in a biologically-

relevant water body, molecular dynamics (MD) computer simulations can be performed. The 

computer simulation can then be extended to a number of bioenergetics systems including 

thylakoids, mitochondria and bacteria. Continuum electrostatic methods can be used for studying 

membrane proteins theoretically in membrane environments. The electric field and potential 

distributions which force movement of charges (e.g. protons) can be calculated based on the 

Poisson-Boltzmann-Nernst-Planck model (157).  The Poisson–Boltzmann (PB) equation (158) 

describes electrostatic interactions between molecules, and can be applied to ionic solutions 

(including the Gouy–Chapman double-layer theory (96)) and biomolecular structures such as 

biological membranes. To use this technique it should be assumed that: (a) the ionic charge 

distributions are smeared out and can be represented as smoothly varying continuum functions, 

(b) and the charge-charge correlations are negligible.  Thus the discrete nature of the ions is not 

taken into account and no other molecular interaction between the ions and solvent molecules 

(water) is considered. The Nernst–Planck (NP) equation is used to describe the electro-diffusion 

of ions in terms of ionic concentrations. A coupled Poisson-Boltzmann-Nernst-Planck approach 

can be used for accuracy while reducing the number of mathematical equations. For example, 
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only the ions of interest in the transport process (e.g., protons) would be described by the Nernst-

Planck (NP) equations.  The rest would only be treated through the Poisson-Boltzmann model. 

Besides, it is well established that the NP approach is equivalent to the PB scheme for zero ionic 

fluxes (159).  

Finally, the localized excess protons that have been demonstrated for the first time 

through this research may have practical implications as well. For example, the utilization of 

localized excess protons, that can be created in pure water, may lead to clean “green chemistry” 

technologies for industrial applications such as metal acid washing and/or protonation of certain 

micro/nanometer materials without requiring the usage of conventional acid chemicals such as 

nitric and sulfuric acids. 
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APPENDIX A 

ABBREVIATIONS AND ACRONYMS 

 

ATP Adenosine 5’-triphosphate 

ADP Adenosine diphosphate   

PS I Photosystem I 

PS II Photosystem II 

PQ Plastoquinone 

b6f Cytochrome b6f complex 

PC Plastocyanin 

e− Electron 

Fd Ferredoxin  

NADP+ Nicotinamide adenine dinucleotide phosphate 

Pi Inorganic phosphate 

pmf (∆p) Proton motive force 

∆𝝁𝑯+ 
 Proton electrochemical gradient 

∆ѱ The trans-membrane potential generated due to the difference in electrical 

potential across the biological membrane 

R Gas constant 
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∆pH The difference of protons concentration between the two bulk aqueous phases  

 separated by the membrane 

F Faraday constant 

ɛ Dielectric permittivity 

EZ Exclusion zone 

pHnB Stroma (or cytoplasmic) bulk phase pH 

pHpB Lumen (or periplasmic) bulk phase pH  

[H+]L
eff   Effective concentration of the localized protons at the membrane-water 

interface at equilibrium with non-proton cations 

[𝑯𝑳
+]𝟎 Effective localized proton concentration at the membrane-water interface 

without cation exchange. 

C/S Membrane capacitance per unit surface area  

κ Dielectric constant of the membrane 

d Thickness of the membrane 

l Thickness of the localized proton layer 

Kpi Equilibrium constant for non-proton cations to exchange with the localized 

protons at the water-membrane interface. 

[𝑴𝒑𝑩
𝒊+ ] Concentration of the non-proton cations in the bulk phase of the liquid  

culture medium. 
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[𝑯𝒑𝑩
+ ] Concentration of protons in the bulk phase of the liquid culture medium 

∆G Gibbs energy change 

Al-Tf-Al Aluminum-Teflon-Aluminum compact films 

Tf-Al-Tf Teflon-Aluminum-Teflon compact films 

DI water De-ionized water 

PI Proton sensitive membrane interface site facing the anode (P) water  

 chamber. 

NI Proton sensitive membrane interface site facing the cathode (N) water  

chamber. 

PS Proton-sensitive film applied on the anode water surface 

NS Proton-sensitive film applied on the cathode water surface 

PB Proton-sensitive film applied in the middle of the anode chamber water bulk  

 phase 

NB Proton-sensitive film applied in the middle of the cathode chamber water  

 bulk phase 

CB Proton-sensitive film placed into the bulk liquid phase of the Teflon center  

chamber 

P′ Proton-sensing film placed at cathode site facing the solution within the  

 Teflon center chamber 
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N′ Proton-sensing film placed at anode site facing the solution within the  

 Teflon center chamber 

rD The Debye length 

[𝐍𝐚𝐋+] Localized sodium ions concentration on the water-membrane interface 

[Na+] Free sodium ions concentration in the bulk liquid phase. 

EHD Electrohydrodynamic 

DC Direct Current 

AC Alternating Current 

31P-NMR Phosphorus Nuclear magnetic resonance 

NO3
- Nitrate ion 

Cl- Chloride ion 

K+ Potassium ion 

Na+ Sodium ion 

HCO3
- Bicarbonate ion 

(CO3) 
2- Carbonate ion 

OH- Hydroxide ion 

(SO4) 
-2 Sulfate ion 

CH3COO- Acetate ion 
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H3O+ Protons 

Ka
 Acid dissociation constant 

KH
 Henry’s laws constant 

 𝑲𝑷𝑵𝒂+
 Equilibrium constant for Na+ exchange with localized protons 

 𝑲𝑷𝑲+
 Equilibrium constant for K+ exchange with localized protons 

PCO2
 Partial pressure of carbon dioxide 

H2
 Hydrogen gas 

O2
 Oxygen gas 

MS-EVB Multistate Empirical Valence Bond 

SECM Scanning electrochemical microscopy 

SCE Standard Calomel Electrode 
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APPENDIX B 

SUPPLEMENTARY FIGURES 

 
 

  

 

Figure S1. The electric current of pure water electrolysis measured as a function of time with 
200 V during 10 hours experimental run: a) All replicates for Al-Tf-Al setup experiments, b) 
Average Al-Tf-Al setup experiments, c) All replicates for Tf-Al-Tf setup experiments, and d) 
Average Al-Tf-Al setup experiments.  
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Figure S2. Potential-pH diagram for pure Al at 25˚C in aqueous solution (adapted from Pourbaix 
1974). The lines (a) and (b) correspond to water stability and its decomposed product (160). 
(Copied with permissions, Appendix E) 

 

 

Corrosion of aluminum in aqueous environment is governed mainly by two important 

factors: the pH of the solution (the surrounding environment) and the applied voltage (92, 111, 

161, 162).  The thermodynamic principles which control the corrosion of aluminum could be 

better understood by Pourbaix (Potential-pH) diagram which is a graphical representation of 

solid phases and soluble ions of the aluminum metal that are produced electrochemically (Figure 

S2). 
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Figure S2 shows that there are three possible states of the Al in aqueous solution:  

1) Corrosion region in which Al metal is vulnerable to corrosion and becomes stable in its ionic 

(soluble) product when the pH of the surrounding environment is below 4 or above 8.5 and the 

potential is above -2.0 V versus SCE (Standard Calomel Electrode). In acidic environment (< pH 

4), aluminum is oxidized forming Al3+ soluble ions while in alkaline environment (> pH 8.5) 

aluminum forms AlO2- which is soluble in aqueous phase.  

2) Passive region in which the Al metal tends to be protected by a coating of aluminum oxide 

which is a passive layer that acts as a barrier between Al metal and the surrounding environment 

thus preventing any contact between the metal and the environment. This passive layer is stable 

when the pH of the surrounding is in between 4 and 8.5. 

3) Immunity region in which the Al metal is considered to be immune from corrosion attack. 

This region is achieved when the potential of the metal is kept below -2.0 V versus SCE.  
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a) Observation of Al sensing films placed at one end (picture on right), in 

the middle (middle picture) and at the other end (picture on left) of the 
small Teflon chamber contained 10 mM sodium bicarbonate. 
 

 
 

b) Observation of Al sensing films placed in a small beaker contained 10 
mM bicarbonate solution that was kept exposed to air for 10 hours at 
room temperature (26 ºC).  

 

 
 

c) Observation of Al sensing films placed in a small beaker contained 10 
mM bicarbonate solution that was kept for 10 hours at 16 ºC. Slight 
corrosive effect was observed on the aluminum pieces compared to that 
at room temperature. 

 
Figure S3. Evaluation of the effect of exposure of bicarbonate solution to the atmospheric air by 
introducing 10 mM of sodium bicarbonate that was freshly prepared (had initial pH (8.40 ± 0.00)) in the 
following and left for 10 hours: a) Inside the Teflon center chamber that was sealed at both ends with Al 
along with a small piece of Al that was suspended inside, b) In a small glass beaker where pieces of Al 
were placed on the surface (picture on the right) and suspended in the bulk (picture on the left) of the 
solution that was kept for 10 hours at room temperature (26 ºC),  and c) In a small glass beaker where 
pieces of Al were placed on the surface (picture on the right) and suspended in the bulk (picture on the 
left) of the solution that was kept for 10 hours at 16 ºC. 
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Figure S4. Shows the experimental set up when the two Teflon chambers were placed 30 cm 
apart, filled with 600 ml ultrapure water and connected with a continuous column of water with 
in a silicon tube bridge of 0.3 cm diameter. To ensure safety, all experiments were performed 
inside a fume hood that has a built-in air-fan driven ventilation system to disperse the small 
amount of potentially explosive H2 and O2 gases generated from the water electrolysis process. 

 



145 
 

 

Figure S5. Plot of specific resistance (R/L) versus (1/L). The intercept was then determined by 
extrapolation of the straight line for each applied voltage. 
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Figure S6. Plot of conductance versus voltage shows that longer tube has lower conductance 
while shorter tubes have higher conductance. It was noticed that the proton conductance tends to 
increase with increasing the applied voltage indicating that our system behaved in a non-ohmic 
manner. 
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Figure S7. Plot of measured resistance versus applied voltage shows that longer water column 
has higher resistance while shorter water column has lower resistance. It was noticed that the 
resistance slightly decrease with increasing the applied voltage indicating that our system 
behaved in a non-ohmic manner. 
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Figure S8. Resistivity of pure water (specific resistance) decreases as applied voltage increase. 
(Average of three trials) 
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APPENDIX C 

SUPPLEMENTARY TABLES 

Table S1. Raw data of initial pH measured with samples of deionized water source for 
experiments with "cathode water -Tf-Al-Tf -water anode". For deionized water used in each 
replication experiment, 12 readings of pH were recorded. 

Tf-Al-Tf 
(Replicate # 1) 

Initial pH 
6.80 6.99 
6.49 6.96 

 

6.48 6.82 
6.46 6.62 
6.42 6.61 
6.43 6.50 

Average of 12 replicates 6.63 ± 0.20 

Tf-Al-Tf 
 (Replicate # 2) 

Initial pH 
6.89 6.96 
6.85 7.02 

 

6.81 7.01 
6.80 6.80 
6.49 6.45 
6.52 6.56 

Average of 12 replicates 6.76 ± 0.21 

Tf-Al-Tf 
 (Replicate # 3) 

Initial pH 
6.95 6.85 
6.90 6.75 

 

6.80 6.70 
6.45 6.74 
6.55 6.77 
6.58 6.60 

Average of 12 replicates 6.72 ± 0.15 
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Table S2. Raw data of bulk-phase pH measured in the cathode and anode water chambers at the 
end of the 10-hour experiments with the "cathode water-Tf-Al-Tf -water anode" system. 

  Experiment (200V) Control (0V) 
Tf-Al-Tf pH of cathode pH of anode pH of cathode pH of anode 
Replicate 1 5.88 5.75 5.78 5.80 

  
  

5.81 5.72 5.79 5.75 
5.82 5.75 5.72 5.72 
5.81 5.77 5.81 5.73 
5.79 5.72 5.80 5.71 
5.75 5.73 5.75 5.76 

Average final pH 5.81 ± 0.04 5.74 ± 0.02 5.77 ± 0.03 5.75 ± 0.03 
     
  Experiment (200V) Control (0V) 
Tf-Al-Tf pH of cathode pH of anode pH of cathode pH of anode 
Replicate 2 5.79 5.71 5.78 5.81 

  
  

5.78 5.78 5.72 5.82 
5.81 5.76 5.70 5.81 
5.79 5.78 5.81 5.81 
5.75 5.72 5.82 5.80 
5.72 5.73 5.80 5.79 

Average final pH 5.77 ± 0.03 5.75 ± 0.03 5.77 ± 0.05 5.81 ± 0.01 
     
  Experiment (200V) Control (0V) 
Tf-Al-Tf pH of cathode pH of anode pH of cathode pH of anode 
Replicate 3 5.98 5.77 5.79 5.80 

  
  

5.88 5.78 5.75 5.82 
5.87 5.88 5.77 5.81 
5.79 5.80 5.72 5.85 
5.80 5.77 5.71 5.79 
5.75 5.75 5.73 5.78 

Average final pH 5.84 ± 0.08  5.79 ± 0.05  5.74 ± 0.03 5.80 ± 0.02 
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Table S3. Raw data of initial pH measured with samples of deionized water source for 
experiments with "cathode water-Al-Tf-Al-water anode". For deionized water used in each 
replication experiment, 12 readings of pH were recorded. 

Al-Tf-Al 
(Replicate # 1) 

Initial pH 
6.95 6.89 
6.90 6.90 

 

6.92 6.88 
6.91 6.87 
6.92 6.89 
6.93 6.96 

Average of 12 replicates 6.91± 0.02 

Al-Tf-Al 
(Replicate # 2) 

Initial pH 
6.96 6.85 
6.95 6.81 

 

6.93 6.82 
6.90 6.80 
6.89 6.75 
6.80 6.70 

Average of 12 replicates 6.85± 0.08 

Al-Tf-Al 
(Replicate # 3) 

Initial pH 
6.90 6.89 
6.89 6.88 

 

6.88 6.87 
6.91 6.87 
6.95 6.86 
6.92 6.85 

Average of 12 replicates 6.89 ± 0.03 
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Table S4. Raw data of bulk-phase pH measured in the cathode and anode water chambers at the 
end of the 10-hour experiments with the "cathode water-Al-Tf-Al-water anode" system.  

  Experiment (200V) Control (0V) 

Al-Tf-Al pH of cathode 
pH of 
anode pH of cathode pH of anode 

Replicate 1 5.91 5.71 5.75 5.76 

  
  

5.90 5.72 5.73 5.79 
5.92 5.79 5.72 5.78 
5.91 5.78 5.71 5.76 
5.89 5.8 5.74 5.72 
5.91 5.75 5.77 5.78 

Average final pH 5.91 ± 0.01 5.76 ± 0.04 5.73 ± 0.02 5.76 ± 0.02 
   
  Experiment (200V) Control (0V) 

Al-Tf-Al pH of cathode 
pH of 
anode pH of cathode pH of anode 

Replicate 2 5.85 5.87 5.63 5.77 

  
  

5.85 5.81 5.64 5.76 
5.82 5.85 5.58 5.73 
5.65 5.82 5.61 5.81 
5.79 5.89 5.60 5.82 
5.91 5.88 5.68 5.87 

Average final pH 5.81 ± 0.09 5.85 ± 0.03 5.62 ± 0.03 5.79 ± 0.05 
   
  Experiment (200V) Control (0V) 

Al-Tf-Al pH of cathode 
pH of 
anode pH of cathode pH of anode 

Replicate 3 5.55 5.69 5.74 5.78 

  
  

5.66 5.67 5.73 5.89 
5.61 5.71 5.66 5.78 
5.67 5.65 5.55 5.75 
5.69 5.66 5.74 5.73 
5.65 5.64 5.77 5.76 

Average final pH 5.64 ± 0.05 5.67 ± 0.03 5.69 ± 0.08 5.78 ± 0.06 
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Table S5. Averaged pH values measured in bulk water phase before and after 10 hours 
experiment with the “cathode water Tf-Al-Tf water anode” system (summary of Tables S1 and 
S2). 

200 V applied 10 hours Control (0 V) left for 10 hours 

Replicate number 
Tf-Al-Tf 

pH of Cathode 
water pH of Anode water pH of Cathode 

water pH of Anode water 

Rep # 1 Initial 6.63 ± 0.20 6.63 ± 0.20 
Final 5.81± 0.04 5.74± 0.02 5.77± 0.03 5.74± 0.03 

Rep # 2 Initial 6.76 ± 0.21 6.76 ± 0.21 
Final 5.77± 0.03 5.75± 0.03 5.77± 0.05 5.81± 0.01 

Rep# 3 Initial 6.72 ± 0.15 6.72 ± 0.15 
Final 5.84± 0.08 5.79± 0.05 5.74± 0.03 5.80± 0.02 

 

 

Table S6. Averaged pH values measured in bulk water phase before and after the 10-hour 
experiments using “cathode water Al-Tf-Al water anode” system with in situ sensing of 
localized excess protons (summary of Tables S3 and S4). 

200 V applied 10 hours Control (0 V) left for 10 hours 

Replicate number 
Al-Tf-Al 

pH of Cathode 
water pH of Anode water pH of Cathode 

water pH of Anode water 

Rep # 1 Initial 6.91± 0.02 6.91± 0.02 
Final 5.91± 0.01 5.76± 0.04 5.73± 0.02 5.76± 0.02 

Rep # 2 Initial 6.85± 0.08 6.85± 0.08 
Final 5.81± 0.09 5.85± 0.03 5.62± 0.03 5.79± 0.05 

Rep# 3 Initial 6.89 ± 0.03 6.89 ± 0.03 
Final 5.64± 0.05 5.67± 0.03 5.69± 0.08 5.78± 0.06 
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Table S7. Shows three replicates (12 readings each) of raw data initial pH measurements 
for experiments with arrangement "cathode water-Al-Tf-Al-DI water- Al-Tf-Al- water 
anode". 

Al-Tf-Al 
(Replicate # 1) 

Initial pH 
6.66 6.67 
6.27 6.30 

 

6.08 6.12 
6.06 6.11 
6.06 6.05 
6.10 6.06 

Average of 12 replicates 6.21 ± 0.24 

Al-Tf-Al 
(Replicate # 2) 

Initial pH 
6.65 6.11 
6.60 6.08 

 

5.96 6.10 
5.88 5.90 
5.92 5.75 
5.95 5.76 

Average of 12 replicates 6.055 ± 0.29 

Al-Tf-Al 
(Replicate # 3) 

Initial pH 
6.75 6.27 
6.54 6.28 

 

6.20 6.11 
6.15 6.04 
6.17 6.06 
5.93 6.13 

Average of 12 replicates 6.22 ± 0.22 
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Table S8. Shows three replicates of raw data final pH measurements for experiments with 
arrangement “cathode water-Al-Tf-Al-DI water- Al-Tf-Al- water anode “after 10 hours 
electrolysis. 

  Experiment (200v) Control (0V) 

Al-Tf-Al pH of cathode 

Sample 
chamber 

pH 
pH of 
anode pH of cathode 

Sample 
chamber 

pH 
pH of 
anode 

Replicate 1 6.07 6.99 5.76 6.01 5.93 5.75 

  
  

5.97 7.23 5.74 5.70 5.83 5.78 
5.93 7.32 5.75 5.66 5.83 5.72 
5.77 7.34 5.99 5.63 5.94 5.61 
5.76 7.27 5.85 5.84 5.95 5.59 
5.80 7.54 5.82 5.83 5.97 5.77 

Average 
final pH 5.88 ±0.13 7.28± 0.18 5.82±0.09 5.78±0.14 5.91±0.06 5.70±0.08 

   
  Experiment (200v) Control (0V) 

Al-Tf-Al 
pH of cathode 

Sample 
chamber 

pH 

pH of 
anode pH of cathode 

Sample 
chamber 

pH 

pH of 
anode 

Replicate 2 5.95 7.09 5.80 5.74 6.22 5.91 

  
  

5.95 7.14 5.83 5.81 6.12 5.85 
6.12 7.12 5.81 5.72 6.11 6.56 
5.95 6.97 5.82 5.76 6.09 5.68 
5.94 6.96 5.80 5.69 6.09 5.69 
6.14 6.96 5.79 5.79 6.05 5.70 

Average 
final pH 6.01±0.09 7.04±0.08 5.80 ±0.01 5.75±0.04 6.11±0.05 5.89±0.34 

   
  Experiment (200v) Control (0V) 

Al-Tf-Al 
pH of cathode 

Sample 
chamber 

pH 

pH of 
anode pH of cathode 

Sample 
chamber 

pH 

pH of 
anode 

Replicate 3 5.85 7.09 5.81 5.71 6.15 5.78 

  
  

5.88 7.10 5.82 5.65 6.16 5.85 
5.88 7.28 5.87 5.71 6.14 5.57 
5.72 7.38 5.64 5.72 6.17 5.64 
6.03 7.36 5.81 5.75 6.19 5.67 
5.79 7.40 5.82 5.74 6.23 5.79 

Average 
final pH 5.85±0.10 7.27±0.14 5.79±0.08 5.71±0.03 6.17±0.03 5.72±0.10 
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Table S9. Observation of proton-sensing films after 10 hours electrolysis (200 V) for the 
“cathode water Al-Tf-Al- Sodium bicarbonate - Al-Tf-Al water anode” experiment. Images 
show proton-sensing films that were placed at P, P′ sites and middle piece (First replication). 

Conc of 
sodium 

bicarbonate 
(replicate 1) 

Proton-sensing film placed 
at cathode (P′) site in 

contact with sodium salt 
solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece placed 
inside the center 
Teflon chamber 

0 mM 
 

  
 

10 mM 
 

  
 

25 mM 
 

  
 

50 mM 
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Table S9. Continued 

Conc of 
sodium 

bicarbonate 
(replicate 1) 

Proton-sensing film placed 
at cathode (P′) site in 

contact with sodium salt 
solution. 

Proton-sensing film placed at 
anode (P) site in contact with 

pure deionized water. 

Middle piece 
placed inside the 

center Teflon 
chamber 

75 mM 
 

  
 

100 mM 
 

  
 

200 mM 
 

  
 

 

500 mM 
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Table S10. Observation of proton-sensing films after 10 hours electrolysis (200 V) for the 
“cathode water Al-Tf-Al- Sodium bicarbonate - Al-Tf-Al water anode” experiment. Images 
show proton-sensing films that were placed at P, P′ sites and middle piece (Second replication). 

Conc of 
sodium 

bicarbonate 
(replicate 2) 

Proton-sensing film placed 
at cathode (P′) site in 

contact with sodium salt 
solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece 
placed inside the 

center Teflon 
chamber 

0 mM 
 

 
 

  

10 mM 
 

  

 

25 mM 
 

  
 

50 mM 
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Table S10. Continued. 

Conc of 
sodium 

bicarbonate 
(replicate 2) 

Proton-sensing film placed 
at cathode (P′) site in contact 

with sodium salt solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece placed 
inside the center 
Teflon chamber 

75 mM 
 

  
 

100 mM 
 

  
 

200 mM 
 

  
 

500 mM 
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Table S11. Observation of proton-sensing films after 10 hours electrolysis (200V) for the 
“cathode water Al-Tf-Al- Potassium bicarbonate - Al-Tf-Al water anode” experiment. Images 
show proton-sensing films that were placed at P, P′ sites and middle piece (First replication). 

Conc of 
potassium 

bicarbonate 
(replicate 1) 

Proton-sensing film placed at 
cathode (P′) site in contact 

with potassium salt solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece placed 
inside the center 
Teflon chamber 

0 mM 
 

  
 

10 mM 
 

  
 

25 mM 
 

  
 

50 mM 
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Table S11. Continued. 

Conc of 
potassium 

bicarbonate 
(replicate 1) 

Proton-sensing film placed at 
cathode (P′) site in contact 

with potassium salt solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece 
placed inside the 

center Teflon 
chamber 

75 mM 
 

  
 

100 mM 
 

  
 

200 mM 
 

  
 

500 mM 
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Table S12. Observation of proton-sensing films after 10 hours electrolysis (200V) for the 
“cathode water Al-Tf-Al- Potassium bicarbonate - Al-Tf-Al water anode” experiment. Images 
show proton-sensing films that were placed at P, P′ sites (Second replication). 

Conc of 
potassium 

bicarbonate 
(replicate 2) 

Proton-sensing film placed at 
cathode (P′) site in contact 

with potassium salt solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece 
placed inside the 

center Teflon 
chamber 

0 mM 
 

  
 

10 mM 
 

  
 

25 mM 
 

  
 

50 mM 
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Table S12. Continued 

Conc of 
potassium 

bicarbonate 
(replicate 2) 

Proton-sensing film placed at 
cathode (P′) site in contact 

with potassium salt solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece 
placed inside the 

center Teflon 
chamber 

75 mM 
 

  
 

100 mM 
 

  
 

200 mM 
 

  

 

 

500 mM 
 

  
 

 

  



164 
 

Table S13. Images show proton-sensing films that were placed at P′ and P sites for 75 mM 
sodium bicarbonate solutions that led to the reduction of electrostatically localized protons 
populations at the P′ site by about 50%. 

75mM  
sodium 

bicarbonate 
replications 

Proton-sensing film placed at 
cathode (P′) site in contact 
with sodium salt solution. 

Proton-sensing film 
placed at anode (P) site 

in contact with pure 
deionized water. 

Middle piece placed 
inside the center 
Teflon chamber 

Replicate 1 
 

  
 

Replicate 2 
 

  
 

Replicate 3 
 

  
 

Replicate 4 
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Table S14. Images show proton-sensing films that were placed at P′ and P sites for 50 mM 
potassium bicarbonate solutions that led to the reduction of electrostatically localized protons 
populations at the P′ site by about 50%. 

50 mM 
potassium 

bicarbonate 
replications 

Proton-sensing film placed at 
cathode (P′) site in contact 

with potassium salt solution. 

Proton-sensing film placed 
at anode (P) site in contact 
with pure deionized water. 

Middle piece 
placed inside the 

center Teflon 
chamber 

Replicate 1 
 

  
 

Replicate 2 
 

  
 

Replicate 3 
 

  

 

 

Replicate 4 
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Table S15. Raw data for final conductivities and pH measurements for experiments with 
arrangement "cathode water-Al-Tf-Al-Sodium bicarbonate- Al-Tf-Al- water anode" after 10 
hours electrolysis (First replication). 

Concentration 
of Sodium salt 

solutions 
(mM) 

Experiment (200v) Experiment (0v) control 

0 mM 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.409 7.52 1.400 1.431 6.35 1.402 
1.420 7.51 1.399 1.440 6.40 1.409 
1.419 7.53 1.410 1.445 6.41 1.409 
1.418 7.51 1.411 1.450 6.44 1.410 
1.421 7.50 1.413 1.459 6.42 1.410 
1.422 7.55 1.414 1.461 6.43 1.415 

Average  1.418 ±0.005 7.52 
±0.02 1.408 ±0.007 1.448 ±0.011 6.41 

±0.03 1.409 ±0.004 

 Experiment (200v) Experiment (0v) control 

10 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

0.999 8.86 0.998 0.989 8.43 1.050 
1.010 8.86 0.967 0.956 8.43 1.051 
1.020 8.86 0.989 0.989 8.43 1.052 
1.028 8.85 0.989 0.979 8.43 1.054 
1.029 8.87 0.969 0.985 8.44 1.067 
1.029 8.86 0.979 1.006 8.43 1.084 

Average  1.019 ± 0.012 8.86 ± 
0.01 0.982 ± 0.012 0.984 ± 0.016 8.43 ± 

0.00 1.060 ± 0.013 

 Experiment (200v) Experiment (0v) control 

25 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.77 8.62 1.392 1.774 8.84 1.641 
1.812 8.53 1.363 1.773 8.85 1.624 
1.814 8.65 1.349 1.821 8.86 1.638 
1.837 8.87 1.429 1.831 8.82 1.558 
1.82 8.88 1.539 1.852 8.84 1.568 
1.75 8.89 1.548 1.836 8.85 1.588 

Average  1.801 ± 0.033 8.74 ± 
0.16 1.437 ± 0.087 1.815 ± 0.033 8.84 ± 

0.01 1.603 ± 0.036 
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Table S15. Continued 

Concentration 
of sodium salt 

solutions 
(mM) 

Experiment (200v) Experiment (0v) control 

50 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.998 8.46 1.321 1.562 8.39 1.421 
1.999 8.47 1.322 1.532 8.38 1.422 
2.01 8.48 1.334 1.544 8.39 1.433 
2.02 8.47 1.338 1.532 8.40 1.423 
1.997 8.47 1.341 1.532 8.41 1.452 
1.996 8.48 1.345 1.526 8.40 1.488 

Average  2.003 ± 0.010 8.47 ± 
0.01 1.334 ± 0.010 1.538 ± 0.013 8.40 ± 

0.01 1.440 ± 0.026 

 Experiment (200v) Experiment (0v) control 

75 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.542 8.40 1.346 1.632 8.45 1.663 
1.556 8.43 1.344 1.645 8.43 1.665 
1.567 8.37 1.346 1.632 8.44 1.688 
1.587 8.38 1.344 1.599 8.46 1.7 
1.588 8.40 1.345 1.623 8.46 1.732 
1.598 8.39 1.346 1.678 8.45 1.752 

Average  1.573 ± 0.022 8.40 ± 
0.02 1.345 ± 0.001 1.635 ± 0.026 8.45 ± 

0.01 1.700 ± 0.036 

 Experiment (200v) Experiment (0v) control 

100 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.321 8.31 0.981 1.056 8.25 0.815 
1.209 8.32 0.982 1.057 8.24 0.820 
1.221 8.29 0.987 1.061 8.24 0.830 
1.208 8.31 0.991 1.068 8.25 0.835 
1.209 8.31 1.020 1.067 8.25 0.835 
1.209 8.31 1.023 1.069 8.24 0.836 

Average  1.230 ± 0.045 8.31 ± 
0.01 0.997 ± 0.019 1.063 ± 0.006 8.25 ± 

0.01 0.829 ± 0.009 
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Table S15. Continued 

Concentration 
of sodium salt 

solutions (mM) 
Experiment (200v) Experiment (0v) control 

200 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.898 8.16 1.798 1.523 8.14 1.491 
1.872 8.17 1.781 1.533 8.15 1.492 
1.852 8.16 1.783 1.532 8.15 1.493 
1.881 8.17 1.769 1.581 8.15 1.491 
1.882 8.18 1.779 1.569 8.14 1.489 
1.883 8.17 1.781 1.566 8.16 1.481 

Average  1.878 ± 0.015 8.17 ± 
0.01 1.782 ± 0.009 1.551 ± 0.024 8.15 ± 

0.01 1.490 ± 0.004 

 Experiment (200v) Experiment (0v) control 

500 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.798 8.15 1.654 1.231 8.120 1.211 
1.777 8.15 1.674 1.233 8.130 1.222 
1.789 8.15 1.678 1.211 8.120 1.223 
1.769 8.15 1.674 1.209 8.120 1.220 
1.799 8.15 1.675 1.208 8.130 1.220 
1.795 8.15 1.677 1.208 8.120 1.221 

Average  1.788 ± 0.012 8.15 ± 
0.00 1.672 ± 0.009 1.217 ± 0.012 8.12 ± 

0.01 1.220 ± 0.004 
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Table S16. Raw data final conductivities and pH measurements for experiments with 
arrangement "cathode water-Al-Tf-Al-Sodium bicarbonate- Al-Tf-Al- water anode" after 10 
hours electrolysis (Second replication). 

Concentration 
of Sodium salt 

solutions 
(mM) 

Experiment (200v) Experiment (0v) control 

 
Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity of 
Cathode Water 

(µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

0 mM 

1.409 7.52 1.400 1.431 6.35 1.402 
1.420 7.51 1.399 1.440 6.40 1.409 
1.419 7.53 1.410 1.445 6.41 1.409 
1.418 7.51 1.411 1.450 6.44 1.410 
1.421 7.50 1.413 1.459 6.42 1.410 
1.422 7.55 1.414 1.461 6.43 1.415 

Average  1.418 ±0.005 7.52 
±0.02 1.408 ±0.007 1.448 ±0.011 6.41 

±0.03 1.409 ±0.004 

 Experiment (200v) Experiment (0v) control 

 
Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity of 
Cathode Water 

(µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

10 mM 
 

1.213 8.72 1.121 1.011 8.41 0.989 
1.221 8.75 1.132 1.020 8.40 0.988 
1.229 8.76 1.133 1.023 8.41 0.991 
1.258 8.76 1.134 1.015 8.41 0.992 
1.249 8.77 1.135 1.018 8.40 0.995 
1.229 8.77 1.133 1.019 8.40 0.999 

Average  1.233 ± 0.017 8.76 ± 
0.02 1.131 ± 0.005 1.018 ± 0.004 8.41 ± 

0.01 0.992 ± 0.004 

 Experiment (200v) Experiment (0v) control 

25 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity of 
Cathode Water 

(µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.898 8.78 1.509 1.231 8.38 1.233 
1.898 8.79 1.606 1.246 8.38 1.241 
1.951 8.78 1.619 1.251 8.38 1.231 
1.952 8.76 1.620 1.256 8.38 1.235 
1.991 8.80 1.640 1.259 8.38 1.236 
1.991 8.78 1.754 1.259 8.38 1.237 

Average  1.947 ± 0.023 8.78 ± 
0.02 1.625 ± 0.047 1.250 ± 0.011 8.38 ± 

0.00 1.236 ± 0.003 
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Table S16. Continued 

Concentration 
of Sodium salt 

solutions 
(mM) 

Experiment (200v) Experiment (0v) control 

50 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.562 8.44 1.568 1.855 8.41 1.325 
1.566 8.42 1.459 1.845 8.43 1.352 
1.554 8.41 1.469 1.842 8.39 1.332 
1.523 8.45 1.449 1.853 8.38 1.356 
1.523 8.44 1.449 1.845 8.38 1.365 
1.577 8.44 1.448 1.851 8.39 1.366 

Average 1.551 ± 0.023 8.43 ± 
0.02 1.474 ± 0.047 1.849 ± 0.005 8.39 ± 

0.02 1.349 ± 0.017 

 Experiment (200v) Experiment (0v) control 

75 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 

Conductivity 
of Anode 

Water (µS) 
1.352 8.45 1.818 1.431 8.30 1.321 
1.341 8.43 1.82 1.445 8.31 1.32 
1.323 8.42 1.821 1.442 8.32 1.319 
1.356 8.41 1.825 1.449 8.33 1.312 
1.366 8.43 1.826 1.446 8.32 1.31 
1.356 8.44 1.827 1.45 8.32 1.319 

Average 1.349 ± 0.015 8.43 ± 
0.01 1.823 ± 0.004 1.444 ± 0.007 8.32 ± 

0.01 1.317 ± 0.005 

 Experiment (200v) Experiment (0v) control 

100 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.231 8.29 1.067 1.001 8.19 1.167 
1.323 8.29 1.077 1.008 8.20 1.166 
1.321 8.29 1.078 1.011 8.20 1.168 
1.331 8.29 1.081 1.109 8.20 1.170 
1.341 8.29 1.082 1.108 8.20 1.171 
1.351 8.29 1.083 1.109 8.21 1.170 

Average 1.316 ± 0.043 8.29 ± 
0.00 1.078 ± 0.006 1.058 ± 0.056 8.20 ± 

0.01 1.169 ± 0.002 
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Table S16. Continued 

Concentration 
of Sodium salt 

solutions 
(mM) 

Experiment (200v) Experiment (0v) control 

200 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.001 8.20 0.807 1.321 8.16 1.022 
1.002 8.19 0.808 1.235 8.16 1.030 
1.003 8.26 0.810 1.324 8.16 1.023 
1.004 8.20 0.811 1.324 8.17 1.028 
1.009 8.19 0.811 1.423 8.16 1.029 
1.010 8.20 0.812 1.215 8.16 1.035 

Average 1.005 ± 0.004 8.21 ± 
0.03 0.81 ± 0.002 1.310 ± 0.075 8.16 ± 

0.00 1.028 ± 0.005 

 Experiment (200v) Experiment (0v) control 

500 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

2.040 8.13 1.015 2.010 8.08 1.019 
2.100 8.13 1.016 1.998 8.09 0.998 
2.110 8.12 1.020 1.991 8.09 0.997 
2.130 8.12 1.031 1.998 8.09 0.996 
2.140 8.12 1.032 1.998 8.10 0.997 
2.130 8.12 1.036 2.050 8.10 0.997 

Average 2.108 ± 0.037 8.12 ± 
0.01 1.025 ± 0.009 2.008 ± 0.022 8.09 ± 

0.01 1.001 ± 0.009 
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Table S17. Conductivities and pH measurements after 10 hours open-circuit electrolysis at 
200V for the three water chambers by changing the concentration of sodium bicarbonate inside 
the Teflon sample chamber (average of 2 replicates presented in Tables S15 and S16). 

Concentrations of Sodium 
bicarbonate solutions 

(mM) 

Conductivity of 
Cathode Water 

(µS) 

Inner salt 
solution pH 

Conductivity of 
Anode Water (µS) 

0 mM 1.418 ±0.005 7.52 ±0.02 1.408 ±0.007 
10 mM 1.419 ± 0.090 8.85 ± 0.06 1.909 ± 0.250 
25 mM 1.874 ± 0.025 8.78 ± 0.15 1.531 ± 0.065 
50 mM 1.777 ± 0.016 8.45 ± 0.02 1.404 ± 0.028 
75 mM 1.461 ± 0.018 8.41 ± 0.02 1.584 ± 0.0025 
100 mM 3.492 ± 0.235 8.27 ± 0.04 1.728 ± 0.105 
200 mM 1.880 ± 0.02 8.17 ± 0.01 1.780 ± 0.01 
500 mM 1.788 ± 0.01 8.15 ± 0.00 1.672 ± 0.01 

 

Table S18. Conductivities and pH measurements of control experiments (0V) after 10 hours for 
the three water chambers by changing the concentration of sodium bicarbonate inside the 
Teflon sample chamber (average of 2 replicates presented in Tables S15 and S16). 

Concentrations of Sodium 
bicarbonate solutions 

(mM) 

Conductivity of 
Cathode Water 

(µS) 

Inner salt 
solution pH 

Conductivity of 
Anode Water (µS) 

0 mM 1.448 ±0.011 6.41 ± 0.03 1.409 ±0.004 
10 mM 1.126 ± 0.113 8.42 ± 0.01 1.026 ± 0.036 
25 mM 1.532 ± 0.296 8.61 ± 0.24 1.419 ± 0.193 
50 mM 1.693 ± 0.162 8.39 ± 0.02 1.395 ± 0.052 
75 mM 1.314 ± 0.248 8.37 ± 0.09 1.234 ± 0.314 
100 mM 1.060 ± 0.038 8.22 ± 0.02 0.999 ± 0.178 
200 mM 1.429 ± 0.138 8.16 ± 0.01 1.259 ± 0.241 
500 mM 1.612 ± 0.413 8.11 ± 0.02 1.114 ± 0.114 
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Table S19. Raw data final conductivities and pH measurements for experiments with 
arrangement "cathode water-Al-Tf-Al-Potassium bicarbonate- Al-Tf-Al- water anode" after 10 
hours electrolysis (First replication). 

Concentration 
of potassium 
salt solutions 

(mM) 

Experiment (200v) Experiment (0v) control 

0 mM 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.884 7.93 1.524 1.777 6.88 1.873 
1.884 7.93 1.547 1.779 6.68 1.873 
1.889 7.93 1.462 1.789 6.79 1.873 
1.89 7.53 1.749 1.798 6.76 1.873 
1.893 7.93 1.841 1.799 6.79 1.873 
1.893 7.89 1.848 1.789 6.81 1.873 

Average  1.889 ± 0.009 7.86 ± 
0.16 1.662 ± 0.171 1.789 ± 0.009 6.79 ± 

0.07 1.873 ± 0.000 

 Experiment (200v) Experiment (0v) control 

10 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.195 8.88 1.407 1.333 8.42 1.242 
1.125 8.89 1.353 1.281 8.41 1.194 
1.235 8.61 1.134 0.999 8.41 1.159 
1.331 8.89 1.155 0.989 8.41 1.133 
1.309 8.88 1.184 1.288 8.42 1.015 
1.289 8.89 1.208 1.24 8.41 1.279 

Average  1.247 ± 0.153 8.84 ± 
0.11 1.240 ± 0.112 1.188 ± 0.153 8.41 ± 

0.01 1.170 ± 0.093 

 Experiment (200v) Experiment (0v) control 

25 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.899 8.51 1.721 1.723 8.39 1.666 
1.989 8.51 1.719 1.733 8.39 1.658 
1.988 8.51 1.72 1.745 8.39 1.659 
1.987 8.51 1.715 1.753 8.39 1.681 
1.987 8.51 1.735 1.742 8.38 1.692 
1.989 8.51 1.733 1.745 8.39 1.697 

Average  1.973 ± 0.036 8.51 ± 
0.00 1.724 ± 0.008 1.740 ± 0.011 8.39 ± 

0.00 1.676 ± 0.017 

  



174 
 

Table S19. Continued 

Concentration 
of potassium 
salt solutions 

(mM) 

Experiment (200v) Experiment (0v) control 

50 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

2.030 8.55 1.171 1.199 8.48 1.201 
2.030 8.52 1.162 1.198 8.48 1.205 
2.050 8.55 1.165 1.199 8.48 1.2 
2.050 8.55 1.167 1.189 8.47 1.2 
2.050 8.55 1.165 1.191 8.47 1.199 
2.050 8.55 1.18 1.198 8.47 1.198 

Average 2.043 ± 0.010 8.55 ± 
0.01 1.168 ± 0.006 1.196 ± 0.00 8.48 ± 

0.01 1.201 ± 0.002 

 Experiment (200v) Experiment (0v) control 

75 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

4.030 8.51 0.998 1.026 8.39 0.985 
4.035 8.52 1.002 1.165 8.39 0.988 
4.040 8.52 0.996 1.185 8.40 0.980 
4.060 8.53 1.045 1.186 8.40 0.970 
4.048 8.53 1.050 1.189 8.39 0.975 
4.047 8.53 1.050 1.201 8.40 0.975 

Average 4.043 ± 0.011 8.52 ± 
0.01 1.024 ± 0.027 1.159 ± 0.066 8.40 ± 

0.01 0.979 ± 0.007 

 Experiment (200v) Experiment (0v) control 

100 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.285 8.29 1.078 1.125 8.30 0.889 
1.285 8.29 1.088 1.135 8.30 0.899 
1.288 8.29 1.089 1.136 8.30 0.995 
1.285 8.29 1.078 1.137 8.31 0.996 
1.288 8.30 1.090 1.138 8.31 0.994 
1.289 8.29 1.099 1.140 8.31 0.997 

Average 1.287 ± 0.002 8.29 ± 
0.00 1.087 ± 0.008 1.135 ± 0.005 8.31 ± 

0.01 0.962 ± 0.053 
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Table S19. Continued 

Concentration 
of potassium 
salt solutions 

(mM) 

Experiment (200v) Experiment (0v) control 

200 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity of 
Anode Water 

(µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.050 8.34 0.998 1.056 8.25 0.856 
1.065 8.35 0.995 1.023 8.26 0.859 
1.068 8.35 1.002 1.006 8.26 0.874 
1.080 8.35 1.003 1.023 8.26 0.888 
1.085 8.34 1.005 1.025 8.26 0.884 
1.085 8.34 1.006 1.056 8.26 0.895 

Average  1.072 ± 0.014 8.35 ± 
0.01 1.002 ± 0.004 1.032 ± 0.020 8.26 ± 

0.00 0.876 ± 0.016 

 Experiment (200v) Experiment (0v) control 

500 mM 
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity of 
Anode Water 

(µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

3.05 8.19 1.231 1.123 8.20 1.025 
3.02 8.19 1.233 1.156 8.20 1.060 
3.06 8.19 1.242 1.154 8.20 1.025 
3.10 8.19 1.245 1.158 8.20 1.089 
3.21 8.21 1.246 1.145 8.20 1.030 
3.24 8.21 1.259 1.170 8.20 1.045 

Average  3.113 ± 0.091 8.20 ± 
0.01 1.243 ± 0.010 3.113 ± 0.016 8.20 ± 

0.00 1.243 ± 0.025 
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Table S20. Raw data final conductivities and pH measurements for experiments with 
arrangement "cathode water-Al-Tf-Al-Potassium bicarbonate- Al-Tf-Al- water anode" after 10 
hours electrolysis (Second replication). 

Concentration 
of potassium 
bicarbonate 

solutions 
(mM) 

Experiment (200v) Experiment (0v) control 

0 mM 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.884 7.93 1.524 1.777 6.88 1.873 
1.884 7.93 1.547 1.779 6.68 1.873 
1.889 7.93 1.462 1.789 6.79 1.873 
1.890 7.53 1.749 1.798 6.76 1.873 
1.893 7.93 1.841 1.799 6.79 1.873 
1.893 7.89 1.848 1.789 6.81 1.873 

Average  1.889 ± 0.011 7.86 ± 
0.16 1.662 ± 0.17 1.789 ± 0.012 6.79 ± 

0.07 1.873 ± 0.000 

10 mM  

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.855 8.87 1.234 1.232 8.51 1.123 
1.856 8.88 1.235 1.255 8.50 1.124 
1.877 8.87 1.245 1.239 8.52 1.132 
1.879 8.87 1.246 1.240 8.52 1.209 
1.865 8.86 1.255 1.248 8.53 1.156 
1.875 8.86 1.286 1.245 8.52 1.169 

Average  1.868 ± 0.011 8.87 ± 
0.01 1.250 ± 0.019 1.243 ± 0.008 8.52 ± 

0.01 1.152 ± 0.033 

 Experiment (200v) Experiment (0v) control 

25 mM  
 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

2.23 8.71 1.789 1.324 8.45 1.231 
2.24 8.72 1.788 1.321 8.43 1.241 
2.42 8.73 1.831 1.332 8.45 1.245 
2.45 8.72 1.822 1.321 8.44 1.255 
2.49 8.71 1.824 1.326 8.45 1.256 
2.48 8.71 1.829 1.321 8.44 1.266 

Average  2.385 ± 0.119 8.72 ± 
0.01 1.814 ± 0.020 1.324 ± 0.004 8.44 ± 

0.01 1.249 ± 0.012 
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Table S20. Continued 

Concentration 
of potassium 
bicarbonate 

solutions (mM) 

Experiment (200v) Experiment (0v) control 

50 mM  

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

2.400 8.65 1.175 0.975 8.37 0.959 
2.400 8.66 0.995 0.97 8.38 0.96 
2.400 8.66 1.183 0.971 8.39 0.961 
2.410 8.68 1.186 0.972 8.40 0.966 
4.390 8.68 1.188 0.973 8.40 0.968 
2.390 8.70 1.190 0.975 8.40 0.969 

Average 2.732 ± 0.812 8.67 ± 
0.02 1.153 ± 0.077 0.973 ± 0.002 8.39 ± 

0.01 0.964 ± 0.004 

 Experiment (200v) Experiment (0v) control 

75 mM  

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.825 8.60 1.755 1.858 8.33 1.878 
1.884 8.58 1.744 1.856 8.33 1.851 
1.888 8.58 1.765 1.858 8.33 1.85 
1.889 8.59 1.746 1.863 8.34 1.84 
1.892 8.59 1.765 1.873 8.34 1.87 
1.899 8.59 1.778 1.883 8.35 1.89 

Average  1.880 ± 0.027 8.59 ± 
0.01 1.759 ± 0.013 1.865 ± 0.011 8.34 ± 

0.01 1.863 ± 0.019 

 Experiment (200v) Experiment (0v) control 

100 mM  

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

2.140 8.23 1.135 1.091 8.29 1.020 
2.150 8.23 1.135 1.100 8.29 1.046 
2.200 8.23 1.163 1.123 8.30 1.049 
2.230 8.24 1.175 1.125 8.30 1.048 
2.235 8.25 1.182 1.129 8.33 1.056 
2.290 8.24 1.191 1.160 8.29 1.058 

Average  2.208 ± 0.057 8.24 ± 
0.01 1.164 ± 0.024 1.121 ± 0.024 8.30 ± 

0.01 1.046 ± 0.014 
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Table S20. Continued  

Concentration 
of potassium 
bicarbonate 

solutions 
(mM) 

Experiment (200v) Experiment (0v) control 

200 mM  

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

1.566 8.38 1.234 1.231 8.27 1.123 
1.533 8.37 1.234 1.256 8.28 1.123 
1.523 8.37 1.239 1.659 8.27 1.230 
1.554 8.37 1.300 1.654 8.28 1.203 
1.556 8.36 1.301 1.701 8.26 1.236 
1.557 8.37 1.302 1.699 8.26 1.229 

Average  1.548 ± 0.016 8.37 ± 
0.01 1.268 ± 0.036 1.533 ± 0.225 8.27 ± 

0.01 1.191 ± 0.054 

 Experiment (200v) Experiment (0v) control 

500 mM  

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

Conductivity 
of Cathode 
Water (µS) 

Inner 
salt 

solution 
pH 

Conductivity 
of Anode 

Water (µS) 

0.845 8.25 1.020 0.985 8.19 1.001 
0.877 8.26 1.025 0.992 8.18 1.020 
0.892 8.26 1.040 0.996 8.19 1.032 
0.904 8.26 1.045 0.995 8.19 1.032 
0.938 8.26 1.048 0.969 8.19 1.045 
0.950 8.25 1.051 0.970 8.19 1.050 

Average  0.901 ± 0.039 8.26 ± 
0.01 1.038 ± 0.013 0.985 ± 0.012 8.19 ± 

0.00 1.030 ± 0.018 
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Table S21. Conductivities and pH measurements after 10 hours open-circuit electrolysis at 
200V for the three water chambers by changing the concentration of potassium bicarbonate 
inside the Teflon sample chamber (average of 2 replicates that were presented in Tables S19 and 
S20). 

Concentration of Sodium 
bicarbonate solutions 

(mM) 

Conductivity of 
Cathode Water 

(µS) 

Inner salt 
solution pH 

Conductivity of 
Anode Water (µS) 

0 mM 1.889 ± 0.011 7.86 ± 0.16 1.662 ± 0.171 
10 mM 1.558 ± 0.328 8.85 ± 0.08 1.245 ± 0.077 
25 mM 2.179 ± 0.231 8.61 ± 0.11 1.769 ± 0.049 
50 mM 2.076 ± 0.616 8.48 ± 0.13 1.387 ± 0.282 
75 mM 2.961 ± 1.130 8.56 ± 0.03 1.391 ± 0.385 
100 mM 1.747 ± 0.482 8.26 ± 0.03 1.125 ± 0.043 
200 mM 1.310 ± 0.249 8.36 ± 0.01 1.135 ± 0.141 
500 mM 2.007 ± 1.157 8.23 ± 0.03 1.140 ± 0.107 

 

Table S22. Conductivities and pH measurements of control experiments (0 V) after 10 hours 
for the three water chambers by changing the concentration of potassium bicarbonate inside the 
Teflon sample chamber (average of 2 replicates that were presented in Tables S19 and S20). 

Concentrations of Sodium 
bicarbonate solutions 

(mM) 

Conductivity of 
Cathode Water 

(µS) 

Inner salt 
solution pH 

Conductivity of 
Anode Water (µS) 

0 mM 1.789 ± 0.012 6.79 ± 0.07 1.873 ± 0.000 
10 mM 1.216 ± 0.107 8.47 ± 0.05 1.161 ± 0.067 
25 mM 1.532 ± 0.217 8.42 ± 0.03 1.462 ± 0.223 
50 mM 1.423 ± 0.366 8.45 ± 0.03 1.358 ± 0.300 
75 mM 1.512 ± 0.372 8.37 ± 0.03 1.421 ± 0.462 
100 mM 1.128 ± 0.018 8.30 ± 0.01 1.004 ± 0.057 
200 mM 1.282 ± 0.303 8.26 ± 0.01 1.033 ± 0.169 
500 mM 1.068 ± 0.088 8.19 ± 0.01 1.038 ± 0.022 
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Table S23. pH measurements for 75 mM of sodium salt solution inside the Teflon center 
chamber after 10 hours open-circuit electrolysis at 200V. 

Replications pH for 10 hours 
experiment at 200V 

pH for 10 hours control 
experiment at 0V 

Replicate 1 8.40 ± 0.02 8.45 ± 0.01 
Replicate 2 8.51 ± 0.01 8.45 ± 0.01 
Replicate 3 8.43 ± 0.01 8.32 ± 0.01 
Replicate 4 8.57 ± 0.01 8.25 ± 0.00 

Average 8.48 ± 0.07 8.37 ± 0.09 
 

Table S24. pH measurements for 50 mM of potassium salt solution inside the Teflon center 
chamber after 10 hours open-circuit electrolysis at 200V. 

Replications pH for 10 hours 
experiment at 200V 

pH for 10 hours control 
experiment at 0V 

Replicate 1 8.35 ± 0.01 8.47 ± 0.01 
Replicate 2 8.37 ± 0.01 8.45 ± 0.00 
Replicate 3 8.54 ± 0.01 8.47 ± 0.01 
Replicate 4 8.67 ± 0.02 8.39 ± 0.01 

Average 8.48 ± 0.13 8.45 ± 0.03 
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Table S25. pH measurements for the pure water and sodium bicarbonate solutions inside the 
anode and the cathode chambers respectively that were placed 30 cm apart after 10 hour open 
circuit electrolysis at 200V. 

Replications Initial pH of water Final pH 

Replicate 1 
 
 

 

pH of cathode pH of anode 
(700mM NaHCO3) 

5.89 5.84 8.31 
5.86 5.84 8.31 
5.85 5.83 8.32 
5.87 5.84 8.32 
5.89 5.83 8.31 
5.85 5.83 8.31 

Average 5.87 ± 0.02 5.84 ± 0.01 8.31 ± 0.01 

 

Initial pH of water Final pH 

 

pH of cathode pH of anode 
(700mM NaHCO3) 

Replicate 2 
 
 

7.00 5.81 8.31 
6.98 5.82 8.31 
6.97 5.83 8.31 
6.96 5.81 8.31 
6.94 5.82 8.31 
6.92 5.80 8.31 

Average 6.92 ± 0.03 5.82 ±  0.01 8.31 ± 0.00 

 
Initial pH of water Final pH 

Replicate 3 
 
 

 

pH of cathode pH of anode 
(700mM NaHCO3) 

7.00 5.78 8.21 
6.98 5.79 8.21 
6.97 5.80 8.21 
6.93 5.80 8.22 
6.92 5.80 8.21 
6.95 5.81 8.21 

Average 6.96 ± 0.03 5.80 ± 0.01 5.80 ± 0.01 
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APPENDIX D 

SUPPLEMENTARY CALCULATIONS 

(1) Calculation of capacitance of (Tf-Al-Tf) membrane 

𝑪 =
𝛋 ⋅ 𝛆𝐨.𝑨

𝒅
 

Where κ is the dielectric constant of the membrane; εo is the permittivity; A is the surface area; d 

is the thickness of the membrane. 

𝑄
𝑆

= ∆ψ ⋅
𝐶
𝑆

=
∆ψ ⋅ κ ⋅ 𝛆𝐨

𝑑
 

C = κ A εo/d = 2.1 x 8.85 x 10-12 (F/m) x (2.5 x 10-4 m2) /175 x10-6 m = 2.655 x 10-11 F 

C/S = 2.655 x 10-11 F/ (2.5 x 10-4   m2) = 1.062  x 10-7  F/m2 

 

(2) Experimental calculation of proton density 

Experimental Area average below the current versus time curve was 2.88 x 10-8 Coulombs 

2.88 x 10-8 Coulombs / (96485) = 2.98 x 10-13 mol H+ 

2.98 x 10-13 mol H+ / (2.54 x 10-4 m2) = 1.19 x 10-9 mol H+/ m2  

1.19 x 10-9 mol H+/ m2 / 10-9 m = 1.19 mole.m-3 

1.194 mole x 10-3 d-3= 1.19 x 10-3  M 

pH = -log [H+] = -log (1.19 x 10 -3 M) = 2.92 
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(3) Calculation of capacitance of Tf plate (boundary wall between the anode and the 

cathode chambers) 

Teflon plate dimensions: Thickness (d) = 0.772 cm, width = 9.50 cm, length = 5.20 cm. 

Area (S) = 49.4 – (area of Teflon center chamber hole) = 49.4 – (Л (3.10/2)2) = 41.852 cm2 = 

4.185 x10-3 m 

C = κ A εo/d = 2.1 x 8.85 x 10-12 (F/m) x (4.19 x 10-3 m2) /0.772 x10-2 m = 1.007 x 10-11 F 
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APPENDIX E 

COPYRIGHT PERMISSIONS 

 

Permissions for Figure 1, 2, 3 and 5 were obtained from Bioenergetics: Open Access 

Citation: Lee JW (2015) Proton-Electrostatic Localization: Explaining the Bioenergetic 

Conundrum in Alkalophilic Bacteria. Bioenergetics 4:121. doi:10.4172/2167-7662.1000121 

Copyright: © 2015 Lee JW. This is an open-access article distributed under the terms of the 

Creative Commons Attribution License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source are credited. 

 

Permissions for Figure 4 were obtained from Bioenergetics: Open Access 

Citation: Lee JW (2012) Proton-Electrostatics Hypothesis for Localized Proton Coupling 

Bioenergetics. Bioenergetics 1:104. doi:10.4172/2167-7662.1000104 

Copyright: © 2012 Lee JW. This is an open-access article distributed under the terms of the 

Creative Commons Attribution License, which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original author and source are credited. 
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Permission for Figure 6 was obtained from Rightslink: 

This Agreement between Haitham Saeed ("You") and Elsevier ("Elsevier") consists of your 
license details and the terms and conditions provided by Elsevier and Copyright Clearance 
Center. 

 License Number 3917770272786 
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Licensed Content Publication Elsevier Books 
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Number of 
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Format both print and electronic 
Are you the author of this 
Elsevier chapter? No 

Will you be translating? No 

Original figure numbers figure 1.3 

Title of your 
thesis/dissertation 

BIOENERGETICS: EXPERIMENTAL DEMONSTRATION OF 
EXCESS PROTONS AND RELATED FEATURES 

Expected completion date Aug 2016 

Estimated size (number of 
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160 

Elsevier VAT number GB 494 6272 12 

Requestor Location 

Haitham Saeed 
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Permission for Figure S2 was obtained from Intech open access: 

 

N. L. Sukiman, X. Zhou, N. Birbilis, A.E. Hughes, J. M. C. Mol, S. J. Garcia, X. Zhou and G. E. 
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Applications, Prof. Zaki Ahmad (Ed.), InTech, DOI: 10.5772/53752. Available from: 
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