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ABSTRACT 
 

STUDY OF ABC MEMBRANE TRANSPORTERS IN SINGLE LIVE CELLS  

Preeyaporn Songkiatisak 
Old Dominion University, 2018  

 Director: Dr. Xiao-Hong Nancy Xu 
  
 

The multidrug ATP-binding cassette (ABC) membrane transporters (efflux 

pumps) are found in both prokaryotes and eukaryotes and they can extrude diverse 

structurally unrelated substrates, such as antibiotics and chemotherapeutic agents out 

of the cells. The efflux pumps are responsible for multidrug resistance (MDR) and the 

failure of numerous treatments in infections and cancers. All ABC membrane 

transporters share a common modular topology containing two transmembrane 

domains (TMDs) and two nucleotide binding domains (NBDs). The underlying molecular 

mechanisms regarding how the similar structural ABC membrane transporters could 

selectively extrude a wide variety of substrates and cause MDR, are not yet fully 

understood. Radioisotopes and fluorophores have been widely used as probes to study 

efflux kinetics of multidrug membrane transporters in bulk cells which could have 

masked interesting rare events from individual cells. Moreover, radioisotopes and 

fluorophores do not process size-dependent physicochemical properties, making them 

unsuitable to serve as various sized substrates for the study of efflux function of the 

ABC transporter. In this dissertation, we focus on the development of three different 

sized single silver nanoparticles (Ag NPs) to serve as both drug nanocarriers and 

imaging probes to study size-dependent efflux function of ABC membrane transporters 

in single live cells (e.g., Escherichia coli) in situ in real time. We synthesized and 

characterized Ag NPs with diameters of 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm, 

functionalized them with a monolayer of 11-amino-1-undecanethiol (AUT) to prepare 

AgMUNH2 NPs (control nanocarriers). We then covalently linked the AgMUNH2 NPs 

with ofloxacin (Oflx) to prepare AgMUNH-Oflx NPs (antibiotic drug nanocarriers) with 

conjugation ratios of 8.6x102, 9.4x103, and 6.5x105 Oflx molecules per NP, respectively. 

We studied inhibitory effects of these antibiotic drug nanocarriers against E. coli and 

found size-dependent inhibitory effects in which the same amount of Oflx carried by the 



 

largest nanocarriers exhibited the highest inhibitory effects, and the smallest 

nanocarriers exhibited the lowest inhibitory effects. The AgMUNH2 NPs did not show 

significant inhibitory effects on cell growth. Furthermore, we used Ag NP-based 

nanocarriers as imaging probes to study efflux function of multidrug ABC membrane 

transporters in single live E. coli cells, because Ag NPs process distinctive size-

dependent photostable plasmonic optical properties. We found that the accumulation 

rates of nanocarriers highly depended on the NP concentration, the presence of 

ATPase pump inhibitor, and the types and sizes of nanocarriers. Interestingly, the ABC 

membrane transporters extrude AgMUNH-Oflx NPs more effectively and rapidly than 

AgMUNH2 NPs indicating that efflux pumps could be equipped with a sensing 

machinery to detect, recognize and extrude toxic substrates (e.g., antibiotics). Notably, 

the cells could extrude the smaller nanocarriers more effectively, leading to the least 

inhibitory effects. Therefore, the smaller drug nanocarriers could serve as excellent 

imaging probes to study the efflux function while the larger nanocarriers serve as 

powerful drug delivery vehicles. This study demonstrates the possibility of developing 

optimal-sized nanocarriers to achieve the maximum drug efficacy and potentially 

avoiding MDR.  
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NOMENCLATURE 

ε Extinction coefficient 

ΔABM Pseudomonas aeruginosa mutant strain with no expression of 

MexAB-OprM pumps 

λmax  Peak wavelength 

°C Degree Celsius 

µm Micrometer 

µM Micromolar 

µL Microliter 

ABC ATP-binding cassette 

Ag NPs Silver Nanoparticles 

Ag  Silver 

AgMUNH2 Silver nanoparticle functionalized with 11-amino undecanethiol  
 

AgMUNH-Oflx Silver nanoparticle functionalized with 11-amino undecanethiol 

and conjugated with ofloxacin 

ATP Adenosine triphosphate 

Au Gold  

AUT 11-amino-1-undecanethiol hydrochloride 

C Concentration 

14C Radioactive isotope of carbon 

CCD Charged coupled device  

Cryo-EM Cryo-electron microscopy 

DSB Double-strand break 

DFOMS  Dark-field optical microscopy and spectroscopy 

DI De-ionized 



viii 

 

 

DLS Dynamic light scattering 

DNA Deoxyribonucleic acid 

EDC 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride 

FWHM Full-width-at-half-maximum 

h Hour 

3H Tritium, a radioactive isotope of hydrogen 

H2O2 Hydrogen peroxide 

HRTEM High-resolution transmission electron microscopy 

LB Luria broth 

LPS Lipopolysaccharide 

LSPR Localized surface plasmonic resonance 

MΩ Megaohms 

min Minutes 

mL Milliliter 

ms Millisecond 

MIC50 Minimum inhibitory concentration at 50% 

MDR  Multidrug resistance 

nM Nanomolar 

nm Nanometer 

ns Nanosecond 

NaBH4 Sodium borohydride 

s-NHS N-hydroxysulfosuccinimide 

NBD Nucleotide binding domain 

NPs Nanoparticles 

OD Optical Density 
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Oflx Ofloxacin 

p Probability value 

pM Picomolar 

PBS Phosphate buffer saline 

Pgp P-glycoprotein 

PI Propidium iodide 

PVP Polyvinyl pyrrolidine 

rcf relative centrifugal force 

R Ratio 

rpm Revolutions per minute 

s Seconds 

SMNOBS Single molecular nanoparticle optical biosensor 

TEM Transmission electron microscopy 

TMD Transmembrane domain 

UV-vis Ultraviolet-visible 

WT Wild type 
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The journal guide for this dissertation is ACS Nano 2018, 12, 2138-2150. 

 

CHAPTER I 

 

OVERVIEW 

 

The ATP-binding cassette (ABC) membrane transporters are highly conserved 

proteins found in both prokaryotes and eukaryotes.1-3 They use the energy of ATP 

binding and hydrolysis to translocate a large number of structurally and functionally 

unrelated substrates across biological membrane.1-3 Multidrug ABC transporters (efflux 

pumps) can extrude antibiotics out of bacterial cells and chemotherapeutic agents from 

cancer cells resulting in multidrug resistance (MDR) and the failure of numerous 

treatments of infections and cancers.2-4  MDR is responsible for the creation of 

superbugs and an urgent need of better drugs against pathogenic bacteria.5-6 Multidrug 

membrane transporters have been extensively studied as a target aiming to overcome 

MDR and improve the efficacy of therapeutic drugs.7  

All ABC transporters share a similar modular topology including two 

transmembrane domain (TMD) and two nucleotide binding domain (NBD).1, 3, 7-8 In spite 

of extensive studies over decades, the molecular basis of MDR and efflux mechanisms 

of multidrug membrane transporters, for example how the similar structural membrane 

transporters could extrude diverse structurally unrelated substrates, remain not yet fully 

understood.5 Conventional methods for the study of transport efflux kinetics in bulk 

bacterial cells include the use of radioisotopes (14C and 3H) or fluorophores (ethidium 

bromide and Hoechst dye) as probes to measure accumulations of substrates in the 

cells.9-12 Study of the accumulation kinetics of bulk cells could have masked crucial rare 

events as individual cells act differently and their efflux kinetics are unsynchronized, 

emphasizing the importance of probing efflux kinetics of individual membrane 

transporters in single live cells in real time.13-14 Moreover, single radioisotope or 

fluorophore are unable to measure sizes of substrates and membrane transporters as 

they lack distinctive size-dependent physicochemical properties. Thus, these 

conventional probes are not suitable to serve as various size-dependent pump  
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substrates for the study of efflux function of single membrane transporter in single live 

cells in real time.  

The technological leap of nanomaterials provides the most promising strategies 

to overcome MDR and circumvent many side effects and toxicity from high doses of 

antibiotics.15-17 Nanomaterials process unique physiochemical properties, particularly 

minuscule sizes and high surface-to-volume ratios.18-19 These distinctive features make 

nanomaterials outstanding among other candidates as drug delivery vehicles to 

increase the drug payloads and enhance local drug doses resulting in therapeutic 

improvement.20-21 Among nanomaterials, noble metal nanoparticles (e.g., Ag NPs and 

Au NPs) are the most interesting due to their unique plasmonic optical and surface 

properties.17, 22 

Nobel metal nanoparticles (e.g., Ag NPs) process distinctive plasmonic 

properties, which highly depend on their sizes, shapes, dielectric constant, and 

surrounding environments.23-24 Single Ag NPs have high Rayleigh scattering enables us 

to image and characterize them under illumination of halogen lamps using dark-field 

optical microscopy and spectroscopy (DFOMS).14, 25-27 We have demonstrated that we 

can use superior size-dependent LSPR and photostable single Ag NPs as optical 

probes to study the size-dependent efflux kinetics of multidrug membrane transporters 

in single live cells in real time.9, 13-14, 28-29 We have systematically studied the 

dependence of the accumulation of substrates and efflux function on the sizes, charges, 

chemicals, and bacterial strains of Gram-positive bacteria (BmrA in Bacillus subtilis)9, 13, 

29-30 and Gram-negative bacteria (MexAB-OprM in Pseudomonas aeruginosa)14, 31-33 

using bare and surface-functionalized NPs to mimic various sizes of antibiotics (drugs) 

with different surface properties (drug functional groups). 

In this dissertation, we firstly used Ag NPs as powerful drug delivery vehicles 

because of their small sizes and high surface-to-volume ratio properties. We 

synthesized and characterized three different sized Ag NP-based antibiotic 

nanocarriers, aiming to study the dependence of the therapeutic effects of antibiotics 

(e.g., ofloxacin, Oflx) on the size of nanocarriers in a bacterial model (Escherichia coli). 
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We further used single antibiotic drug nanocarriers as excellent imaging probes to study 

efflux function of multidrug ABC membrane transporters. These studies would offer new 

insights into the mechanisms of MDR of multidrug ABC membrane transporters and the 

rational design of nanocarriers to improve drug efficacy and evade MDR. 

This dissertation contains six chapters. In Chapter I, we provide a brief overview 

of the research background and significant findings of this dissertation research, and an 

outline the contents of each individual chapter. 

In Chapter II, we developed antibiotic drug nanocarriers from different sized bare 

Ag NPs and then studied the dependence of their inhibitory effects against bacterial 

cells upon the dose of antibiotics and the size of nanocarriers. We aimed to (i) design 

antibiotic drug nanocarriers to achieve high efficacy, importantly to combat MDR and (ii) 

rationally develop biocompatible antibiotic drug nanocarriers to study efflux function of 

single multidrug membrane transporters in live bacterial cells. In this study, we 

synthesized and characterized three different sized bare Ag NPs (2.4 ± 0.7, 13.0 ± 3.1, 

and 92.6 ± 4.4 nm) and functionalized these NPs with a monolayer of 11-amino-1-

undecanethiol hydrochloride (AUT) to prepare AgMUNH2 NPs (control nanocarriers), 

and then covalently conjugated the amine group of the AgMUNH2 NPs with the carboxyl 

group of an antibiotic (ofloxacin, Oflx) to produce antibiotic drug nanocarriers 

(AgMUNH-Oflx NPs). We determined the amount of conjugated Oflx molecules on each 

single NP (the conjugation ratios) of 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm as 8.6x102, 

9.4x103, and 6.5x105 Oflx molecules/NP, respectively. We studied the dependence of 

inhibitory effects of free Oflx and conjugated Oflx attached on the surface of the 

nanocarriers on the dose of Oflx and the size of nanocarriers in E. coli and found that 

the inhibitory effects Oflx significantly depend on the dose of Oflx and the size of 

nanocarriers. The equal amount of Oflx carried by the large nanocarriers (13.0 ± 3.1 

and 92.6 ± 4.4 nm) are much more toxic than free Oflx inhibiting cell growth and causing 

extensive cellular filamentation whereas surprisingly those delivered by the smaller 

nanocarriers are less toxic than free Oflx, as illustrated in Figure 1. The MIC50 of free 

Oflx and the antibiotic nanocarriers with a diameter of 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 

4.4 nm are 0.144, 0.314, 0.081 and 0.026 µM, respectively. Moreover, our control 
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experiments showed that the AgMUNH2 NPs (control nanocarriers) are biocompatible 

and do not exhibit significant inhibitory effects on the cell growth. Thus, the results 

suggest that an optimal size of the nanocarriers is required to create maximum 

inhibitory effects against pathogenic bacteria in which the same amount of Oflx 

generates a substantially higher bactericidal potency when it is carried and delivered by 

the larger nanocarriers.    
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Figure 1.  Schematic illustration of size-dependent inhibitory effects of antibiotic 

drug nanocarriers against E. coli using DFOMS.34  

The inhibitory effects of free Oflx and conjugated Oflx attached on the surface of the 

nanocarriers depend on the dose of Oflx and the size of nanocarriers in E. coli. The 

largest antibiotic drug nanocarriers (92.6 ± 4.4 nm) show the highest inhibitory effects 

with the lowest MIC50 (0.026 ± 0.003 μM) of Oflx while the smallest antibiotic drug 

nanocarriers (2.4 ± 0.7 nm) exhibit the lowest bactericidal inhibitory with the highest 

MIC50 (0.314 ± 0.010 μM) of Oflx against E. coli. The larger antibiotic drug nanocarriers 

demonstrate higher efficacy of ofloxacin to target DNA gyrase during cell replication as 

the cells treated with conjugated Oflx carried by the larger nanocarriers show less 

numbers of cells and extensive cellular filamentation. The densely loaded Oflx 

molecules (multivalence) could enhance their binding affinity to the targets and the 

higher drug payload could raise local drug concentrations and their bactericidal effects.  
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In Chapter III, we used we used 2.4 ± 0.7 nm AgMUNH-Oflx NPs (the smallest 

antibiotic drug nanocarriers) and the same sized AgMUNH2 NPs (control nanocarriers) 

to probe efflux kinetics of ABC (MsbA) membrane transporters of single live E coli cells. 

We demonstrate that we can use LSPR spectra of single AgMUNH-Oflx NPs and 

AgMUNH2 NPs to identify and track transports of single NPs in and out of single cells 

over time using DFOMS. We found the high dependence of the accumulation of 

intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs upon a presence of a pump 

(ATPase) inhibitor (25 µM orthovanadate) and the concentration of NPs (0.7 and 1.4 

nM), suggesting that the NPs enter the cells via passive diffusion which are driven by 

concentration gradient across the cellular membrane and are extruded out by multidrug 

ABC membrane transporter. Interestingly, we found that the accumulation of AgMUNH2 

NPs is higher than those of AgMUNH-Oflx NPs in single live cells, suggesting the efflux 

pumps can extrude noxious substrates (e.g., conjugated Oflx) more effectively and 

rapidly out of the cells as illustrated in Figure 2. This provides powerful evidence that 

multidrug membrane transporters could have a sensing machinery to selectively detect, 

recognize toxic substances (e.g., antibiotics and anticancer drugs), and then extrude 

them out as cellular defense mechanisms. 
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Figure 2. Schematic illustration of study of substrate-dependent efflux function of 

multidrug ABC (MsbA) membrane transporters in single live E. coli cells using 2.4 

± 0.7 nm drug nanocarrier optical probes.35 

The accumulation of intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs depend upon 

a presence of a pump (ATPase) inhibitor (25 μM orthovanadate), the concentration of 

NPs and the type of NPs. The accumulation of the AgMUNH2 NPs is twice higher than 

those of the AgMUNH-Oflx NPs in single live cells, suggesting substrate-dependent 

efflux kinetics of MsbA. The efflux pumps can extrude noxious substrates (e.g., 

AgMUNH-Oflx NPs) more effectively and rapidly out of the cells than biocompatible 

substrates (e.g., AgMUNH2 NPs). This provides evidence that the multidrug ABC 

membrane transporters might have a sensing machinery to selectively detect, recognize 

toxic substances (e.g., antibiotics and anticancer drugs), and then extrude them out as 

cellular defense mechanisms. 
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In Chapter IV, we used 13.0 ± 3.1 nm AgMUNH-Oflx NPs (the slightly larger 

antibiotic drug nanocarriers) and AgMUNH2 NPs (control nanocarriers) to probe efflux 

kinetics of ABC (MsbA) membrane transporters of single live E coli cells under dark-field 

microscopy. We found that the accumulation rates increase with the NP concentrations, 

suggesting passive diffusion could be the primary mechanism for the NPs enter into the 

cells. Interestingly, we found that the number of intracellular AgMUNH2 NPs are far 

more than those of AgMUNH-Oflx NPs as presented in Figure 3. The pump inhibitor can 

only cause an increase of the accumulation rate of intracellular AgMUNH-Oflx NPs but 

not AgMUNH2 NPs. These results confirm the dependence of efflux function of MsbA 

membrane transporters on types of substrates and the efflux pumps effectively extrude 

harmful substances, as reported previously in Chapter III.  
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Figure 3. Schematic illustration of study of efflux mechanisms of multidrug ABC 

(MsbA) membrane transporters in single live E. coli cells using 13.0 ± 3.1 nm size-

dependent plasmonic drug nanocarrier optical probes.36 

The accumulation of intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs depend upon 

a presence of a pump (ATPase) inhibitor (25 μM orthovanadate), the concentration of 

NPs and the type of NPs. The NPs enter the cells through passive diffusion and are 

extruded out of the cells by the multidrug ABC membrane transporters. The 

accumulation of the AgMUNH2 NPs is 24 times higher than those of the AgMUNH-Oflx 

NPs in single live cells, suggesting substrate-dependent efflux kinetics of MsbA and the 

efflux pumps can effectively extrude harmful substances. 
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In Chapter V, we studied efflux kinetics of ABC (MsbA) membrane transporters of 

single live E coli cells using the largest antibiotic drug nanocarriers (92.6 ± 4.4 nm 

AgMUNH-Oflx NPs) and the same sized control nanocarriers (AgMUNH2 NPs). We 

found that the accumulation rates of intracellular NPs and efflux kinetics of MsbA 

membrane transporters highly depend on the concentration of NPs, suggesting that 

such large NPs could passively diffuse into the cells. Moreover, orthovanadate could 

interrupt efflux function of MsbA membrane transporters leading to the increase of 

accumulation rates of intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs. Interestingly, 

similar to the smaller drug nanocarriers (2.4 ± 0.7 and 13.0 ± 3.1 nm), we found that the 

accumulation rates of intracellular AgMUNH2 NPs in the presence and absence of 

orthovanadate are higher than those of the AgMUNH-Oflx NPs, confirming that the 

efflux pump could detect conjugated Oflx molecules on the antibiotic drug nanocarriers 

and extrude them out more effectively than the control nanocarriers. Notably, we found 

size-dependent accumulation rates of intracellular AgMUNH-Oflx NPs. As illustrated in 

Figure 4, the number of intracellular NPs of the larger NPs (92.6 ± 4.4 nm) at 3.7 pM is 

lower than those of the smaller NPs (2.4 ± 0.7 nm and 13.0 ± 3.1 nm) at 1.4 nM possibly 

due to their low concentration gradient across the cellular membrane and/or their low 

membrane permeability. If we increase the concentration of the larger NPs (92.6 ± 4.4 

nm) to 1.4 nM (378 times), the number of intracellular NPs and their accumulation rates 

could have been much higher than the smaller NPs, suggesting that they could be least 

effectively extruded out the cells. 
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Figure 4. Schematic illustration of study of substrate- and size-dependent efflux 

function of multidrug ABC (MsbA) membrane transporters in single live E. coli 

cells using 92.6 ± 4.4 nm drug nanocarrier optical probes.37 

The accumulation of intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs depend upon 

a presence of a pump (ATPase) inhibitor (25 μM orthovanadate), the concentration of 

NPs and the type of NPs. The NPs enter the cells through passive diffusion and are 

extruded out of the cells by the multidrug ABC membrane transporters. The 

accumulation of the AgMUNH2 NPs is twice higher than those of the AgMUNH-Oflx NPs 

in single live cells, suggesting substrate-dependent efflux kinetics of MsbA and the 

efflux pumps can effectively extrude harmful substances. The smaller nanocarriers 

could be effectively extrude out of the cells by the multidrug ABC membrane 

transporters more effectively than the larger nanocarriers, and therefore, they are less 

toxic than the larger nanocarriers. 
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In Chapter VI, we summarized our research findings that previously described in 

the preceding chapters, underscored the significance of this research, and discussed 

the possible future research goals. 
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CHAPTER II 

 

STUDY OF SIZE-DEPENDENT INHIBITORY EFFECTS OF ANTIBIOTIC DRUG 

NANOCARRIERS AGAINST ESCHERICHIA COLI 

 

INTRODUCTION 

Antibiotics have been used to treat infectious diseases for many years. Due to 

over-consumption and inappropriate use of these drugs, resistance to antibiotics has 

become increasingly widespread and posed significant challenges for infectious 

treatments.15 MDR is responsible for the development of antibiotic resistance causing 

numerous impacts including higher doses of drugs, additional treatments and an urgent 

need of novel antibiotics.15 The MDR phenomena are mainly associated with a robust 

array of membrane transporters of efflux pumps that extrude a wide variety of 

substrates including amino acids, ions, lipids and various drugs.5-6 Multidrug membrane 

transporters have been extensively studied as a target aiming to overcome MDR and 

improve the efficacy of therapeutic drugs.7 Unfortunately, molecular mechanisms of 

MDR and functions of membrane transporters remain ambiguous after decades of 

research.5  

 Escherichia coli (E. coli) is an opportunistic Gram-negative bacteria that can 

cause severe diarrhea, urinary tract infections and respiratory illness.38-39 There are 

several membrane transporters associated with efflux systems in E. coli.7 For instance, 

the MsbA is an essential ATP-binding cassette transporter protein for cell growth and is 

closely related to mammalian MDR proteins (Pgp, ABCB1, MDR1).6, 40-41 In bacterial 

MsbA, a TMD is fused to an NBD in a half-transporter that then homodimerizes to form 

the full transporter 5, 20 MsbA is a poly-specific transporter which can recognize and 

transport a wide spectrum of drug molecules.1, 10, 41 . 

 The use of nanomaterials provides the most promising strategies to overcome 

MDR and circumvent many side effects and toxicity from high doses of antibiotics.15-17 

Nanomaterials possess such unique physiochemical properties, particularly minuscule 
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sizes and high surface-to-volume ratios.18-19 Reduction of the size of the nanomaterials 

leads to a dramatic increase in the surface area relative to their volume, giving facile 

surface functionalization with various biological and drug molecules.18 Nanocarriers 

promote drug binding affinity and increase the local drug payload resulting in enhanced 

therapeutic efficacy.20-21  Although various nanomaterials with different designs, sizes 

and shapes have been extensively used as drug nanocarriers15-16, systematical studies 

to understand their dependence of therapeutic effects and underlying molecular 

mechanisms upon their physiochemical properties, such as sizes are still elusive. 

Furthermore, recent studies mainly use biodegradable nanoparticles, such as liposome 

but only few studies focus on using noble metal NPs as nanocarriers to treat bacterial 

infection.16  

 Noble metal NPs (e.g. Ag and Au) have been proven to be versatile and widely 

used materials in biomedical applications, such as drug delivery and nanobiosensors26, 

42-43 In addition to a large surface-to-volume ratio, Ag NPs possess distinctive size-

dependent photostable plasmonic optical properties enable us to image and determine 

the sizes of single NPs at the nanometer (nm) resolution in real time using dark-field 

optical microscopy and spectroscopy (DFOMS).25 We have used the size-dependent 

localized surface plasma resonance (LSPR) spectra (color) of single NPs to study the 

sizes of NPs as they transported in and out of single live cells and thus determine the 

pore sizes of the membrane transporters.9, 14 Moreover, We have developed single 

molecule nanoparticle optical biosensors (SMNOBS) from Ag NPs to probe important 

molecular events, such as cell apoptosis at a single cell resolution in real time.26, 42  

 In this study, we have synthesized, purified and characterized three different 

sized stable Ag NPs nanocarriers (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm). We have 

quantitatively studied dose and size dependent bactericidal effects of these antibiotic 

drug nanocarriers against E. coli, aiming to determine the dependence of the inhibitory 

effects of conjugated Oflx upon the size of nanocarriers. Single Ag NPs can serve as 

powerful drug delivery vehicles and excellent imaging probes, which allow us to 

investigate roles of different sized nanocarriers not only in boosting drug efficacy but 

also in efflux function of multidrug membrane transporters. These will guide us to the 



15 

 

 

rational design of optimally sized nanocarriers that can enhance drug binding affinity 

and increase the local drug payload concentrations at the target sites to achieve the 

highest drug efficacy and, more importantly overcome MDR. 

 

RESULTS AND DISCUSSION 

Synthesis and Characterization of Three Different Sized Ag NPs 

We have synthesized and purified three different sized Ag NPs, as described in 

Methods and as we reported previously.25-26, 43-45 Representative TEM images (Figure 

5A: a-c) and histograms of size distribution (Figure 5B: a-c) of three different NP 

samples show nearly spherical shaped NPs with diameters of (2.4 ± 0.7), (13.0 ± 3.1) 

and (92.6 ± 4.4) nm, respectively.46  Notably, the shapes of the smallest NPs are the 

closest to the spherical.  In contrast, the shapes of the largest NPs are polygonal (the 

least spherical).  The diameters of oval and irregular shaped NPs are determined by 

averaging the length and width of the NPs. 

We characterized the plasmonic absorption and scattering of Ag NP solutions 

using UV-vis absorption spectroscopy.46  UV-vis absorption spectra of three different 

sized NPs with diameters of (2.4 ± 0.7), (13.0 ± 3.1) and (92.6 ± 4.4) nm show the peak 

wavelength with full width at half maximum, λmax (FWHM), at 392 (57), 395 (59) and 450 

(182) nm, respectively.  We did not observe any shoulder peak for NPs with diameters 

of either (2.4 ± 0.7) or (13.0 ± 3.1) nm, further demonstrating that they are nearly 

spherical.  In contrast, we observed one shoulder peak wavelengths at 390 nm for the 

diameter of NPs of (92.6 ± 4.4) nm, which are most likely attributed to the in-plane 

quadrupole resonance of the NPs generated by transverse collective oscillation of the 

surface electrons between edges of the NPs.  Notably, the TEM images of the NPs 

(Figure 5A: c) indeed show that they are polygonal with sharp edges.46 
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Figure 5. Characterization of sizes, shapes and plasmonic optical properties of 

three different sized Ag NPs.46 

 (A) HRTEM images of single Ag NPs and (B) histograms of their size distributions show 

nearly spherical shaped NPs with average diameters of (a) 2.4 ± 0.7, (b) 13.0 ± 3.1 and 

(c) 92.6 ± 4.4 nm.  (C) UV-vis spectra of the NPs in DI water show the peak absorption 

(full width at half maximum), λmax (FWHM), at: (a) 392 (57), (b) 395 (59), and (c) 450 nm 

with a shoulder peak of 390 nm, respectively.  
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Synthesis and Characterization of Antibiotic Nanocarriers (AgMUNH-Oflx NPs)  

We functionalized the well purified and characterized Ag NPs with a monolayer of 

11-amino-1-undecanethiol (AUT) by replacing citrate molecules electrostatically 

adsorbed on the surface of the NPs with AUT via the interaction of thiol groups of AUT 

with the NPs, to prepare AgMUNH2 NPs, as presented in Material and Method and 

Figure 6.  We washed the AgMUNH2 NPs thoroughly with nanopure water to remove 

excess AUT using centrifugation.  We then covalently conjugated the amine groups of 

each sized AgMUNH2 NPs with the carboxyl group of ofloxacin (Oflx) via a peptide bond 

using a two-step method via EDC and s-NHS as mediators to prepare antibiotic 

nanocarriers (AgMUNH-Oflx NPs), as illustrated in Figure 6.46    

We purified the drug nanocarriers (AgMUNH-Oflx NPs) by thoroughly washing 

them with deionized (DI) water, and characterized the conjugation ratios of Oflx 

molecules to the NPs using UV-vis absorption spectroscopy, as shown in Figure 7 and 

Table 1.46  The absorption spectrum of 2.4 ± 0.7 nm Ag NPs (Figure 7A: a) shows a 

plasmonic absorption peak wavelength of 390 nm with a FWHM of 55 nm. After the 

surface of the NPs was functionalized with a monolayer of AUT, the refractivity of the 

NPs decreased and their dielectric constant increased, leading to a red-shifted and 

broader plasmonic absorption spectrum. Thus, the plasmonic absorption spectrum of 

AgMUNH2 NPs (Figure 7A: b) shows a peak wavelength of 413 nm and a FWHM of 132 

nm. Upon conjugation of Oflx with the AgMUNH2 NPs, we observed both the distinctive 

absorption peak wavelengths of Oflx at 288 and 331 nm and the plasmonic peak 

absorption of the NPs at 416 nm for the nanocarriers (AgMUNH-Oflx NPs). We 

subtracted the absorption spectrum of AgMUNH2 NPs from that of AgMUNH-Oflx NPs 

and determined the concentration of Oflx covalently attached onto the nanocarriers 

using the absorbance at 288 nm. We used the plasmonic peak absorbance of NPs in 

the same nanocarriers to determine the concentration of NPs. We divided the Oflx 

concentration of the nanocarrier by the NP concentration of the same nanocarrier  

 



18 

 

 

A 

B 

C 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic illustration of synthesis of three different sized antibiotic 

drug nanocarriers (Adapted from Ref 46).46 

Functionalizing Ag NPs with monolayer of 11-amino-1-undecanethiol using interaction 

of its thiol groups (-SH) with the surface of Ag NPs with diameters of (A) 2.4 ± 0.7, (B) 

13.0 ± 3.1 and (C) 92.6 ± 4.4 nm to synthesize AgMUNH2 NPs. The amine groups of 

AgMUNH2 conjugate with the carboxyl groups of ofloxacin via a peptide bond using 

EDC and sulfo-NHS as mediators to prepare AgMUNH-Oflx NPs called as antibiotic 

drug nanocarriers.   
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Figure 7. Characterization of conjugation ratios of Oflx molecules with NPs for 

three different sized Ag NPs using UV-vis absorption spectroscopy.46  

(A) UV-vis absorption spectra of: (a) 2.4 ± 0.7 nm Ag NPs, (b) AgMUNH2 NPs and (c) 

AgMUNH-Oflx NPs show the plasmonic absorption peak wavelength (λmax) of NPs at 

392, 413 and 416 nm, respectively.  (B) UV-vis absorption spectra of: (a) 13.0 ± 3.1 nm 

Ag NPs, (b) AgMUNH2 NPs and (c) AgMUNH-Oflx NPs show the plasmonic absorption 

λmax of NPs at 394, 414 and 418 nm, respectively.  (C) UV-vis absorption spectra of: (a) 

92.6 ± 4.4 nm Ag NPs, (b) AgMUNH2 NPs and (c) AgMUNH-Oflx NPs show the 

plasmonic absorption λmax of NPs at 450, 453 and 486 nm, respectively.  Note that Oflx 

signature absorption λmax at 288 and 331 nm were observed in (c) only for all three 

sized nanocarriers in (A-C), showing the conjugation of Oflx with the NPs.     
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solution to quantitatively characterize the conjugation ratio of Oflx molecules to NPs, 

showing 8.6 × 102 Oflx molecules/NP for the 2.4 ± 0.7 nm Ag NPs. Using a close-

packed model with the footprint of each AUT molecule of 0.214 × 0.214 nm2 on the 

surface of the NP,43 we found that the smooth surface area of a perfectly spherical NP 

with a diameter of 2.4 nm could only accommodate 395 Oflx molecules/NP. The 2-fold 

higher payload of 8.6 × 102 Oflx molecules/NP could be attributed to the rough surface 

and irregular shape of the NPs.46 

The absorption spectrum of the 13.0 ± 3.1 nm Ag NPs (Figure 7B: a) shows a 

plasmonic absorption peak wavelength at 399 nm and a FWHM of 58 nm. After their 

surface was functionalized with a monolayer of AUT, their plasmonic absorption 

spectrum (Figure 7B: b) red-shifted and showed a peak wavelength of 413 nm and a 

FWHM of 132 nm. After the AgMUNH2 NPs were conjugated with Oflx, the plasmonic 

absorption spectrum of AgMUNH-Oflx NPs (nanocarriers) exhibited both the distinctive 

absorption peak wavelengths of Oflx at 288 and 331 nm as well as the plasmonic peak 

absorption of NPs at 418 nm for the nanocarriers (AgMUNH-Oflx NPs). Using the same 

approaches as described above, we quantitatively characterized the conjugation ratio of 

Oflx molecules to NPs as 9.4 × 103 Oflx molecules/NP for the 13.0 ± 3.1 nm NPs, which 

is nearly equal to the maximum number of AUT molecules (1.2 × 104 molecules) that 

could be closely packed on the surface of a spherical NP with a diameter of 13 nm, as 

determined by the close-packed model.46  

The absorption spectrum of the 92.6 ± 4.4 nm Ag NPs (Figure 7C: a) shows a 

plasmonic absorption peak wavelength at 450 nm. After their surface was functionalized 

with a monolayer of AUT, the peak wavelength of the plasmonic absorption spectrum 

red-shifted to 453 nm (Figure 7C: b). Upon conjugation of the AgMUNH2 NPs with Oflx, 

the plasmonic absorption spectrum of AgMUNH-Oflx NPs exhibited both the distinctive 

absorption peak wavelengths of Oflx at 288 and 331 nm as well as a further red-shifted 

plasmonic peak absorption of the NPs to 500 nm. Using the same approaches 

described above, we quantitatively characterized the conjugation ratio of Oflx to the NPs  
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as 6.5 × 105 Oflx molecules/NP for the 92.6 ± 4.4 nm NPs, which is approximately equal 

to the maximum number of AUT molecules (5.9 × 105 molecules) that could be closely 

packed on the surface of a perfectly spherical NP with a diameter of 92.6 nm, as 

determined by the close-packed model.46 

 

 

 

 
Table 1. Determination of Conjugation Ratios of Ofloxacin (Oflx) Molecules per NP 

for Three Different Sized Drug Nanocarriers. 46  

 

Diameter of NPs 
(nm) 

  CNPs
a
  

(nM) 

COflx
b 

 (µM) 

R Oflx per NP
c 

2.4 ± 0.7 50 43.2 8.6x102 

13.0 ± 3.1 3.3 31.1 9.4 x103 

92.6 ± 4.4  0.030 19.4 6.5 x105 

 
a Plasmonic absorbance of drug nanocarriers (AgMUNH-Oflx NPs) at λmax of 416, 418, 

486 nm was used to determine the concentration of 2.4 ± 0.7; 13.0 ± 3.1 and 92.6 ± 4.4 

nm NPs, respectively.    

b COflx was determined by subtracting UV-vis spectra of AgMUNH2 NPs from that of 

AgMUNH-Oflx NPs, and dividing the peak absorbance of the subtracted UV-vis spectra 

at 288 nm by molar absorptivity (ε288 nm) of Oflx, 7.8x103 M-1 cm-1    

 c Conjugation ratio of the number of Oflx molecules per NP was calculated by dividing 

the concentration of Oflx with concentration of NPs for the same solution of AgMUNH-

Oflx NPs for 2.4 ± 0.7; 13.0 ± 3.1 and 92.6 ± 4.4 nm NPs, respectively.  
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Study of Stability of Drug Nanocarriers (AgMUNH-Oflx NPs) in Cell Culture 

Medium  

In order to study the dependence of the inhibitory effects of these antibiotic 

nanocarriers against E. coli on the sizes of NPs and doses of antibiotic, it is crucial that 

the nanocarriers remain stable (non-aggregated) in cell culture medium and that their 

sizes and doses remain unchanged over the entire duration of the cell culture 

experiment. If the nanocarriers aggregate in the cell culture medium, then their sizes 

and doses would change over time, making a study of their size and dose dependent 

inhibitory effects unreliable.  

Therefore, we first characterized the stability (non-aggregation) of each size of 

drug nanocarriers (AgMUNH-Oflx NPs) in a commonly used standard LB medium (1% 

tryptone, 0.5% yeast extract, and 0.5% NaCl in DI water, pH = 7.2) over 24 h using 

UV−vis absorption spectra. Unfortunately, none of the nanocarriers at the desired 

concentration were stable in this standard medium.46  

We then reduced the concentration of NaCl to 0.1% and characterized the 

stability (non-aggregation) of the drug nanocarriers in the modified medium (1% 

tryptone, 0.5% yeast extract, and 0.1% NaCl in DI water, pH = 7.2) over 24 h using 

UV−vis absorption spectroscopy. The results in Figure 8 show that the absorption 

spectra of the nanocarriers remain unchanged over 24 h, indicating that the 

nanocarriers with Ag NP diameters of 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm and 

concentrations of 6.0 nM, 0.8 nM, and 7 pM were stable (non-aggregated) in the 

modified medium over 24 h, respectively.46
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Figure 8. Characterization of the stability (non-aggregation) of three sized 

antibiotic nanocarriers (AgMUNH-Oflx NPs) in the modified LB medium using UV-

vis absorption spectroscopy.46  

The UV-vis absorption spectra of 6 nM, 0.8 nM and 7 pM of AgMUNH-Oflx NPs for the 

Ag NPs with diameters of: (A) 2.4 ± 0.7, (B) 13.0 ± 3.1 and (C) 92.6 ± 4.4 nm, in the 

modified LB medium at (a) 0 and (b) 24 h, remain essentially unchanged over time, 

which indicates that the nanocarriers were stable (non-aggregated) in the medium over 

24 h, respectively.  
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Characterization of Suitability of the Modified LB Medium for Cell Culture 

We previously found that the antibiotic drug nanocarriers were unstable in the 

standard LB medium (1% tryptone, 0.5% yeast extract and 0.5% NaCl in DI water, pH = 

7.2) but they were stable (non-aggregation) in the modified LB medium (1% tryptone, 

0.5% yeast extract and 0.1% NaCl in DI water, pH = 7.2).46 Therefore, we studied cell 

growth of E. coli (MsbA) strain in the modified LB medium to ensure that it was suitable 

for culturing healthy cells as the standard LB medium. We pre-cultured the cells in the 

standard LB medium for 12 h. We then cultured the pre-culture cells in the standard and 

the modified LB and measure the cell growth over time by measuring optical density at 

600 nm (OD600 nm) every hour. The growth curves of the cells cultured in the standard 

LB medium (Figure 9A) and the cells cultured in the modified LB medium (Figure 9B) 

are similar indicating that the modified LB medium is well suited to culture the cells. 

 We then characterized the viability of cells cultured in the standard and the 

modified medium over 16 h via LIVE/DEAD BacLight assay. Representative images of 

the cells cultured in the standard LB medium (Figure 10A) and the modified LB medium 

(Figure 10B) show SYTO9 green fluorescence (Figure 10A, B: b) but not propidium 

iodide (PI) red fluorescence demonstrating that cells are viable. As the cells cultured in 

the modified LB medium show more than 99% viability (Figure 10C), the modified LB 

medium can be used to culture the cells. 
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Figure 9. Characterization of growth kinetics of the live cells cultured in standard 

and modified LB medium.  

The cellular growth curves of E. coli (MsbA) in (A) standard and (B) modified LB 

medium over time show that the growth rates of the cells in either medium are nearly 

identical, which indicates that the modified LB medium is well suited to culture the cells. 
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Figure 10. Characterization of viability of E. coli (MsbA) cells cultured in standard 

and modified LB medium using LIVE/DEAD BacLight assay. 

Optical image (a) and fluorescence images (b) of single E. coli (MsbA) cultured in 

medium over 16 h, and suspended in the PBS buffer and assayed using LIVE/DEAD 

BacLight assay. The cells emitted the green fluorescence (λ max = 525 nm) of SYTO9 

indicating viable cells (C) Plot of the percent of the live cells (live cells divided by the 

total number of cells) cultured in (a) standard and (b) modified LB medium show that 

more than 99% of the cells (MsbA) are viable, which further indicates that the modified 

LB medium is well suitable to culture the cells. Minimum 900 cells were assayed. The 

scale bar in (A) is 5 µm.  
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In addition, we characterized the efflux pump function of MsbA in live cells by 

probing the dependent accumulation of intracellular fluorescence dye (Hoechst 33342) 

using time-course fluorescence intensity. The Hoechst 33342 dye is a well-known 

substrate of MsbA (ABC) membrane transporters and has been used to for efflux 

function studies.10-11 The dye emits weak fluorescence intensity in aqueous solution but 

its intensity dramatically increases (up to 10 times) once it internalizes into the cells and 

intercalates with DNA.47 Therefore, Hoechst 33342 dye is suitable for monitoring 

intracellular accumulation of the dye and for characterization of the efflux function of 

multidrug membrane transporters of live cells in real time.  The results in Figure 11 

demonstrated the fluorescence intensity of Hoechst 33342 dye (0.5 µM) incubated with 

the cells cultured in the standard LB medium (Figure 11C) and the modified LB medium 

(Figure 11D) gradually increased and remain stable over time. We further studied 

effects of a pump (ATPase) inhibitor, orthovanadate,48-49 on the efflux pump function. 

The cells cultured in the standard LB medium (Figure 11A) and the modified LB medium 

(Figure 11B) with a presence of orthovanadate (25 µM) showed higher accumulation 

rates of the dye than in their absence. Altogether, the cells cultured in modified LB 

medium exhibited relatively the same efflux pump function of MsbA as those in the 

standard LB medium demonstrating that the modified LB medium well suited to culture 

healthy cells. 
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Figure 11. Characterization of accumulations and efflux kinetics of the Hoechst 

33342 for live cells cultured in standard and modified LB medium. 

Time-dependent fluorescence intensity of Hoechst 33342 (0.5 µM) incubated with the 

cells (OD 600 nm = 0.1 in PBS buffer, pH 7.2): MsbA cells cultured in standard (A) and 

modified (B) LB medium in the presence of 25 μM orthovanadate and MsbA cells 

cultured in standard (C) and modified (D) LB medium in the absence of orthovanadate. 

The cells cultured in standard (A and C) and modified (B and D) LB medium show 

similar accumulation and efflux kinetics, which demonstrates that the modified LB 

medium is well suitable to culture the cells for the study of accumulation and efflux 

kinetics of MsbA. 
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Study of Size and Dose Dependence of Inhibitory Effects of Antibiotic Drug 

Nanocarriers 

We cultured the cells (104 pre-cultured cells) in the modified LB medium 

containing a dilution series of free drug Oflx, each given sized antibiotic drug 

nanocarriers (AgMUNH-Oflx NPs) and the corresponding size of AgMUNH2 NPs (no 

conjugated Oflx, control experiment) in test tubes. We then incubated the cells with 

vigorous shaking (200 rpm, 37 ºC) over 18 h. 

The dilution series consist of 0, 0.045, 0.09, 0.18, 0.38 and 0.68 µM of free drug 

Oflx (Figure 12A: a-f) or the conjugated Oflx from the antibiotic drug nanocarriers 

(Figure 12B-D: a-e), which corresponded to the concentrations of antibiotic drug 

nanocarriers (NP concentrations): (Figure 12B: a-e) 5.21x10-2, 0.104, 0.209, 0.440, and 

0.788 nM of NPs with a diameter of 2.4 ± 0.7 nm using the ratio of 8.6x102 Oflx 

molecules per NP; (Figure 12C: a-e) 4.77x10-3, 9.54x10-3, 1.91x10-2, 4.03x10-2 and 

7.21x10-2 nM for NPs with a diameter of 13.0 ± 3.1 nm using the ratio of 9.4x103 Oflx 

molecules per NP; (Figure 12D: a-e) 6.89x10-2, 0.138, 0.276, 0.582 and 1.04 pM for 

NPs with a diameter of 92.6 ± 4.4 nm using the ratio of 6.5x105 Oflx molecules per NP. 

Moreover, control experiments included the modified LB medium alone (No cells) and 

the cells that were cultured at the same time and under the same conditions as 

samples, incubated with the modified LB medium containing 0.788 nM, 7.21x10-2 nM 

and 1.04 pM AgMUNH2 NPs (in the absence of Oflx) with a diameter of Ag NPs of 2.4 ± 

0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm, respectively (Figure 12B-D: f).  

We sampled the cell solutions every 6 h and quantitatively determined the 

bacterial cell concentration by measuring OD600 nm in a 96-well plate using a plate reader 

(BioTek SynergyHT) equipped with an UV-vis absorption spectral detector. We 

subtracted OD600 nm of the NPs or the antibiotic drug nanocarriers from the cell samples 

with the NPs or the antibiotic drug nanocarriers to determine the OD600 nm of the cell 

concentrations. We plotted OD600 nm of the cell suspension over time and determined 

18h as the duration for the cells in the medium alone (control) required to reach  



30 

 

 

A 

B 

C 

D 

a b f e c d  

 

 

 

 

 

 

 

 

 

Figure 12. Study of the concentration and size dependent inhibitory effects of 

antibiotic drug nanocarriers (AgMUNH-Oflx NPs) upon the growth of E. coli 

(MsbA) cells.  

Images of the modified LB-medium cultured with the MsbA cells containing: (A) free 

drug Oflx alone at 0, 0.045, 0.09, 0.18, 0.38 and 0.68 μM (a-f); (B) the conjugated Oflx 

from antibiotic drug nanocarriers with a diameter of 2.4 ± 0.7 nm at 0.045, 0.09, 0.18, 

0.38 and 0.68 μM (a-e); (C) the conjugated Oflx from antibiotic drug nanocarriers with a 

diameter of 13.0 ± 3.1 nm at 0.045, 0.09, 0.18, 0.38 and 0.68 μM (a-e); (D) the 

conjugated Oflx from antibiotic drug nanocarriers with a diameter of 92.6 ± 4.4 nm at 

0.045, 0.09, 0.18, 0.38 and 0.68 μM (a-e). The concentrations of Oflx conjugated onto 

the NPs are determined based upon their conjugation ratios.  The concentrations of 

AgMUNH2 NPs in (f) containing the same concentration of the NPs as those in (e) for 

each type of NPs in (B-D) but without carrying Oflx (control experiments for the study of 

effects of NPs), respectively.   
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confluence and for the cells in the medium with Oflx or drug nanocarriers or NPs to 

reach their equilibriums. We used the OD600 nm of each cell suspension at 18 h to 

determine the inhibitory effects of the free drug Oflx and conjugated Oflx as described in 

the following. 

The plot of normalized OD600 nm of the cells suspension cultured with free drug 

Oflx and the conjugated Oflx with a given sized antibiotic drug nanocarrier at 18 h 

(Figure 13) indicates that the inhibitory effects of Oflx significantly depend upon the 

dose of Oflx and the size of the antibiotic drug nanocarriers. The control experiments 

(Figure 13A-C) of the cells incubated with each size of AgMUNH2 NPs (absence of Oflx, 

2.4 ± 0.7, 13.0 ± 3.1 or 92.6 ± 4.4 nm) which consisted of the same concentration of 

NPs as those of the highest concentration of the given sized nanocarrier, gave the 

same OD600 nm as those cultured in the medium alone. These findings indicate that the 

AgMUNH2 NPs do not significantly contribute to inhibitory effects on the growth of MsbA 

cells. 

On the contrary, the OD600 nm of the cell suspension incubated with Oflx alone 

show the high dose-dependent inhibitory effects of Oflx on the growth. As the 

concentration of Oflx increases, OD600 nm of the cell suspension decreases, indicating 

that the number of the cells decreases. By fitting the plot (Figure 13D), we determined 

the concentration of Oflx that reduced the cell growth to half and defined it as minimum 

inhibitory concentration (MIC50) of Oflx. The MIC50 of free Oflx is 0.144 ± 0.008 µM 

(Table 2). Likewise, the results in Figure 13E-G show high dose-dependent inhibitory 

effects as the OD600 nm of the cell suspension decreases when the concentration of 

conjugated Oflx increases. Interestingly, the OD600 nm of the cell suspension incubated 

with 2.4 ± 0.7 nm drug nanocarriers with the conjugation ratio of 8.6x102 Oflx 

molecules/NP decreases less rapidly than those of free Oflx and the other two larger 

nanocarriers, giving the MIC50 of 0.314 ± 0.010 µM Oflx (Figure 13E). The MIC50 of 13.0 

± 3.1 nm drug nanocarriers with the conjugation ratio of 9.4x103 Oflx molecules/NP is 

0.081 ± 0.002 µM Oflx (Figure 13F) which is lower than the MIC50 of free Oflx and 2.4 ± 

0.7 nm drug nanocarriers. Notably, the MIC50 of 92.6 ± 4.4 nm drug nanocarriers with  
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Figure 13. Study of dose and size dependent inhibitory effects of antibiotic drug 

nanocarriers (AgMUNH-Oflx NPs) in E. coli (MsbA) using UV-vis spectroscopy. 

Plots of normalized OD600 nm of the cells cultured for 18 h in the modified LB-medium 

containing (A-C) AgMUNH2 NPs (absence of Oflx, control), (D) free drug Oflx, and (E-G) 

the conjugated Oflx from antibiotic drug nanocarriers with a diameters of NPs (E) 2.4 ± 

0.7, (F) 13.0 ± 3.1 and (G) 92.6 ± 4.4 nm, respectively.  The concentrations of 

AgMUNH2 NPs in (A-C) containing the same concentration of the NPs as those carried 

the highest Oflx concentrations in (E-G) for each type of NPs but without carrying Oflx 

(control experiments for the study of effects of NPs), respectively.  The points are 

experimental data and a solid line is generated by fitting of the experimental data with 

an equation (y = a*e-bx) as followings: (D) y = 1.12 e-5.57x, R2 = 0.944; (E) y = 1.12 e-2.56x, 

R2 = 0.928; (F) y = 1.08 e-9.58x, R2 = 0.941; (G) y = 1.01e-26.7x, R2 = 0.988. 

Concentrations of Oflx (MIC50) for free Oflx and Oflx conjugated on a given sized 

nanocarrier were determined using the exponential fitting equation at the half of the 

maximum of the normalized OD600 nm for each curve, respectively. 
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Table 2. Study of Dependence of the MIC of Oflx upon the Size of Nanocarriers 

against E. coli (MsbA-WT) 

Samples MIC50 of Oflx (μM) * 

Free Oflx alone 0.144 ± 0.008 

Nanocarriers (2.4 ± 0.7 nm) 0.314 ± 0.010 

Nanocarriers (13.0 ± 3.1 nm) 0.081 ± 0.002 

Nanocarriers (92.6 ± 4.4 nm) 0.026 ± 0.003 

 

* The MIC of Oflx for each sample was determined by fitting the experimental data with 

the exponential decay (y = a*e-bx, inhibitory effects upon the exponential cell growth) to 

determine the parameters (a and b) of a fitting equation with a regression. The equation 

was then used to determine the concentration of Oflx at which the cell growth was 

inhibited to the half of the cell growth of the blank control experiment, as described in 

Figure 13 caption. 

 

 

 

 

the conjugation ratio of 6.5x105 Oflx molecules/NP is 0.026 ± 0.003 µM Oflx (Figure 

13G), showing the lowest MIC50 and the highest inhibitory effects among the 

nanocarriers and free Oflx. We summarize MIC50 of free Oflx and drug nanocarriers in 

Table 2. The results show the significant dependence of inhibitory effects of Oflx upon 

the dose of Oflx and the size of nanocarriers.   

It is noteworthy that the MIC50 of conjugated Oflx show significant size 

dependence. The largest size (92.6 ± 4.4 nm) nanocarriers exhibit the lowest MIC50 and 
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the highest inhibitory effects among the nanocarriers and free drug Oflx. In other words, 

the same amount of Oflx molecules loaded and delivered via the largest NPs (92.6 ± 4.4 

nm) is the most potent, followed by 13.0 ± 3.1 nm nanocarriers, free Oflx and 2.4 ± 0.7 

nm nanocarriers (Table 2). The MIC50 of conjugated Oflx of 2.4 ± 0.7 nm nanocarriers is 

2.2 times higher than that of free drug Oflx. In contrast, the MIC50 of conjugated Oflx of 

13.0 ± 3.1 nm and 92.6 ± 4.4 nm nanocarriers are 1.8 times and 5.5 times lower than 

that of free Oflx. These findings suggest that the densely loaded Oflx on the larger 

nanocarriers could enhance binding affinity with the target (multivalence) and contribute 

to higher local drug concentration compared with those Oflx molecules on the smaller 

nanocarriers. Notably, the MIC50 of free Oflx and conjugated Oflx in Table 2 indicates 

that the inhibitory effects of drug nanocarriers significantly depend on their sizes but not 

in a linear manner, which suggests the tradeoff between the distribution of the same 

amount of the drugs throughout the cells (pharmacodynamics) and localization of the 

same amount of loaded on individual nanocarriers (high affinity) could contribute to their 

inhibitory effects. Free drug Oflx and conjugated Oflx on the smaller nanocarriers (2.4 ± 

0.7 nm) possibly distribute inside the cells better than the drugs loaded with the larger 

nanocarriers (13.0 ± 3.1 nm and 92.6 ± 4.4 nm) while the larger nanocarriers offer the 

higher local drug concentration and the better drug binding affinity with the target sites 

than the smaller nanocarriers. Considering the combination of drug distribution and 

multivalence factors, a critical size of nanocarriers is required to enhance and maximize 

antibiotic potency against pathogenic bacterial cells.      

 Interestingly, the inhibitory effects of free drug ofloxacin and conjugated Oflx in 

antibiotic drug nanocarriers against E. coli cells follow the same trend as those against 

P. aeruginosa (WT and ΔABM).46  We previously reported that the MIC50 of free drug 

Oflx and conjugated Oflx on 2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm nanocarriers 

against were 0.59 ± 0.16, 1.00 ± 0.07, 0.40 ± 0.06 and 0.11 ± 0.01 µM, respectively.46 

For the same amount of Oflx molecules carried and delivered by the largest NPs (92.6 ± 

4.4 nm) are the most potent, followed by 13.0 ± 3.1 nm nanocarriers, free drug Oflx, and 

2.4 ± 0.7 nm nanocarrier. The MIC50 of Oflx varies in different bacterial strains because 

Oflx antibiotic potency could depend upon several factors including the membrane  
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permeability of the drug and the ability of the cells to extrude the drug out of the cells.16, 

50 Notably, we have studied efflux function of multidrug ABC (MsbA) membrane 

transporters using these three-sized drug nanocarriers as imaging probes and found 

that the efflux pumps could extrude all the sized nanocarriers. 35-37 The cells could 

extrude the smaller nanocarriers more effectively, leading to the least inhibitory effects. 

In contrast, the cells could not extrude the largest nanocarriers out of single live cells as 

effectively as smaller NPs. The extrusion of conjugated Oflx of the largest nanocarriers 

could affect the MIC50 of the largest nanocarriers the most similar to results from our 

previous study.46 These observations emphasize that the inhibitory effects could be 

attributed to the interplay among various factors, including multivalence effects, drug 

distribution, and extrusion of Oflx molecules. 

 

Filamentation Induced by Ofloxacin in E. coli 

 Ofloxacin is a broad-spectrum antibiotic in the fluoroquinolone family commonly 

used to treat infections of the skin, bladder and urinary tract.51 The molecular target is 

DNA gyrase (topoisomerase II) which is a crucial bacterial enzyme catalyzing the 

negative supercoiling of double stranded DNA during cell replication resulting in DNA 

double-strand breaks (DBSs).51 Processing of DBSs induces the SOS response (DNA 

repair mechanism) in E. coli, leading to a cascade of events such as filamentation.52-54 

Generally, -lactam antibiotics are reported to induce filamentous cells initiation by 

inhibiting penicillin-binding protein which terminate the formation of the peptidoglycan 

network in the bacterial cell wall.52, 55 The fluoroquinolones possibly induce 

peptidoglycan degradation causing filamentous cells by partially inactivating D-alanine 

carboxypeptidases, enzymes that are suggested to regulate the extent of peptide side-

chain cross-linking in peptidoglycan.52, 56 

In addition to measuring OD600 nm, we sampled the cells incubated with a series 

of free drug Oflx, each given sized antibiotic drug nanocarriers (AgMUNH-Oflx NPs) and 

the same size of AgMUNH2 NPs (no conjugated Oflx, control experiment) in test tubes 

to image using dark-field microscopy. Representative images of the cells incubated with  
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Figure 14. Study of cellular filamentation induced by ofloxacin in single E. coli 

(MsbA) cells.  

Dark-field optical images of single E. coli (MsbA) cells cultured for 18 h in the modified 

LB medium containing (A) 0 and (B-D) 0.045 μM Oflx in antibiotic drug nanocarriers with 

diameters of NPs (B) 2.4 ± 0.7, (C) 13.0 ± 3.1 and (D) 92.6 ± 4.4 nm, show that the 

inhibitory effects of the antibiotic drug nanocarriers depends upon the sizes of the 

nanocarriers. Antibiotic drug nanocarriers attach to the cells and the larger size of the 

antibiotic drug nanocarriers demonstrate higher efficacy of ofloxacin to target DNA 

gyrase during cell replication as the cells treated with conjugated Oflx carried by the 

larger nanocarriers (C and D) showed less numbers of cells and extensive cellular 

filamentation. The scale bar is 10 µm. 
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(Figure 14A) 0 (control) and (Figure 14B-D) 0.045 μM conjugated Oflx from antibiotic 

drug nanocarriers with diameters of NPs (b) 2.4 ± 0.7, (c) 13.0 ± 3.1 and (d) 92.6 ± 4.4 

nm, respectively showed that the inhibitory effects of the antibiotic drug nanocarriers 

upon the growth of E. coli (MsbA) cells are associated with the sizes of the 

nanocarriers. The same amount of Oflx delivered into the cells using the largest 

nanocarriers is the most potent since the cells exposed 92.6 ± 4.4 nm antibiotic drug 

nanocarriers, vice versa (Figure 14) demonstrate cellular filamentation indicating the 

inhibitory action of Oflx.  

 

SUMMARY 

We have successfully synthesized, purified and characterized three different 

sized Ag NPs with a diameter of 2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm, then 

functionalized them with a monolayer of MUNH2 to prepare AgMUNH2 NPs and then 

covalently conjugated with Oflx molecules to prepare antibiotic drug nanocarriers 

(AgMUNH-Oflx NPs). The antibiotic drug nanocarriers at desired concentrations are 

stable (non-aggregation) in a modified LB medium over time of cell culturing. We have 

studied the dependence of bacterial inhibitory effects of free drug Oflx and conjugated 

Oflx on the dose of Oflx and the size of nanocarriers against E. coli. Notably, we have 

found that the MIC50 of free drug Oflx and conjugated Oflx significantly depend on the 

dose of Oflx and the size of nanocarriers. The largest nanocarriers (92.6 ± 4.4 nm) 

show the highest inhibitory effects with the lowest MIC50 (0.026 ± 0.003 µM) while the 

smallest nanocarriers (2.4 ± 0.7 nm) exhibit the lowest bactericidal inhibitory with the 

highest MIC50 (0.314 ± 0.010 µM) against E. coli. These results demonstrate that 

inhibitory potency of the same amount of Oflx molecules could substantially elevate 

when they are carried and delivered via the larger nanocarriers, suggesting that the 

densely loaded Oflx molecules (multivalence) augment membrane binding affinity and 

increase local drug concentrations. Interestingly, the inhibitory effects of drug 

nanocarriers are dose dependent but not linearly proportional to their sizes indicating 

that the tradeoff between the multivalence effects and their intracellular distribution 

(pharmacodynamics) could contribute to their inhibitory effects. In addition, we have 
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found that Oflx molecules can cause cellular filamentation resulting from the 

unsuccessful cell division. Conjugated Oflx delivered by the largest nanocarriers 

effectively induce filamentous cells confirming that the largest nanocarriers significantly 

increase drug efficacy. Moreover, the MICs of free drug Oflx and conjugated Oflx in 

antibiotic drug nanocarriers are size-dependent in both E. coli and P. aeruginosa (WT) 

which for the same amount of Oflx molecules carried and delivered by the largest NPs 

(92.6 ± 4.4 nm) are the most potent, followed by 13.0 ± 3.1 nm nanocarriers, free drug 

Oflx, and 2.4 ± 0.7 nm nanocarriers.  Altogether, inhibitory effects of Oflx exhibit high 

dependence on the dose of Oflx and the sizes of nanocarriers. Thus, these new findings 

provide the potentials to design optimal drug nanocarriers to achieve the maximum 

antibiotic potency and overcome MDR in pathogenic bacterial infections. 

 

MATERIALS AND METHODS 

Reagents and Cell Line 

We purchased silver nitrate (99.9%, Sigma-Aldrich), sodium citrate dehydrate 

(99%, Sigma-Aldrich), sodium borohydride (98%, Sigma-Aldrich), hydrogen peroxide 

(30%, Sigma-Aldrich), polyvinylpyrrolidone (PVP, Sigma-Aldrich), 2-mercaptoethanol 

(99%, Sigma-Aldrich), 11-amino-1-undecanethiol hydrochloride (AUT, 99%, Sigma-

Aldrich), ofloxacin powder (99%, Sigma-Aldrich), sodium chloride, sodium phosphate 

(Sigma-Aldrich), sodium phosphate monobasic monohydrate (Sigma-Aldrich), bacto-

tryptone and bacto yeast extract (Sigma-Aldrich). We purchased 1-Ethyl-3-[3-

dimethylaminopropyl]-carbodiimide hydrochloride (EDC, 99%, Pierce) and N-

hydroxysulfosuccinimide (Sulfo-NHS, 98.5%, Pierce). We purchased silver perchlorate 

monohydrate (99%, Alfa Aesar), Live/dead backlight viability assay (Life Technologies) 

and Hoechst 33342 (Life Technologies).  We used all reagents as received. We used 

the nanopure deionized (DI) water (18 MΩ water, Barnstead) to rinse glassware and 

prepare all solutions including standard LB medium (1% tryptone peptone, 0.5% yeast 

extract, and 0.5% NaCl, pH = 7.2) and modified LB medium (1% tryptone peptone, 0.5% 

yeast extract, and 0.1% NaCl, pH = 7.2). We purchased cell line of Escherichia coli, WT 

w3110 (MsbA) from Coli Genetic Stock Center (CGSC). 
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Synthesis and Characterization of Ag NPs  

We had synthesized, purified and characterized three different sized Ag NPs with 

diameters of (2.4 ± 0.7), (13.0 ± 3.1) and (92.6 ± 4.4) nm, as we reported previously.25-

26, 42-45, 57 Briefly, we synthesized Ag NPs with diameters of 2.4 ± 0.7 nm by adding 

NaBH4 (150 μL, 100 mM) into a stirring mixture (42.3 mL) of silver nitrate (0.11 mM), 

sodium citrate (1.91 mM), PVP (0.052 mM), and hydrogen peroxide (25.0 mM) that 

were freshly prepared using nanopure water.43  We stirred the solution at room 

temperature for another 3 h and filtered the solution using 0.2 μm membrane filters.  We 

prepared Ag NPs with diameters of 13.0 ± 3.1 nm by rapidly adding ice-cold AgClO4 

(2.5 Ml, 10 mM) into a stirring ice-cold mixture (247.5 mL) of sodium citrate (3 mM) and 

NaBH4 (10 mM).27, 58  We stirred the solution at room temperature for 4 h, and filtered it 

using 0.2 µm filter.  We synthesized (92.6 ± 4.4) nm Ag NPs by adding sodium citrate 

(10 mL, 34 mM) into a refluxing (100C) aqueous solution of 3.98 mM AgNO3 (500 

mL).25, 59  We stirred the mixtures at 325 rpm for 35 min, and cooled the solution to room 

temperature.  We then added additional 2.5 mM sodium citrate as a stabilizer into the 

solution, and filtered the solution using 0.2 µm filter.46
 

We purified each NP solution by thoroughly washing the NPs three times with the 

DI water using centrifugation immediately after the synthesis. We characterized the NP 

concentrations, the LSPR images and spectra of single NPs, and sizes of single NPs 

using UV-vis spectroscopy (Hitachi U-2010), dark-field optical microscopy and 

spectroscopy (DFOMS), high-resolution transmission electron microscopy (HRTEM) 

(JEOL, JEM-2100F), and dynamic light scattering (DLS) (Nicomp 380ZLS particle sizing 

system), respectively.46  We have fully described our DFOMS in our previous studies.9, 

12, 14, 26-28, 31, 43, 58, 60-62  In this study, the DFOMS is equipped with a dark-field optical 

microscope with a dark-field condenser (oil 1.43–1.20, Nikon) and a 100× objective 

(Nikon Plan fluor 100× oil, iris, SL. N.A. 0.5–1.3, W.D. 0.20 mm), a CCD camera 

(Micromax, Roper Scientific) and a Multispectral Imaging System (Nuance, CRI).43, 62   

 

 



40 

 

 

Synthesis and Characterization of Drug Nanocarriers (AgMUNH-Oflx NPs)  

We added AUT (1 mL, 100 mM, in ethanol) into the freshly prepared Ag NPs 

(100 mL, 50 nM, 3.3 nM and 30 pM) of three different sized Ag NPs (2.4 ± 0.7, 13.0 ± 

3.1 and 92.6 ± 4.4 nm), respectively.  We stirred the mixtures for 24 h to attach AUT 

onto the surface of NPs via the interaction of thiol groups with the NPs to prepare 

functional AgMUNH2 NPs (Figure 2).  We washed the AgMUNH2 NPs thoroughly three 

times with nanopure water to remove excess AUT using centrifugation (Beckman 

Optima L90k, 4C). After each washing and re-suspension step, we immediately 

characterized the concentrations, optical properties and sizes of each AgMUNH2 NP 

solution using UV-vis spectroscopy, DFOMS and DLS, respectively. Note that the 

AgMUNH2 NPs were suspended in DI water for the storage, and only suspended in the 

respective buffer right before the experiment.   

  We suspended the half of purified AgMUNH2 NPs solution (50 mL) in the PBS 

buffer (pH 7.0) right before control experiment. We suspended the other half of 

AgMUNH2 NPs solution (50 mL) in the MES buffer (50 mM, pH 5.0) right before 

conjugating them with Oflx.  We conjugated the amine groups of each sized AgMUNH2 

NPs (50 mL) with the carboxyl group of Oflx via peptide bonds using a two-step method 

with EDC and s-NHS as mediators (Figure 6), as described in the following.  We first 

dissolved Oflx in 0.5 M HCl (1 mL) and then diluted it using MES buffer (pH 5.0). We 

added the EDC (100 L, 100 mM) and s-NHS (100 L, 500 mM) into the Oflx solution (3 

mL, 50 mM), and stirred it at room temperature for 40 min, to form Oflx-s-NHS esters.  

We added 2-mercaptoethanol to quench the excess EDC.  We added the Oflx-s-NHS 

esters to the AgMUNH2 NPs in the MES buffer (pH 5.0) and well mixed the solution 

using a rotary shaker at room temperature for 3 h, to synthesize the AgMUNH-Oflx NPs 

(nanocarriers).  

We purified the drug nanocarriers (AgMUNH-Oflx NPs) by washing them with DI 

water three times, and stored them at 4C for the future use.  After each washing, we 

immediately characterized the concentrations, optical properties and sizes of AgMUNH2 

NPs using UV-vis spectroscopy, DFOMS and DLS, respectively. We measured the UV-
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vis absorbance spectra of various concentrations of nanocarriers (AgMUNH-Oflx NPs), 

and plotted the peak absorbance of the nanocarriers versus their concentration to 

construct a calibration curve and determine their molar absorptivity. 

We measured the UV-vis absorbance spectra of various concentration of Oflx 

alone (absence of NPs) in the solution, and plotted the peak absorbance at 288 nm 

versus Oflx concentration to construct a calibration curve and determine its molar 

absorptivity (ε288 nm = 7.8x103 M-1cm-1 and ε330 nm = 2.4x103 M-1cm-1).  We subtracted UV-

vis absorption spectra of AgMUNH2 NPs from that of the same sized and concentration 

of AgMUNH-Oflx NPs to obtain UV-vis absorption spectra of Oflx conjugated with the 

AgMUNH2 NPs and used molar absorptivity of Oflx to determine its concentration. We 

also determine the NP concentration based upon the peak absorbance of the plasmonic 

absorption spectra of the NPs.  By dividing the concentration of Oflx with concentration 

of NPs in the same AgMUNH-Oflx NPs solution using UV-vis absorption spectroscopy, 

we determined conjugation ratios of Oflx molecules with the NPs for each sized drug 

nanocarrier.     

 

Study of Stability of Drug Nanocarriers (AgMUNH-Oflx NPs) in Cell Culture 

Medium  

We characterized the stability (non-aggregation) of AgMUNH-Oflx NPs in the 

commonly used standard LB medium (1% tryptone, 0.5% yeast extract and 0.5% NaCl 

in DI water, pH = 7.2) and the modified medium (1% tryptone, 0.5% yeast extract and 

0.1% NaCl in DI water, pH = 7.2) over 24 h using UV-vis absorption spectroscopy.  We 

found that the nanocarriers with the diameters of Ag NPs of (2.4 ± 0.7, 13.0 ± 3.1 and 

92.6 ± 4.4 nm) at a desired concentration (6.0 nM, 0.8 nM and 7 pM) are stable (non-

aggregated) in the modified medium over 24 h, but they are unstable (aggregated) in 

the standard medium, respectively.     
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Cell Line, Cell Culture Medium, Cell Culture and Characterization 

Gram-negative E. coli (MsbA) strain was cultured in the standard and the 

modified LB medium and the cell growth was studied. We first pre-cultured the cells in a 

standard LB medium in an incubated floor shaker (Thermo Scientific, MaxQ5000) (160 

rpm, 37 °C) for 12 h. We then cultured the cells in either the standard LB medium or the 

modified LB mediums in the incubated floor shaker (160 rpm, 37 °C) for another 8 h. We 

followed the cell growth in each medium over time and characterized the cell growth 

curves by measuring OD600 nm of cell suspension in every 30 min for over 8 h. 

Furthermore, we studied viability of the cultured cells at the end of the experiment at a 

single cell resolution using LIVE/DEAD BacLight viability and counting assay.63 We 

imaged cells in the micro-chamber using dark-field optical microscopy and epi-

fluorescence microscopy and counted the green fluorescence cells (peak wavelength of 

fluorescence spectra of SYTO9, λmax = 520 nm) and the red fluorescence cells (peak 

wavelength of fluorescence spectra of propidium iodide, λmax = 610 nm) as live and 

dead cells, respectively. 

By the end of the cell culture, we studied cell efflux function using time course of 

fluorescence dye accumulation in intact cells overtime. We harvested the cells using 

centrifugation (Beckman Model J2-21 Centrifuge, JA-14 rotor, at 7500 rpm, 23 °C, 10 

min), washed the cells with the PBS buffer (0.5 mM phosphate buffer, 1.5 mM NaCl, pH 

7.2) for three times, and finally re-suspended the cells in the buffer. The final 

concentration of the cells was adjusted to OD600 nm = 0.1.9, 28, 31, 60, 64 Time-dependent 

fluorescence intensity of Hoechst 33342 (0.5 µM) incubated with cells with a presence 

and an absence of orthovanadate (25 µM) was measured at a 10-s data acquisition 

interval in real time using a fluorescence spectrometer (Cary Eclipse). The excitation 

and emission wavelengths were 354 and 478 nm, respectively. 

 

Study of Inhibitory Effects of Drug Nanocarriers (AgMUNH-Oflx NPs)  

We cultured the cells (104 pre-cultured cells) in the modified LB medium (2.5 mL) 

containing a dilution series of ofloxacin alone and a conjugated ofloxacin from given 
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sized antibiotics drug nanocarriers and incubated the cells in an incubated floor shaker 

(Thermo Scientific, MaxQ5000) with vigorous shaking (200 rpm, 37ºC) over 18 h.  

The dilution series consist of 0, 0.045, 0.09, 0.18, 0.38 and 0.68 µM of free drug 

Oflx or conjugated Oflx from the nanocarriers, which is corresponded to the 

concentrations of nanocarriers (NP concentrations): (i) 5.21x10-2, 0.104, 0.209, 0.440, 

and 0.788 nM for NPs with a diameter of 2.4 ± 0.7 nm with the ratio of 8.6x102 Oflx 

molecules per NP; (ii)  4.77x10-3, 9.54x10-3 , 1.91x10-2, 4.03x10-2 and 7.21x10-2 nM for 

NPs with a diameter of 13.0 ± 3.1 nm with the ratio of 9.4x103 Oflx molecules per NP; 

(iii) 6.89x10-2, 0.138, 0.276, 0.582 and 1.04 pM for NPs with a diameter of 92.6 ± 4.4 nm 

with the ratio of 6.5x105 Oflx molecules per NP. In addition, control experiments 

included the modified LB medium alone (No cells) and the cells, which were cultured at 

the same time and under the same conditions as samples, incubated with the modified 

LB medium containing 0.788 nM, 7.21x10-2 nM and 1.04 pM AgMUNH2 NPs (in the 

absence of Oflx) with a diameter of Ag NPs of 2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm, 

respectively.  

The cell solutions were sampled every 6 h and quantitatively determined the 

bacterial cell concentration by measuring OD600 nm in a 96-well plate using a plate reader 

(BioTek SynergyHT) equipped with an UV-vis absorption spectral detector. We plotted 

OD600 nm of the cell suspension over time to determine the time (18 h) for the cells 

reached their confluence. Thus, we used the OD600 nm of each cell suspension at 18 h to 

determine the inhibitory effects of the free drug Oflx and conjugated Oflx as described in 

the following. 

The OD600 nm of each cell suspension was normalized with the maximum OD600 nm 

(the cells cultured in the medium alone, blank control) among the dilution series of the 

cell suspensions for each type of samples (e.g., free Oflx, each sized nanocarriers), 

respectively.  We then plotted the normalized OD600 nm of the cell suspension versus the 

concentration of free drug Oflx (Oflx alone) or concentration of Oflx conjugated with a 

given sized drug nanocarrier to determine the MIC50 of Oflx.  We repeated each 

experiment three times and plotted the average of three experimental measurements for 
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each sample with a standard deviation of the normalized OD600 nm of each cell 

suspension (points in Figure 13). We fitted the points using the exponential decay (y = 

a*e-bx, inhibitory effects upon the exponential cell growth) to determine the parameters 

(a, b) of the equation with the highest possible regression.  The equation was then used 

to determine the MIC50 (the concentration of Oflx at which the cell growth was inhibited 

to the half of the cell growth of the blank control experiment), as described in Figure 13 

caption.  The points in Figure 13 are experimental data and a solid line is generated by 

fitting the experimental data with an equation (y = a*e-bx) as followings: (D) y = 1.12 e-

5.57x, R2 = 0.944; (D) y = 1.12 e-2.56x, R2 = 0.928; (F) y = 1.08 e-9.58x, R2 = 0.941; (G) y = 

1.01e-26.7x, R2 = 0.988. Concentrations of Oflx (MIC, IC50) for free Oflx and Oflx 

conjugated with a given sized nanocarrier were determined using the exponential fitting 

equation at the half of the maximum normalized OD600 nm for each curve, respectively.  

The “a” and “b” in the equation for each sample were determined based upon the best 

fitting (the highest regression with the lowest error). As a control experiment, we also 

plotted the normalized OD600 nm of the cell suspension at 18 h versus the concentration 

of AgMUNH2 NPs (absence of Oflx) that is the same as the highest concentration of the 

given nanocarrier for each cell strain. 

In addition to measuring OD 600 nm, we sampled the cell solutions every 6 h and 

prepare cells in a micro chamber for imaging using DF microscope to observe cell 

morphologies. We took five representative locations of each sample.  

 

Data Analysis and Statistics  

We characterized sizes and shapes of Ag NPs using TEM, and LSPR spectra of 

single Ag, AgMUNH2, and AgMUNH-Oflx NPs using DFOMS.46  We imaged at least 100 

NPs for each size and type of NPs per measurement and repeated each experiment 

three times for each individual size.  Therefore, a minimal of 300 NPs was characterized 

using TEM and DFOMS.46 We ran experiments including the study of stability of NPs in 

the medium, cell growth curves, and determination of drug inhibitory effects three times 

on each concentration and for each size of antibiotic drug nanocarriers. We used 

average of three measurements with standard deviations for each study.  
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CHAPTER III 

 

SINGLE ANTIBIOTIC NANOCARRIER OPTICAL PROBES FOR STUDY OF 

SUBSTRATE-DEPENDENT EFFLUX FUNCTION OF MULTIDRUG ABC MEMBRANE 

TRANSPORTERS IN SINGLE LIVE ESCHERICHIA COLI CELLS 

 

INTRODUCTION 

The ATP-binding cassette (ABC) membrane transporters (efflux pumps) are 

highly conserved proteins existing in a variety of prokaryotes and eukaryotes.1-3 They 

use the energy of ATP binding and hydrolysis to transport a large number of structurally 

and functionally unrelated substrates across biological membranes.1-3 Multidrug ABC 

transporters can extrude antibiotics out of bacterial cells and chemotherapeutic agents 

from cancer cells (e.g., P-glycoproteins, Pgp) resulting in multidrug resistance (MDR) 

and the failure of numerous treatments of infections and cancers.2-4  All ABC 

transporters share a similar modular topology including two transmembrane domain 

(TMD) and two nucleotide binding domain (NBD).1, 3, 7-8 The TMDs, which contain the 

large diversity of selective substrate binding sites, form the transmembrane channel for 

substrates to cross the membrane whereas the NBDs, which are a hallmark of this 

transporter and more highly conserved, couple conformational changes induced by ATP 

hydrolysis leading to the extrusion of the substrates out of the cells against 

concentration gradients across the cellular membrane.1, 3, 7-8  This process is called as 

efflux function. 

MsbA, an essential homodimeric (2 x 65 kDa) ABC membrane transporters in 

Gram-negative bacteria (e.g., Escherichia coli), shares structural and functional 

similarities and is the most closely to Pgp which is a multidrug ABC membrane 

transporter found in cancer cells.1, 5 Its primary function is translocation of lipid A and 

lipopolysaccharide (LPS) from the cytoplasmic leaflet (inward-facing) to the periplasmic 

leaflet (outward-facing) of bacterial inner membrane using ATP hydrolysis as an energy 

source.1-2, 5, 8, 40 Functional studied have also shown that MsbA can recognize and 

extrude a wide variety of drug spectrums and confers resistance to certain antibiotics.1, 
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10, 65  MsbA is an ATPase which is stimulated by substrates, such as lipid A, LPS and 

multiple drugs, and it is inhibited by orthovanadate (Na3VO4).40 Adenosine diphosphate 

(ADP) is stably trapped in the active site, with orthovanadate occupying the position of 

the gamma phosphate. The orthovanadate appears to interact with five oxygen 

mimicking the gamma phosphate during the transition state for ATP hydrolysis.66-67  

Notably, ATPases are involved in various cellular processes, such as intracellular 

transports and DNA replication making them attractive targets for drug discovery. 

Currently, a number of ATPase inhibitors are in clinical trials. For example, Tariquidar 

(XR9576) is a Pgp inhibitor that is administrated in a combination with 

chemotherapeutic agents such as doxorubicin, docetaxel or vinorelbine.68-69 

Despite the increasing number of available crystal and cryo-EM structures of 

ABC transporters, many questions related to the molecular basis of the transport 

mechanisms involving in substrate recognition, translocation and coupling to ATP 

hydrolysis are still elusive. 1-2, 7-8 One of the most interesting questions is how ABC 

transporters extrude numerous structurally unrelated hydrophobic and amphipathic 

compounds out of the cells. The identification of the drug-binding sites in Pgp found at 

the interface between the TMDs, suggests a large and flexible drug-binding cavity that 

can accommodate multiple substrates via interactions with aromatic and hydrophobic 

residues.3, 70  We hypothesize that individual efflux pumps might process a substrate 

sensing machinery which can specifically recognize a given noxious pump substrate 

(e.g., antibiotics and chemotherapeutic agents) and extrude it out of the cells, 

underscoring the importance of characterization of efflux function in single live cells in 

real time. Although X-ray crystallography and cryo-EM are the primary techniques to 

depict the structures of membrane transporters at the atomic resolution,2, 71-73 

unfortunately they cannot provide real-time dynamic insights into how the efflux pumps 

selectively recognize and interact with structurally unrelated substrates and then 

translocate membrane transporters to extrude the substrates out of the cells.2, 71-73  

 Conventional methods for the study of transport efflux kinetics in bulk bacterial 

cells include the use of radioisotopes (14C and 3H) or fluorophores (ethidium bromide 

and Hoechst dye) as probes to measure accumulation of substrates in the cells.9-12 
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Study of the accumulation kinetics of bulk could have masked rare interesting events as 

individual cells act differently and their efflux kinetics are unsynchronized.13-14 

Therefore, it is important to probe efflux kinetics of individual membrane transporters in 

single live cells in real time.13-14 Moreover, radioisotopes or fluorophores are unable to 

measure sizes of substrates and membrane transporters as they lack of distinctive size-

dependent physicochemical properties. Thus, these conventional probes are not 

suitable to serve as various size-dependent pump substrates for the study of efflux 

function of single membrane transporter in single live cells in real time. 

 Noble metal nanoparticles (e.g., silver nanoparticles, Ag NPs) possess distinctive 

size-dependent photostable plasmonic optical properties which highly depend on their 

sizes, shapes, dielectric constants and surrounding environments.23-24, 74 These features 

enable us to image and determine the sizes of single NPs at the nanometer (nm) 

resolution in real time using dark-field optical microscopy and spectroscopy (DFOMS).9, 

13-14, 29, 43, 58-59, 61-62, 75-77 Furthermore, we have demonstrated that we can use size-

dependent localized surface plasmon resonance (LSPR) spectra and size-dependent 

scattering intensity of single Ag NPs as photostable optical probes which mimic various 

sizes of antibiotics to study the size-dependent efflux kinetics of multidrug membrane 

transporters in single live cells in real time.9, 13-14, 29 Moreover, we have functionalized 

Ag NPs with biocompatible peptides and studied the dependence of efflux function of 

single BmrA membrane transporters in Bacillus subtilis (Gram-positive bacteria) upon 

charged substrates.13 

 We synthesized, purified and characterized antibiotic drug nanocarriers (2.4 ± 0.7 

nm  AgMUNH-Oflx NPs) by functionalizing nanocarriers (AgMUNH2 NPs) with 

antibiotics (Ofloxacin, Oflx) to have 8.6 x 102 Oflx molecules per NP, as described 

previously.46 We found that the AgMUNH-Oflx NPs exhibited inhibitory effects whereas 

the AgMUNH2 NPs did not show significant inhibitory effects on the cell growth.46 In this 

study, due to distinctive LSPR spectra of Ag NPs (color), we used the AgMUNH-Oflx 

NPs (antibiotic drug nanocarriers) and the AgMUNH2 NPs (control nanocarriers without 

drug) as powerful imaging probes aiming to study substrate-dependent efflux function of 

single MsbA membrane transporters in single live E. coli cells to observe whether 
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curtain types of substrates play a key role in the selective extrusion of efflux pumps and 

to determine the pore size of the transporters. This study offers a possibility to address 

how the structurally similar membrane transporters could selectively extrude a plethora 

of structurally unrelated substrates. To our knowledge, study of efflux function of MsbA 

transporters in single live E. coli cells using such small sized drug nanocarriers has not 

yet been reported. It remains elusive whether the MsbA possesses substrate-dependent 

efflux function. Better understanding of efflux mechanisms of multidrug membrane 

transporters could provide new insights into rational designs of drugs or drug carriers to 

improve drug efficacy and avoid MDR.  

 

RESULTS AND DISCUSSION 

Real-time Probing of Efflux Kinetics of Membrane Transporters Using Single 

Antibiotic Drug Nanocarriers  

We suspended the cells in a PBS buffer (0.5 mM phosphate buffer saline with 1.5 

mM NaCl, pH = 7.0) rather than in cell culture medium. The cells grow and divide in the 

cell culture medium leading to the change of cell concentration and cellular growth 

stages over time. This makes results incomparable with other experiments.9, 13-14, 29-30 

Consequently, we incubated bacterial cells in the PBS buffer at a given concentration 

and a certain growth stage with given concentrations of pump substrates (e.g. 

fluorescence dyes or Ag NPs) to determine the dependence of substrate accumulations 

and efflux kinetics of membrane transporters in a given cell strain.9, 13-14, 29-30 We 

incubated the cells (OD600 nm = 0.7) with 2.4 ± 0.7 nm AgMUNH-Oflx NPs (antibiotic drug 

nanocarriers) or the AgMUNH2 NPs (control nanocarriers without drug) and then tracked 

single nanocarriers in and out of single live cells in real time using DFOMS. 

Representative dark-field optical images of the single live E. coli cells (MsbA-WT) 

(Figure 15, 16: A) with single intracellular and extracellular nanocarriers as boxed show 

cross-sections of single rod-shaped bacterial cells with 2 µm in length and 0.5 µm in 

width. As described previously, 9, 12-14, 29-30, 75 the cell membranes above and below the 

focal plane (190 nm depth of field) become invisible under dark-field illumination 

because they are out of the focal plane of the dark-field microscope, allowing us to 
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image thin-layer cross sections of single bacterial cells and track single nanocarriers on 

the thin-layer membrane section.  

The illumination of dark-field microscopy requires to pass into the cellular 

membrane to radiate the intracellular NPs and scattering of intracellular NPs must be 

transmitted through the membrane to reach the detector. The cellular membrane absorb 

photon causing a dimmer intensity of intracellular NPs (Figure 15B, 16B: a). Moreover, 

as intracellular NPs are located inside the cell membrane, they are out of the focus 

plane and appear blurry. On the other hand, scattering of extracellular NPs is a 

combination of the scattering intensity of NPs and the cell membrane leading to a higher 

scattering intensity and brighter images (Figure 15B, 16B: b). We have shown that 

these distinctive properties and scattering intensity of NPs are practical to distinguish 

intracellular NPs and extracellular NPs in the study of efflux function of multidrug 

membrane transporters in real time.9, 13-14, 28-30 In this study, we use this validated 

approach to determine intracellular and extracellular NPs. Intracellular AgMUNH-Oflx 

NPs (Figure 15B: a) and AgMUNH2 NPs (Figure 16B: a) are dimmer, blurry and exhibit 

a lower scattering intensity than extracellular AgMUNH-Oflx NPs (Figure 15B: b) and 

AgMUNH2 NPs (Figure 16B: b). The representative LSPR spectra of single AgMUNH-

Oflx NPs (i – iii) in Figure 15C show the peak wavelength and full-width-at-half-

maximum (FWHM) at 524 (85), 535 (101), and 550 (123) nm, respectively. In addition, 

the representative LSPR spectra of single AgMUNH2 NPs (i – iii) in Figure 16C show the 

peak wavelength and FWHM at 531 (109), 551 (109), and 538 (104) nm, respectively. 

These distinctive LSPR spectra of single NPs (Figure 15, 16: C) enable us to effectively 

identify NPs from other cellular debris and other substances which lack of plasmonic 

properties, therefore they appear white under dark-field illumination.9, 13-14, 29-30 Notably, 

individual Ag NPs process unique LSPR spectra depending on their sizes, shapes and 

surrounding environment enable us to use single Ag NPs as individual imaging 

probes.23-24, 43  
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Figure 15. Imaging of single intracellular and extracellular 2.4 ± 0.7 nm AgMUNH-

Oflx NPs in single living bacterial cells using DFOMS.  

(A) The representative optical image of bacterial cells incubated with 1.4 nM AgMUNH-

Oflx NPs showing intracellular and extracellular NPs as squared. (B) Zoom in optical 

color (i and iii) and CCD (ii and iv) images of single cells show (a) intracellular and (b) 

extracellular NPs which are pseudo colored in color images. The scale bar in A and B 

are 10 and 2 µm, respectively. (C) LSPR spectra of representative single 2.4 ± 0.7 nm 

AgMUNH-Oflx NPs (i-iii) show peak wavelengths and full width at half maximum 

(FWHM) at 524 (85), 535 (101), and 550 (123) nm, respectively. 
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Figure 16. Imaging of single intracellular and extracellular 2.4 ± 0.7 nm AgMUNH2 

NPs in single living E. coli cells using DFOMS.  

(A) The representative optical image of bacterial cells incubated with 1.4 nM AgMUNH2 

NPs showing intracellular and extracellular NPs as squared. (B) Zoom optical color (i 

and iii) and CCD (ii and iv) images of single cells show (a) intracellular and (b) 

extracellular NPs which are pseudo colored in color images. The scale bar in A and B 

are 10 and 2 µm, respectively. (C) LSPR spectra of representative single 2.4 ± 0.7 nm 

AgMUNH2 NPs (i-iii) show peak wavelengths and full width at half maximum (FWHM) at 

531 (109), 551 (109), and 538 (104) nm, respectively. 
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We found that the peak wavelength of the AgMUNH2 NPs are at the longer 

wavelength than those of the AgMUNH-Oflx NPs. This might be due to size distribution 

of the NPs (range 1- 5 nm)46 where the sizes of these individual AgMUNH2 NPs could 

be larger than these individual AgMUNH-Oflx NPs. Moreover, we determined the sizes 

of NPs and tracked the stability (non-aggregation) and transports of single NPs inside 

and outside the membrane of single live cells in situ in real time. For example, if 

individual NPs aggregated and became the larger NPs, we would have observed the 

huge red-shifted of LSPR spectra and color change of the NPs. We did not observe 

such a phenomenon during each experiment (2 h) indicating that the NPs are stable 

(non-aggregated) in the PBS buffer and inside the cells over time. In short, we used 

plasmonic features of the Ag NP-based antibiotic drug nanocarriers (AgMUNH-Oflx 

NPs) and the control nanocarriers (AgMUNH2 NPs) to characterize the number of 

nanocarriers and monitor them in situ in real time as they transported in and out the 

cellular membrane over time using the same approach described previously.9, 13-14, 29-30 

Single Ag NPs are photostable, unlike fluorescence probes, which enable us to probe 

efflux function of multidrug membrane transporters using antibiotic drug nanocarriers 

over time.9, 13-14, 29-30, 43 

 

Insights into Pump Substrates and Effects of Pump Inhibitor on Accumulation 

Rates of Antibiotic Drug Nanocarriers in Single Live Cells 

Differently from eukaryotes, prokaryotes (bacterial cells, such as E. coli) do not 

have endocytosis pinocytosis and exocytosis. Therefore, these cellular processes are 

not responsible for the transport of NPs in and out the live bacterial cells. We studied 

the accumulation rates of the antibiotic drug nanocarriers (AgMUNH-Oflx NPs) and the 

control nanocarriers (AgMUNH2 NPs) in MsbA (WT) living cells to determine whether 

the NPs are substrates of MsbA. The results in Figure 17A, B: b and Table 3 show that 

the cells accumulate the intracellular NPs over time. The accumulation rates of 

intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs during their incubation with 1.4 nM 

NPs over 41.5 min are 1.03 and 2.16 intracellular NPs/min, respectively (Table 3). We 

further study the effects of a pump (ATPase) inhibitor, orthovanadate (Na3VO4) to 
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determine whether MsbA membrane transporters are specifically responsible for the 

efflux of the nanocarriers. Note that MsbA is an ATPase which is stimulated by 

substrates such as lipid A, lipopolysaccharide (LPS) and multiple drugs, and it is 

inhibited by orthovanadate.40 The results in Figure 17A, B: b and Table 3 show that the 

cells accumulate the intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs much more 

rapidly in the presence of orthovanadate. The accumulation rates of intracellular 

AgMUNH-Oflx NPs and AgMUNH2 NPs during their incubation with 1.4 nM NPs over 

41.5 min in the presence of orthovanadate are 3.61 and 4.52 intracellular NPs/min, 

respectively (Table 3).  We found that the numbers of intracellular AgMUNH-Oflx NPs 

and AgMUNH2 NPs significantly increased when the cells were incubated with 

orthovanadate (p < 0.0005). These findings suggest the high dependence of 

accumulation rates of intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs upon the 

pump function of MsbA in the presence of the inhibitor. Taken together, the results in 

Figure 17 and Table 3 indicate that MsbA (WT) is indeed responsible for the extrusion 

of the intracellular NPs out of the cells and the pump function is hindered by the inhibitor 

leading to an increase of the accumulation of intracellular NPs in the absence of the 

inhibitor.  

The size of antibiotic drug nanocarriers are order of magnitude larger than those 

of conventional antibiotics. It seems almost impossible that these nanocarriers can 

permeate into the cells and be extruded out by the efflux pumps. To determine whether 

the antibiotic drug nanocarriers cause any possible steric effects to efflux pumps and 

they are suitable substrates for probing the efflux function, we used a fluorescence dye 

(Hoechst 33342) to study the dependence of accumulation kinetics probing the efflux 

function of MsbA (WT) in the presence and its absence of orthovanadate. The Hoechst 

dye is a well-known substrate of MsbA (ABC) membrane transporters and has been 

commonly used in studies of efflux function.10-11 Fluorescence intensity of the dye is 

weak in aqueous solution but it dramatically increases when the dye internalizes into the 

cells and intercalates with DNA.47 The cells incubated with orthovanadate (Figure 17C: 

a) accumulated more amount of intracellular dye molecules with the higher rate of 

accumulation (slopes of the curves) than those were not incubated with orthovanadate  
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Figure 17. Study of effects of a pump (ATPase) inhibitor, orthovanadate on the 

accumulations of single 2.4 ± 0.7 nm AgMUNH-Oflx NPs, AgMUNH2 NPs, and 

fluorescence dye (Hoechst 33342) molecules. 

 (A) Plots of number of intracellular AgMUNH-Oflx NPs (A) and AgMUNH2 NPs (B) and 

plots of the fluorescence intensity of Hoechst 33342 dye (C) over time in the presence 

(a, solid) and absence (b, empty) of the inhibitor (25 µM). In (A) and (B), the points 

represent the experimental measurements and the lines are added to guide the trend. 

At each time point (25 min), 900 cells were analyzed. In (A) and (B), the p values of 

data in (a) and (b) are less than 0.0005 (<0.0005), indicating statistically significant 

difference of intracellular NPs in the presence (a) and absence (b) of orthovanadate, 

and the dependence of accumulation kinetics of the NPs on the pump inhibitor. 
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Table 3. Summary of Accumulation Rates and Numbers of Intracellular Single 2.4 

± 0.7 nm NPs in Single Living E. coli Cells 

Types of NPs 
C Ag NPs 

(nM) 

Inhibitor a 

(µM) 

Accumulation rate  

(NPs min-1) b 

Numbers of 

intracellular NPs c 

AgMUNH-Oflx 0.7 0 0.59 25 

 1.4 0 1.03 43 

 1.4 25 3.61 150 

AgMUNH2 0.7 0 1.38 57 

 1.4 0 2.16 90 

 1.4 25 4.52 188 

 

a Orthovanadate; 

b Accumulation rates (slopes of the plots) at the 41.5 min incubation; 

c Numbers of intracellular NPs accumulated in 900 live cells at the 41.5 min incubation. 
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(Figure 17C: b). The results in Figure 17C are similar to those observed using the 

AgMUNH-Oflx NPs (Figure 17A) and the AgMUNH2 NPs (Figure 17B) indicating that the 

AgMUNH-Oflx NPs and the AgMUNH2 NPs are substrates of MsbA membrane 

transporter and well suited as small fluorescence molecules for the study of efflux 

kinetics of single MsbA membrane transporter in single live cells. Unlike fluorescence 

probes, LSPR of plasmonic single NPs provide information regarding the sizes of pump 

substrates and the pore sizes of membrane transporters which enable us to determine 

the size-dependent efflux kinetics of multidrug membrane transporters. Taken together, 

we demonstrate that the efflux pumps can extrude the small sized drug nanocarriers out 

of the cells and we can track them to study efflux function of MsbA in single cells in real 

time.  

 

Study of Concentration Dependence on Accumulation Rates of Antibiotic Drug 

Nanocarriers in Single Living Cells 

 We further studied how the antibiotic drug nanocarriers (AgMUNH-Oflx NPs) and 

the control nanocarriers (AgMUNH2 NPs) enter the cells and whether they passively 

diffuse into the cells as same as those conventional pump substrates, such as 

antibiotics. Thus, we determined the accumulation rates of single AgMUNH-Oflx NPs 

and AgMUNH2 NPs upon their concentrations (0.7 and 1.4 nM). The results in Figure 18 

show that the number of intracellular of both AgMUNH-Oflx NPs (Figure 18A) and 

AgMUNH2 NPs (Figure 18B) significantly depends on the NP concentration (AgMUNH-

Oflx NPs, p < 0.0005 and AgMUNH2 NPs, p < 0.0005), and the number of intracellular 

NPs increases as the NP concentration increases at any given incubation time. As the 

NP concentration increases from 0.7 to 1.4 nM, the number of intracellular AgMUNH-

Oflx NPs accumulated in single live cells increases from 25 to 43 within 41.5 min at the 

rates of 0.59 and 1.03 NPs/min, respectively, and similarly the number of intracellular 

AgMUNH2 NPs accumulated in single live cells increases from 57 to 90 within 41.5 min 

at the rates of 1.38 and 2.16 NPs/min, respectively.  

Likewise, we found the concentration dependence of the accumulation of 

fluorescence dye (Hoechst 33342) where the dye at a higher concentration (Figure 18C: 
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a) passively entered the cells more rapidly and accumulated inside the cells more than 

that at the lower concentration (Figure 18C: b). These findings suggest that both 

AgMUNH-Oflx NPs and AgMUNH2 NPs most likely passively diffuse into the cells and 

be extruded out of the cells by MsbA transporters similarly to conventional antibiotics. 

The diffusion rates of AgMUNH-Oflx NPs and AgMUNH2 NPs show high dependence on 

the concentration gradients of the NPs across the cellular membrane of single cells and 

the diffusion rates increase as the NP concentration gradients increase and vice versa. 

In contrast, the efflux of substrates (e.g., AgMUNH-Oflx NPs and AgMUNH2 NPs) out of 

the cells against concentration gradients is an active transport process which requires 

ATP energy and depends on substrate selectivity. Thus, the efflux rates of the 

AgMUNH-Oflx NPs and AgMUNH2 NPs are not proportional to the NP concentration 

and interestingly the accumulation of intracellular AgMUNH2 NPs rises more rapidly than 

those of the AgMUNH-Oflx NPs as NP concentration increases.    
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Figure 18. Study of the concentration dependent accumulations of 2.4 ± 0.7 nm 

AgMUNH-Oflx NPs, AgMUNH2 NPs, and fluorescence dye (Hoechst 33342) 

molecules in living E. coli cells. 

(A) Plots of number of intracellular AgMUNH-Oflx NPs in E. coli incubated with 1.4 nM 

(a) and 0.7 nM (b) of AgMUNH-Oflx NPs versus time. (B) Plots of number of intracellular 

AgMUNH2 NPs in MsbA incubated with 1.4 nM (a) and 0.7 nM (b) of AgMUNH2 NPs 

versus time. (C) Plots of fluorescence intensity of Hoechst 33342 dye at 1 µM (a) and 

0.5 µM (b) versus time. In (A) and (B), the points represent the experimental 

measurements and the lines are added for trend projection. Note that 900 cells were 

analyzed at each point (every 25 min). The p values of data in (a) and (b) are less than 

0.0005 (<0.0005), indicating statistically significant difference of intracellular NPs in the 

cell incubated with (a) 1.4 nM and (b) 0.7 nM at 95% confidential level, and 

concentration dependent efflux functions of MsbA. 
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Study of Substrate-Dependent Accumulation Rates of Single Drug Nanocarriers 

in Single Live Cells 

It is worth noting that the accumulation of intracellular AgMUNH-Oflx NPs and 

AgMUNH2 NPs in single live cells in the presence and its absence of orthovanadate 

strongly suggest the dependence on types of substrates.  The number of intracellular 

AgMUNH2 NPs are significantly higher than the number of intracellular AgMUNH-Oflx 

NPs in both 0.7 nM (p < 0.0005) and 1.4 nM (p < 0.0005) concentrations (Figure 18). 

We observed twice higher accumulation rates of AgMUNH2 NPs in single live cells than 

those of AgMUNH-Oflx NPs over 41.5 min. Interestingly, the number of intracellular 

AgMUNH2 NPs is only significantly higher than those of AgMUNH-Oflx NPs in single live 

cells in the absence of orthovanadate (p < 0.0005) but it is not in its presence of 

orthovanadate. These findings suggest that MsbA extrudes the AgMUNH-Oflx NPs 

more effectively than the AgMUNH2 NPs because the intracellular AgMUNH-Oflx NPs 

increase much greater than the AgMUNH2 NPs when the inhibitor disrupts efflux 

function. As the AgMUNH-Oflx NPs differ from the AgMUNH2 NPs with regards to their 

multiple conjugated Oflx molecules which exhibit inhibitory effects, the plausible 

explanation why the cells extrude the AgMUNH-Oflx NPs more effectively is that they 

could selectively extrude noxious molecules as cellular defense mechanisms. This 

could lead to further studies to address how multidrug membrane transporters can 

selectively extrude a large number of chemically and functionally unrelated substances 

out of the cells and how MDR occurs. 

Quantitative accumulation rates of intracellular AgMUNH-Oflx NPs and 

AgMUNH2 NPs in single living cells (Figure 17 and 18) are summarized in Table 3. We 

demonstrate that both the AgMUNH-Oflx NPs and AgMUNH2 NPs are substrates of 

MsbA membrane transporters and they are suitable optical probes to study efflux 

function of MsbA membrane transporters in single live cells. These results indicate the 

dependence of accumulation kinetics of single NPs in single live cells on types of 

substrates, the pump inhibitor and the concentration of NPs.  
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Characterization of the Viability of Single Cells  

 We have reported that antibiotic drug nanocarriers with a diameter of 2.4 ± 0.7 

nm inhibited bacterial growth in a dose-dependent manner.46 Therefore, we 

characterized the viability of the cells MsbA (WT) to ensure that the doses of the 

antibiotic drug nanocarriers (AgMUNH-Oflx NPs), the control nanocarriers (AgMUNH2 

NPs) and the pump inhibitor that we used to probe efflux function of E. coli did not 

cause cell death and interfere with their pump function. We characterized viability of the 

cells incubated with the antibiotic drug nanocarriers (AgMUNH-Oflx NPs) or the control 

nanocarriers (AgMUNH2 NPs) throughout the duration of the experiment over 2 h using 

LIVE/DEAD BacLight assay. The green SYTO9 fluorescence dye (λmax = 520 nm) stains 

cellular nucleic acids which identify the live cells while the red PI fluorescence dye (λmax 

= 610 nm) penetrates into only the cells with disintegrated membrane which detect the 

dead cells.63  

Representative optical images of the cells incubated with AgMUNH-Oflx NPs (1.4 

nM) in the presence (Figure 19A: a) and absence (Figure 19B: a) of orthovanadate (25 

µM) over 2 h show the cells with and without NPs. Their fluorescence images illustrate 

the green fluorescence but not the red fluorescence indicating that the cells are viable 

(Figure 19A, B: b). We determined percentage of live and dead cells by dividing the 

number of viable cells by the total number of cells. We found that 99 % of the cells 

incubated with 1.4 nM AgMUNH-Oflx NPs in the presence and absence of 

orthovanadate (25 µM) (Figure 19C) were viable. Similarly, representative optical 

images of the cells incubated with AgMUNH2 NPs (1.4 nM) in the presence (Figure 20A: 

a) and absence (Figure 20B: a) of orthovanadate (25 µM) over 2 h show the cells with 

and without NPs. The cells emitted green fluorescence but not red fluorescence 

suggesting that they were viable (Figure 20A, B: b). The results show that 99 % of the 

cells are alive (Figure 20C). As the cells with the NPs and orthovanadate are all alive, 

the accumulation rates of the NPs in single live cells are associated with NP passive 

diffusion and efflux function of the membrane transporters but not the compromised 

membrane integrity due to the cell death. The findings further demonstrate that the 

doses (0.7 and 1.4 nM) of the AgMUNH-Oflx NPs are suitable to use in study MDR and  
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Figure 19. Characterization of viability of single bacterial cells incubated with 2.4 

± 0.7 nm AgMUNH-Oflx NPs using LIVE/DEAD BacLight viability and counting 

assay. 

In (A) and (B), representative dark field optical image (a) and fluorescence image (b) of 

single bacterial cells (MsbA), incubated with 1.4 nM AgMUNH-Oflx in the presence (A) 

and absence (B) of the inhibitor (25 µM) over the duration of each experiment for 2 h, 

show that the cells with intracellular NPs (as squared) or without NPs emit the green 

fluorescence (λ max = 520 nm) of SYTO9, indicating that cells are viable. (C) Plots of 

percentage of viable cells (a) and dead cells (b) of MsbA incubated with 1.4 nM 

AgMUNH-Oflx with and without the inhibitor, indicate that 99 % of the cells are alive. 

Minimum 300 cells were assayed and analyzed. The scale bar is 5 µm. 
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Figure 20. Characterization of viability of single bacterial cells incubated with 2.4 

± 0.7 nm AgMUNH2 NPs using LIVE/DEAD BacLight viability and counting assay.  

In (A) and (B), representative dark field optical image (a) and fluorescence image (b) of 

single bacterial cells (MsbA), incubated with 1.4 nM AgMUNH2 in the presence (A) and 

absence (B) of the inhibitor (25 µM) over the duration of each experiment for 2 h, show 

that the cells with intracellular NPs (as squared) or without NPs emit the green 

fluorescence (λ max = 520 nm) of SYTO9, indicating that cells are viable. (C) Plots of 

percentage of viable cells (a) and dead cells (b) of MsbA incubated with 1.4 nM 

AgMUNH2 with and without the inhibitor, indicate that 99 % of the cells are alive. 

Minimum 300 cells were assayed and analyzed. The scale bar is 5 µm. 
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efflux function of multidrug membrane transporter of antibiotic drug nanocarriers in 

bacteria. 

 

SUMMARY 

We synthesized, purified and characterized Ag NP-based antibiotic drug 

nanocarriers (AgMUNH-Oflx NPs) with a diameter of 2.4 ± 0.7 nm containing 8.6 x 102 

Oflx molecules per NP.46 The NPs up to 1.4 nM are stable (non-aggregated) in the PBS 

buffer and biocompatible with the cells (MsbA WT) over the experimental period (2 h). 

Due to distinctive features of Ag NPs, we are able to image and track such small single 

antibiotic drug nanocarriers as they transport in and out live single bacterial cells and 

use LSPR spectra of single AgMUNH-Oflx NPs and AgMUNH2 NPs (absence of Oflx, 

control nanocarriers) study efflux function of MsbA membrane transporters in single live 

cells. We found that the accumulation rates of both AgMUNH-Oflx NPs and AgMUNH2 

NPs highly depend on the concentration of NPs and a pump inhibitor (orthovanadate), 

similar to those observed using a well-known substrate (Hoechst dye 33342) of MsbA 

membrane transporters, suggesting that the AgMUNH-Oflx NPs and AgMUNH2 NPs are 

substrates of MsbA membrane transporters and they passively diffuse into the cells. 

Interestingly, we observed twice higher accumulation rates of AgMUNH2 NPs in single 

live cells than those of AgMUNH-Oflx NPs, suggesting substrate-dependent efflux 

kinetics of MsbA (WT) membrane transporters in single live cells and their potential 

capabilities to detect, recognize and extrude toxic substrates (e.g., antibiotics or 

anticancer drugs) efficiently. These findings agree with our previous study that the 

AgMUNH-Oflx NPs exhibit inhibitory effects while the AgMUNH2 NPs are biocompatible 

with the cells.46 These results provide a new evidence that multidrug membrane 

transporter might have a sensing machinery to detect and recognize toxic substrates, 

which lead to further studies to address molecular basis of efflux mechanisms about 

how multidrug membrane transporters can selectively extrude a large number of 

chemically and functionally unrelated substances out of the cells.  
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MATERIALS AND METHODS 

Reagents and Cell Line 

We purchased sodium chloride, sodium phosphate (Sigma-Aldrich), sodium 

phosphate monobasic monohydrate (Sigma-Aldrich), bacto-tryptone and yeast extract 

(Sigma-Aldrich), orthovanadate (Sigma-Aldrich). We purchased Live/dead backlight 

viability assay (Life Technologies) and Hoechst 33342 (Life Technologies).  We used all 

reagents as received. We used the nanopure deionized (DI) water (18 MΩ water, 

Barnstead) to rinse glassware and prepare all solutions including standard LB medium 

(1% tryptone peptone, 0.5% yeast extract, and 0.5% NaCl, pH = 7.2). We purchased 

cell line of Escherichia coli, WT w3110 (MsbA) from Coli Genetic Stock Center (CGSC). 

 

Cell Culture and Preparation 

Gram-negative E. coli (MsbA) strain cells were cultured in an Erlenmeyer flask 

containing 10 mL of L-Broth (LB) medium (1% tryptone peptone, 0.5% yeast extract, 

and 0.5% NaCl, pH = 7.2) in an incubated floor shaker (Thermo Scientific, MaxQ5000; 

160 rpm, 37 °C). After 12 h incubation, we inoculated 3 mL of pre-cultured cells into 10 

mL of the LB medium in an Erlenmeyer flask. We then incubated the flask in the shaker 

(160 rpm, 37 °C) for another 8 h. We harvested the cultured cells using centrifugation 

(Beckman Model J2-21 Centrifuge, JA-14 rotor, at 7500 rpm, 23 °C, 10 min), washed 

the cells with the PBS buffer (0.5 mM phosphate buffer, 1.5 mM NaCl, pH 7.0) three 

times, and finally re-suspended the cells in the buffer. The final concentration of the 

cells was adjusted to OD600 nm = 0.7 and used for the entire study. 

 

Imaging of Single NPs in Single Living Cells 

We prepared the cell suspension (OD600 nm = 0.7) containing 0.7 nM and 1.4 nM 

AgMUNH-Oflx NPs or AgMUNH2 NPs (control NPs without ofloxacin) in the presence 

and absence of orthovanadate (25 µM). The timer was started to record the incubation 

time as NPs were added into the cell suspension.  
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We sampled the mixture (1 µL) into a freshly prepared micro-chamber created by 

nail polish and imaged the cells on 18 representative locations using DFOMS equipped 

with a CCD camera and a digital color camera every 25 min (7 min for the slide 

preparation and 18 min for imaging). We acquired LSPR spectra of single intracellular 

and extracellular NPs in real time, which enabled us to identify and locate positions of 

single NPs simultaneously.  

The design and construction is fully explained in our previous studies.9, 12-14, 25, 28-

30, 42-43, 58-59, 61-62, 75, 78 In particular, our dark-field optical microscope was equipped with a 

dark-field condenser (oil 1.43-1.20, Nikon), a 100x objective (Nikon Plan fluor 100x oil, 

iris SL N.A. 0.5-1.3, W.D.0.20 mm), a charge coupled device (CCD) camera (Micromax, 

Roper Scientific), a digital color camera (Handycam, Sony) and a multispectral imaging 

system (Nuance, Cambridge Research Inc.).42-43 We have achieved high temporal 

resolution up to 5 ms to continuingly image of transport of single NPs in and out of 

single living cells.9, 14 However, we acquired images in every 1 min as we found that the 

transport of single NPs in and out of single living cells was not a rapid process.9, 14 

Thus, a temporal resolution of minutes was sufficient to study transport of single NPs in 

real time.  

We prepared a fresh micro-chamber every 25 min and imaged single cells for 18 

representative locations. This approach allowed us to study transport of single NPs in 

massive numbers of cells (1500 cells) for each sample to make data adequate for 

probing accumulation rates of bulk cells at a single cell resolution. We quantified 

intracellular NPs and plotted them versus incubation time and determined the 

accumulation rates (slopes of the plots) of single NPs in the cells over time.  

 

Real-time Imaging of Viability of Single Cells 

At the end of each experiment (2 h), we characterized the viability of the cells at 

a single cell resolution using live/dead BacLight viability and counting assay.  We 

imaged cells in a micro-chamber using dark-field optical microscopy and epi-

fluorescence microscopy and counted the green fluorescence cells (peak wavelength of 
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fluorescence spectra of SYTO9, λmax = 520 nm) and the red fluorescence cells (peak 

wavelength of fluorescence spectra of propidium iodide, λmax = 610 nm) as live and 

dead cells, respectively. 

 

Fluorescence Spectroscopy Measurement 

The cells in the PBS buffer were incubated with Hoechst 33342 (0.5 µM and 1 

µM) with the presence and absence of orthovanadate (25 µM). Time-course 

fluorescence intensity of the dye was measured at a 10-s data acquisition interval in real 

time using a fluorescence spectrometer (Cary Eclipse). The excitation and emission 

wavelengths were 354 and 478 nm, respectively. 

 

Data Analysis and Statistics 

We acquired eighteen representative locations of each cell suspension incubated 

with 0.7 nM and 1.4 nM NPs every 25 min over 2 h and 5 min. Approximately fifteen 

cells were acquired in a single CCD image simultaneously. Therefore, approximately 

300 cells were imaged every 25 min and 1500 cells were studied over 2 h and 5 min for 

each measurement. We repeated each experiment three times. Thus, we studied 4500 

cells for each sample allowing us to gain sufficient statistics to study efflux function of 

bulk cells at single cell resolution. We analyzed the numbers of intracellular NPs in 900 

cells (300 cells per each measurement) at every 25 min and plotted them over time to 

determine the accumulation rates (slopes of the plots) of intracellular NPs of both 

AgMUNH-Oflx NPs and AgMUNH2 NPs in the cells in the presence and absence of 

orthovanadate (25 µM) NPs at 41.5 min incubation. We performed statistical analysis 

(2-sample t-test) using SPSS to compare means of intracellular NPs in the treated cells. 

A minimum of 150 cells incubated with each type of NPs after each experiment 

were studied cellular viability. We repeated each measurement three times. Therefore, 

450 cells were assayed for each sample. 
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CHAPTER IV 

 

PROBING OF EFFLUX MECHANISMS OF MULTIDRUG ABC MEMBRANE 

TRANSPORTERS IN SINGLE LIVE ESCHERICHIA COLI CELLS USING SIZE-

DEPENDENT PLASMONIC ANTIBIOTIC DRUG NANOCARRIERS 

 

INTRODUCTION 

The ATP-binding cassette (ABC) transporters are highly conserved proteins 

found in both prokaryotes and eukaryotes.3, 8, 20 These membrane proteins couple ATP 

hydrolysis to the active transport of various structurally and functionally unrelated 

substances (e.g., drugs, ions, sugars and lipids) against their concentration gradients 

across cell membrane.5, 8, 20 The extrusion of a wide variety of drugs, such as antibiotics 

and chemotherapeutic agents leads to the ineffective treatments and multidrug 

resistance (MDR).4, 79 These major impacts underscore an urgency of a better 

understanding of MDR mechanisms aiming to develop more effective drugs and avoid 

MDR.   

 The ABC transporters are commonly composed of four core structure domains: 

two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs).3, 5, 7-

8 The TMDs which contain predominantly structural divergence within the various 

subgroups of ABC transporters to define the large diversity of substrate specificity, form 

the transmembrane channel for substrates to cross the membrane. The NBDs is more 

highly conserved empower the transporters by coupling ATP hydrolysis leading to the 

extrusion of the substrates out of the cells against concentration gradients.3, 5-8 This 

process is named as efflux function. The MsbA is an essential ABC transporter in Gram-

negative bacteria such as Escherichia coli that transports lipid A and 

lipopolysaccharide.5, 8, 10 In bacterial MsbA, a TMD is fused to an NBD in a half-

transporter that then homodimerizes to form the full transporter.5 MsbA is a poly-specific 

transporter which can recognize and transport a wide spectrum of drug molecules.1, 10, 41 

Interestingly, MsbA from E. coli shares significant protein sequence identity with 



68 

 

 

mammalian multidrug resistance proteins (Pgp, ABCB1, MDR1) that are essentially 

associated with resistance of anticancer drugs in human.5  

 A central question for ABC transporters to understand the underlying 

mechanisms how they can extrude a wide variety of structurally unrelated substrates is 

still unclear despite the increasing number of X-ray crystal and cryo-EM structures. The 

X-ray crystallography and cryo-EM are the primary techniques to depict the structures of 

membrane transporters at an atomic resolution; however, they cannot provide real-time 

dynamic information.2, 71-73 For example, how do the efflux pumps sense such a wide 

range of diverse substrates? How quickly do the pumps recognize the substrates and 

extrude them out of the cells? 

 Radioisotopes and fluorescence dyes are widely used as substrates in the study 

of efflux kinetics of membrane transporters in bulk cells.8-12 Though these methods can 

monitor the accumulation of substrates in real time, the results represent the average 

behavior of a massive number of bulk cells and could mask rare interesting events as 

individual cells have their independent efflux kinetics.13, 32 Besides, radioisotopes and 

fluorophores do not process distinctive size-dependent physicochemical properties 

therefore they are incapable of providing size information of membrane transporters and 

are unsuitable to serve as various size-dependent pump substrates for the study of 

efflux function of single membrane transporter in single live cells in real time. 

Noble metal nanoparticles (e.g., silver nanoparticles, Ag NPs) process distinctive 

size-dependent photostable plasmonic optical properties which show high dependence 

on their sizes, shapes, dielectric constants and surrounding environments.23-24, 74 We 

have demonstrated that we can use superior size-dependent LSPR and photostable 

single Ag NPs as optical probes to study the size-dependent efflux kinetics of multidrug 

membrane transporters in single live cells in real time for any desired period using dark-

field optical microscopy and spectroscopy (DFOMS).9, 13-14, 29, 33, 59, 61, 76, 80-82 We have 

systematically studied the dependence of the accumulation of substrates and efflux 

function on the sizes, charges, chemicals, and bacterial strains of Gram-positive 

bacteria (BmrA in Bacillus subtilis) and Gram-negative bacteria (MexAB-OprM in 
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Pseudomonas aeruginosa) using bare and surface-functionalized NPs to mimic various 

sizes of antibiotics (drugs) with modified surface properties (drug functional groups).9, 13-

14, 29, 33, 59, 61, 76, 80-82 

In this study, we used size-dependent LSPR (color) AgMUNH-Oflx NPs 

containing 9.4 x 103 Oflx molecules/NP46 and AgMUNH2 NPs (control NPs without Oflx) 

with a diameter of 13.0 ± 3.1 nm to probe efflux function of single MsbA membrane 

transporters in single live cell E. coli aiming to study their substrate-dependent 

accumulation and efflux function. We previously reported substrate-dependent efflux 

function of MsbA on the smaller sized AgMUNH-Oflx NPs (2.4 ± 0.7 nm). Therefore, this 

study offers a possibility to compare efflux kinetics of MsbA membrane transporters 

responded to different sized antibiotic optical probes to investigate whether types and 

sizes of substrates play a pivotal role in the selective extrusion of efflux pumps. Insights 

into the molecular basis of multidrug membrane transporters could guide us to a better 

design of drugs that provide higher efficacy and more importantly can combat MDR. 

 

RESULTS AND DISCUSSION 

Real-time Imaging of Single NPs inside and outside Single Live Cells  

We synthesized, purified and characterized antibiotic drug nanocarriers 

(AgMUNH-Oflx NPs) by functionalizing AgMUNH2 NPs (13.0 ± 3.1 nm) with ofloxacin 

(Oflx) to have 9.4 x 103 Oflx molecules/NP, as previously described.46  We used the 

distinctive LSPR spectra (color) of single Ag NP-based nanocarriers to probe efflux 

kinetics of MsbA multidrug membrane transporters as the cell membrane and debris do 

not process plasmonic properties and appear white under dark-field illumination. 

Furthermore, single Ag NPs are photostable,43 unlike fluorescence probes, allowing us 

to probe efflux function of multidrug membrane transporters using antibiotic drug 

nanocarriers over time. We incubated the cells (OD600 nm = 0.7) with antibiotic drug 

nanocarriers (AgMUNH-Oflx NPs) or control nanocarriers (AgMUNH2 NPs) and tracked 

single nanocarriers in and out of single living cells in real time using DFOMS. 

Representative dark-field optical images of the single live cells (WT) (Figure 21, 22: A) 
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with single intracellular (Figure 21B, 22B: a) and extracellular NPs (Figure 21B, 22B: b) 

show cross-sections of single rod-shaped bacterial cells with 2 µm in length and 0.5 µm 

in width. As explained previously, we can image the thin-layer section of single cells 

with single NPs using DFOMS because the membranes of single live cells above and 

below the focal plane (190 nm depth of field) are invisible under dark-field illumination.9, 

12-14, 28-29, 33  

As the dark-field illumination penetrates the cell membrane to radiate intracellular 

NPs, scattering of the NPs is required to transmit through the cell membrane to reach 

the detector. However, the cell membrane absorbs photons making the intracellular NPs 

blurry, dimmer and exhibit lower scattering intensity (Figure 21B, 22B: a). On the 

contrary, the extracellular NPs show higher scattering intensity as they include 

scattering intensity from both the NPs and the cell membrane. We have validated that 

these distinctive properties of NPs could be used to distinguish intracellular NPs and 

extracellular NPs to study efflux function of multidrug membrane transporters in single 

live cells in real time. We use this approach to determine the intracellular AgMUNH-Oflx 

NPs (Figure 21B: a) which are dimmer and exhibit lower scattering intensity than the 

extracellular AgMUNH-Oflx NPs (Figure 21B: b), the same as those observed in the 

AgMUNH2 NPs (Figure 22B: a, b). The representative LSPR spectra of single AgMUNH-

Oflx NPs (i – iii) in Figure 21C show the peak wavelength and full-width-at-half-maxima 

(FWHM) at 557 (128), 565 (126), and 578 (109) nm, respectively. In addition, the 

representative LSPR spectra of single AgMUNH2 NPs (i – iii) in Figure 22C show the 

peak wavelength and FWHM at 554 (124), 557 (96), and 565 (101) nm, respectively. 

Note that the peak wavelengths of individual AgMUNH2 NPs are possibly at the longer 

wavelength than those of the AgMUNH-Oflx NPs. This might be because of the size 

distribution of the NPs ranging from 6 to 20 nm46 and the sizes of these individual 

AgMUNH2 NPs could be larger than these individual AgMUNH-Oflx NPs. We observed 

multiple AgMUNH2 NPs entered individual cells and they were not aggregated. We 

would have detected the huge red-shift of LSPR spectra (changed color) and a much 

higher of scattering intensity of the single NPs if the NPs became aggregated and their  
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Figure 21. Imaging of single intracellular and extracellular 13.0 ± 3.1 nm AgMUNH-

Oflx NPs in single living E. coli cells using DFOMS.  

(A) The representative optical image of bacterial cells incubated with 1.4 nM AgMUNH-

Oflx NPs showing intracellular and extracellular NPs as squared. (B) Zoom in optical 

color (i and iii) and CCD (ii and iv) images of single cells show (a) intracellular and (b) 

extracellular NPs which are pseudo colored in color images. The scale bar in A and B 

are 10 and 2 µm, respectively. (C) LSPR spectra of representative single 13.0 ± 3.1 nm 

AgMUNH-Oflx NPs (i-iii) show peak wavelengths and full width at half maximum 

(FWHM) at 557 (128), 565 (126), and 578 (109) nm, respectively. 
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Figure 22. Imaging of single intracellular and extracellular 13.0 ± 3.1 nm AgMUNH2 

NPs in single living E. coli cells using DFOMS.  

(A) The representative optical image of bacterial cells incubated with 1.4 nM AgMUNH2 

NPs showing intracellular and extracellular NPs as squared. (B) Zoom optical color (i 

and iii) and CCD (ii and iv) images of single cells show (a) intracellular and (b) 

extracellular NPs which are pseudo colored in color images. The scale bar in A and B 

are 10 and 2 µm, respectively. (C) LSPR spectra of representative single 13.0 ± 3.1 nm 

AgMUNH2 NPs (i-iii) show peak wavelengths and full width at half maximum (FWHM) at 

554 (124), 557 (96), and 565 (101) nm, respectively. 
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sizes were larger. Taken together, we have successfully used plasmonic features of Ag 

NP-based antibiotic drug nanocarriers (AgMUNH-Oflx NPs) and control nanocarriers 

(AgMUNH2 NPs) to characterize single nanocarriers, determine their numbers, and 

monitor them in situ in real time as they transport in and out the cellular membrane over 

time.  

 

The Dependence of Efflux Function of Single Live Cells on the Pump Inhibitor 

We studied the accumulation rates of the antibiotic drug nanocarriers (AgMUNH-

Oflx NPs) and the same sized control nanocarriers (AgMUNH2 NPs) in live MsbA (WT) 

cells in the presence of a pump (ATPase) inhibitor, orthovanadate to determine whether 

the NPs are substrates of MsbA membrane transporters in which they are responsible 

for the efflux of the nanocarriers. The results in Figure 23A, B: b and Table 4 show that 

the cells accumulate the intracellular NPs over time. The accumulation rates of 

intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs during their incubation with 1.4 nM 

NPs over 41.5 min are 1.11 and 27.42 intracellular NPs/min, respectively (Table 4). We 

further study the effects of a pump (ATPase) inhibitor, orthovanadate on MsbA which is 

an ATPase40 to determine whether MsbA membrane transporters are specifically 

responsible for the efflux of the nanocarriers. The results in Figure 23A and Table 4 

show the accumulation rate of the AgMUNH-Oflx NPs in the cells increases much more 

rapidly from 1.11 to 2.09 NPs/min when orthovanadate is presence. The number of 

intracellular AgMUNH-Oflx NPs significantly increase after the MsbA pumps are 

inhibited (p < 0.0005). In contrast, the number of intracellular AgMUNH2 NPs is 

insignificantly different in the presence and its absence of orthovanadate (p = 0.636) 

and the accumulation rates of intracellular AgMUNH2 NPs remain essentially 

unchanged at 27.42 and 27.87 NPs/min, respectively (Figure 23B). The high 

dependence of accumulation rates of only intracellular AgMUNH-Oflx NPs not 

AgMUNH2 NPs on the MsbA pump function in the presence of orthovanadate suggests 

that the AgMUNH-Oflx NPs are substrates of MsbA (WT) which is indeed responsible 

for the extrusion of the intracellular AgMUNH-Oflx NPs. Moreover, the results (Figure  
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Figure 23. Study of effects of a pump (ATPase) inhibitor, orthovanadate on the 

accumulations of single 13.0 ± 3.1 nm AgMUNH-Oflx NPs and AgMUNH2 NPs.  

(A) Plots of number of intracellular AgMUNH-Oflx NPs (A) and AgMUNH2 NPs (B) over 

time in the presence (a, solid) and absence (b, empty) of the inhibitor (25 µM). The 

points represent the experimental measurements and the lines are added to guide the 

trend. At each time point (25 min), 900 cells were analyzed. In (A), the p value of data 

(a) and (b) is less than 0.0005 (<0.0005), showing the significant difference of 

intracellular NPs in the presence (a) and absence (b) of orthovanadate with 95% 

confidential level, and the dependence of accumulation kinetics of AgMUNH-Oflx NPs 

on the pump inhibitor. 
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23B and Table 4) suggest that the AgMUNH2 NPs ineffectively be extruded out of the 

cells by the MsbA membrane transporters. The efflux pumps could take long time to 

recognize and extrude the NPs out as the number of intracellular AgMUNH2 NPs in the 

absence of orthovanadate start to decrease after 90 min (Figure 23B: b).  

The size of antibiotic drug nanocarriers are order of magnitude larger than those 

of conventional antibiotics. However, the results in Figure 23A are similar to those 

observed using a fluorescence dye (Hoechst 33342) reported previously,35 indicating 

that the AgMUNH-Oflx NPs did not cause steric effects and they are suitable substrates 

for probing efflux function of single MsbA membrane transporters in single live cells. 
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Table 4. Summary of Accumulation Rates and Numbers of Intracellular Single 

13.0 ± 3.1 nm NPs in Single Living E.coli Cells. 

Types of NPs 
C Ag NPs 

(nM) 

Inhibitor a 

(µM) 

Accumulation rate  

(NPs min-1) b 

Numbers of 

intracellular NPs c 

AgMUNH-Oflx 0.7 0 0.41 17 

 1.4 0 1.11 46 

 1.4 25 2.09 87 

AgMUNH2 0.7 0 12.23 508 

 1.4 0 27.42 1138 

 1.4 25 27.87 1156 

 

a Orthovanadate; 

b Accumulation rates (slopes of the plots) at the 41.5 min incubation; 

c Numbers of intracellular NPs accumulated in 900 live cells at the 41.5 min incubation. 
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The Dependence of Efflux Function of NP Substrates on Their Type and Size in 

Single Live Cells  

To further study how the ABC membrane transporters could extrude a wide 

variety of structurally and functionally unrelated substances, we studied the dependence 

of the accumulation of intracellular NPs in single live cells upon types and sizes of NPs. 

The numbers of intracellular AgMUNH2 NPs is significantly higher than those of the 

AgMUNH-Oflx NPs in the absence and its absence of orthovanadate (p < 0.0005) 

(Figure 23 and Table 4). We observed much higher accumulation rates of the 

AgMUNH2 NPs (27.42 NPs/min) in single live cells than those of the AgMUNH-Oflx NPs 

(1.11 NPs/min) over 41.5 min. These results suggest a strong dependence of efflux 

function on types of substrate which MsbA membrane transporters possibly be 

equipped with a sensing machinery for selectively detect and recognize noxious 

substrates (e.g., conjugated Oflx molecules) and then extrude them out of the cells. 

Interestingly, 13.0 ± 3.1 nm AgMUNH2 NPs accumulate in the cells 12 times more 

rapidly than 2.4 ± 0.7 nm AgMUNH2 NP, suggesting size-dependent efflux kinetics of 

AgMUNH2 NPs and the ABC membrane transporters could extrude 13.0 ± 3.1 nm 

AgMUNH2 NPs at their least efficiency.  

Furthermore, we compare the number of intracellular AgMUNH-Oflx NPs with a 

diameter of 2.4 ± 0.7 nm with those of 13.0 ± 3.1 nm in the cells treated with 1.4 nM 

NPs to study the size-dependent accumulation of single nanocarriers in single live cells. 

Notably, the numbers of intracellular AgMUNH-Oflx NPs with a diameter of 2.4 ± 0.7 nm 

and 13.0 ± 3.1 nm are insignificantly different and their accumulation rates of 

intracellular AgMUNH-Oflx NPs are 1.03 and 1.11 NPs/min, respectively. When 

orthovanadate is absence, the number of intracellular NPs of both sized AgMUNH-Oflx 

NPs is not significantly different (0.7 nM, p = 0.29 and 1.4 nM, p = 0.738) but when 

orthovanadate is present, the number of intracellular NPs of the smaller AgMUNH-Oflx 

NPs is significantly higher than that of the larger sized AgMUNH-Oflx NPs (p = 0.004). 

These results suggest size-dependence of the efflux kinetics of single nanocarriers in 

MsbA in which efflux pumps extrude the small AgMUNH-Oflx NPs more effectively since 
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there are more numbers of the smaller NPs retain inside the cells when the pump 

function was inhibited.  

We previously reported in Chapter II, that the MIC50 of the smaller nanocarriers is 

approximately 4 times higher than that of the larger nanocarriers. This observation could 

be attributed to the lower multivalent effects (higher binding affinity with the targets) of 

the smaller nanocarriers and the ability of the cells to effectively extrude the smaller 

nanocarriers out.  

 

The Dependence of Efflux Function on NP Concentrations in Single Live Cells  

We further studied the dependence of accumulation and efflux rates of antibiotic 

drug nanocarriers (13.0 ± 3.1 nm AgMUNH-Oflx NPs) and the control nanocarriers 

(AgMUNH2 NPs) upon their concentrations (0.7 and 1.4 nM), aiming to determine how 

they enter the cells. The results in Figure 24 show that the number of intracellular of 

both AgMUNH-Oflx NPs (Figure 24A) and AgMUNH2 NPs (Figure 24B) significantly 

depends on NP concentrations (AgMUNH-Oflx NPs, p < 0.0005 and AgMUNH2 NPs, p < 

0.0005). The accumulation rates of single AgMUNH-Oflx NPs and AgMUNH2 NPs 

increase from 0.14 to 0.37 (2.6 times) and from 4.08 to 9.14 (2.2 times), respectively as 

the concentration of NPs increases from 0.7 to 1.4 nM. The results in Figure 24 suggest 

that NPs enter the cells via passive diffusion in which the NPs are driven by the 

concentration gradient across the membrane.  

We summarize quantitative accumulation rates of intracellular AgMUNH-Oflx 

NPs and AgMUNH2 NPs in single living cells (Figure 23, 24) in Table 4. The results 

demonstrate that AgMUNH-Oflx NPs and AgMUNH2 NPs are substrates of MsbA 

membrane transporters and the cells accumulate intracellular AgMUNH2 NPs at the 

highest rate. We found the dependence of the accumulation rates on the type of 

substrates, the pump inhibitor and the concentration of NPs. 
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Figure 24. Study of the dependence of the accumulations of 13.0 ± 3.1 nm 

AgMUNH-Oflx NPs and AgMUNH2 NPs on NP concentrations in living E. coli cells.  

(A) Plots of number of intracellular AgMUNH-Oflx NPs in MsbA incubated with 1.4 nM 

(a) and 0.7 nM (b) of 13.0 ± 3.1 nm AgMUNH-Oflx NPs versus time. (B) Plots of number 

of intracellular AgMUNH2 NPs in MsbA incubated with 1.4 nM (a) and 0.7 nM (b) of 13.0 

± 3.1 nm AgMUNH2 NPs versus time. The points represent the experimental 

measurements and the lines are added for trend projection. Note that 900 cells were 

analyzed at each point (every 25 min). In (A) and (B), the p values of data in (a) and (b) 

are less than 0.0005 (<0.0005), indicating statistically significant difference of 

intracellular NPs in the cell incubated with (a) 1.4 nM and (b) 0.7 nM at 95% confidential 

level, and concentration dependent efflux functions of MsbA. 
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Characterization of Viability of Single Cells  

 We characterized the viability of the cells (MsbA WT) to ensure that the doses of 

the antibiotic drug nanocarriers (AgMUNH-Oflx NPs), the control nanocarriers 

(AgMUNH2 NPs) and the pump inhibitor that we used to probe efflux function of E. coli 

did not kill the cells and interfere with their pump function. At the end of the experiment, 

we studied viability of the cells incubated with the antibiotic drug nanocarriers 

(AgMUNH-Oflx NPs) or the control nanocarriers (AgMUNH2 NPs) with the presence and 

absence of orthovanadate throughout the duration of the experiment over 2 h using 

live/dead BacLight assay. We acquired optical and fluorescence images of single cells 

using DFOMS and epifluorescence microscopy, respectively. We observed intracellular 

and extracellular NPs using DFOMS and assay cellular viability using fluorescence 

staining. The green SYTO9 fluorescence dye (λmax = 520 nm) penetrates to the cells 

and stains cellular nucleic acids of the live cells while the red PI fluorescence dye (λmax = 

610 nm) enter only the dead with compromised cell membrane integrity.  

 Representative optical images of the cells incubated with 1.4 nM AgMUNH-Oflx 

NPs in the presence (Figure 25A: a) and absence (Figure 25B: a) of orthovanadate (25 

µM) over 2 h show the cells with and without NPs. Viable cells emit green fluorescence 

but not the red fluorescence as illustrated in Figure 25A: b and Figure 25B: b. We 

determined the percentage of live and dead cells by dividing the number of viable cells 

by the total number of cells. The results show that 99 % of the cells incubated with 1.4 

nM AgMUNH-Oflx NPs in the presence and absence of orthovanadate (25 µM) (Figure 

25C) are alive. Similarly, representative optical images of the cells incubated with 1.4 

nM AgMUNH2 NPs in the presence (Figure 26A: a) and absence (Figure 26B: a) of 

orthovanadate (25 µM) over 2 h show the cells with and without NPs. The cells emit 

green fluorescence but not red fluorescence suggesting that they are alive (Figure 26A, 

B: b). The results show that 99 % of the cells are alive (Figure 26C). As most of the cells 

are alive, the accumulation rates of the NPs in single live cells are involved in the 

passive diffusion process of NPs and efflux function of the membrane transporters but 

not the compromised membrane integrity due to the cell death. The findings further 

demonstrate that the doses (0.7 and 1.4 nM) of the AgMUNH-Oflx NPs are  
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Figure 25. Characterization of viability of single bacterial cells incubated with 13.0 

± 3.1 nm AgMUNH-Oflx NPs using LIVE/DEAD BacLight viability and counting 

assay. 

In (A) and (B), representative dark field optical image (a) and fluorescence image (b) of 

single bacterial cells (MsbA), incubated with 1.4 nM AgMUNH-Oflx in the presence (A) 

and absence (B) of the inhibitor (25 µM) over the duration of each experiment for 2 h, 

show that the cells with intracellular NPs (as squared) or without NPs emit the green 

fluorescence (λ max = 520 nm) of SYTO9, indicating that cells are viable. (C) Plots of 

percentage of viable cells (a) and dead cells (b) of MsbA incubated with 1.4 nM 

AgMUNH-Oflx with and without the inhibitor, indicate that 99 % of the cells are alive. 

Minimum 300 cells were assayed and analyzed. The scale bar is 5 µm. 
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Figure 26. Characterization of viability of single bacterial cells incubated with 13.0 

± 3.1 nm AgMUNH2 NPs using LIVE/DEAD BacLight viability and counting assay. 

 In (A) and (B), representative dark field optical image (a) and fluorescence image (b) of 

single bacterial cells (MsbA), incubated with 1.4 nM AgMUNH2 in the presence (A) and 

absence (B) of the inhibitor (25 µM) over the duration of each experiment for 2 h, show 

that the cells with intracellular NPs (as squared) or without NPs emit the green 

fluorescence (λ max = 520 nm) of SYTO9, indicating that cells are viable. (C) Plots of 

percentage of viable cells (a) and dead cells (b) of MsbA incubated with 1.4 nM 

AgMUNH2 with and without the inhibitor, indicate that more than 99 % of the cells are 

alive. Minimum 300 cells were assayed and analyzed. The scale bar is 5 µm. 
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biocompatible and suitable for the study of mechanisms related to MDR and efflux 

function of multidrug membrane transporters in bacterial cells such as E. coli. 

 

SUMMARY 

We used LSPR spectra (color) of the AgMUNH2 NPs (absence of Oflx) and the 

AgMUNH-Oflx NPs containing  9.4x103 of Oflx molecules per NP to identify and monitor 

single NPs in the study of efflux function and kinetics of MsbA (ABC) membrane 

transporters in single live cells in real time. The NPs up to 1.4 nM are biocompatible to 

the cells over 2 h of experimental duration. We found the concentration dependence of 

the accumulation rates of the AgMUNH-Oflx NPs and AgMUNH2 NPs indicating that the 

passive diffusion driven by concentration gradients is the main mechanism for the NPs 

to transport into the cells. Interestingly, we found effects of the pump inhibitor 

(orthovanadate) only on the accumulation rate of AgMUNH-Oflx NPs which increases in 

the presence of the inhibitor. In contrast, the accumulation rates of AgMUNH2 NPs in 

the presence and absence of orthovanadate are the same (9 NPs/min) and much higher 

than those of the AgMUNH-Oflx NPs. These results suggest that substrate-dependent 

efflux function of MsbA membrane transporters in which they could be equipped with a 

sensing machinery to detect, recognize and extrude toxic substrates (e.g., antibiotics 

and chemotherapeutic agents). Notably, the efflux pumps ineffectively extrude the 

AgMUNH2 NPs and this process starts after 90 min of incubation suggesting that the 

efflux pumps might take a long time to sense the AgMUNH2 NPs. Moreover, we found 

size-dependent accumulation rates of intracellular AgMUNH-Oflx NPs with a diameter of 

2.4 ± 0.7 nm and 13.0 ± 3.1 nm. The cells could extrude the smaller nanocarriers more 

effectively than the larger nanocarriers. Taken together, this study demonstrates that 

single AgMUNH-Oflx NPs and AgMUNH2 NPs could be used as optical imaging probes 

for study of size- and substrate-dependent efflux function of MsbA (ABC) membrane 

transporters in bacterial cells because they process size-dependent LSPR spectra and 

contain conjugated drug molecules on the surface that exhibit bactericidal effects. 

Results from this study also suggest an evidence that multidrug membrane transporters 

could have a sensing machinery to screen for toxic substrates.  Insights into the 
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molecular basis of efflux mechanisms how multidrug membrane transporters could 

extrude a wide variety of substrates will lead to better understandings and a feasibility of 

a design of better drugs that could potentially avoid MDR in pathogenic bacterial cells, 

such as E. coli.  

 

MATERIALS AND METHODS 

Reagents and Cell Line 

We purchased sodium chloride, sodium phosphate (Sigma-Aldrich), sodium 

phosphate monobasic monohydrate (Sigma-Aldrich), bacto-tryptone and yeast extract 

(Sigma-Aldrich), orthovanadate (Sigma-Aldrich). We purchased Live/dead backlight 

viability assay (Life Technologies) and Hoechst 33342 (Life Technologies).  We used all 

reagents as received. We used the nanopure deionized (DI) water (18 MΩ water, 

Barnstead) to rinse glassware and prepare all solutions including standard LB medium 

(1% tryptone peptone, 0.5% yeast extract, and 0.5% NaCl, pH = 7.2). We purchased 

cell line of Escherichia coli, wt w3110 (MsbA) from Coli Genetic Stock Center (CGSC). 

 

Cell Culture and Preparation 

Gram-negative E. coli (MsbA) strain cells were pre-cultured in an Erlenmeyer 

flask containing 10 mL of L-Broth (LB) medium (1% tryptone peptone, 0.5% yeast 

extract, and 0.5% NaCl, pH = 7.2) in an incubated floor shaker (Thermo Scientific, 

MaxQ5000; 160 rpm, 37 °C) for 12 h. We then inoculated 3 mL of pre-cultured cells into 

10 mL of fresh LB medium in an Erlenmeyer flask. We then incubated the flask in the 

shaker (160 rpm, 37 °C) for an additional 8 h. We harvested the cultured cells using 

centrifugation (Beckman Model J2-21 Centrifuge, JA-14 rotor, at 7500 rpm, 23 °C, 10 

min), washed the cells with the PBS buffer (0.5 mM phosphate buffer, 1.5 mM NaCl, pH 

7.0) three times, and finally re-suspended the cells in the PBS buffer. The final 

concentration of the cells was adjusted to OD600 nm = 0.7 and used for the entire study. 
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The real-time study of efflux function of membrane transporters in bacterial cells 

has been always conducted in PBS buffer but not in cell culture medium which would 

lead to the cell growth and creation of the cells with different growth stages.9, 12-14, 28-29, 33 

It is crucial to study efflux function of membrane transporter at a constant cell 

concentration and a certain cellular stage in order to compare results among other 

experiments. Our previous studies have demonstrated that the cells suspended in the 

PBS buffer retain their efflux function over hours and they are suitable for the study of 

efflux function.9, 12-14, 28-29, 33  

 

Real-time Imaging of Single NPs inside and outside Single Living Cells and 

Characterization of Cellular Viability 

We prepared cell suspension (OD600 nm = 0.7) containing 0.7 nM and 1.4 nM 

AgMUNH-Oflx NPs or AgMUNH2 NPs (control NPs without ofloxacin) in the presence 

and absence of orthovanadate (25 µM). We started a timer simultaneously as we added 

NPs into the cell suspension.  

After the sample prepared, we sampled the mixture (1 µL) into a freshly prepared 

micro-chamber created by nail polish and continuously imaged the cells on 18 

representative locations using DFOMS equipped with a CCD camera and a digital color 

camera every 25 min (7 min for the slide preparation and 18 min for imaging). We 

imaged the transport of single nanocarriers moving in and out of single cells in real time 

using DFOMS equipped with CCD camera (Micromax, Roper Scientific), digital color 

camera (Handycam, Sony) and multispectral imaging system (Nuance, Cambridge 

Research Inc.). 9, 14, 25, 58, 62 The design and construction of DFOMS have been fully 

described previously.9, 13-14, 25-26, 28-29, 32-33, 43, 58-59, 61-62, 76, 80-82 Our dark-field optical 

microscope was equipped with a dark-field condenser (oil 1.43-1.20, Nikon) and a 100x 

objective (Nikon Plan fluor 100x oil, iris SL N.A. 0.5-1.3, W.D.0.20 mm) with a depth of 

field of 190 nm. Although we have achieved high temporal resolution up to 5 ms to 

continuingly image for tracking the transport of single NPs, we acquired images in every 

1 min since we found that the transport of single NPs in and out of single living cells was 
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not a rapid process and a temporal resolution of minutes was sufficient to study 

transport of single NPs in real time.9, 14  

We sampled the mixture and re-prepared a fresh micro-chamber every 25 min 

and imaged single cells for 18 representative locations for 2 h. By using this approach, 

we could acquire sufficient data from massive numbers of cells (1500 cells) for each 

sample for probing the accumulation rates of bulk cells at a single cell resolution. We 

quantified intracellular NPs and plotted them versus incubation time and determined the 

accumulation rates (slopes of the plots) of single NPs in the cells over time.  

 The viability of cells was characterized at a single cell resolution using 

LIVE/DEAD BacLight viability and counting assay at the end of each experiment (2 h). 

We imaged cells in the micro-chamber using dark-field optical microscopy and epi-

fluorescence microscopy and counted the green fluorescence cells stained by SYTO9 

(λmax = 520 nm) and the red fluorescence cells stained by propidium iodide (λmax = 610 

nm) as live and dead cells, respectively. 

 

Data Analysis and Statistics 

Cells were imaged for eighteen representative locations of each cell suspension 

containing 0.7 nM and 1.4 nM NPs in a presence or absence of orthovanadate every 25 

min over 2 h and 5 min. Approximately fifteen cells were acquired in a single CCD 

image simultaneously. Therefore, approximately 300 cells were imaged every 25 min 

and 1500 cells were studied over 2 h and 5 min for each measurement. We repeated 

each experiment three times. Thus, we studied 4500 cells for each sample allowing us 

to gain sufficient statistics to study efflux function of bulk cells at a single cell resolution. 

We analyzed the numbers of intracellular NPs in 900 cells (300 cells per each 

measurement) at every 25 min and plotted them over time to determine the 

accumulation rates (slopes of the plots) of intracellular NPs of both AgMUNH-Oflx NPs 

and AgMUNH2 NPs for the cells in the presence and absence of orthovanadate (25 µM) 

at 40.5 min incubation time when the accumulation of NPs reach a plateau and 

essentially remain stable. We performed statistical analysis (2-sample t-test) using 
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SPSS to compare means of intracellular NPs in the treated cells. We studied the 

viability of single cells at a minimum of 150 cells that were incubated with each type of 

NPs after each experiment (2 h). We repeated each measurement three times. 

Therefore, 450 cells were assayed for each sample. 
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CHAPTER V 

 

STUDY OF SUBSTRATE- AND SIZE-DEPENDENT EFFLUX FUNCTION OF 

MULTIDRUG ABC MEMBRANE TRANSPORTERS IN SINGLE LIVE 

ESCHERICHIA COLI CELLS USING ANTIBIOTIC DRUG NANOCARRIER 

OPTICAL PROBES 

 

INTRODUCTION 

ATP-binding cassette (ABC) membrane transporters (efflux pumps) is a large 

protein family found in all prokaryotic and eukaryotic cells.3, 7, 83 They mediate the 

uptake of nutrients and the export of a wide variety of substances across cellular 

membrane such as peptides, lipids and drugs.3, 5, 7, 83 These efflux pumps protect cells 

(e.g., bacteria and cancer cells) from many cytotoxins such as antibiotics and anticancer 

drugs, conferring multidrug resistance (MDR).3, 5, 7, 83-84 Efflux systems are currently 

thought to be responsible for MDR in bacteria and cancer cells which greatly causes 

ineffective treatments of infections and cancers.4, 79, 84  

 Despite a large number of structurally unrelated substrates, the ABC transporters 

have common four core domains: two transmembrane domains (TMDs) and two 

nucleotide-binding domains (NBDs).3, 5, 7, 83 The TMDs consist of the large diversity of 

specific binding sites and multiple membrane-spanning proteins which together form the 

pathway through, which the transported substrate crosses the lipid bilayer, whereas the 

NBDs couple conformation changes induced by ATP binding and hydrolysis.3, 5, 7, 83 

MsbA is an essential ABC membrane transporters in Gram-negative bacteria (e.g., 

Escherichia coli) and play a key role in transport of lipid A and lipopolysaccharide (LPS) 

from the cytoplasmic leaflet (inward-facing) to the periplasmic leaflet (outward-facing) of 

bacterial inner membrane by utilizing ATP energy.1-2, 83 Functional studies have reported 

that MsbA could recognize and extrude a wide spectrum of antibiotics causing 

resistance to certain antibiotics.1, 10, 41 



89 

 

 

 Currently, the primary techniques to depict the structures of membrane 

transporters at the atomic resolution are X-ray crystallography and cryo-EM.2, 71-73 

Though the number of available X-ray crystal and cryo-EM structures of ABC 

membrane transporters is increasing, the molecular basis of efflux mechanisms, and 

how the similar structural membrane transporters could extrude diverse structurally 

unrelated substrates has not yet fully understood. These techniques cannot provide 

real-time dynamic insights into how the efflux pumps selectively detect and recognize 

various types of substrates before extruding them out of the cells.     

 Conventional methods to study MDR include measurements of the accumulation 

of radioisotopes (14C and 3H) or fluorescence dyes as they diffuse into the cells and are 

extruded by prokaryotic and eukaryotic cells over time.9-12, 83  These approaches provide 

efflux kinetics of the bulk cells and they could mask any rare interesting event since 

individual cells behave differently emphasizing the importance to probe efflux kinetics of 

individual membrane transporters in single live cells in real time.9, 14 Moreover, single 

radioisotopes and fluorophores themselves do not process distinctive size-dependent 

physiochemical properties. Therefore, these conventional probes could not serve as 

various size-dependent pump substrates for the study of efflux function of single 

membrane transporters in single live cells.  

 Nobel metal nanoparticles (e.g., Ag NPs) process distinctive plasmonic 

properties, which highly depend on their sizes, shapes, dielectric constant, and 

surrounding environments.23-24 Single Ag NPs have high Rayleigh scattering enables us 

to image and characterize them under illumination of halogen lamps using dark-field 

optical microscopy and spectroscopy (DFOMS).14, 25-27 We have demonstrated that we 

can use superior size-dependent LSPR and photostable single Ag NPs as optical 

probes to study the size-dependent efflux kinetics of multidrug membrane transporters 

in single live cells in real time.9, 13-14, 28-29 In the previous studies, we have used bare Ag 

NPs and surface modified Ag NPs to study the dependence of transport kinetics and the 

accumulation of substrates on the sizes, charges, chemicals, and bacterial strains of 

Gram-positive bacteria (BmrA in Bacillus subtilis)9, 13, 29-30 and Gram-negative bacteria 

(MexAB-OprM in Pseudomonas aeruginosa).14, 31-33 



90 

 

 

 In this study, we explored substrate-dependent accumulation and efflux function 

of single MsbA membrane transporters in single live E. coli cells using size-dependent 

LSPR (color) AgMUNH-Oflx NPs with a diameter of 92.6 ± 4.4 nm containing 6.5 x 105 

Oflx molecules/NP and AgMUNH2 NPs (control NPs without Oflx). We previously 

reported substrate-dependent efflux function of MsbA using the small and medium sized 

AgMUNH-Oflx NPs (2.4 ± 0.7 and 13.0 ± 3.1 nm). Therefore, this study offers a 

possibility to compare efflux kinetics of MsbA membrane transporters interacting to 

different sized antibiotic optical probes to investigate whether types and sizes of 

substrates play an important role in the selective extrusion of efflux pumps. To our 

knowledge, systematic studies of the dependence of the accumulation rates of 

substrates and efflux function of MsbA membrane transporters on the sizes of antibiotic 

nanocarrier optical probes in single live cells have not yet been reported.  

 

RESULTS AND DISCUSSION 

Study of Efflux Kinetics of Membrane Transporters using Single Antibiotic Drug 

Nanocarriers Optical Probes  

We used the distinctive LSPR spectra (color) of single 92.6 ± 4.4 nm AgMUNH-

Oflx NPs and AgMUNH2 NPs to probe efflux kinetics of MsbA multidrug membrane 

transporters. These distinctive properties allow us to distinguish the NPs from the cell 

membrane and other debris which do not process plasmonic properties and appear 

white under dark-field illumination. We suspended the cells in a PBS buffer (0.5 mM 

phosphate buffer saline with 1.5 mM, pH = 7.0), but not cell culture medium. The studies 

of efflux function of membrane transporters in bacterial cells have been conducted in 

the PBS buffer to maintain cell concentration and cellular growth stage over time 

making results comparable to other experiments. 9, 13-14, 29-33 We incubated the cells 

(OD600 nm = 0.7) with the AgMUNH-Oflx NPs or AgMUNH2 NPs and tracked single NPs 

in and out of single live cells in real time using DFOMS. Representative dark-field 

optical images of the single live cells (MsbA, WT) that were incubated with 3.7 pM 

solution of AgMUNH-Oflx NPs (Figure 27A) and AgMUNH2 NPs (Figure 28A) show 

cross-sections of single rod-shaped bacterial cells with 2 µm in length and 0.5 µm in 
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width. As explained previously, we can image the thin-layer section of single cells with 

single NPs using DFOMS since the membranes of single live cells above and below the 

focal plane (190 nm depth of field) are invisible under dark-field illumination. Thus, NPs 

on top or below membranes of the cells are out of the focal plane and do not appear 

under dark-field illumination.   

The scattering intensity of single NPs was used to identify whether they are 

intracellular NPs or extracellular NPs. The intracellular NPs look blurry, dimmer, and 

exhibit lower scattering intensity. The cell membrane absorbs photons from the dark-

field illumination that penetrates through the cells to radiate intracellular NPs, reducing 

the scattering intensity that can pass through the cells to reach a detector. In contrast, 

the extracellular NPs show higher scattering intensity because they include scattering 

intensity from both NPs and cell membrane. We have demonstrated the feasibility of 

using the distinctive properties and scattering intensity of NPs to distinguish intracellular 

NPs and extracellular NPs in the study efflux function of multidrug membrane 

transporters in single live cells in real time. 9, 13-14, 29-33  Moreover, single Ag NPs show 

superior photo-stability over fluorescence dyes, allowing us to probe efflux function of 

multidrug membrane transporters using AgMUNH-Oflx NPs and AgMUNH2 NPs over 

time. We used this validated approach to determine the intracellular AgMUNH-Oflx NPs 

(Figure 27B: a) and AgMUNH2 NPs (Figure 28B: a) which are blurry, dimmer and exhibit 

a lower scattering intensity than the extracellular AgMUNH-Oflx NPs (Figure 27B: b) 

and AgMUNH2 NPs (Figure 28B: b), respectively. As mentioned in our previous studies, 

9, 13-14, 29-33  we use their LSPR spectra (color) to characterize the size and determine the 

number of single NPs in real time as they are incubated with the cells and transport in 

and out across the cell membrane over time. The representative LSPR spectra of single 

AgMUNH-Oflx NPs (Figure 27C) and AgMUNH2 NPs (Figure 28C) show the peak 

wavelength and full width at half maxima (FWHM) at 641 (172) and 629 (215) nm, 

respectively. Taken together, we have successfully used plasmonic features of 

AgMUNH-Oflx NPs and AgMUNH2 NPs to characterize single NPs, determine their 

numbers, and monitor them in situ in real time as they transport in and out across the 

cellular membrane over time. 
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Figure 27. Imaging of single intracellular and extracellular 92.6 ± 4.4 nm AgMUNH-

Oflx NPs in single living E. coli cells using DFOMS.  

(A) The representative optical image of bacterial cells incubated with 3.7 pM AgMUNH-

Oflx NPs showing intracellular and extracellular NPs as squared. (B) Zoom in optical 

color (i and iii) and CCD (ii and iv) images of single cells show (a) intracellular and (b) 

extracellular NPs which are pseudo colored in color images. The scale bar in A and B 

are 10 and 2 µm, respectively. (C) LSPR spectra of representative single 90nm 

AgMUNH-Oflx NPs show peak wavelengths and full width at half maxima (FWHM) at 

641 (172) nm. 
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Figure 28. Imaging of single intracellular and 92.6 ± 4.4 nm AgMUNH2 NPs in 

single living E. coli cells using DFOMS.  

(A) The representative optical image of bacterial cells incubated with 3.7 pM AgMUNH2 

NPs showing intracellular NPs as squared. (B) Zoom optical color (i and iii) and CCD (ii 

and iv) images of single cells show (a) intracellular and (b) extracellular NPs which are 

pseudo colored in color images. The scale bar in A and B are 10 and 2 µm, 

respectively. (C) LSPR spectra of representative single 90nm AgMUNH2 NPs show 

peak wavelengths and full width at half maxima (FWHM) at 629 (215) nm. 
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Study of the Dependence of Efflux Function of MsbA Membrane Transporters on 

the Pump Inhibitor 

To study whether the membrane transporter (MsbA) is indeed responsible for the 

efflux out of the drug nanocarriers out of living cells, we studied the accumulation rates 

of the AgMUNH-Oflx NPs and AgMUNH2 NPs in live E. coli (MsbA, WT) cells in the 

presence and absence of a pump (ATPase) inhibitor, orthovanadate (Na3VO4). The 

inhibitor interferes with ATP hydrolysis which is the important step of the MsbA (ABC) 

membrane transporters to extrude substrates out of the cells.40, 83 Moreover, 

prokaryotes (bacterial cells) do not have endocytosis, pinocytosis and exocytosis so 

these processes are not involved in the transport of the NPs through cellular 

membranes. The results in Figure 29A, B: b and Table 5 show that the cells accumulate 

NPs over time. The accumulation rates of intracellular AgMUNH-Oflx NPs and 

AgMUNH2 NPs during their incubation with 3.7 pM NPs over 41.5 min are 0.48 and 1.31 

NPs/min, respectively. We further studied effects of the pump inhibitor on cellular efflux 

function and determine whether MsbA is responsible for the extrusion of NPs by 

incubating the cells with 3.7 pM NPs and orthovanadate (25 µM). The results in Figure 

29A, B: a and Table 5 demonstrate that the accumulation rates of intracellular 

AgMUNH-Oflx NPs and AgMUNH2 NPs is more rapidly in the presence of 

orthovanadate which the accumulation rate of intracellular NPs during their incubation 

with 3.7 pM NPs over 41.5 min increase from 0.48 to 1.10 and 1.31 to 2.21 NPs/min, 

respectively. Orthovanadate hindered efflux function of MsbA leading to a significant 

increasing of the number of intracellular NPs (p < 0.005).  

The antibiotic nanocarrier optical probes used here are order of magnitude larger 

than the conventional antibiotic. However, the accumulation rates of the NPs shown in 

Figure 29 are very similar to those observed using a fluorescence probe (Hoechst 

33342),35 suggesting that the large sizes of NPs and conjugated Oflx did not disrupt 

their transport into the cells and their extrusion by the pumps. Thus, we can study the 

size-dependent transport kinetics of multidrug efflux pumps of single live cells in real 

time at a nanometer resolution using antibiotic drug nanocarrier optical probes. 



95 

 

 

0

20

40

60

0 25 50 75 100 125

Time (min)

#
 o

f 
In

tr
a

c
e

ll
u

la
r 

A
g

M
U

N
H

-O
fl

x
 N

P
s

A a

b

0

40

80

120

0 25 50 75 100 125
Time (min)

#
 o

f 
In

tr
a

c
e

ll
u

la
r 

A
g

M
U

N
H

 2
 N

P
s

B a

b

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29. Study of effects of a pump (ATPase) inhibitor, orthovanadate on the 

accumulations of single 92.6 ± 4.4 nm AgMUNH-Oflx NPs and AgMUNH2 NPs. 

 (A) Plots of number of intracellular AgMUNH-Oflx (A) and AgMUNH2 (B) over time in 

the presence (a, solid) and absence (b, empty) of the inhibitor (25 µM). The points 

represent the experimental measurements and the lines are added to guide the trend. 

At each time point (25 min), 900 cells were analyzed. In (A) and (B), the number of 

intracellular NPs in (a) with the presence and (b) absence of orthovanadate are 

significantly different (p<0.0005) at 95% confidential interval, showing the dependence 

of efflux function of MsbA on the pump inhibitor.  
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Table 5. Summary of Accumulation Rates and Number of Intracellular Single 92.6 

± 4.4 nm NPs in Single Living E. coli Cells. 

Types of NPs 
C Ag NPs 

(pM) 

Inhibitor a 

(µM) 

Accumulation rate  

(NPs min-1) b 

Numbers of 

intracellular NPs c 

AgMUNH-Oflx 1.85 0 0.22 9 

 3.7 0 0.48 20 

 3.7 25 1.10 46 

AgMUNH2 1.85 0 0.61 26 

 3.7 0 1.31 54 

 3.7 25 2.21 92 

 

a Orthovanadate; 

b Accumulation rates (slopes of the plots) at the 41.5 min incubation; 

c Numbers of intracellular NPs accumulated in 900 live cells at the 41.5 min incubation. 
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Probing of the Dependence of Accumulation of Intracellular Antibiotic Drug 

Nanocarriers on Their Concentrations 

We further studied the dependence of accumulation and efflux rates of antibiotic 

drug nanocarriers (AgMUNH-Oflx NPs) and control nanocarriers (AgMUNH2 NPs) upon 

their concentrations (1.85 and 3.7 pM), aiming to determine how they enter the cells and 

compare the mechanism with those observed in conventional antibiotics. The results in 

Figure 30 show that the number of intracellular AgMUNH-Oflx NPs (Figure 30A) and 

AgMUNH2 NPs (Figure 30B) significantly depends on NP concentrations (p < 0.0005). 

We summarize quantitative accumulation rates and the number of intracellular NPs in 

living cells (Figure 29 and 30) in Table 5, which increase with the concentration of NPs, 

vice versa. The accumulation rates of single AgMUNH-Oflx NPs and AgMUNH2 NPs 

increased 2.2 times as the concentration of NPs increases from 1.85 to 3.7 pM, 

suggesting that NPs enter the cells via passive diffusion in which the NPs are driven by 

the concentration gradient across the membrane. 

 

Study of the Dependence of Efflux Function of Membrane Transporters on Type 

and Size of NP Substrates in Single Live Cells  

We further studied the dependence of the accumulation rates of intracellular NPs 

upon their types and sizes aiming to examine cellular mechanisms by which the ABC 

membrane transporters could selectively extrude a wide variety of structurally unrelated 

substances. In this study, we found the numbers of intracellular AgMUNH2 NPs is 

significantly higher than those of the AgMUNH-Oflx NPs in both 1.85 and 3.7 pM (p < 

0.0005) and the cells accumulated intracellular AgMUNH2 NPs 2.8 time more rapidly 

than those of AgMUNH-Oflx NPs (Figure 30 and Table 5). Moreover, we previously 

reported that the accumulation rates of bare Ag NPs with a diameter of 93 ± 13 nm in 

Gram-positive bacteria (BmrA in Bacillus subtilis)29 and 91.0 ± 9.7 nm in Gram-negative 

bacteria (MexAB-OprM in Pseudomonas aeruginosa)14 were 6.8 NPs/min within 10.5 

min and 1.65 NPs/min within 32.5 min, respectively. In comparison, the cells extruded 

AgMUNH-Oflx NPs much more rapidly than AgMUNH2 NPs and bare Ag NPs, 

respectively. 
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Figure 30. Study of the dependence of the accumulations of 92.6 ± 4.4 nm 

AgMUNH-Oflx NP and AgMUNH2 NPs on NP concentrations in living E. coli cells.  

(A) Plots of number of intracellular AgMUNH-Oflx NPs in MsbA incubated with 3.7 pM 

(a) and 1.85 pM (b) of the AgMUNH-Oflx NPs versus time. (B) Plots of number of 

intracellular Ag-MUNH2 NPs in MsbA incubated with 3.7 pM (a) and 1.85 pM (b) of the 

AgMUNH2 NPs versus time. The points represent the experimental measurements and 

the lines are added for trend projection. Note that 900 cells were analyzed at each point 

(every 25 min). In (A) and (B), data (a) and (b) are significantly different (p<0.0005) at 

95% confidential interval, showing the dependence of accumulation of intracellular NPs 

on the NP concentration.  
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Interestingly, we have observed these phenomena in the studies of efflux 

function of MsbA membrane transporters using different sized antibiotic nanocarrier 

optical probes suggesting a strong dependence of efflux function on types of substrate 

which MsbA membrane transporters possibly be equipped with a sensing machinery for 

selectively detect and recognize noxious substrates (e.g., conjugated Oflx molecules) 

and then extrude them out of the cells.  

Moreover, we compare the number of intracellular AgMUNH-Oflx NPs with a 

diameter of 92.6 ± 4.4 nm with those of 13.0 ± 3.1 and 2.4 ± 0.7 nm in the cells to study 

the size-dependent accumulation of single nanocarrier optical probes in single live cells. 

We found that the numbers of intracellular AgMUNH-Oflx NPs with a diameter of 2.4 ± 

0.7 nm and 13.0 ± 3.1 nm are insignificantly different, and their accumulation rates of 

intracellular AgMUNH-Oflx NPs are 0.34 and 0.37 NPs/min, respectively. However, the 

accumulation rate of 92.6 ± 4.4 nm AgMUNH-Oflx NPs is 0.16 NPs/min and it is much 

lower than those of the smaller sized AgMUNH-Oflx NPs. These observations may be 

attributed to the low membrane permeability and the low concentration gradients across 

cell membrane of the largest nanocarriers (3.7 pM of 92.6 ± 4.4 nm nanocarriers versus 

1.4 nM of 13.0 ± 3.1 and 2.4 ± 0.7 nm nanocarriers). We used the very low 

concentrations of 92.6 ± 4.4 nm nanocarriers in the study of efflux function because 

they are much more toxic than the other two smaller sized nanocarriers. As the 

accumulation rates of the nanocarriers increase with the concentration of NPs, we could 

have found a much higher number of intracellular 92.6 ± 4.4 nm drug nanocarriers if 

their concentrations are the same as the 13.0 ± 3.1 and 2.4 ± 0.7 nm drug nanocarriers 

(378 time higher). These results suggest size-dependent accumulation rates and efflux 

function of MsbA membrane transporters and the cells could not extrude the larger NPs 

out of single live cells as effectively as smaller NPs.  

 

Characterization of the Viability of Single Cells  

 As reported previously, antibiotic drug nanocarriers with a diameter of 92.6 ± 4.4 

nm inhibited bacterial growth in a dose-dependent manner.46 It is important to study 

cellular viability as NPs could easily enter through disintegrated membrane of the dead 
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cells leading to inconclusive results. Therefore, we characterized the viability of the cells 

(MsbA WT) to ensure that the doses of the antibiotic drug nanocarriers (AgMUNH-Oflx 

NPs), the control nanocarriers (AgMUNH2 NPs) and the pump inhibitor that we used to 

probe efflux function of E. coli did not kill cells and interfere with their pump function. At 

the end of each experiment, we characterized viability of the cells incubated with the 

antibiotic drug nanocarriers (AgMUNH-Oflx NPs) or the control nanocarriers (AgMUNH2 

NPs) throughout the duration of the experiment over 2 h using LIVE/DEAD BacLight 

assay. We identify the live cells using the green SYTO9 fluorescence dye (λmax = 520 

nm) which penetrates to the cells and stains cellular nucleic acids while we detect the 

dead cells using red PI fluorescence dye (λmax = 610 nm) which enter only the cells with 

disintegrated membrane.  

 Representative optical images of the cells incubated with 3.7 pM AgMUNH-Oflx 

NPs in the presence (Figure 31A: a) and absence (Figure 31B: a) of orthovanadate (25 

µM) over 2 h show the cells with and without NPs. Their fluorescence images illustrate 

the green fluorescence but not the red fluorescence indicating that the cells are viable 

(Figure 31A, B: b). We determined percentage of live and dead cells by dividing the 

number of viable cells by the total number of cells. We found that more than 99 % of the 

cells incubated with 3.7 pM AgMUNH-Oflx NPs in the presence and absence of 

orthovanadate (25 µM) (Figure 31C) were viable. Similarly, representative optical 

images of the cells incubated with 3.7 pM AgMUNH2 NPs in the presence (Figure 32A: 

a) and absence (Figure 32B: a) of orthovanadate (25 µM) over 2 h show the cells with 

and without NPs. The cells emitted green fluorescence but not red fluorescence 

suggesting that they were viable (Figure 32A, B: b). The results show that 99 % of the 

cells are alive (Figure 32C). As the cells with the NPs and orthovanadate are all alive, 

the accumulation rates of the NPs in single live cells are associated with NP passive 

diffusion and efflux function of the membrane transporters but not the compromised 

membrane integrity due to the cell death. The findings further demonstrate that the 

doses (1.85 and 3.7 pM) of the AgMUNH-Oflx NPs are suitable to use in study MDR 

and efflux function of multidrug membrane transporter using drug nanocarriers in E. coli.  
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Figure 31. Characterization of viability of single bacterial cells incubated with 92.6 

± 4.4 nm AgMUNH-Oflx NPs using LIVE/DEAD BacLight viability and counting 

assay. 

In (A) and (B), representative dark field optical image (a) and fluorescence image (b) of 

single bacterial cells (MsbA), incubated with 3.7 pM Ag-MUNH2-Oflx in the presence (A) 

and absence (B) of the inhibitor (25 µM) over the duration of each experiment for  2 h, 

show that the cells with NPs (as squared) or without NPs emit the green fluorescence (λ 

max = 520 nm) of SYTO9, indicating that cells are viable. (C) Plots of percentage of 

viable cells (a) and dead cells (b) of MsbA incubated with 3.7 pM AgMUNH-Oflx with 

and without the inhibitor, indicate that 99-100% of the cells are alive. Minimum 300 cells 

were assayed and analyzed. The scale bar is 5 µm. 
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Figure 32. Characterization of viability of single bacterial cells incubated with 92.6 

± 4.4 nm AgMUNH2 NPs using LIVE/DEAD BacLight viability and counting assay. 

In (A) and (B), representative dark field optical image (a) and fluorescence image (b) of 

single bacterial cells (MsbA), incubated with 3.7 pM AgMUNH2 in the presence (A) and 

absence (B) of the inhibitor (25 µM) over the duration of each experiment for 2 h, show 

that the cells with NPs (as squared) or without NPs emit the green fluorescence (λ max = 

520 nm) of SYTO9, indicating that cells are viable. (C) Plots of percentage of viable 

cells (a) and dead cells (b) of MsbA incubated with 3.7 pM AgMUNH2 with and without 

the inhibitor, indicate that 99-100% of the cells are alive. Minimum 300 cells were 

assayed and analyzed. The scale bar is 5 µm. 
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SUMMARY 

We studied efflux kinetics of MsbA (ABC) membrane transporters in single live 

cells in real time using 92.6 ± 4.4 nm antibiotic drug nanocarrier optical probes 

(AgMUNH-Oflx NPs) containing 6.5 x105 Oflx molecules/NP. We found the 

accumulation rates of the AgMUNH-Oflx NPs and AgMUNH2 NPs (control NPs without 

Oflx) increase with the concentration of NPs indicating that the passive diffusion driven 

by concentration gradients is the main mechanism for the NPs to transport into the cells, 

similar to conventional pump substrates (antibiotics). We found that the pump inhibitor 

(orthovanadate) affected the accumulation rates of intracellular AgMUNH-Oflx NPs and 

AgMUNH2 NPs as the accumulation rates increased in the presence of orthovanadate. 

Notably, we observed that the numbers of intracellular AgMUNH2 NPs are significantly 

higher than that of AgMUNH-Oflx NPs both in the presence and absence of 

orthovanadate, suggesting substrate-dependent efflux function of MsbA membrane 

transporters in which they could be equipped with a sensing machinery to selectively 

detect, recognize and extrude toxic substrates (e.g., antibiotics and chemotherapeutic 

agents). Notably, the accumulation rates and efflux kinetics of the AgMUNH-Oflx NPs 

show the dependence of NP’s sizes which the accumulation rates of intracellular small- 

and medium-sized AgMUNH-Oflx NPs (2.4 ± 0.7 and 13.0 ± 3.1 nm) are higher than 

those of the large sized AgMUNH-Oflx NPs (92.6 ± 4.4 nm). These observations might 

be attributed to the higher membrane permeability and the higher concentration of the 

smaller nanocarriers. In summary, this study demonstrates that single AgMUNH-Oflx 

NPs and AgMUNH2 NPs can serve as excellent optical probes for study of size- and 

substrate-dependent efflux function of MsbA (ABC) membrane transporters because of 

their distinctive size-dependent LSPR spectra and exhibit inhibitory effects in bacterial 

cells. Results from this study also suggest that multidrug membrane transporters could 

have a sensing machinery to screen for toxic substrates.  Better understanding of 

molecular basis of efflux mechanisms will result in a feasibility of a better drug design 

that could potentially improve drug efficacy and avoid MDR in pathogenic bacterial cells, 

such as E. coli.  
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MATERIALS AND METHODS 

Reagents and Cell Line 

We purchased sodium chloride, sodium phosphate (Sigma-Aldrich), sodium 

phosphate monobasic monohydrate (Sigma-Aldrich), bacto-tryptone (Sigma-Aldrich), 

yeast extract (Sigma-Aldrich), orthovanadate (Sigma-Aldrich). We purchased Live/dead 

backlight viability assay (Life Technologies) and Hoechst 33342 (Life Technologies).  

We used all reagents as received. We used the nanopure deionized (DI) water (18 MΩ 

water, Barnstead) to rinse glassware and prepare all solutions including standard LB 

medium (1% tryptone peptone, 0.5% yeast extract, and 0.5% NaCl, pH = 7.2). We 

purchased cell line of Escherichia coli, wt w3110 (MsbA) from Coli Genetic Stock Center 

(CGSC). 

 

Cell Culture and Preparation 

We pre-cultured E. coli (MsbA) strain cells in an Erlenmeyer flask containing 10 

mL of L-Broth (LB) medium (1% tryptone peptone, 0.5% yeast extract, and 0.5% NaCl, 

pH = 7.2) in an incubated floor shaker (Thermo Scientific, MaxQ5000; 160 rpm, 37 °C). 

After 12 h incubation, we inoculated 3 mL of pre-cultured cells into 10 mL of the LB 

medium in an Erlenmeyer flask. We then incubated the flask in the shaker (160 rpm, 37 

°C) for another 8 h. We harvested the cultured cells using centrifugation (Beckman 

Model J2-21 Centrifuge, JA-14 rotor, at 7500 rpm, 23 °C, 10 min), washed the cells with 

the PBS buffer (0.5 mM phosphate buffer, 1.5 mM NaCl, pH 7.0) three times, and finally 

re-suspended the cells in the buffer. The final concentration of the cells was adjusted to 

OD600 nm = 0.7 and used for the entire study. 

 

Imaging of Single Intracellular and Extracellular NPs in Single Living Cells and 

Cellular Viability Characterization 

The cell suspension (OD600 nm = 0.7) containing 1.85 pM and 3.7 pM of AgMUNH-

Oflx NPs and AgMUNH2 NPs (control NPs without ofloxacin) in the presence and 
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absence of orthovanadate (25 µM) was prepared. The timer was simultaneously started 

to record the incubation time as NPs were added into the cell suspension. We sampled 

the mixture (1 µL) into a micro-chamber created by nail polish and imaged the cells on 

18 representative locations using DFOMS equipped with a CCD camera and a digital 

color camera every 25 min (7 min for the slide preparation and 18 min for imaging) for 2 

h and 5 min. Imaging of the transport of single nanocarriers moving in and out of single 

cells in real time using DFOMS allowed us to identify and locate positions of single NPs 

simultaneously.  

The design and construction is fully explained in our previous studies.9, 12-14, 25, 28-

30, 42-43, 58-59, 61-62, 75, 78 In particularly, our dark-field optical microscope was equipped with 

a dark-field condenser (oil 1.43-1.20, Nikon), a 100x objective (Nikon Plan fluor 100x oil, 

iris SL N.A. 0.5-1.3, W.D.0.20 mm), a charge coupled device (CCD) camera (Micromax, 

Roper Scientific), a digital color camera (Handycam, Sony)  and a multispectral imaging 

system (Nuance, Cambridge Research Inc.).42-43 We have achieved high temporal 

resolution up to 5 ms to continuingly image of transport of single NPs in and out of 

single living cells.9, 14 However, we acquired images in every 1 min as we found that the 

transport of single NPs in and out of single living cells was not a rapid process.9, 14 

Thus, a temporal resolution of minutes was sufficient to study transport of single NPs in 

real time.  

We prepared a fresh micro-chamber every 25 min and imaged single cells for 18 

representative locations. This approach allowed us to study transport of single NPs in 

massive numbers of cells (1500 cells) for each sample to make data adequate for 

probing the accumulation rates of bulk cells at a single cell resolution. We quantified 

intracellular NPs and plotted them versus incubation time and determined the 

accumulation rates (slopes of the plots) of single NPs in the cells over time.  

Lastly, we characterized the viability of the cells at a single cell resolution using 

LIVE/DEAD BacLight viability and counting assay at the end of each 2h-experiment.  

We imaged cells in the micro-chamber using dark-field optical microscopy and epi-

fluorescence microscopy and counted the green fluorescence cells (peak wavelength of 
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fluorescence spectra of SYTO9, λmax = 520 nm) and the red fluorescence cells (peak 

wavelength of fluorescence spectra of propidium iodide, λmax = 610 nm) as live and 

dead cells, respectively. 

 

Data Analysis and Statistics 

Cells were imaged for eighteen representative locations of each cell suspension 

incubated with 1.85 pM and 3.7 pM NPs every 25 min over 2h and 5 min. Approximately 

fifteen cells were acquired in a single CCD image simultaneously. Therefore, 

approximately 300 cells were imaged every 25 min and 1500 cells were studied over 2 

h and 5 min for each measurement. We repeated each experiment three times. Thus, 

we studied 4500 cells for each sample allowing us to gain sufficient statistics to study 

efflux function of bulk cells at single cell resolution. We analyzed the numbers of 

intracellular NPs in 900 cells (300 cells per each measurement) at every 25 min and 

plotted them over time to determine the accumulation rates (slope of the plot) of 

intracellular NPs of both AgMUNH-Oflx NPs and AgMUNH2 NPs for the cells in the 

absence and presence of orthovanadate (25 µM). We determined accumulation of 

intracellular NPs at 41.5 min incubation.  We performed statistical analysis (2-sample t-

test) using SPSS to compare means of intracellular NPs in the treated cells. 

The viability of single cells was characterized at a minimum of 150 cells that were 

incubated with each type of NPs after each experiment (2 h). We repeated each 

measurement three times. Therefore, 450 cells were assayed for each sample. 
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CHAPTER VI 

 

CONCLUSION 

 

This dissertation presents our development of Ag NP-based antibiotic drug 

nanocarriers to serve as powerful drug delivery vehicles and as superior photostable 

drug nanocarrier optical probes, aiming to improve drug efficacy and to study efflux 

function of multidrug ABC membrane transporters in single live cells for a better 

understanding of the molecular basis of MDR mechanisms. We have studied and found 

size-dependent inhibitory effects of antibiotic drug nanocarriers against bacterial cells 

(e.g., Escherichia coli). We have studied efflux kinetics of multidrug ABC membrane 

transporters (MsbA) in single live E. coli cells using different sized antibiotic drug 

nanocarriers. A summary of significant findings in each chapter is described below.   

 As described in Chapter II, we synthesized and characterized three different 

sized antibiotic drug nanocarriers (AgMUNH-Oflx NPs) by functionalizing three different 

sized Ag NPs (2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm) with a monolayer of AUT to 

prepare AgMUNH2 NPs, followed by covalently conjugating the amine group of the 

AgMUNH2 NPs with the carboxyl group of an antibiotic (ofloxacin, Oflx). We determined 

the amount of conjugated Oflx molecules on each single NP (the conjugation ratios) of 

2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm as 8.6x102, 9.4x103, and 6.5x105 molecules/NP, 

respectively. We studied the dependence of inhibitory effects of free Oflx and 

conjugated Oflx attached on the surface of the nanocarriers on the dose of Oflx and the 

size of nanocarriers in E. coli. We found that the inhibitory effects of Oflx significantly 

depend on the dose of Oflx and the size of nanocarriers. The largest nanocarriers (92.6 

± 4.4 nm) show the highest inhibitory effects with the lowest MIC50 (0.026 ± 0.003 µM) 

of Oflx while the smallest nanocarriers (2.4 ± 0.7 nm) exhibit the lowest bactericidal 

inhibitory with the highest MIC50 (0.314 ± 0.010 µM) of Oflx against E. coli. These 

results demonstrate that the same amount of Oflx generates a substantially higher 

bactericidal potency when it is carried and delivered by the larger nanocarriers. The 

findings suggest that the densely loaded Oflx molecules (multivalence) enhance their 
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binding affinity to the targets and the higher drug payload could raise local drug 

concentrations and their bactericidal effects. Thus, an optimal size of nanocarriers is 

required to create maximum inhibitory effects against pathogenic bacteria.   Notably, the 

inhibitory effects of drug nanocarriers are dose dependence but not linearly proportional 

to their sizes indicating that an interplay among several factors, such as the 

multivalence effects, their intracellular distribution (pharmacodynamics) and the 

extrusion by multidrug membrane transporters could contribute to their inhibitory effects. 

Therefore, we further used these antibiotic drug nanocarriers to study efflux function of 

multidrug ABC (MsbA) membrane transporters in single live cells (E. coli), as presented 

in Chapter III – V. 

 In Chapter III, we used the smallest antibiotic drug nanocarriers (2.4 ± 0.7 nm 

AgMUNH-Oflx NPs) and the same sized control nanocarriers (AgMUNH2 NPs) to probe 

efflux kinetics of ABC (MsbA) membrane transporters of single live E coli cells. We 

developed an imaging method including DFOMS which uses LSPR spectra of single 

AgMUNH-Oflx NPs and AgMUNH2 NPs to identify and track transport of single NPs in 

and out of single live cells over time. We found a high dependence of the accumulation 

of intracellular AgMUNH-Oflx NPs and AgMUNH2 NPs upon a presence of a pump 

(ATPase) inhibitor (25 µM orthovanadate) and the concentration of NPs (0.7 and 1.4 

nM). These results suggest that the NPs are substrates of MsbA transporters and more 

likely enter the cells via passive diffusion, which are driven by concentration gradient 

across the cellular membrane similarly to fluorescence dye (Hoechst 33342) and 

conventional antibiotics. Interestingly, the accumulation of the AgMUNH2 NPs is twice 

that of the AgMUNH-Oflx NPs in single live cells. These findings suggest substrate-

dependent efflux kinetics of MsbA, showing that the efflux pumps can extrude noxious 

substrates (e.g., conjugated Oflx) more effectively and rapidly out of the cells than 

AgMUNH2 NPs because the AgMUNH-Oflx NPs consist of conjugated Oflx which 

exhibits inhibitory effects while the AgMUNH2 NPs are biocompatible to the cells as we 

reported in Chapter II. This provides an evidence that multidrug membrane transporters 

might have a sensing machinery to selectively detect, recognize toxic substances (e.g., 
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antibiotics and anticancer drugs), and then extrude them out as cellular defense 

mechanisms. 

 Furthermore, in Chapter IV, we used slightly larger antibiotic drug nanocarriers 

(13.0 ± 3.1 nm AgMUNH-Oflx NPs) and the same sized control nanocarriers (AgMUNH2 

NPs) to probe efflux kinetics of ABC (MsbA) membrane transporters of single live E coli 

cells using DFOMS. We found that the accumulation rates and efflux kinetics depend on 

the concentration of NPs, suggesting that they most likely enter the cells through 

passive diffusion. Interestingly, we found that the pump inhibitor (orthovanadate) only 

caused an increasing of the accumulation rate of intracellular AgMUNH-Oflx NPs. The 

accumulation rates of intracellular AgMUNH2 NPs in the presence and absence of 

orthovanadate are essentially the same (9 NPs/min) during the first 90 min incubation 

and much higher than those of the AgMUNH-Oflx NPs at any given time points. These 

results confirm the dependence of efflux function of MsbA membrane transporters on 

types of substrates, and that the efflux pumps can effectively extrude harmful 

substances, similarly to results previously reported in Chapter III. Moreover, we found 

that the efflux pumps might be able to extrude the smaller nanocarriers (2.4 ± 0.7 nm) 

more effectively than the larger nanocarriers (13.0 ± 3.1 nm) as the number of 

intracellular 2.4 ± 0.7 nm AgMUNH-Oflx NPs become significantly higher than those of 

13.0 ± 3.1 nm AgMUNH-Oflx NPs when the efflux pumps were blocked by the inhibitor 

(p = 0.004).  

Finally, as we described in Chapter V, we studied efflux kinetics of ABC (MsbA) 

membrane transporters of single live E coli cells using the largest antibiotic drug 

nanocarriers (92.6 ± 4.4 nm AgMUNH-Oflx NPs) and the same sized of blank control 

nanocarriers (AgMUNH2 NPs). We found that the accumulation rates of intracellular 

NPs and efflux kinetics of MsbA membrane transporters depend on the concentration of 

NPs, suggesting that such large NPs could passively diffuse into the cells. Moreover, 

the pump inhibitor (orthovanadate) interrupt efflux function of MsbA membrane 

transporters leading to the increase of accumulation rates of intracellular AgMUNH-Oflx 

NPs and AgMUNH2 NPs. Interestingly, similarly to the small drug nanocarriers (2.4 ± 0.7 

and 13.0 ± 3.1 nm), we found that the accumulation rates of intracellular AgMUNH2 NPs 
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in the presence and absence of orthovanadate are higher than those of the AgMUNH-

Oflx NPs, emphasizing the dependence of the accumulation rates on the type of NPs. 

Notably, we found that the accumulation rates of the larger NPs (92.6 ± 4.4 nm) are 

slower than those of the smaller NPs (2.4 ± 0.7 nm and 13.0 ± 3.1 nm). These findings 

could be attributed to the low membrane permeability and much low concentration 

gradients of 92.6 ± 4.4 nm nanocarriers. As the accumulation rates of the nanocarriers 

increase with the concentration of NPs, we could have found a much higher number of 

intracellular 92.6 ± 4.4 nm drug nanocarriers if their concentrations are the same as the 

13.0 ± 3.1 and 2.4 ± 0.7 nm drug nanocarriers (378 time higher). These results suggest 

size-dependent accumulation rates and efflux function of MsbA membrane transporters 

and the cells could not extrude the larger NPs out of single live cells as effectively as 

the smaller NPs.  

Taken together, this dissertation demonstrated that Ag NPs can serve as not only 

powerful drug nanocarriers, but also photostable size-dependent optical imaging probes 

for the study of ABC (MsbA) transporters in single live cells (E. coli). Drug therapeutic 

effects increase substantially when they are delivered by the larger nanocarriers. We 

can study the efflux function of multidrug ABC membrane transporters using the drug 

nanocarriers as superior photostable plasmonic optical probes. We found that the 

smaller nanocarriers could be effectively extrude out of the cells by the ABC (MsbA) 

membrane transporters more effectively than the larger nanocarriers, and therefore, 

they are less toxic than the larger nanocarriers, making them well suited as excellent 

imaging probes. In contrast, the larger nanocarriers show higher potent inhibitory effects 

than the smaller nanocarriers, enabling them to server as powerful drug delivery 

vehicles. All these findings offer a possibility of designing antibiotic drug nanocarriers 

that could generate the most potent bactericidal effects and overcome MDR.  
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APPENDIX 

 

This dissertation follows the procedures and guidelines how to work safely and 

handle biohazard materials in the protocol number 16-009 approved by the Institutional 

Biosafety Committee. Personnel who works with biohazard materials such as bacteria 

and nanoparticles must wear cloth lab coats, disposable gloves and safety goggles.  

Appropriate personal clothing is required in all laboratories. Long pants and closed 

toed shoes are required. Hand washing facilities are provided in all labs and hand 

washing must be performed after handling bacterial cells and nanomaterials. All 

solutions are disposed of as hazardous waste following established guidelines of the 

Environmental Health and Safety Office. All personnel must complete all applicable 

CITI trainings and pass all the requirements.  
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