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ABSTRACT 

 

BEHAVIOR AND STRENGTH OF NON-PRESTRESSED AND PRESTRESSED HILLMAN 

COMPOSITE BEAM INCLUDING CFRP RETROFITTING 

 

Wajid Khan 

Old Dominion University, 2017 

Director: Dr. Zia Razzaq 

 

The Hillman Composite Beam (HCB) is a recent innovation used for the first time in 2008 

for a bridge construction in USA. It essentially consists of an FRP outer shell, concrete arch 

inside the shell and steel strands used to tie the two ends of the arch. Being new in the field, the 

behavior of HCB has not been thoroughly studied. This dissertation presents a study of the 

flexural behavior and strength of HCB up to the collapse as well as explores the influence of 

using carbon reinforced polymer (CFRP) retrofitting and prestressed steel for a further increase 

in HCB stiffness and strength. Materially nonlinear computational algorithms are formulated and 

programmed to develop moment-curvature relations which are then combined with a finite-

difference scheme to predict HCB behavior and strength using Bernoulli beam approach.  The 

nonlinear analysis is performed for various cross sectional configuration of the HCB. A tied 

arch-and-beam model for predicting the elastic response of HCB is also developed. This model 

as well as that based on Bernoulli beam approach provided results which are in good agreement 

with HC Bridge company experiment. A new method involving the combined use of CFRP and 

steel prestressing resulting in increasing HCB strength by a factor of more than two-and-a-half 

times is also presented.  
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1. INTRODUCTION 

1.1   Prelude 

This dissertation presents a study of the load-deflection behavior of Hillman Composite 

Beam (HCB) with an overlying concrete slab as used in a bridge system under four-point loading 

conditions with and without prestressing and CFRP retrofitting.  The HCB is a recent innovation 

used first time in a bridge construction in 2008. The idea of HCB was originally conceived by 

John Hillman [1] in 1996 with the aim of enhancing the performance of the conventional bridge 

beams by intelligently using different materials therein. The HCB consists of three main 

components, namely, an outer beam shell made of glass fiber reinforced polymer referred to as 

FRP, a concealed arch made of Portland cement grout or self-consolidating concrete, steel 

strands embedded into the compression concrete at the ends and polyurethane foam. A 19 ft. 

long prototype beam was fabricated and tested up to the collapse under gradually increasing 

static loading at the University of Delaware. The ultimate load for the beam was found to be 

180% of the factored design load.  

In 2003 Hillman performed a product demonstration of HCB that included fabrication, 

erection and monitoring of a 30 ft. span full size prototype railroad bridge. The project came to 

its successful conclusion in 2007 with his demonstration of the desired performance of a HCB 

bridge at the Facility for Accelerated System Testing (FAST) at Pueblo, Colorado. Since then, 

HCB has been used in the construction of 18 railway and highway bridges in North America 

ranging from 52 ft. long single span Tide Mill Bridge, Virginia to 540 ft. long 8 spans 

Knickerbocker Bridge in Maine. The apparent reasons for the preference of HCB over 

conventional steel and reinforced concrete bridges are reduced transportation weight, increased 

corrosion resistance and easy and rapid bridge constructability. However, being a recent 

development, HCB behavior has not yet been thoroughly studied. Consequently, the current 

design procedures tend to be simplistic and over conservative. Furthermore, the behavior 

prediction models do no account for the material nonlinearities.  

This research focuses on the behavior of HCB under increasing static vertical loading up to 

the collapse conditions. Theoretical models for predicting the flexural behavior of HCB are 

developed and their accuracy is checked by comparing the results with the available 
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experimental data. The study of the nonlinear flexural behavior of prestressed and CFRP 

retrofitted HCB is also presented. .  

The expected outcome of the research is accurate as well as practical design 

recommendations for HCB against flexure and deflection control demands.  

 

1.2   Literature review 

The Hillman composite beam is a recent innovation in the field of bridge engineering which 

was introduced in 1996 [2], patented in 2002 [3] and practically used (in bridge construction) in 

2008 in Illinois, USA [4]. Being a new development, not much research has been conducted so 

far on HCB and the literature on this topic is limited to a few research papers and project reports. 

The summary of the research on HCB is given herein: 

For the validation of the concept of HCB, Hillman started his experimental work in 1999 

with a grant from the Transportation Research Board-IDEA [2]. Hillman investigated different 

aspect of HCB for bridge application, namely, cost comparison with equivalent pre-stress 

concrete and steel girder bridges, manufacturing of Hillman composite beam and tooling for the 

manufacture, design and analysis and limit states governing the process etc. A prototype HCB 

was actually produced and tested to verify the validity of the predicted performance. Hillman 

submitted his final report in 2003 [2]. The important conclusions and suggestions for further 

investigation were: 

1. The behavior of the beam under loading was very close to the predicted behavior. 

2. The economic advantages of HCB were related to the span length. For short span, HCB 

appeared to be cheaper than steel beam and for longer spans, it proved to be superior to 

even prestressed concrete beam due to its light weight advantages.  

3. The serviceability limit state of beam deflection appeared to consistently govern the 

design. 

4. Shear in the beam is mostly carried by the FRP webs but the arching action of the 

compression reinforcement offered a redundant path that is exploited as the applied 

forces exceed the factored demand. 

5 Relative economic difference between carbon fiber and steel tension fin forcing. 
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6 Fine tuning the tooling and lay-up using the recyclable mandrel material to facilitate 

lighter weight for shipping and erection. 

7 Refinement in the analysis and design methodologies. 

8 Additional load testing to better quantify shear strength, crushing/buckling of the webs 

and fatigue stress limit states  

9 Testing of multiple beam systems to ascertain distribution of loads to the plurality of 

beams in bridge cross section. 

The investigation proved that HCB was a workable concept; thus creating a demand for 

checking the viability of HCB by constructing a serviceable bridge using HCB girders.  

During the period between the submission of Final Report  of  Type 1 project in 2003 and 

initiation of the Type 2 Project fatigue testing of the prototype HCB was carried out wherein the 

beam was subjected to 2,000,000 cycles of fatigue loading and tested to failure [5]. The results 

confirmed that the structural response was in compliance with AREMA recommended practices. 

After the successful extermination on the prototype HCB during Type 1 Idea Project, work on 

Type 2 Idea Project started in 2003 with the aim of performing a product demonstration that 

included fabrication, erection and monitoring of a full size 30-foot prototype railroad bridge 

constructed using HCB technology [5]. Before the construction of the actual 30 ft. span bridge, 

two 30-foot prototype HCB girders were prepared and tested in the laboratory. Before the 

fabrication of the prototype beams, manufacturing  experiments were conducted on smaller scale 

beams of 8-foot length to determine tooling, lay-up and infusion techniques that could be scaled 

up for the fabrication of larger beams. Both successful laboratory tests yielded similar results and 

demonstrated that the prototype beams met all performance requirements in accordance with 

AREMA recommended practices. Then came the stage of manufacturing eight 30 ft. hybrid 

composite beams for using in the bridge. The process took more time than had been anticipated 

as the manufacturing techniques evolved during the process of manufacturing. During next stage 

of the project, issues related to maintenance, durability, fire resistance, preparation of the beam 

for deployment in the prototype installation and other constructability and performance related 

issues were addressed.  The last stage of project was the field testing of HCB Bridge that was 

done at the Transportation Technology Center on November 7, 2007. 

A 30 ft. prototype test HCB Bridge was constructed at TTCI in Pueblo in 2007. The bridge 

comprised of eight beams, grouped in two of four beams each. All beam shells were 
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manufactured individually without the compression concrete then four teams were tied together 

to form a single unit, thus giving two units of 4 beams each. The self-consolidating concrete was 

then poured into the cavity provided in the top flange at mid span to form compression 

reinforcement. The placement of the shear connectors was done before pouring of concrete.  

Once concrete was placed in all of the beams, forms were placed around the perimeter to cast the 

composite deck on the two, four-beam assemblies. The two bridge units were then transported to 

the site of bridge construction.  

The flexural behavior of HCB with and without the concrete deck to investigate load 

distribution between the sub-components of  HCB for both non-composite and composite 

conditions was studied by [6]. Three prototype HCBs of 43 ft. span were constructed at Virginia 

Tech for testing. First, only FRP shell (without arch concrete in place) was tested; then, complete 

HCBs (having concrete arch inside the shell) without the concrete deck and finally, the three 

HCB Bridge with concrete deck was tested. The research investigated the hypothesis that the 

beam could be broken down into two separate systems for analysis, namely, the tied arch and the 

beam shell. Two loading configurations i.e., 15 k load at the mid-span and two identical loads 

(12.5 kips) at quarter points were used for the individual beam testing. The tests showed that 

strain compatibility existed between steel strands and FRP shell and the neutral axis prediction 

based on transformed section strain compatibility was accurate. However, the observed arch 

concrete strains differed considerably from the predicted ones showing that transformed section 

strain compatibility could not be used to predict concrete arch strains. The contribution of the 

tied arch and the shell to resist loads calculated from two different methods namely, curvature 

method and stress integration method, showed that the tied arch system was responsible for 

slightly less than 80% of resistance and the shell took approximately 20% of the load.  

Tests on HCB composite with concrete deck in the three beam system led to the following 

findings: 

1. Transformed section method is acceptable for predicting the system behavior. 

2. The concrete arch is in tension so its strain is not plotted nor is it considered effective in 

resisting load but even with this arrangement the HCB (shell and tension 

reinforcement) provided almost 80% of the load resistance. Moreover, the assumption 

that the arch is cracked leads to simple design procedures as we then have a constant 

cross section beam throughout the span. 
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3. FRP has linear strain profiles for both mid and quarter point tests. 

4. Compressive strains in concrete deck are consistent with FRP strain trends and strain 

compatibility exists between the FRP and steel strands. 

The accuracy of linear FE analysis in predicting static behavior of the HCB under service 

loads was examined by [7]. One of the HCB bridges constructed in Missouri named Bridge 0439 

was analyzed using SAP 2000 an ANSYS. The deflections obtained from analysis were then 

compared with the field deflections at mid-span and quarter points. The deflections at the 

specified points were calculated by using the currently in use simple analytic procedure based on 

transformed area method. The comparison of the calculated and measured values showed that 

FEA could predict HCB bridge behavior with acceptable accuracy whereas the simple analytical 

method gave pretty higher values for deflections than the measured ones.  

To the best of the author’s knowledge and in view of the literature review conducted, the 

influence of the CFRP retrofitting and prestressing on the performance of HCB has not been 

studied. Furthermore, no materially nonlinear analysis procedure for HCB has been published in 

the past. 

 

1.3   Problem statement 

An isometric view of Hillman Composite Beam is shown in Figure 1.  The beam consists of 

three main components, namely, (1) the beam outer shell, made of fiber reinforced polymers, that 

encapsulates the other two components; (2) the concrete arch, called compression reinforcement, 

made of self-consolidating concrete or cement grout; (3)  the  tension reinforcement, consisting 

of carbon, glass or steel fibers that is used to tie two ends of the arch. 

The beam shell is constructed of a vinyl resin reinforced with glass fibers optimally oriented 

to resist the anticipated forces in the beam. The shell includes a top flange, bottom flange, two 

vertical webs and a continuous conduit to receive concrete for compression reinforcement. All 

the components of the shell are fabricated monolithically using Vacuum Assisted Resin Transfer 

Method (VARTM). The top flange can also be fabricated separately and connected to the 

remaining shell later on.  

The compression reinforcement typically consists of self-consolidating concrete (SCC) or 

cement grout pumped into the conduit through the ports located typically at the ends and 
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centerline of the beam but they may also be located at intermediate points depending on length of 

the beam. The profile of compression reinforcement is parabolic that starts at the bottom corners 

of the beam ends and reaches an apex at the mid-span where arch and the top flange are tangent.  

The tension reinforcement consists of layers of unidirectional steel reinforcing fibers with 

high tensile strength and high elastic modulus. The tension reinforcement is fabricated 

monolithically into the composite beam the same time the beam shell is constructed. 

Consequently, the strands are completely encapsulated in the same resin matrix as the glass 

fibers.  

This research dissertation comprises of two main parts. In the first part, a study is conducted 

into the linear and nonlinear behavior of HCB under flexure.  The experimental data, provided 

by the HC Bridge Company [9], will be used for the validation of the theory. The load-deflection 

response of HCB under four-point loading as shown in Figure 2 is theoretically predicted up to 

the collapse condition. The nonlinear moment-curvature analysis in combination with on the 

finite-difference method is used for the nonlinear analysis.  An alternative approach to the 

analysis which considers HCB as combination of a beam and concealed arch is also presented for 

the prediction of the load-deflection behavior in the elastic range only.  

In the second part, the nonlinear behavior of HCB up to the collapse is theoretically 

investigated for prestressing and CFRP retrofitting.   

 

 

 

Figure 1. Isometric view of Hillman Composite Beam [9] 
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1.4   Objectives and Scope 

The main objectives of the study are summarized as under: 

1. Development of practical theoretical models for predicting the load-deflection response 

up to the collapse condition for HCB  

2. Theoretical assessment of the performance of  prestressed HCB  

3. Theoretical assessment of the performance of HCB retrofitted with CFRP 

 The data provided by the HC Bridge Company is used of the validation of first objective.  

Four- points loading as used by in the experiment [10] is used for the theoretical analysis. The 

second and third objectives are only a theoretical analyses and no experimental data is available 

for validation. Other main points defining the scope of the study are as under: 

1. High strength self-consolidating concrete as actually used in the construction of the 

compression reinforcement [10] is used in the theoretical analysis. 

2. Yield strength of 250 ksi is used for the tension reinforcement. 

3. The webs and top and bottom flanges of the beam outer box are monolithic 

4. The tension steel is monolithic with the bottom flange  

 

 

 

Figure 2. Loading pattern used for analysis of HCB 
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1.5   Assumptions and Conditions 

Assumptions and conditions adopted in this investigation are as follows: 

1. All mechanical loads are concentrated loads. 

2. Small deflection theory is assumed. 

3. Linear strain profile occurs along the depth of the beam and strain compatibility exists 

between the bottom FRP flange and tension reinforcement and between top flange and 

concrete deck. 

4. No initial imperfections are considered. 

5. The beam is a simple supported beam.  

6. The steel follows the elastic-perfectly plastic stress-strain relationship as shown in 

Figures 3 and 4 and its stress-strain relationship is the same for compression and 

tension. 

7. The stress-strain relationship for concrete is simplified to tri-linear curve as shown in 

Figure 5 and is same for compression and tension. 

8. The stress-strain relation for FRP is linear up to the point of failure as shown in Figures 

6 and 7. 

9. Concrete and steel are assumed to be isotropic materials. 

10. FRP is assumed to be orthotropic transversely isotropic material. 
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Figure 3. Stress-strain relation for steel rebars 

 

 

 

Figure 4. Stress-strain relation for steel strand 
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Figure 5. Stress-strain curve for concrete 

 

 

 

Figure 6. Stress-strain curve for GFRP 
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Figure 7. Stress-strain curve for CFRP 
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2. THEORETICAL FORMULATION 

 

This chapter presents theoretical formulation for the study of the linear and nonlinear 

behavior of non-prestressed and prestressed HCB under bending loading.  Two approaches to 

HCB analysis are presented herein. In the first approach, the analysis of HCB is performed to 

predict the load-deflection relation up to the collapse condition by considering the HCB as a 

Bernoulli beam. In the second approach, HCB is considered as a composite of two elements, 

namely, a box beam and a concealed arch. The second method is used to determine the load-

deflection behavior of HCB in the elastic range only. The theoretical formulation for both 

approaches of analysis is presented as under: 

 

2.1   HCB analyzed as Bernoulli  beam 

In this approach HCB is considered as a single beam and analyzed by following the 

Bernoulli’s beam theory [11] to predict the load-deflection response and ultimate load carrying 

capacity under bending loads.  In order to investigate the impact of different cross-sectional 

elements of HCB on the behavior and find simple practical method of predicting the deflection 

response and strength, the analysis is performed for the following four cross sections for HCB:  

1. .Regular HCB cross section 

2.  Cross section without concrete arch and fin  

3.  Cross section without concrete arch and FRP box  

4.  Cross section with average fin depth   

 

2.1.1   HCB with regular cross section 

The cross section of a typical HCB is shown in Figure 8. The FRP wings and foam used as 

filler, due to their anticipated negligible contribution in shaping the response of HCB, are not 

considered in the analysis. The cross section of HCB used for the analysis is shown in Figure 9. 

The analysis includes theoretical prediction of the load-midspan deflection relations for HCB and 

comparing it with the available experimental data. The components of the analysis procedure and 

mythologies used therein are given in the following sections.  
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Figure 8. Typical cross section of HCB 

 

 

 

Figure 9. Cross section of HCB used for analysis 
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2.1.2   Neutral axis of HCB  

The first step of the analysis is the determination of the location of the neural axis which is 

done by using the following fundamental equation: 

 

Moment of cross section = Sum of moments of cross-sectional components 

 

(∑ 𝐴𝑖  𝑛
𝑖=1 )𝑦̅ = ∑ 𝐴𝑖𝑦̅𝑖

𝑛
𝑖=1                                                                                                                             (1) 

 

Where 

𝐴𝑖 = Area of i-th cross-sectional component 

𝑦̅𝑖 = Centroidal distance of area 𝐴𝑖 from the top of cross section  

𝑦̅   = Centroidal distance of cross section from the top of the cross section 

 

Referring to Figure 9, we get: 

 

∑(𝐴𝑦̅) =  𝐴𝑐 (ℎ𝑐/2) /(
𝐸𝑒

𝐸𝑐
⁄ ) + 𝐴𝑠1 𝑑𝑠1/(

𝐸𝑒
𝐸𝑠

⁄  ) + 𝐴𝑠2 𝑑𝑠2/(
𝐸𝑒

𝐸𝑠
⁄  ) + 𝐴𝑓 𝑑𝑓/(

𝐸𝑒
𝐸𝑓

⁄  ) 

+ 2𝑡𝑤(𝑑 − 𝑡𝑓1 − 𝑡𝑓2)(ℎ𝑐 + 𝑡𝑓1 +
(𝑑 − 𝑡𝑓1 − 𝑡𝑓2)

2
⁄ ) + 𝑏𝑡𝑓1 (ℎ𝑐 +

𝑡𝑓1
2⁄ ) (

𝐸𝑒
𝐸𝑒𝑓

⁄⁄ ) +

𝑏𝑡𝑓2 (ℎ𝑐 + 𝑑 −
𝑡𝑓2

2⁄ ) (
𝐸𝑒

𝐸𝑒𝑓
⁄⁄ ) + 𝑏𝑓ℎ𝑓(ℎ𝑐 + 𝑡𝑓1 + ℎ𝑓/2) /(

𝐸𝑒
𝐸𝑎𝑐

⁄ ) +  𝑏𝑒ℎ𝑎( ℎ𝑐 + 𝑡𝑓1 + ℎ𝑓 +

ℎ𝑎
2⁄ )/(

𝐸𝑒
𝐸𝑎𝑐

⁄ ) + 𝐴𝑎𝑠 ( ℎ𝑐 + 𝑑 − ℎ𝑎𝑠)/(
𝐸𝑒

𝐸𝑠𝑡
⁄ )+ 𝐴𝑎𝑓 ( ℎ𝑐 + 𝑑 − ℎ𝑎𝑓)/(

𝐸𝑒
𝐸𝑓

⁄  ) + 𝐴𝑠𝑡 ( ℎ𝑐 +

𝑑 − ℎ𝑠𝑡)/(
𝐸𝑒

𝐸𝑠𝑡
⁄  )                                                                                                     (2) 

 

 

 

 

And 
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∑ 𝐴 =  𝐴𝑐 /(
𝐸𝑒

𝐸𝑐
⁄  ) + 𝐴𝑠1 /(

𝐸𝑒
𝐸𝑠

⁄  ) + 𝐴𝑠2 /(
𝐸𝑒

𝐸𝑠
⁄  ) + 𝐴𝑓 /(

𝐸𝑒
𝐸𝑓

⁄  ) + 2𝑡𝑤(𝑑 − 𝑡𝑓1 − 𝑡𝑓2) +

𝑏𝑡𝑓1 (
𝐸𝑒

𝐸𝑒𝑓
⁄⁄ ) + 𝑏𝑡𝑓2 (

𝐸𝑒
𝐸𝑒𝑓

⁄⁄ ) + 𝑏𝑓ℎ𝑓/(
𝐸𝑒

𝐸𝑎𝑐
⁄ ) + 𝑏𝑒ℎ𝑎/(

𝐸𝑒
𝐸𝑎𝑐

⁄ ) +  

𝐴𝑎𝑠 /(
𝐸𝑒

𝐸𝑠𝑡
⁄ ) + 𝐴𝑎𝑓 /(

𝐸𝑒
𝐸𝑓

⁄  ) + 𝐴𝑠𝑡 /(
𝐸𝑒

𝐸𝑠𝑡
⁄  )                                                                            (3) 

 

where 

𝑡𝑤 = Thickness of web 

𝑡𝑓1 = Thickness of top flange 

𝑡𝑓2 = Thickness of bottom flange 

ℎ𝑐   = Thickness of slab 

𝐴𝑐  = Area of slab concrete  

𝑑    = Depth of HCB 

𝑏    = Width of HCB 

𝐴𝑠  = Area of slab steel  

𝑑𝑠1  = Top slab rebars centroidal distance from the top of slab  

𝑑𝑠2  = Bottom slab rebars centroidal distance from the top of slab  

𝑏𝑓    = Thickness of concrete fin 

ℎ𝑓   = Height of concrete fin 

𝐴𝑓   = Area of slab CFRP reinforcement  

𝑑𝑓  = Centroidal distance of slab CFRP reinforcement form the top of slab 

𝑏𝑒  = Width of concrete arch 

ℎ𝑎   = Height of concrete arch 

𝐴𝑎𝑠 = Area of arch steel 

𝐴𝑎𝑓 = Area of arch CFRP reinforcement 

𝐴𝑠𝑡 = Area of tension reinforcement  

ℎ𝑎𝑠  = Centroidal distance of arch steel from the bottom of beam  

ℎ𝑎𝑓 = Centroidal distance of arch CFRP from the bottom of beam  

ℎ𝑠   = Centroidal distance of tension reinforcement from the bottom of beam  

𝐸𝑒   = Modulus of elasticity for FRP used in webs 
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𝐸𝑒𝑓 = Modulus of elasticity for FRP used in flanges 

𝐸𝑐  = Modulus of elasticity for slab concrete 

𝐸𝑎𝑐 = Modulus of elasticity for arch concrete 

𝐸𝑠   = Modulus of elasticity for steel rebars 

𝐸𝑠𝑡  = Modulus of elasticity for pre-stress steel strands 

 

The depth of the neutral axis from top of the slab is, then, given by: 

 

𝑦̅ =  
∑ 𝐴𝑦

∑ 𝐴⁄                                                                                                                                (4) 

  

Substituting equations 2 and 3, in equation 4 gives an expression for the elastic neutral axis 

of HCB.  

 

2.1.3   Internal resisting moment in HCB section  

The equation for the internal resisting moment at any section of HCB depends upon the strain 

condition across the depth of beam and location of the neutral axis of the section. Due to the 

complex geometry of HCB and variety of materials used therein, equation for the internal 

moment for the same HCB section takes different shapes as the location of the neutral axis and 

strain level in different materials changes. Here are given equations for individual contributions 

of the HCB cross-sectional components to the internal resisting moment produced in response to 

the given strains one situation  when  neutral axis of the section is below the concrete arch as 

shown in Figure 9 and stress in slab and arch concrete are within the elastic range. The stress and 

strain diagrams for the HCB section under the above mentioned conditions are shown in Figure 

10.  
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Figure 10. Stress-strain diagram for HCB for neutral axis below concrete arch and 

stresses elastic 

 

 

The contribution of slab concrete to the resisting moment under such conditions will be: 

 

𝑀𝑐𝑠=  
1

2
(∈𝑐+

∈𝑐

𝑐
ℎ𝑐) 𝐸𝑐𝐴𝑐(𝑐 −

ℎ𝑐

3

(∈𝑐+2
∈𝑐
𝑐

ℎ𝑐)

(∈𝑐+
∈𝑐
𝑐

ℎ𝑐)
)                                                                                           (5) 

   

where 

∈𝑐= Strain in top fibers of concrete slab 

c  = Distance of neutral axis from the top of slab 
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The contribution of the top steel reinforcement in the concrete slab is: 

 

𝑀𝑠1 = 𝐹𝑠1(c − 𝑑𝑠1)                                                                                                                                                                                   (6) 

 

where  

𝐹𝑠1  = Force in top slab steel 

𝐹𝑠1 =  ∈𝑠1 𝐸𝑠 𝐴𝑠1                   when    ∈𝑠1 =  
∈𝑐

𝑐
(𝑐 −  𝑑𝑠1) <  ∈𝑦   

𝐹𝑠1 =  𝐹𝑦 𝐴𝑠1                                     when    ∈𝑠1  ≥   ∈𝑦  

 

∈𝑠1 = Strain in top slab steel 

∈𝑦   = Yield Strain of top steel rebars 

𝐹𝑦   = Yield strength of top steel rebars 

 

The contribution of the bottom steel reinforcement in the concrete slab is: 

 

𝑀𝑠2 =  𝐹𝑠2(c − 𝑑𝑠2)                                                                                                                                                                                 (7) 

 

where  

𝐹𝑠2  = Force in bottom slab steel 

𝐹𝑠2 =  ∈𝑠2 𝐸𝑠 𝐴𝑠2    when    ∈𝑠2 =  
∈𝑐

𝑐
(𝑐 −  𝑑𝑠2)  <  ∈𝑦   

𝐹𝑠2 =  𝐹𝑦 𝐴𝑠2                                      when    ∈𝑠2  ≥   ∈𝑦  

∈𝑠2 = Strain in bottom slab steel 

∈𝑦  = Yield Strain of bottom steel rebars 

𝐹𝑦  = Yield strength of bottom steel rebars 
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The contribution of CFRP slab reinforcement will be: 

 

𝑀𝑓 =  𝐹𝑓(c − 𝑑𝑓)                                                                                                                                                                                        (8) 

 

where  

𝐹𝑓  = Force in CFRP slab reinforcement 

𝐹𝑓 =  ∈𝑓 𝐸𝑓 𝐴𝑓     when    ∈𝑓 =  
∈𝑐

𝑐
(𝑐 −  𝑑𝑓)  <  ∈𝑢𝑓   

𝐹𝑓 =  0                                      when    ∈𝑓  ≥  ∈𝑢𝑓  

 

∈𝑓  = Strain in CFRP slab reinforcement 

∈𝑢𝑓  = Ultimate strain of CFRP 

 

The contribution of concrete fin to the internal resisting moment will be: 

 

𝑀𝑐𝑓 =
∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1 −

ℎ𝑓

2
)𝐸𝑎𝑐𝑏𝑓ℎ𝑓𝑦𝑐𝑓                                                                                                                                            (9) 

 

where 

𝑦𝑐𝑓 = Distance of center of the fin force from the top of fin  

        = 𝑐 − ℎ𝑐 − 𝑡𝑓1 −
ℎ𝑓

3

(
∈𝑐

𝑐 ((𝑐 − ℎ𝑐 − 𝑡𝑓1) + 2
∈𝑐

𝑐 (𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓))

((
∈𝑐

𝑐 ((𝑐 − ℎ𝑐 − 𝑡𝑓1) +
∈𝑐

𝑐 (𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓)))
 

 

The contribution of concrete arch to the internal resisting moment will be: 

 

𝑀𝑐𝑎 =
∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓 −

ℎ𝑎

2
)𝐸𝑎𝑐𝑏𝑒ℎ𝑎𝑦𝑐𝑎                                                                          (10) 

 

where 

𝑦𝑐𝑎 = Distance of the center of arch force from the top of arch  
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        = 𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓 −
ℎ𝑎

3

∈𝑐

𝑐 ((𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓) + 2(𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓 − ℎ𝑎))

∈𝑐

𝑐 ((𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓) + (𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓 − ℎ𝑎))
 

 

The contribution of arch steel reinforcement is: 

 

𝑀𝑎𝑠 = 𝐹𝑎𝑠(𝑐 − (ℎ𝑐 + 𝑑 − ℎ𝑎𝑠))                                                                                                                                                  (11) 

 

where  

𝐹𝑎𝑠   = Force in arch steel 

𝐹𝑎𝑠 =  ∈𝑎𝑠 𝐸𝑠𝑡  𝐴𝑎𝑠     when    ∈𝑎𝑠  =  
∈𝑐

𝑐
(𝑐 − (ℎ𝑐 + 𝑑 − ℎ𝑎𝑠))    <   ∈𝑦𝑠   

𝐹𝑎𝑠 =  𝐹𝑦𝑠 𝐴𝑎𝑠                                       when    ∈𝑎𝑠  ≥   ∈𝑦𝑠  

∈as = Strain in arch steel  

∈𝑦𝑠  = Yield strain of arch steel strands 

𝐹𝑦𝑠  = Yield strength of arch steel strands 

 

The contribution by arch CFRP reinforcement is: 

 

𝑀𝑎𝑓 = 𝐹𝑎𝑓(𝑐 − (ℎ𝑐 + 𝑑 − ℎ𝑎𝑓))                                                                                                                                                (12) 

 

where  

𝐹𝑎𝑓  = Force in arch CFRP 

𝐹𝑎𝑓 =  ∈𝑎𝑓 𝐸𝑓 𝐴𝑎𝑓     when    ∈𝑎𝑓 =  
∈𝑐

𝑐
(𝑐 − (ℎ𝑐 + 𝑑 − ℎ𝑎𝑓))   <   ∈𝑢𝑓   

𝐹𝑎𝑓 =  0                                      when    ∈𝑎𝑓  ≥   ∈𝑢𝑓  

∈𝑎𝑓 = Strain in arch CFRP  

∈𝑢𝑓 = Rupture strain of arch CFRP 
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The contribution of the top flange is: 

 

𝑀𝑡1 = 𝐹𝑡1(𝑐 − ℎ𝑐 −
𝑡𝑓1

2⁄ )                                                                                                                                                              (13) 

where  

𝐹𝑡1  = Force in top flange 

𝐹𝑡1 =  ∈𝑡1 𝐸𝑒𝑓 𝑏𝑡𝑓1    when    ∈𝑡1 =  
∈𝑐

𝑐
(𝑐 − ℎ𝑐 −

𝑡𝑓1
2⁄ )   <   ∈𝑒𝑓    

𝐹𝑡1 =  0    when    ∈𝑡1  ≥   ∈𝑒𝑓  

∈𝑡1 =  Strain at the middle of top HCB flange  

∈𝑒𝑓   = Ultimate strain of FRP used in flanges 

 

Similarly, the moment contribution of the bottom flange is: 

 

𝑀𝑡2 = 𝐹𝑡2(ℎ𝑐 + 𝑑 − 𝑐 −
𝑡𝑓2

2⁄ )                                                                                                                                                   (14) 

 

where  

𝐹𝑡2  = Force in top flange 

𝐹𝑡2 =  ∈𝑡2 𝐸𝑒𝑓 𝑏𝑡𝑓2    when    ∈𝑡2 =  
∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2
2⁄ )   <   ∈𝑒𝑓   

𝐹𝑡2 =  0                                      when    ∈𝑡2  ≥   ∈𝑒𝑓  

∈𝑡1 =  Strain at the middle of bottom HCB flange  

∈𝑒𝑓   = Ultimate strain of FRP used in flanges 

 

The moment contribution of the part of the webs in compression will be: 

 

For   ∈𝑡𝑤 =  
∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1)  <   ∈𝑒: 

𝑀𝑤𝑐 =  
∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1)𝐸𝑒𝑡𝑤(𝑐 − ℎ𝑐 − 𝑡𝑓1)

2

3
(𝑐 − ℎ𝑐 − 𝑡𝑓1)                                                                            (15) 

 

For   ∈𝑡𝑤  ≥   ∈𝑒: 

𝑀𝑤𝑐 = 0                                                                                                                                                     (16) 
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where   

∈𝑡𝑤 = Strain at the top of HCB webs 

∈𝑒   = Ultimate strain of FRP used in webs 

 

The moment contribution of the part of the webs in tension will be: 

 

For   ∈𝑏𝑤 =  
∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)  <   ∈𝑒: 

𝑀𝑤𝑡 =  
∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2) 𝐸𝑒𝑡𝑤(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2) 

2

3
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)                                        (17) 

 

For   ∈𝑏𝑤  ≥   ∈𝑒: 

𝑀𝑤𝑡 = 0                                                                                                                                                     (18) 

 

where   ∈𝑏𝑤 = Strain at the bottom of  HCB webs 

 

The internal moment contribution due to the tension reinforcement will be: 

 

𝑀𝑠𝑡 =  𝐹𝑠𝑡(ℎ𝑐 + 𝑑 − 𝑐 − ℎ𝑠𝑡)                                                                                                                                                        (19) 

 

where  

𝐹𝑠𝑡   = Force in tension reinforcement 

𝐹𝑠𝑡 =   ∈𝑠𝑡 𝐸𝑠𝑡  𝐴𝑠𝑡                    when    ∈𝑠𝑡 =
∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − ℎ𝑠𝑡)  <   ∈𝑦𝑠   

𝐹𝑠𝑡 =  𝐹𝑦𝑠 𝐴𝑠1                                     when    ∈𝑠𝑡   ≥   ∈𝑦𝑠  

∈st = Strain in tension reinforcement 

∈ys = Yield strain of tension reinforcement  

Fys = Yield strength of tension reinforcement 

 

The nominal resisting moment of the beam cross section 𝑀𝑛 will be equal to the sum of the 

individual resisting moment contributions of all the components of the HCB cros-section i.e., 
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𝑀𝑛 = ∑ 𝑀𝑖  

      = 𝑀𝑐𝑠 + 𝑀𝑠1 + 𝑀𝑠2 + 𝑀𝑓 + 𝑀𝑐𝑓 + 𝑀𝑐𝑎  + 𝑀𝑎𝑠  + 𝑀𝑎𝑓 + 𝑀𝑡1 + 𝑀𝑡2 +𝑀𝑤𝑐+ 𝑀𝑤𝑡 + 

            𝑀𝑠𝑡                                                                                                                                                                                                        (20) 

 

The above equation will be used for calculating the nominal moment at different sections of 

the beam for getting M-Φ curves. 

 

2.1.4   Equation for flexural equilibrium of HCB  

Due to the complicated geometry of HCB cross section and a variety of materials used 

therein, various moment equilibrium equations are possible for different locations of the neutral 

axis and stress levels. For the case shown in Figure 10, wherein stress in all components is elastic 

and neutral axis is located below the concrete arch, the internal resisting moment produced by 

the cross section for the linear strain distribution is: 

𝑀𝑒 = 𝑀𝑖 =
1

2
(∈𝑐+

∈𝑐

𝑐
ℎ𝑐) 𝐸𝑐𝐴𝑐(𝑐 −

ℎ𝑐

3

(∈𝑐+2
∈𝑐
𝑐

ℎ𝑐)

(∈𝑐+
∈𝑐
𝑐

ℎ𝑐)
) +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠1)𝐸𝑠𝐴𝑠1(𝑐 − 𝑑𝑠1) +

∈𝑐

𝑐
(𝑐 −

𝑑𝑠2)𝐸𝑠𝐴𝑠2(𝑐 − 𝑑𝑠2) +
∈𝑐

𝑐
(𝑐 − 𝑑𝑓)𝐸𝑠𝐴𝑓(𝑐 − 𝑑𝑓) + 

∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1 −

ℎ𝑓

2
)𝐸𝑎𝑐𝑏𝑓ℎ𝑓(𝑐 − ℎ𝑐 −

𝑡𝑓1 −
ℎ𝑓

3
(

∈𝑐
𝑐

((𝑐−ℎ𝑐−𝑡𝑓1)+2(𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓))

∈𝑐
𝑐

((𝑐−ℎ𝑐−𝑡𝑓1)+(𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓))
)) + 

∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1 − ℎ𝑓 −

ℎ𝑎

2
)𝐸𝑎𝑐𝑏𝑒ℎ𝑎 (𝑐 − ℎ𝑐 − 𝑡𝑓1 −

ℎ𝑓 −
ℎ𝑎

3
(

∈𝑐
𝑐

((𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓)+2(𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓−ℎ𝑎))

∈𝑐
𝑐

((𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓)+(𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓−ℎ𝑎))
)) +

∈𝑐

𝑐
(𝑐 − (ℎ𝑐 + 𝑑 − ℎ𝑎𝑠))𝐸𝑠 𝐴𝑎𝑠(𝑐 − (ℎ𝑐 + 𝑑 −

ℎ𝑎𝑠)) +
∈𝑐

𝑐
(𝑐 − (ℎ𝑐 + 𝑑 − ℎ𝑎𝑓))𝐸𝑓 𝐴𝑎𝑓 (𝑐 − (ℎ𝑐 + 𝑑 − ℎ𝑎𝑓)) +

∈𝑐

𝑐
(𝑐 − ℎ𝑐 −

𝑡𝑓1

2
)𝐸𝑒𝑓𝑏𝑡𝑓1(𝑐 −

ℎ𝑐 −
𝑡𝑓1

2
) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2

2
)𝐸𝑒𝑓𝑏𝑡𝑓2(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2

2
) +

∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1)𝐸𝑒𝑤𝑡𝑤(𝑐 − ℎ𝑐 −

𝑡𝑓1)
2

3
(𝑐 − ℎ𝑐 − 𝑡𝑓1) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)𝐸𝑒𝑤𝑡𝑤(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)

2

3
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − ℎ𝑠𝑡)𝐸𝑠𝑡𝐴𝑠𝑡(ℎ𝑐 + 𝑑 − 𝑐−ℎ𝑠𝑡)                                                                          (21) 

In a different scenario where stresses in all components are elastic and neutral axis is within 

the concrete fin as shown in Figure 11, the following flexural equilibrium equation for the HCB 

section holds: 
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𝑀𝑒 = 𝑀𝑖 =
1

2
(∈𝑐+

∈𝑐

𝑐
ℎ𝑐) 𝐸𝑐𝐴𝑐(𝑐 −

ℎ𝑐

3

(∈𝑐+2
∈𝑐
𝑐

ℎ𝑐)

(∈𝑐+
∈𝑐
𝑐

ℎ𝑐)
) +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠1)𝐸𝑠𝐴𝑠1(𝑐 − 𝑑𝑠1) +

∈𝑐

𝑐
(𝑐 −

𝑑𝑠2)𝐸𝑠𝐴𝑠2(𝑐 − 𝑑𝑠2) +
∈𝑐

𝑐
(𝑐 − 𝑑𝑓)𝐸𝑠𝐴𝑓(𝑐 − 𝑑𝑓) + 

∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1 −

ℎ𝑓

2
)𝐸𝑎𝑐𝑏𝑓ℎ𝑓(𝑐 − ℎ𝑐 −

𝑡𝑓1 −
ℎ𝑓

3
(

∈𝑐
𝑐

((𝑐−ℎ𝑐−𝑡𝑓1)+2(𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓))

∈𝑐
𝑐

((𝑐−ℎ𝑐−𝑡𝑓1)+(𝑐−ℎ𝑐−𝑡𝑓1−ℎ𝑓))
)) + 

∈𝑐

𝑐
(𝑐 − ℎ𝑐 −

𝑡𝑓1

2
)𝐸𝑒𝑓𝑏𝑡𝑓1(𝑐 − ℎ𝑐 −

𝑡𝑓1

2
) +

∈𝑐

𝑐
(ℎ𝑐 +

𝑑 − 𝑐 −
𝑡𝑓2

2
)𝐸𝑒𝑓𝑏𝑡𝑓2(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2

2
) +

∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1)𝐸𝑒𝑤𝑡𝑤(𝑐 − ℎ𝑐 − 𝑡𝑓1)

2

3
(𝑐 − ℎ𝑐 −

𝑡𝑓1) +
∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)𝐸𝑒𝑤𝑡𝑤(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)

2

3
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 −

ℎ𝑠𝑡)𝐸𝑠𝑡𝐴𝑠𝑡(ℎ𝑐 + 𝑑 − 𝑐−ℎ𝑠𝑡)                                                                                                       (22) 

 

Equations 21 and 22 represent only two different situations of stress distribution across the 

complex cross section of HCB. Numerous such complex equations are possible for different 

stress levels and locations of neutral axis.   

 

 

 

Figure 11. Stress-strain diagram for HCB cross section for neutral axis within  
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concrete fin and stresses elastic 

 

 

2.1.5   Load-deflection Relation for HCB  

The method followed for predicting the deflection response of HCB under bending loading 

consists of degenerating load-deflection relation by using theoretical M-ф curves equally distant 

sections along the span of HCB and moment diagram for the actual loading.  The description of 

the method is given as follows: 

In order to generate load vs midspan-deflection relation for a simple beam, the span of the 

beam is divided into ‘2n’ number of elements of small equal length ‘h’ as shown in Figure 12. 

Then, at each node is generated theoretical M-ф curve using the cross-sectional dimensions at 

that point. The author have used MATLAB for generating M-ф curves. The program written for 

the purpose is given in Appendix-A.  The program takes dimensions of the beam and material 

properties from user and gives M-ф curve as output. The algorithm of the program is structured 

in a way that strain of concrete at the topmost fiber is varied from 0 to its maximum possible 

value i.e., 0.003 and for each value of concrete strain the position of the neutral axis is changed 

until the condition of force equilibrium for the section i.e., ∑ 𝐹 = 0  is satisfied.  Then the 

internal moment and curvature is calculated for the equilibrium location of the neutral axis and 

recorded as a point for plotting M-ф graph. In the next step, a new value is assigned to the 

topmost concrete fiber strain and the above mentioned process repeated for getting next point on 

the M-ф graph.  

After M-ф curves for the beam at the desired locations are obtained, we can use finite 

difference method to calculate deflections at the nodes. The scheme followed for finding the 

midspan deflection is described as follows: 

Let 𝑣𝑜,𝑣1, 𝑣2, … . . , 𝑣𝑛, be the deflection of beam at nodes 0, 1, 2, 3, . . . , n , respectively as 

shown in the Figure 12. The relationship between curvature and deflection is [12]:  

 

 ф =
𝑑2𝑣

𝑑𝑥2
                                                                                                                                       (23) 
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The approximate value of ф can be calculated by using finite-difference method. The 

central-difference equation gives [13]: 

 

𝑑2𝑣𝑖

𝑑𝑥2 =
𝑣𝑖−1  −2𝑣𝑖  +𝑣𝑖+1  

ℎ2                                                                                                                    (24) 

ф𝑖ℎ
2  = 𝑣𝑖−1  − 2𝑣𝑖  + 𝑣𝑖+1                                                                                                        (25) 

 

where i = 1, 2, 3,….., n 

 

The boundary conditions and symmetry of loading gives: 

 

v0  = 0                                                                                                                                         (26) 

vn−1  =  vn+1                                                                                                                                            (27) 

 

 

 

Using the above conditions, the system of linear equations can be written as: 

 

 ℎ2{∅𝑖} = [𝐶𝑖𝑗]{𝑣𝑖}                                                                                                                                  (28) 

 

where i = 1, 2, 3, … , n and  j = 1, 2, 3, … , n. The square matrix 𝐶𝑖𝑗  is given in Appendix 

B.  

The beam deflections at the chosen sections will be given by: 

 

{𝑣𝑖} = ℎ2[𝐶𝑖𝑗]
−1

{∅𝑖}                                                                                                                   (29) 

 

Equation 37 can be solved for deflections at the nodes by simply substituting curvature 

values corresponding to the moments and the interval ‘h’.  The system of equation for i =1, 2, 

3, … , n and  j = 1, 2, 3, … , n is given in Appendix C. 
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Figure 12. Meshing of HCB for applying finite-difference method 

 

 

 2.1.6   HCB analyzed for cross section without concrete arch and fin 

In order to investigate the contribution of concrete arch and fin to the strength and stiffness 

of HCB, the deflection-response of HCB under bending loading is determined by ignoring the 

presence of concrete arch and fin and using the cross section with concrete slab over FRP box as 

shown in Figure 13.  The concrete slab and steel reinforcement, under such assumption, are 

expected to be the major contributors to the structural performance of the beam with FRB outer 

box and foam contributing only marginally but playing important role of helping HCB maintain 

its shape to achieve the desired performance.  

The load deflection relation for HCB without the concrete arch and fin can be theoretically 

predicted by using the same finite-difference approach as followed for the regular HCB in 

section 2.1 except all the nodes in the current case, due to uniform cross section throughout the 

span of HCB, will have same moment-curvature curve and equation for the internal moment will 

not have terms for the fin and arch. Referring to the stress and strain diagrams shown in Figure 

13, the equation for the internal moment with neutral axis of the section below the slab concrete 

will be: 
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Figure 13. Stress-strain diagram for HCB without concrete arch for neutral axis  

below concrete slab 

 

 

𝑀𝑒 = 𝑀𝑖 =
1

2
(∈𝑐+

∈𝑐

𝑐
ℎ𝑐) 𝐸𝑐𝐴𝑐(𝑐 −

ℎ𝑐

3

(∈𝑐+2
∈𝑐
𝑐

ℎ𝑐)

(∈𝑐+
∈𝑐
𝑐

ℎ𝑐)
) +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠1)𝐸𝑠𝐴𝑠1(𝑐 − 𝑑𝑠1) +

∈𝑐

𝑐
(𝑐 −

𝑑𝑠2)𝐸𝑠𝐴𝑠2(𝑐 − 𝑑𝑠2) +
∈𝑐

𝑐
(𝑐 − 𝑑𝑓)𝐸𝑠𝐴𝑓(𝑐 − 𝑑𝑓) +

∈𝑐

𝑐
(𝑐 − ℎ𝑐 −

𝑡𝑓1

2
)𝐸𝑒𝑓𝑏𝑡𝑓1(𝑐 − ℎ𝑐 −

𝑡𝑓1

2
) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2

2
)𝐸𝑒𝑓𝑏𝑡𝑓2(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2

2
) +

∈𝑐

𝑐
(𝑐 − ℎ𝑐 − 𝑡𝑓1)𝐸𝑒𝑤𝑡𝑤(𝑐 − ℎ𝑐 − 𝑡𝑓1)

2

3
(𝑐 −

ℎ𝑐 − 𝑡𝑓1) +
∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)𝐸𝑒𝑤𝑡𝑤(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2)

2

3
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 −

𝑐 − ℎ𝑠𝑡)𝐸𝑠𝑡𝐴𝑠𝑡(ℎ𝑐 + 𝑑 − 𝑐−ℎ𝑠𝑡)                                                                                                (30) 
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Figure 14. Stress-strain diagram for HCB without concrete arch for neutral axis within  

concrete slab 

 

  

 

Likewise, the equation for the internal moment of the cross section when neutral axis is 

within the concrete slab, as shown in Figure 14 is given by: 

𝑀𝑒 = 𝑀𝑖 =
1

2
∈𝑐 𝐸𝑐𝐴𝑐

2

3
𝑐 +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠1)𝐸𝑠𝐴𝑠1(𝑐 − 𝑑𝑠1) +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠2)𝐸𝑠𝐴𝑠2(𝑐 − 𝑑𝑠2) +

∈𝑐

𝑐
(𝑐 −

𝑑𝑓)𝐸𝑠𝐴𝑓(𝑐 − 𝑑𝑓) +
∈𝑐

𝑐
(ℎ𝑐 +

𝑡𝑓1

2
− 𝑐)𝐸𝑒𝑓𝑏𝑡𝑓1(ℎ𝑐 +

𝑡𝑓1

2
− 𝑐) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2

2
)𝐸𝑒𝑓𝑏𝑡𝑓2(ℎ𝑐 + 𝑑 − 𝑐 −

𝑡𝑓2

2
) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓1 −

1

2
(𝑑 − 𝑡𝑓1 − 𝑡𝑓2))𝐸𝑒𝑤𝑡𝑤(𝑑 − 𝑡𝑓1 −

𝑡𝑓2)(ℎ𝑐 + 𝑑 − 𝑐 − 𝑡𝑓2 −
𝑑−𝑡𝑓1−𝑡𝑓2

3
(

∈𝑐
𝑐

((ℎ𝑐+𝑑−𝑐−𝑡𝑓2)−2(ℎ𝑐+𝑡𝑓1−𝑐)
∈𝑐
𝑐

((ℎ𝑐+𝑑−𝑐−𝑡𝑓2)−(ℎ𝑐+𝑡𝑓1−𝑐)
) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 −

ℎ𝑠𝑡)𝐸𝑠𝑡𝐴𝑠𝑡(ℎ𝑐 + 𝑑 − 𝑐−ℎ𝑠𝑡)                                                                                                       (31) 
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Equations 30 and 31 are two of many possible equations to be employed for generating M-ɸ 

curve fo HCB section. The scheme described in section 2.1 is then used to find the  nodal 

deflections.   

 

2.1.7  HCB analyzed for  cross section without concrete arch, fin and FRP box  

The equation for the internal moment of HCB without arch and box can be obtained from 

the equations given in section 2.1.1 by simply omitting the terms f\ 

 the moment contribution of box components. Referring to Figure 15, the equation for the 

internal moment of HCB section for neutral axis below the concrete slab will be: 

 

𝑀𝑒 = 𝑀𝑖 =
1

2
(∈𝑐+

∈𝑐

𝑐
ℎ𝑐) 𝐸𝑐𝐴𝑐(𝑐 −

ℎ𝑐

3

(∈𝑐+2
∈𝑐
𝑐

ℎ𝑐)

(∈𝑐+
∈𝑐
𝑐

ℎ𝑐)
) +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠1)𝐸𝑠𝐴𝑠1(𝑐 − 𝑑𝑠1) +

∈𝑐

𝑐
(𝑐 −

𝑑𝑠2)𝐸𝑠𝐴𝑠2(𝑐 − 𝑑𝑠2) +
∈𝑐

𝑐
(𝑐 − 𝑑𝑓)𝐸𝑠𝐴𝑓(𝑐 − 𝑑𝑓) +

∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − ℎ𝑠𝑡)𝐸𝑠𝑡𝐴𝑠𝑡(ℎ𝑐 + 𝑑 −

𝑐−ℎ𝑠𝑡)                                                                                                                                         (32) 

 

 

Figure 15. Stress-strain diagram for HCB without concrete arch and FRP box for neutral 

axis below concrete slab 
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Similarly, the equation for the internal moment for neutral axis located within the concrete 

slab, as shown in Figure 16, is given: 

 

𝑀𝑒 = 𝑀𝑖 =
1

2
∈𝑐 𝐸𝑐𝐴𝑐

2

3
𝑐 +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠1)𝐸𝑠𝐴𝑠1(𝑐 − 𝑑𝑠1) +

∈𝑐

𝑐
(𝑐 − 𝑑𝑠2)𝐸𝑠𝐴𝑠2(𝑐 − 𝑑𝑠2) +

∈𝑐

𝑐
(𝑐 −

𝑑𝑓)𝐸𝑠𝐴𝑓(𝑐 − 𝑑𝑓) + +
∈𝑐

𝑐
(ℎ𝑐 + 𝑑 − 𝑐 − ℎ𝑠𝑡)𝐸𝑠𝑡𝐴𝑠𝑡(ℎ𝑐 + 𝑑 − 𝑐−ℎ𝑠𝑡)                                      (33) 

 

Equations 32 and 33 represent moment equilibrium equations for stresses with in the elastic 

ranges for only two locations of the neutral axis. Several such equations can be generated by 

changing stress levels and neutral axis locations.   

 

Figure 16. Stress-strain diagram for HCB without concrete arch, fin and FRP box  

for neutral axis within concrete slab 
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2.1.8  HCB with average cross section  

The depth of concrete fin in HCB does not remain constant across the beam span due to the 

profile of arch, making the analysis complex because the equations for prismatic beam are no 

longer valid. To avoid this complexity and get a simple solution for HCB problem, a 

modification that assumes an inverted T-shaped concrete element in place of concrete arch is 

studied.  Since, this model also assumes constant cross section across the span, therefore, 

equation for the elastic deflection of prismatic beams can be used within the elastic range. The 

finite-difference approach is still used to predict the load-deflection behavior in nonlinear range.  

 

 2.2   HCB analyzed as combination of arch and box beam 

An alternative approach to HCB analysis is presented in this dissertation by treating it as 

structure composed of concealed concrete arch inside FRP box beam, jointly resisting the applied 

load and satisfy the compatibility conditions of deflection at the midspan. This is referred to as 

arch-and-beam model of HCB. To further explore the behavior of the concealed arch the analysis 

is carried by treating it as a tied arch as well as two-hinged arch. 

 

2.2.1   Tied arch-and-beam model 

This tied arch-and-beam model of analysis for HCB is shown in Figure 17. The strain 

compatibility at a given section along the depth of the beam is not supposed for this model; nor is 

this approved by the past study [6] that has found that strains at the top and bottom of the 

concrete arch are different than those at the corresponding points in the FRP outer shell. The 

reason for this difference is attributed to the local bending of the arch which is the consequence 

of arch action.  

The compatibility condition for finding the forces transmitted by the tied arch and the outer 

beam is: 

 

∆𝐴  = ∆𝐵                                                                                                                                                      (34) 

 

where 

∆𝐴   =  Tied arch defection at the crown    
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∆𝐵   =  Beam box deflection at the midspan 

 

 

a. Load jointly resisted by tied arch and box beam 

 

b. Load individually resisted by box beam 

 

c. Load individually resisted by tied arch 

 

Figure 17. Arch-and-beam model of analysis for HCB 
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2.2.2   Deflection in Tied Arch 

The tied parabolic arch in the HCB can be modeled as shown in Figure 18. The arch has a 

hinged support at one end and a roller support with a spring of stiffness k attached at the other 

end. The spring is introduced to represent the collective resistance to change in the relative 

distance between the arch ends offered by all beam components. Since it is not known if only the 

steel strands contribute to the stiffness or the FRP outer box has some contribution as well; 

therefore, response of HCB is determined for different possible values of stiffness of the spring 

and compared with the experimental values for confirmation.  The displacement at the roller end 

of the arch due to the application of vertical loads is [14]:  

 

∆𝑟  =
 𝐻

𝑘
                                                                                                                                                       (35) 

 

where 

∆𝑟  =Displacement at the roller support B

𝐻  =Horizontal reaction at each support of the arch  

𝑘  = Stiffness of spring introduced to represent the resistance of tie  

 

 

 

(a) Arch with a tie 
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(b). Arch with a spring to account for the tie resistance 

Figure 18. Modeling of tied arch 

The unknown H is calculated by using Castigliano’s Theorem [15]. The total strain energy 

in the arch is equal to the sum of strain energies due to all actions. The strain energy due to 

bending moment is given by [16]: 

 

𝑈𝑏 = ∫
𝑀2

2𝐸𝐼

𝑠

0
𝑑𝑠                                                                                                                                           (36) 

 

where   

M = Bending moment acting at an arbitrary section of arch 

E = Modulus of Elasticity for arch 

I = Moment of inertial of arch 

 

Strain energy due to the axial force is [17]: 

 

𝑈𝑎 = ∫
𝑁2

2𝐸𝐴

𝑠

0
𝑑𝑠                                                                                                           (37) 

 

where  

N = Axial thrust at any arbitrary section of the arch 

A = Cross section area of the arch at the section  

 

Strain energy 𝑈𝑠 due to spring force is [17]: 
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𝑈𝑠 =
1

2
𝑘∆𝑟

2                                                                                                                (38) 

𝑈𝑠 =
1

2
𝑘(

𝐻

𝑘
)2                                                                                                                                             (39) 

𝑈𝑠 =
𝐻

2𝑘

2
                                                                                                                                                     (40) 

 

The strain energy due to shear force is negligible and is, therefore, ignored. So the total strain 

energy of the arch is given by [17]: 

 

𝑈  =   𝑈𝑏 + 𝑈𝑎 + 𝑈𝑠                                                                                                   (41) 

𝑈 =  ∫
𝑀2

2𝐸𝐼

𝑠

0
𝑑𝑠 + ∫

𝑁2

2𝐸𝐴

𝑠

0
𝑑𝑠 +

𝐻

2𝑘

2
                                                                                                 (42)  

 

 

 

Figure 19. Forces at an arbitrary section of arch at distance x from the origin 

 

 

Referring to the Figure 19,  the moment M is given by: 

 

𝑀 = 𝑀𝑜 − 𝐻𝑦                                                                                                                             (43)  

            

where 
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𝑀𝑜 = Equivalent beam moment at any chosen section 

𝑦 = Height of arch at the chosen section 

Referring to Figure 20, the normal thrust N at any cross section of the arch is: 

 

𝑁 = 𝑁𝑜𝑠𝑖𝑛𝜃 + 𝐻𝑐𝑜𝑠𝜃                                                                                                                 (44)    

 

where 

𝑁𝑜 = Vertical force at the section 

𝜃 = Inclination of arch at the location of cross section with x-axis  

 

Figure 20. Relationship between ds, dx and dy 

 

 

From the principle of virtual work [17], we have: 

 

 
𝜕

 𝜕𝐻
(  𝑈𝑏 + 𝑈𝑎) =  ∆𝑟                                                                                                                   (45) 

 

  
𝜕

𝜕𝐻
(∫

𝑀2

2𝐸𝐼

𝑠

0
𝑑𝑠 + ∫

𝑁2

2𝐸𝐴

𝑠

0
𝑑𝑠) =

−𝐻

𝑘
                                                                                                (46) 

                                       

∫
𝑀

𝐸𝐼

𝑠

0

𝜕𝑀

𝜕𝐻
𝑑𝑠 + ∫

𝑁

𝐸𝐴

𝜕𝑁

𝜕𝐻

𝑠

0
𝑑𝑠 = −

𝐻

𝑘
                                                                                              (47) 

 

Where: 
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 ∫
𝑀

𝐸𝐼

𝑠

0

𝜕𝑀

𝜕𝐻
𝑑𝑠 = − ∫

𝑀𝑜−𝐻𝑦 

𝐸𝐼

𝑠

0
𝑦 𝑑𝑠                                                                                                   (48) 

                

 ∫
𝑁

𝐸𝐴

𝜕𝑁

𝜕𝐻

𝑠

0
𝑑𝑠 = ∫

𝑁𝑜𝑠𝑖𝑛𝜃+𝐻𝑐𝑜𝑠𝜃

𝐸𝐴

𝑠

0
𝑐𝑜𝑠𝜃𝑑𝑠                                                                                        (49) 

 

Substituting equations 48 and 49 in equation 47, we get: 

 

− ∫
𝑀𝑜−𝐻𝑦

𝐸𝐼

𝑠

0
𝑦𝑑𝑠 + ∫

𝑁𝑜𝑠𝑖𝑛𝜃+𝐻𝑐𝑜𝑠𝜃

𝐸𝐴

𝑠

0
𝑐𝑜𝑠𝜃𝑑𝑠 = −

𝐻

𝑘
                                                                      (50) 

 

𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝑠
0 𝑑𝑠−∫

𝑁𝑜𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

1

𝑘
+∫

𝑦2

𝐸𝐼

𝑠
0 𝑑𝑠+∫

𝑐𝑜𝑠2𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

                                                                                                           (51) 

 

Since the second term in the numerator is very small compared with the rest, therefore, we 

can simplify the equation by simply omitting it to get the following: 

 

𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝑠
0 𝑑𝑠

1

𝑘
+∫

𝑦2

𝐸𝐼

𝑠
0 𝑑𝑠+∫

𝑐𝑜𝑠2𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

                                                                                                                 (52) 

 

Also, for low arches cosθ ≈ 1 and we can further simplify the equation as: 

 

𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝑠
0

𝑑𝑠

1

𝑘
+∫

𝑦2

𝐸𝐼

𝑠
0 𝑑𝑠+∫

1

𝐸𝐴

𝑠
0 𝑑𝑠

                                                                                                                     (53) 

 

The deflection of arch at the point where load 𝑃𝑎 is acting will be [17]: 

 

∆𝐴  =  
𝜕𝑈

𝜕𝑃𝑎
 (54) 

∆𝐴  =  
𝜕

𝜕𝑃𝑎
(∫

𝑀2

2𝐸𝐼

𝑠

0
𝑑𝑠 + ∫

𝑁2

2𝐸𝐴

𝑠

0
𝑑𝑠 +

𝐻

2𝑘

2
 )                                                                                     (55) 

∆𝐴  =  
𝜕

𝜕𝑃𝑎
(∫

(
𝑃𝑎
2

𝑥−𝐻𝑦)2

2𝐸𝐼

𝑠

0
𝑑𝑠 + ∫

(
𝑃𝑎
2

𝑠𝑖𝑛𝜃+𝐻𝑐𝑜𝑠𝜃)2

2𝐸𝐴

𝑠

0
𝑑𝑠 +

𝐻

2𝑘

2
 )                                                               (56) 
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Force resisted by the arch and outer beam can then be calculate by using the compatibility 

of deflections of arch at the crown  and outer box  at the midspan  and force equilibrium equation 

for the HCB: 

 

The compatibility condition for arch and outer beam box deflection at the midspan is: 

 

∆𝐴  = ∆𝐵                                                                                                                                       (57) 

 

 

Force equilibrium equation for the composite structure: 

 

𝑃 = 𝑃𝑎  +  𝑃 𝑏                                                                                                                              (58) 

 

where  

𝑃 = Applied load at the mid span 

𝑃a  = Load resisted by the concrete arch 

𝑃𝑏  = Load resisted by the beam box 

 

2.2.3   Two-hinged arch-and-beam model 

The concrete arch inside the beam box may also behave very close to two hinged parabolic 

arch. To investigate such possibility HCB will also be modeled as consisting of an FRP beam 

box and two-hinged concrete arch jointly resisting the upcoming load. The concrete arch 

modeled as two-hinged is shown in Figure 21. The analysis part for the outer box will exactly be 

same as the previous section where as equations for the analysis of the arch can be easily 

obtained from those given in the previous section by simply putting the value of stiffness of the 

spring equal to infinity.  
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Figure 21. Concrete arch as two hinged arch 

 

The modified equations to be used for the analysis of hinged arch are given as follows: 

Horizontal reaction at the arch ends will be: 

 

𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝑠
0 𝑑𝑠−∫

𝑁𝑜𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

∫
𝑦2

𝐸𝐼

𝑠
0 𝑑𝑠+∫

𝑐𝑜𝑠2𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

                                                                                                           (59) 

 

Ignoring the second term in the numerator, we get: 

 

 𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝑠
0 𝑑𝑠

∫
𝑦2

𝐸𝐼

𝑠
0 𝑑𝑠+∫

𝑐𝑜𝑠2𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

                                                                                                                    (60) 

 

For low arches i.e.,  θ very small, cosθ ≈ 1 

 

𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝑠
0

𝑑𝑠

∫
𝑦2

𝐸𝐼

𝑠
0

𝑑𝑠+∫
1

𝐸𝐴

𝑠
0

𝑑𝑠
                                                                                                                        (61) 

 

The deflection at the mid-span will be: 

 

∆𝐴  =
𝜕

𝜕𝑃𝑎
(∫

(
𝑃𝑎
2

𝑥−𝐻𝑦)2

2𝐸𝐼

𝑠

0
𝑑𝑠 + ∫

(
𝑃𝑎
2

𝑠𝑖𝑛𝜃+𝐻𝑐𝑜𝑠𝜃)2

2𝐸𝐴

𝑠

0
𝑑𝑠 )                                                                    (62) 
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The computability and equilibrium equations used for the solution for this case are same as 

the previous one.  

 

2.3   Load-deflection response of prestressed HCB 

The prestressing of tension reinforcement has never been practically used nor theoretically 

investigated for HCB since its inception in 2008. This research also focuses on the theoretical 

evaluation of the performance of HCB for prestressing of the tension reinforcement.  The load-

deflection relation for HCB under prestressed conditions is theoretically predicted using M-Φ 

curves generated by finite difference method. 

 

2.3.1   Maximum Prestressing Force for HCB 

The maximum prestressing force for HCB can be found by using the condition that the 

stress anywhere must not exceed the limiting stress for the material. For the HCB in question for 

the  transformed section with cracking moment for concrete as the limiting stress, the maximum 

prestressing force is given by: 

 

𝐹 ≤  
𝑓𝑟

(
1

𝐴
+

𝑒𝑐

𝐼
)
                                                                                                                                   (63) 

  

where 

F = Maximum prestressing force  

𝑓𝑟 = Cracking moment for concrete = 7.5√𝑓𝑐
,
 

e = Eccentricity of the prestressing force 

A = Cross-sectional area of the transformed cross section 

I = Moment of inertial of the transformed cross section 

 

2.3.2   Force equilibrium and strains for prestressed HCB with no external moment 

When only prestressing force is applied to the beam at a certain eccentricity from the neutral 

axis in a manner that  it does not cause cracking in concrete at the extreme fibers; then, the load 

condition can be broken down to two components, namely, stress caused by the axial 
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prestressing force 𝐹 and stress caused by the prestressing moment  𝑀𝑝 = 𝐹𝑒. Under the 

condition, total stress and total strain at any location will be equal to the sum of the stresses and 

strains caused by the axial and bending effects of the prestressing force. Total strain at any 

location is given by: 

 

∈𝑡=∈𝑜+∈𝑝𝑚+∈𝑎                                                                                                                        (64) 

 

where 

∈𝑡= Total strain 

∈𝑜= Strain caused by centriod force 𝐹 

∈𝑝𝑚= Strain caused by prestreseing moment  𝑀𝑝 = 𝐹𝑒 

∈𝑎= Strain caused by self load  

 

The equilibrium condition for the section requires that net force on the section from both 

sources i.e., axial and bending be equal to the externally prestressing force F: 

 

∑ 𝐹𝑖 = 𝐹                                                                                                                                      (65) 

𝐹𝑜 + 𝐹𝑝𝑚 + 𝐹𝑎 = 𝐹                                                                                                                      (66) 

 

Where 

𝐹𝑜 = Net axial force on the section = F 

𝐹𝑝𝑚 = Net force on the section cuased by prestressing moment = 0 

𝐹𝑎 = Net axial force on the section due to self load = 0 

 

2.3.3   Moment and Curvature for Prestressed HCB without External Moment 

The curvature of HCB for full prestressing without external applied load is given by: 

 

 ∅ =  
∈𝑐

𝑐
                                                                                                                                        (67) 
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The above equation is the same as used for finding curvature for non prestressed beam but 

here it gives a non-zero curvature for zero bending moment.  

 

2.3.4   Force Equilibrium and Strains for Prestressed HCB with Applied Moment 

When an external moment is also acting on the prestressed beam then the stain contribution 

by this load needs to be added to get the total strain at any point in the section. The equation for 

the net section in this case will be: 

 

∈𝑡=∈𝑜+∈𝑝𝑚 +∈𝑎+∈𝑎𝑚                                                                                                             (68) 

 

where 

∈𝑡= Total strain 

∈𝑜= Strain caused by centriod force 𝐹 

∈𝑝𝑚= Strain caused by prestreseing moment  𝑀𝑝 = 𝐹𝑒 

∈𝑎= Strain caused by self load 

∈𝑎𝑚= Strain component due to applied moment 

 

Likewise, the equation for the force equilibrium of the cross section will also contain a term 

for the contribution forces caused by applied moment: 

 

∑ 𝐹𝑖 = 𝐹                                                                                                                                      (69) 

𝐹𝑜 + 𝐹𝑝𝑚 + 𝐹𝑎 + 𝐹𝑎𝑚 = 𝐹                                                                                                           (70) 

 

where 

𝐹𝑜 = Net axial force on the section = F 

𝐹𝑝𝑚 = Net force on the section cuased by prestressing moment = 0 

𝐹𝑎 = 𝑁𝑒𝑡 𝑎𝑥𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑒𝑙𝑓 𝑙𝑜𝑎𝑑 = 0 

𝐹𝑎𝑚 = Net force on the section cuased by prestressing moment = 0 
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2.3.5   Moment and Curvature for Prestressed HCB with Applied Moment 

     The equation for the internal resisting moment of HCB produced in response to the external 

applied moment can be obtained from the flexural equilibrium equation given earlier in the text 

by simply adding terms for the prestressing force. Since there are numerous forms of exact such 

equations possible for of strains levels, therefore, only general form of flexural equilibrium 

equation will be given here for the prestressed HCB i.e., 

 

 𝑀𝑖𝑛𝑡 = 𝑀𝑜 + 𝑀𝑝 + 𝑀𝑎 + 𝑀𝑛𝑝                                                                                                   (71) 

 

where  

𝑀𝑖𝑛𝑡 = Total internal resisting moment in prestressed HCB 

𝑀𝑜= Internal moment component due to axial force F = 0 

𝑀𝑝= Internal moment component due to prestressing of HCB = 𝐹𝑒 

𝑀𝑎= Internal moment component due to self-weight of HCB 

𝑀𝑛𝑝 = Internal resisting moment in HCB produced in response to external moment 

 

2.3.6   Load-deflection Relation for HCB 

 The process and method of finding load-deflection relation for the prestressed HCB will be 

exactly same as followed for the non-prestressed HCB. The detail of the solution scheme is given 

chapter 2 and Appendix A and B. 

 

2.3.7   CFRP Retrofitting of HCB 

The use of CFRP retrofitting for the enhanced performance HCB is studied for different 

positions of usage. The equations and method of analysis for this part remain exactly the same as 

given for non-retrofitted HCB except some terms for the new materials are added.  
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3. LOAD-DEFLECTION BEHAVIOR AND STRENTH OF NON-

PRESTRESSED HCB UNDER BENDING LOADS 

 

The prediction of the linear and nonlinear load-deflection behavior of HCB up to the collapse 

is presented herein. The methodology and steps of the analysis are given in Chapter 2. The 

nonlinear analysis is performed by using Bernoulli beam theory and finite-difference method of 

nonlinear moment-curvature relations. The elastic analysis of HCB using beam and concealed 

arch approach as explain in chapter two is applied.  

The nonlinear analysis of HCB as Bernoulli beam for four variations for the cross-sectional 

configurations as explained in the previous chapter and the elastic analysis of HCB by using arch 

and beam approach is presented hereunder: 

 

3.1   HCB analyzed as Bernoulli beam using regular cross section 

The cross section of the HCB used for the perdition of the deflection-response is shown in 

Figure 22. The analysis consists of finding the theoretical load-deflection relation for HCB till 

collapse condition using methodology described in chapter 2 and make a comparison with the 

experimental load-deflection relation to draw conclusions.  

The process of generating load-deflection curve for the HCB involves following steps: 

1. Getting moment-curvature curves for the HCB cross sections at all nodes  

2. Generating set of  linear equations involving curvature and deflection as variables by 

using finite-difference method   

3. Solving the system of equations to find deflections at nodes by using values of curvature 

given by the respective moment-curvature curves corresponding to the moment value at 

nodes 
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Figure 22.  Cross section of HCB used for analysis (Dimensions in inches) 

 

 

3.1.1   M-ϕ curves for HCB  

The M-ϕ curves for the HCB sections at nodes are generated by running a computer program 

in MATLAB. The algorithm consists of inputting dimensions of the beam cross-sectional 

elements at the given section and material properties; then varying the location of neutral axis for 

a chosen  value of strain in  the top most concrete fiber until  equilibrium of forces for the section 

is reached. The location of the neutral axis is then used to calculate the internal resisting moment 

and curvature at the section. This pair of curvature and moment constitutes one point on the 

moment-deflection curve for the section in question. Then next value of strain at the top most 

concrete fiber is assigned and the same process is repeated to get another pair of curvature and 
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moment till the top fiber strain reaches 0.003, the ultimate strain for concrete.  The meshing of 

the HCB for applying finite-difference method for nodal interval of 41 in is shown in Figure 23.  

The M-ϕ curves generated for HCB cross sections at nodes are given in Appendix D. 

 

 

 

Figure 23. Meshing of HCB for finite-difference formulation 

 

 

3.1.2   Deflections at nodal points of HCB  

The scheme for the determination of the nodal deflections of HCB using finite-difference 

methods has been explained in chapter 2. The process involves solving a set of linear equations 

generated by the finite difference formulation of the problem. The number of equations depends 

on the length of interval length ‘h‘  between the consecutive nodes.  To understand the influence 

of the interval ‘h‘ on the precision of the outcome, deflections for the current problem are 

calculated  for two different values of  ‘h’  namely 41” and 82” and  compared  with the 

experimentally obtained values. The finite difference formulation of the problem for h = 41” (n = 

10) and h = 82” (n = 82) is  given in Appendix E. 

The externally applied load values used for calculating load vs midspan deflection are 65k, 

133k, 175k, 200k, 240k, 280k, 310k, 340k, 370, 410k and 424k.  The calculated values are 

shown in Table 1 through 24.  
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Table 1. Results for  P=65 k and h=41 in 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 1332.5 0.00000548 0.45 

3 2665 0.00001110 0.90 

4 3997.5 0.00001679 1.33 

5 5330 0.00002251 1.73 

6 6662.5 0.00002825 2.09 

7 7995 0.00003397 2.40 

8 9327.5 0.00003969 2.66 

9 10596.3 0.00004511 2.85 

10 10596.3 0.00004512 2.96 

11 10596.3 0.00004511 3.00 

 

 

Table 2. Results for P=65 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 2665 0.000011097 0.91 

5 5330 0.000022512 1.74 

7 7995 0.000033972 2.43 

9 10596.3 0.000045113 2.88 

11 10596.3 0.000045113 3.03 
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Table 3. Results for P=133 Kips and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 2726.5 0.000011220 0.93 

3 5453 0.000022707 1.84 

4 8179.5 0.000034349 2.72 

5 10906 0.000046064 3.53 

6 13632.5 0.000057796 4.27 

7 16359 0.000069513 4.91 

8 19085.5 0.000081202 5.44 

9 21681.66 0.000092308 5.82 

10 21681.66 0.000092316 6.06 

11 21681.66 0.000092307 6.13 

 

 

Table 4. Results for P=133 Kips and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 5453 0.000022707 1.86 

5 10906 0.000046064 3.57 

7 16359 0.000069513 4.97 

9 21681.66 0.000092308 5.90 

11 21681.66 0.000092307 6.21 
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Table 5. Results for P=175 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 3587.5 0.000014764 1.22 

3 7175 0.000029878 2.42 

4 10762.5 0.000045196 3.56 

5 14350 0.000060610 4.63 

6 17937.5 0.000076047 5.60 

7 21525 0.000091464 6.44 

8 25112.5 0.000106845 7.12 

9 28528.5 0.000120402 7.63 

10 28528.5 0.000120481 7.93 

11 28528.5 0.000120509 8.03 

 

 

Table 6.  Results for P=175 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 7175 0.000029878 2.44 

5 14350 0.000060610 4.68 

7 21525 0.000091464 6.51 

9 28528.5 0.000120402 7.72 

11 28528.5 0.000120509 8.13 
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Table 7.  Results for P=200 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 4100 0.000016873 1.38 

3 8200 0.000034146 2.74 

4 12300 0.000051653 4.04 

5 16400 0.000069269 5.25 

6 20500 0.000086911 6.34 

7 24600 0.000104531 7.29 

8 28700 0.000120935 8.06 

9 32604 0.000135328 8.63 

10 32604 0.000135400 8.97 

11 32604 0.000135423 9.08 

 

 

Table 8.  Results for P=200 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 8200 0.000034146 2.76 

5 16400 0.000069269 5.30 

7 24600 0.000104531 7.37 

9 32604 0.000135328 8.73 

11 32604 0.000135423 9.19 
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Table 9.  Results for P=240 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 4920 0.000020247 1.64 

3 9840 0.000040975 3.24 

4 14760 0.000061983 4.78 

5 19680 0.000083123 6.21 

6 24600 0.000104293 7.50 

7 29520 0.000123767 8.61 

8 34440 0.000141944 9.52 

9 39120 0.000159193 10.19 

10 39120 0.000159251 10.59 

11 39120 0.000159268 10.73 

 

 

Table 10.  Results for P=240 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 9840 0.000040975 3.27 

5 19680 0.000083123 6.27 

7 29520 0.000123767 8.71 

9 39120 0.000159193 10.31 

11 39120 0.000159268 10.85 
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Table 11.  Results for P=280 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 4920 0.000023622 1.89 

3 9840 0.000047805 3.73 

4 14760 0.000072314 5.50 

5 19680 0.000096976 7.15 

6 24600 0.000120493 8.63 

7 29520 0.000141749 9.91 

8 34440 0.000162812 10.95 

9 39120 0.000182645 11.72 

10 39120 0.000182715 12.18 

11 39120 0.000182736 12.33 

 

 

Table 12.  Results for P=280 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 9840 0.000047805 3.77 

5 19680 0.000096976 7.22 

7 29520 0.000141749 10.01 

9 39120 0.000182645 11.85 

11 39120 0.000182736 12.47 
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Table 13.  Results for P=310 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 6355 0.000026153 2.08 

3 12710 0.000052926 4.11 

4 19065 0.000080062 6.06 

5 25420 0.000107367 7.87 

6 31775 0.000131705 9.49 

7 38130 0.000155235 10.90 

8 44485 0.000178160 12.05 

9 50530 0.000201637 12.90 

10 50530 0.000201712 13.41 

11 50530 0.000201734 13.58 

 

 

Table 14. Results for P=310 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 12710 0.000052926 4.16 

5 25420 0.000107367 7.96 

7 38130 0.000155235 11.03 

9 50530 0.000201637 13.07 

11 50530 0.000201734 13.75 
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Table 15.  Results for P=340 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 6970 0.000028684 2.27 

3 13940 0.000058048 4.50 

4 20910 0.000087810 6.63 

5 27880 0.000117095 8.61 

6 34850 0.000142917 10.39 

7 41820 0.000168344 11.94 

8 48790 0.000194593 13.20 

9 55420 0.000222077 14.13 

10 55420 0.000222153 14.69 

11 55420 0.000222175 14.88 

 

 

Table 16.  Results for P=340 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 13940 0.000058048 4.55 

5 27880 0.000117095 8.71 

7 41820 0.000168344 12.08 

9 55420 0.000222077 14.32 

11 55420 0.000222175 15.07 
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Table 17.  Results for P=370 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 7585 0.000031215 2.50 

3 15170 0.000063170 4.94 

4 22755 0.000095558 7.28 

5 30340 0.000126070 9.46 

6 37925 0.000154129 11.42 

7 45510 0.000181747 13.13 

8 53095 0.000212032 14.53 

9 60310 0.000243866 15.57 

10 60310 0.000243940 16.21 

11 60310 0.000266924 16.43 

 

 

Table 18.  Results for P=370 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 15170 0.000063170 5.03 

5 30340 0.000126070 9.64 

7 45510 0.000181747 13.40 

9 60310 0.000243866 15.93 

11 60310 0.000266924 16.83 
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Table 19.  Results for P=400 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 8200 0.000033746 2.69 

3 16400 0.000068292 5.33 

4 24600 0.000103306 7.85 

5 32800 0.000135044 10.20 

6 41000 0.000165073 12.32 

7 49200 0.000195932 14.17 

8 57400 0.000230562 15.68 

9 65200 0.000268238 16.81 

10 65200 0.000268303 17.49 

11 65200 0.000268242 17.71 

 

 

Table 20.  Results for P=400 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 16400 0.000068292 5.39 

5 32800 0.000135044 10.32 

7 49200 0.000195932 14.34 

9 65200 0.000268238 17.05 

11 65200 0.000268242 17.95 
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Table 21.  Results for P=410 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 8405 0.000034589 2.88 

3 16810 0.000070000 5.71 

4 25215 0.000105888 8.41 

5 33620 0.000138036 10.94 

6 42025 0.000168664 13.24 

7 50430 0.000200790 15.25 

8 58835 0.000236940 16.93 

9 66830 0.000303078 18.21 

10 66830 0.000304388 18.97 

11 66830 0.000304787 19.23 

 

 

Table 22.   Results for P=410 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 16810 0.000070000 5.81 

5 33620 0.000138036 11.15 

7 50430 0.000200790 15.57 

9 66830 0.000303078 18.63 

11 66830 0.000304787 19.65 
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Table 23.  Results for P=424 k and h=41 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

2 8692 0.000035770 3.37 

3 17384 0.000072390 6.69 

4 26076 0.000109504 9.88 

5 34768 0.000142224 12.88 

6 43460 0.000173690 15.65 

7 52152 0.000207836 18.13 

8 60844 0.000246142 20.25 

9 69112 0.000406377 21.97 

10 69112 0.000408220 23.00 

11 69112 0.000408745 23.34 

 

 

Table 24. Results for P=424 k and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 17384 0.000072390 6.95 

5 34768 0.000142224 13.41 

7 52152 0.000207836 18.91 

9 69112 0.000406377 23.02 

11 69112 0.000408745 24.39 
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3.1.3   Load-deflection relation and strength for HCB with regular cross section 

The predicted and the experimental [10] load-deflection curves for the HCB are shown in 

Figure 24. It can be seen from the figure that the predicted values of deflections are in close 

agreement with the experimental ones in the initial portion of the curve where deflection are 

small but later on the predicted curve starts deviating from the experimental and the gap between 

them increases as the load increases until HCB fails at 210k which is only 50 % of the 

theoretically predicted ultimate strength of HCB. The reasons for the difference between the 

theoretical and experimental deflections at higher loads and the smaller experimental strength of 

HCB than the predicted are mainly due to the premature failure of HCB caused by the 

detachment of the tensions steel from the concrete abutment at one of the support as shown in 

Figure 24. Other possible reasons stiffness degradation at higher loads could be the local 

buckling of the thin parts of the HCB at higher loads. The load-deflection relations produced for 

interval length of 41 in and 82 in almost same which shows that the interval length of L/20 for 

the use of finite difference method is appropriate.  

 

 

 

Figure 24. Premature failure of HCB due to detachment of  

tension reinforcement [10] 
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Figure 25. Theoretical and experimental [10] load-deflection relations for 

 HCB with concrete arch and fin included 

 

 

3.2   HCB analyzed as Bernoulli beam without concrete arch and fin 

This model of the HCB assumes that the concrete arch does not contribute to the structural 

performance of HCB and therefore, presents a modification in the HCB by omitting the concrete 

arch and fin. The modified cross section of the HCB is shown in Figure 26.  Since, the omission 

of concrete arch makes HCB as having constant cross section across the span, therefore, the 

equation for the elastic deformation for simply supported prismatic beam can be applied for 

generating the load-deflection curve during the elastic range.  The equation used for generating 

the elastic curve for four point loading and calculations are  shown  as under: 
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∆ =  
𝑃𝑏(3𝐿2−4𝑏2)

48𝐸𝐼
                                                                                                      (72) 

 

where 

P =  Point load 

L =  Beam span length 

B = Point load distance from the near support 

E = Modulus of Elasticity of beam 

I = Moment of inertial of beam cross section about the elastic neutral axis 

 

The FRP is treated as reference material for the calculations, therefore, modulus of elasticity 

value for FRP is used for E in the above equation and moduli of elasticity of all other materials 

that appear in the cross section are represented in terms of the elastic modulus of FRP when 

calculating neutral axis location and moment of inertia of the cross section.  The neutral axis 

distance from the bottom of the beam and moment of inertia of the beam are 31.60 in  and 

92555.64 in4 , respectively.  The calculated values of loads and corresponding deflections are 

listed in Table 25. 
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Figure 26. Cross section of HCB without concrete arch (Dimensions in inches) 

 

 

Since, the goal of current study is to model the nonlinear behavior up to failure, therefore, the 

finite-difference approach is also used to find the load-deflection curve. The explanation of the 

analysis under finite-difference scheme and equation of flexural equilibrium for this HCB model 

are given in Section 2.3. Due to the constant cross section of the beam, same moment-curvature 

curve is used for all nodal points during the finite-difference analysis. The moment-curvature 

curve for the HCB used in the FD analysis is given in Figure 27. 
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Table 25:  Midspan deflections under four-point loading given by elastic analysis for HCB 

without concrete arch and fin 

Total Load, 
2P, (Kips) 

Midspan Deflection 
(in.) 

0 0.00 

65 2.99 

133 6.12 

175 8.05 

200 9.20 

240 11.04 

280 12.88 

300 13.80 

310 14.26 

340 15.64 

370 17.02 

400 18.40 

410 18.86 

424 19.50 

 



 

65 

 

 

Figure 27. Moment-curvature curve for HCB without concrete arch and fin 

 

 

The load vs deflection values at midspan generated by the finite-difference analysis are given 

in Table 26 whereas the theoretical and experimental load-deflection relations for HCB without 

concrete arch are shown in Figure 28.  

 

3.2.1   Load-deflection relation and strength for HCB without concrete arch and fin  

Figure 28 shows load-deflection relations produced theoretically by following elastic analysis 

and finite-difference method and the experimental curve [10]. The figure shows that all curves 

are in closed agreement upto150 kips load. Near 150 kips the experimental curve starts deviating 

from the theoretical ones. The two theoretical curves also start parting at about 220 kips and the 

gap goes on increasing till the point when the finite difference curve becomes nonlinear and cuts 
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the elastic curve. The comparison of the theoretical curves with the experimental shows that the 

deflection response of HCB without considering the concrete arch and fin closely agrees with the 

experimental load-deflection relation which proves the role of concrete arch and fin in the 

deflection response of HCB is negligible. 

 

 

Table 26:  Load versus midspan deflection under four-point loading given by  

finite-difference method for HCB without concrete arch and fin 

Total Load, 
2P, (Kips) 

Midspan Deflection 
(in.) 

0 0.00 

65 3.01 

133 6.15 

200 9.11 

310 13.62 

340 14.92 

370 16.28 

400 17.72 

410 19.40 

424 23.54 



 

67 

 

 

Figure 28. Theoretical and experimental [10] load-deflection curves for HCB without 

concrete arch and fin 

 

 

3.3   HCB analyzed as Bernoulli beam without concrete arch, fin and FRP box 

This model of HCB assumes that both the concrete arch and the FRP outer box do not 

contribute to the deflection response and flexural strength of HCB and thus they can be ignored 

in the analysis. The modified cross section of the HCB for this assumption is shown in Figure 29. 

Since, HCB for this model has a constant cross section along the span, therefore, the equation 

for the elastic deformation of prismatic simply supported beam for four point loading is  used to 

calculate beam deformation for elastic equations.  
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The neutral axis distance from the bottom of the beam and moment of inertia of the beam are 

32.07 in. and 83905.65 in4, respectively. The calculated values of loads and corresponding 

deflections are listed in Table 23. 

 

 

 

Figure 29. Cross section of HCB without concrete arch and FRP box 
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Table 27:  Load vs midspan deflections under four-point loading given by elastic analysis 

for HCB without concrete arch and FRP box 

Total Load, 
2P, (Kips) 

Midspan Deflection 
(in.) 

0 0.00 

65 3.25 

133 6.66 

175 8.76 

200 10.01 

240 12.01 

280 14.02 

300 15.02 

310 15.52 

340 17.02 

370 18.52 

400 20.02 

 

 

Like the previous model, the finite-difference approach is also used to find the nonlinear 

load-deflection behavior of the beam.  The explanation of the analysis under finite-difference 

scheme and equation of flexural equilibrium for this HCB model are given in Section 2.4. Due to 

the constant cross section of the beam, same moment-curvature curve is used for all nodal points 

during the finite-difference analysis. The moment-curvature curve for the HCB used in the FD 

analysis is given in Figure 30. 
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Figure 30. Moment-curvature curve for HCB without concrete arch and FRB box 

 

 

The load vs deflection values at midspan generated by the finite-difference analysis are given 

in Table 26 whereas the moment, curvature and deflection values at all nodes for different loads 

are given in Appendix D. The theoretical and experimental load-deflection relations for the HCB 

without concrete arch at midspan are shown in Figure 31.  

 

3.3.1   Load-deflection relation and strength for HCB without  concrete arch, fin and FRP 

box 

Figure 31 shows theoretical curves given by the elastic theory and nonlinear finite-difference 

analysis along with the experimental curve [10]. The curves are in very close agreement up to 

nearly 150 kips where the experimental curves starts deviating from the theoretical one.  It can 
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be seen from the figure that there curves are in close agreement in for small loads. The figure 

also confirms that that the role of FRP box in shaping deflection response and ultimate strength 

is more than the concrete arch and fin. The deflections given by this model for HCB are 10 % 

higher than the deflections given by the analysis for the complete cross section of HCB. The 

ultimate strength predicted by this model is 13 % lower than that given by the complete cross 

section of HCB.  

 

 

Table 28:  Load versus midspan deflection given by finite-difference method for HCB 

without concrete arch and FRP box  

 

Total Load, 
2P, (Kips) 

Midspan Deflection 
(in.) 

0 0.00 

65 3.27 

133 6.69 

200 9.89 

310 14.63 

355 17.01 

370 27.35 
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Figure 31. Load-deflection curves for HCB without concrete arch, fin and FRP box 

 

 

3.4   HCB analyzed as Bernoulli beam using average cross section  

This model assumes that instead of a concrete fin of varying depth, HCB  has a fin of 

constant depth equal to the average depth of  the fin carved by the parabolic profile of the 

concrete arch in the actual HCB. The average height of the fin for the cross section is 9.3 inches. 

The cross section for this HCB model is shown in Figure 32. The elastic equation for deflection 

of prismatic beam under four point loading condition is applied to calculate the deflection values. 

The load vs midspan deflection values given by the equation are given in Table  29.  The elastic 

neutral axis distance from the bottom of the cross section and moment of inertia of the beam 

cross section about the neutral axis are 28.94 in. and 107078.15 in4, respectively.  
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Figure 32. Average cross section of HCB 
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Table 29:  Load versus midspan deflection given by elastic analysis for HCB with  

average fin depth  

Total Load, 
2P, (Kips) 

Midspan Deflection 
(in.) 

0 0.00 

65 2.78 

133 5.69 

175 7.49 

200 8.56 

240 10.27 

280 11.98 

300 12.83 

310 13.26 

340 14.54 

370 15.83 

400 17.11 

410 17.54 

424 18.14 

 

 

The load-deflection relation for the model using the finite-difference approach is also 

generated for the model. The moment-curvature curve HCB with hypothetical cross section is 

shown in Figure 33. The deflections values at the midspan at different loads given by the finite-

difference analysis are shown in Table 26.   
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Figure 33. Moment-curvature relation for HCB with average cross section 

 

 

3.4.1   Load-deflection relation and strength for HCB with average cross section 

The deflections values at the midspan at different loads given by the finite-difference 

analysis are shown in Table 30.  Figure 34 shows load-deflection relations for the HCB model 

given by elastic analysis and nonlinear FD analysis along with the experimental curve [10].   

It can be seen from the figure that deflections for the elastic curve only 6 % larger than those 

for the FD curve and both curves go side by side until the FD curve takes turn near ultimate load.  
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Table 30:  Load vs midspan deflection given by finite-difference method for HCB with 

average cross section  

Total Load, 
2P, (Kips) 

Midspan Deflection 
(in.) 

0 0 

65 2.97 

133 6.07 

200 9.00 

355 15.46 

410 18.63 

424 22.90 
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Figure 34. Theoretical load-deflection relations given by elastic and finite-difference 

analyses for average cross section along with experimental curve [10] 

 

 

3.5   Comparison of behavior of different HCB models   

The load-deflection relations for the four HCB models used discussed above are shown in 

Figure 35 along with the experimental curve [10]. It can be seen form the figure that ultimate 

strength of HCB for the actual cross section, cross section without arch and fin and with a 

hypothetical constant cross section remains same whereas the strength for the cross section 

without concrete arch, fin and FRP is 13% lesser than the ultimate strength for other three 

models. This proves that the contribution of concrete arch and fin to the ultimate strength of 
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HCB when analyzed as Bernoulli’s beam remains negligible where the FRP the FRP box adds 

significantly to the ultimate strength of HCB. 

Figure 36 shows the load-deflection relations for four HCB models in the linear range along 

with the experimental relation. It can be seen form the figure that the three models with FRP box 

included in the cross section give almost same deflections for a given load whereas the model 

without box gives 9% higher deflections. When compared with the experimental it turns out that 

the deflections for the HCB without FRP box and concrete slab and fin are within 1% of the 

experimental values which is surprising as the three cross-sectional element from analysis cannot 

give exact values. This could be due to larger deflections of HCB due to local bucking of the 

very thin HCB webs.  
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Figure 35. Comparison of the load-deflection curves for the four models with the 

experimental curve [10]. 
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Figure 36. Load-deflection curves for the four models and experimental curve [10]  

in linear range 

 

 

3.6   HCB analyzed as arch-and-beam model 

The theoretical description of the analysis of HCB as a composite of box beam and concealed 

arch is presented in chapter 2.  The analysis for this model is made for two support conditions of 
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relative movement of the arch nodes offered by the tie is represented by stiffness k of the spring 

shown at the roller end of the simply supported arch. Due to being composite with beam, it is not 

clearly known as to what components of HCB contribute to the stiffness of the spring. Therefore, 

the behavior of the model is checked for different values of k depending upon the assumptions as 

to what components of HCB contribute to the stiffness of tie. Likewise, the composition of the 

box beam that is supposed to resist load in conjunction with the arch is not clearly known. 

Therefore, the beam properties are also subject to variation as to what component of HCB is 

assumed to contribute to the beam behavior in resisting the bending load.  Depending upon the 

components of HCB considered as beam part and spring stiffness contributors, the analysis of 

HCB under beam and arch model is carried out for following cases: 

a. Tensions reinforcement acts as tie but does not contribute to the beam action 

b. Tension reinforcement acts as tie and contribute to the beam behavior as well 

c. All cross section elements except concrete arch and fin contribute to the tie resistance 

and included in beam as well 

d. All cross-sectional elements except concrete arch contribute to the  tie resistance and 

beam action 

The analysis will be initially done for the deflection response of HCB under the deck 

concrete load. Later, the behavior of complete HCB under the external four-point loading will 

be analyzed. 

 

3.6.1   Load-deflection behavior of  HCB without concrete slab  

The data provided by the HC Bridge Company1 for this research includes the midspan 

deflection measurements for the HCB at different stages of its fabrication process. One such 

deflection is caused by the deck concrete just after its pouring is measured as 1.44 in. To 

investigate the validity of arch and beam model for HCB, the deflection at midspan is calculated 

by using tied arch and beam model and compared with the experimental value. A schematic 

explanation of  the arch and beam model for concrete deck loading is shown in Figure 37.  

 



 

82 

 

 

 

 

Figure 37. Concrete deck load transfer to tied arch and box beam 
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The condition of equilibrium gives: 

 

𝑤 = 𝑤𝑎+ 𝑤𝑏                                                                                                                                (73) 

 

Where 

𝑤 = 𝑇𝑜𝑡𝑎𝑙 𝑈𝐷𝐿 𝑜𝑛 𝑡ℎ𝑒 𝐻𝐶𝐵 

𝑤𝑎 = 𝑈𝐷𝐿  𝑟𝑒𝑠𝑖𝑠𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡𝑖𝑒𝑑 𝑎𝑟𝑐ℎ 

𝑤𝑏 = 𝑈𝐷𝐿  𝑟𝑒𝑠𝑖𝑠𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑡ℎ𝑒 𝑏𝑜𝑥 𝑏𝑒𝑎𝑚 

 

The compatibility equation gives: 

 

 

 

The condition of concrete arch while jointly resisting load with the box beam can be 

schematically represented as shown in Figure 38. 

 

 

 

Figure 38. Tied arch modeled as an arch with a spring at one support 
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As shown in chapter 2, the horizontal reaction H is given by: 

 

𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝑠
0 𝑑𝑠−∫

𝑁𝑜𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

1

𝑘
+∫

𝑦2

𝐸𝐼

𝑠
0 𝑑𝑠+∫

𝑐𝑜𝑠2𝜃

𝐸𝐴

𝑠
0 𝑑𝑠

  

 

For  low arches : ds ≈ dx ,  cosθ ≈ 1  and  sinθ ≈ θ. So, we get: 

 

𝐻 =
∫

𝑀𝑜𝑦

𝐸𝐼

𝐿
0 𝑑𝑥−∫

𝑁𝑜𝜃

𝐸𝐴

𝐿
0 𝑑𝑥

1

𝑘
+∫

𝑦2

𝐸𝐼

𝐿
0 𝑑𝑥+∫

1

𝐸𝐴

𝐿
0 𝑑𝑥

                                                                                                                   (74) 

 

For the given case of UDL on the arch span, we get: 

 

𝐻 =
∫

(𝑅𝑥−
𝑤𝑎𝑥2

2
)𝑦

𝐸𝐼

𝐿
0 𝑑𝑥−∫

(𝑅−𝑤𝑎𝑥)𝜃

𝐸𝐴

𝐿
0 𝑑𝑥

1

𝑘
+∫

𝑦2

𝐸𝐼

𝐿
0 𝑑𝑥+∫

1

𝐸𝐴

𝐿
0 𝑑𝑥

                                                                                                  (75) 

 

Further simplification, yields:  

 

𝐻 =
∫

(𝐿𝑥−𝑥2)𝑦

2𝐸𝐼

𝐿
0 𝑑𝑥−∫

(𝑥−𝐿)𝜃

𝐸𝐴

𝐿
0 𝑑𝑥

1

𝑘
+∫

𝑦2

𝐸𝐼

𝐿
0 𝑑𝑥+∫

1

𝐸𝐴

𝐿
0 𝑑𝑥

𝑤𝑎 +
∫

𝑥𝑦

2𝐸𝐼

𝐿
0 𝑑𝑥−∫

𝜃

𝐸𝐴

𝐿
0 𝑑𝑥

1

𝑘
+∫

𝑦2

𝐸𝐼

𝐿
0 𝑑𝑥+∫

1

𝐸𝐴

𝐿
0 𝑑𝑥

𝑃𝑎                                                                  (76) 

 

The deflection of arch at the midspan is given by: 

 

∆𝐴  =  
𝜕𝑈

𝜕𝑃𝑎
  

∆𝐴  =  
𝜕

𝜕𝑃𝑎
(∫

𝑀2

2𝐸𝐼

𝑠

0
𝑑𝑠 + ∫

𝑁2

2𝐸𝐴

𝑠

0
𝑑𝑠 +

𝐻

2𝑘

2
 )  

 

The final form of the expression after doing all the mathematics involved is as follows: 
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∆𝐴  =  (
2

𝐸𝐼
(

𝐿

4
∫ 𝑥2

𝐿
2⁄

0
𝑑𝑥 −

1

4
∫ 𝑥3

𝐿
2⁄

0
𝑑𝑥 −

𝐿

2

𝜕𝐻

𝜕𝑃𝑎
∫ 𝑥3

𝐿
2⁄

0
𝑑𝑥 +

1

2

𝜕𝐻

𝜕𝑃𝑎
∫ 𝑥3𝑦

𝐿
2⁄

0
𝑑𝑥) +

2

𝐸𝐴
(

𝐿

2

𝜕𝐻

𝜕𝑃𝑎
∫ 𝜃

𝐿
2⁄

0
𝑑𝑥 −

𝜕𝐻

𝜕𝑃𝑎
∫ 𝑥𝜃

𝐿
2⁄

0
𝑑𝑥 +

𝐿

4
∫ 𝜃2

𝐿
2⁄

0
𝑑𝑥 −

1

2
∫ 𝑥𝜃2

𝐿
2⁄

0
𝑑𝑥)) 𝑤𝑎 + (

2

𝐸𝐼
(

𝜕𝐻

𝜕𝑃𝑎
∫ 𝑦3

𝐿
2⁄

0
𝑑𝑥 −

1

2
∫ 𝑥𝑦

𝐿
2⁄

0
𝑑𝑥) +

2

𝐸𝐴
(

𝜕𝐻

𝜕𝑃𝑎
∫ 𝑑𝑥

𝐿
2⁄

0
+

1

2
∫ 𝜃

𝐿
2⁄

0
𝑑𝑥) +

𝜕𝐻

𝜕𝑃𝑎
) 𝐻                                                                                     

(77) 

The expression for the deflection of box under its part of UDL i.e.,  𝒘𝒃 is: 

 

∆𝐵  =
5𝑤𝑏𝐿𝑏

4

384𝐸𝑏𝐼𝑏
                                                                                                                                (78) 

 

Where 

𝐿𝑏 = 𝑆𝑝𝑎𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑥 𝑏𝑒𝑎𝑚 

𝐸𝑏 = 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑎𝑚  

𝐼𝑏 = 𝑀𝑜𝑚𝑒𝑛𝑡  𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑏𝑒𝑎𝑚  

Using equilibrium and compatibility, the deflection of the HCB at the midspan can be 

calculated. As clear from the equations involved the value of the deflection also depends cross 

section of the arch concrete, moment of inertia of the box beam and stiffness of the spring 

representing tie in the arch. Since, these quantities change depend upon as to what component of 

the HCB are assumed to contribute to the beam and tie action,  therefore, in search for the best 

theoretical description of the process, following cases of beam cross section  and ties resistance 

will be considered: 

a. Case A: Box beam consists of FRP box only; and only tension steel contributes to the 

spring stiffness 

b. Case B: Box beam consists of FRP and tension steel; and  tension steel and whole FRP 

box contribute to the spring stiffness 

c. Case C: Box beam consists of  FRP, tension steel and inverted T shaped concrete part and 

the same elements contribute to the stiffness of the spring 

The cross section of the concrete arch, shown in Figure 39, remains the same for all cases.  
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             .  

      Figure 39. Cross section of concrete arch (Dimensions in inches) 

 

 

3.6.1.1   Deflection of HCB for case A  

The  cross section of the beam consisting of the FRP shell only is shown in Figure 40. 
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Figure 40. Cross section of the beam used for Case A. (Dimensions in inches) 

 

The properties of the cross section used for calcualitng the deflection of the HCB are: 

Moment of inertial about centroidal axis: Ib = 3004.16 in4  

Modulus of elasticity: Eb = 3240 ksi 

Since, only tension steel (steel strands) is supposed to contribute to the tied action of arch. 

Therefore, only the properties of steel strands will be used while calculating the stiffness of the 

spring of the arch. The stiffness k will thus be: 

 

𝑘 =
𝐸𝑠𝐴𝑠

𝐿
                                                                                                                                       (79) 

𝑘 =
28500(6.426)

828
  

𝑘 = 221.19 𝑘/𝑖𝑛 

 

The deflection of the HCB at midspan under the load of deck concrete (0.029 k/in) will be 

2.79 in and stress at the bottom fibers of concrete arch cross section will be 327.00 psi which is 

less than the modulus of rupture of the arch concrete i.e. 474 psi; so as per this analysis the 

concrete arch is not cracked under the deck concrete load. 
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The deflection of the HCB for the concealed arch to be a two-hinged arch can be calculated 

by putting the value of spring stiffness to be infinitely large and keeping all the remaining 

quantities same. Doing so, we get deflection of the HCB at the midspan as 0.97 in. The 

relationship between the midspan deflection of the HCB under UDL for both tied and two hinged 

concealed arch assumptions is shown in Figure 41. 

 

Figure 41. Load vs midspan deflection relations for Case A.  

 

 

It can be seen from the figure that for Case A the tied arch and beam model gives 93% higher 

deflections whereas the tow-hinged arch models gives 33% lower values.  

3.6.1.2   Deflection of HCB for B  

The cross section of the beam for case B consists of the entire FRP part plus tensions steel as 

shown in Figure 42.  
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Figure 42. Cross section of the beam used for Case B. (Dimensions in inches) 

 

 

The properties of the cross section are: 

Moment of inertial about centroidal axis: Ib = 12482.70 in4  

Modulus of elasticity: Eb = 3240 ksi 

The stiffness k of the spring is calculated by using the properties of the transformed area of 

the cross section: 

𝑘 =
𝐸𝑡𝐴𝑡

𝐿
 

𝑘 =
3240(80.63)

828
  

𝑘 = 315.51 𝑘/𝑖𝑛 
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The load-deflection curve for Case B of arch and beam model of HCB is given in Figure 43. 

It can be seen from the figure that the deflections for Case B for two-hinged arch are 42% lesser 

than the experimental values whereas the same for tied arch model are 14% higher. The analysis 

further shows that stresses anywhere in the concrete arch are smaller than the modulus of rupture 

so concrete has not failed in tension yet.  

 

 

 

Figure 43. Load vs midspan deflection relations for Case B. 

 

3.6.1.3   Deflection of HCB for Case C  

The cross section of the beam for case c consists of the entire FRP box plus a fin of depth 

equal to the average depth of the fin in the actual arch as shown in Figure 44.  
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Figure 44. Cross section of the beam used for Case C. (Dimensions in inches) 

 

 

The properties of the cross section are: 

Moment of inertial about centroidal axis: Ib = 17829.23 in4  

Modulus of elasticity: Eb = 3240 ksi 

The stiffness k of the spring is calculated by using the properties of the transformed area of 

the cross section: 

𝑘 =
𝐸𝑡𝐴𝑡

𝐿
 

𝑘 =
3240(97.05)

828
  

𝑘 = 379.76 𝑘/𝑖𝑛 
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The load-deflection curve for the HCB is given in Figure 45. The concrete stress at the 

extreme bottom fibers of the arch cross section is lesser than the modulus of rupture so concrete 

has not failed in tension yet.  

 

 

 

Figure 45. Load vs midspan deflection relations for Case C. 

 

 

The deflections given by the tied arch-and-beam model are relatively closer to the 

experimental but smaller by 14% approximately. 
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3.6.2   Deflection of HCB without slab using Bernoulli beam approach  

The deflection of the HCB with under the deck concrete load is also calculated by using the 

finite-difference method. The process is exactly the same as used for the other cases of the 

deflection calculation for HCB except that the concrete slab over the FRP box is not president. 

The moment curvature curves for the HCB cross sections at the nodal points are given in 

Appendix-E. The nodal interval value is chosen as 82 inches. The nodal deflections given by the 

method are shown in Table 23. 

 

 

Table 31:  Results for w=0.029 k/in. and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 877.482 0.000013861 0.58 

5 1559.968 0.000021497 1.06 

7 2047.458 0.000020820 1.40 

9 2339.952 0.000019751 1.60 

11 2437.45 0.000019739 1.66 
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Table 32:  Results for  w=0.040 k/in. and h=82 in. 

Node 
Moment  

(K-in) 
ɸ  

(radian) 
Deflection 

(in.) 

1 0 0 0 

3 877.482 0.000019118 0.80 

5 1559.968 0.000029651 1.46 

7 2047.458 0.000028717 1.93 

9 2339.952 0.000027243 2.20 

11 2437.45 0.000027226 2.30 

 

 

Likewise, the deflections of the HCB at nodes are calculated using Newmark’s method to see 

if the HCB behavior can be precisely predicted by considering it simply a beam with a variable 

cross section over the span. The nodal deflection given by the Newmark’s method are given in 

Table 24 and Table 25. 

 

 

Table 33:  Nodal Deflections given by Newmark’s Method for  w=0.029 k/in  

Node 
Deflection 

(in.) 

1 0 

3 0.55 

5 1.02 

7 1.36 

9 1.56 

11 1.62 
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Table 34:  Nodal Deflections given by Newmark’s Method for  w=0.040 k/in  

Node 
Deflection 

(in.) 

1 0 

3 0.76 

5 1.41 

7 1.87 

9 2.15 

11 2.24 

 

 

The laod deflection curves given by the FD and Newmark’s methods are shown in Figure 46. 

The deflections determined from the two methods are almost same but larger than the 

experimental value of deflection by 12%.. 
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Figure 46.  Load-midspan deflection relations HCB without slab given by finite-difference 

and Newmark’s  methods 

 

 

3.6.3   Deflection response of HCB with concrete slab for arch-and-beam model 

This section analyses the deflection response of HCB with concrete slab for the arch and 

beam model. The methodology of analysis is same as done for the HCB without concrete slab in 

Section 3.2.1. The HCB can be broken down into a box beam and a tied arch each taking its own 

share of load as shown in Figure 47. 

 

 

0

0.01

0.02

0.03

0.04

0.05

0 0.5 1 1.5 2 2.5

Lo
ad

 (
ki

p
s/

in
)

Deflection (in)

Experimental

FD Method

Newmark's Method

[10]



 

97 

 

 

 

 

Figure 47. HCB broken down into a box beam and tied arch 

 

 

The tied arch is represented as a simply supported arch with a spring at the roller end as 

shown in Figure 48. The stiffness of the spring represents tie action of the arch.  
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Figure 48. Tied arch modeled as an arch with a spring at one end 

 

 

The horizontal reaction H can be calculated by using equation 74: 

 

𝐻 =
∫

𝑀𝑜𝑦
𝐸𝐼

𝐿

0
𝑑𝑥 − ∫

𝑁𝑜𝜃
𝐸𝐴

𝐿

0
𝑑𝑥

1
𝑘

+ ∫
𝑦2

𝐸𝐼
𝐿

0
𝑑𝑥 + ∫

1
𝐸𝐴

𝐿

0
𝑑𝑥

 

  

For the given loading condition: 

 

𝐹𝑜𝑟   0 ≤ 𝑥 < 326   

𝑀𝑜 = 𝑅𝑥 − 𝐻𝑦                                                                            

 

𝑟   0 ≤ 𝑥 < 326   

𝑀𝑜 = 𝑅𝑥 − 𝐻𝑦 − 𝑃𝑎(𝑥 − 𝑎)                                         

𝑀𝑜 = (𝑃𝑎 +
𝑄𝑎

2⁄ ) 𝑥 + 𝑥 − 𝐻𝑦 − 𝑃𝑎(𝑥 − 𝑎) 
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𝑀𝑜 =
𝑄𝑎

2
𝑥 − 𝐻𝑦 − 𝑃𝑎 

 

𝐻 =
∫

𝑥𝑦

𝐸𝐼

326
0 𝑑𝑥+𝑎 ∫

𝑦

𝐸𝐼

410
326 𝑑𝑥−∫

𝜃

𝐸𝐴

326
0 𝑑𝑥

1

2𝑘
+∫

𝑦2

𝐸𝐼

410
0 𝑑𝑥+∫

1

𝐸𝐴

410
0 𝑑𝑥

𝑃𝑎 +
∫

𝑥𝑦

2𝐸𝐼

410
0 𝑑𝑥−∫

𝜃

2𝐸𝐴

410
0 𝑑𝑥

1

2𝑘
+∫

𝑦2

𝐸𝐼

410
0 𝑑𝑥+∫

1

𝐸𝐴

410
0 𝑑𝑥

𝑄𝑎                                                  (80) 

 

The midspan deflection of the arch will be: 

 

∆𝐴  =  
𝜕𝑈

𝜕𝑃𝑎
 

 

Substituting values and simplifying yields following expression: 

 

∆𝐴  =  (
2

𝐸𝐼
(

1

2
∫ 𝑥2330

0
𝑑𝑥 −

𝜕𝐻

𝜕𝑄𝑎
∫ 𝑥𝑦

330

0
𝑑𝑥 + 165 ∫ 𝑥

414

330
𝑑𝑥 − 330

𝜕𝐻

𝜕𝑄𝑎
∫ 𝑦

414

330
𝑑𝑥) +

2

𝐸𝐴
(

1

2
∫ 𝜃2330

0
𝑑𝑥 −

𝜕𝐻

𝜕𝑄𝑎
∫ 𝜃

330

0
𝑑𝑥 +

𝐿

4
∫ 𝜃2

𝐿
2⁄

0
𝑑𝑥 −

1

2
∫ 𝑥𝜃2

𝐿
2⁄

0
𝑑𝑥)) 𝑃𝑎 + (

2

𝐸𝐼
(

𝜕𝐻

𝜕𝑄𝑎
∫ 𝑦2414

0
𝑑𝑥 −

1

2
∫ 𝑥𝑦

414

0
𝑑𝑥) +

2

𝐸𝐴
(

𝜕𝐻

𝜕𝑄𝑎
∫ 𝑑𝑥

414

0
+

1

2
∫ 𝜃

414

0
𝑑𝑥) +

1

𝑘

𝜕𝐻

𝜕𝑄𝑎
) 𝐻                                                       (81) 

 

The determination of the stiffness of the tie is a major question in this analysis and, therefore, 

as done in section 2.1.5 for the UDL  different options of box beam cross sections and tie 

stiffness will be considered for the determination of the correct value of the stiffness. 

 

3.6.3.1   Deflection of HCB for case A  

For case A, the cross section of the HCB consist of FRP outer box plus the concrete slab as 

shown in Figure 49 where only the tension steel contributes toward the stiffness of the spring.  
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Figure 49. Cross section of box beam for Case A. (Dimensions in inches) 

 

 

The properties of the cross section are as follows: 

Moment of inertial about centroidal axis: Ib = 12391.54 in4  

Modulus of elasticity: Eb = 3240 ksi 

 

The stiffness of the spring represening the tied arch is achieved from the tension steel only i.e.; 

 

𝑘 =
28500(6.426)

828
  

𝑘 = 221.19 𝑘/𝑖𝑛 

 

The deflections given by the analysis for the tied arch and beam model are shown in Table 

25. The same for the two-hinged arch and beam model are shown in Table 26. Figure 50 

represents load deflection relations for both conditions as well as the experimental curve. The 

figure shows that the deflections for the given assumption of load resisting mechanism are far off 

and, therefore, this model is discarded.  



 

101 

 

Table 35: load and midspan Deflections for tied arch-and-beam model 

 

Total Load, 
(Kips) 

Deflection 
(in.) 

0 0 

4 0.74 

7 1.30 

80 14.86 

175 32.51 

  

 

 

Table 36: Deflections for two-hinged arch-and-beam model 

 

Total Load, 
(Kips) 

Deflection 
(in.) 

0 0 

4 0.59 

7 1.03 

80 11.74 

175 25.68 
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Figure 50. Load vs mid-span deflection relations for Case A 

 

 

3.6.3.2   Deflection of HCB for case B  

The supposed cross section of the box beam for case B is shown in Figure 51 wherein the 

tension steel is also considered as a part of the box beam.  The properties of the beam are as 

follows: 

 

Moment of inertial about centroidal axis: Ib = 72697.42 in4  

Modulus of elasticity: Eb = 3240 ksi 

 

The stiffness of the spring representing tied arch come from the complete cross section 

shown in Figure 51 and is given by: 
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𝑘 =
3240(456.2)

828
  

𝑘 = 1785.13 𝑘/𝑖𝑛 

 

 

 

Figure 51. Cross section of box beam for Case A. (Dimensions in inches) 

 

 

Figure 52 shows load-deflection relations for the model for both cases of arch support. It can 

be seen from the figure that the deflections given by both models for the supposed beam cross 

section and stiffness are nearly equal and 20% lesser than those given by the experimental curve. 
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Table 37: Deflections for tied arch-and-beam model for Case B 

 

Total Load, 
(Kips) 

Deflection 
(in.) 

0 0 

4 0.16 

7 0.28 

80 3.21 

175 7.03 

 

 

Table 38: Deflections for two-hinged arch-and-beam model for Case B 

 

Total Load, 
(Kips) 

Deflection 
(in.) 

0 0 

4 0.16 

7 0.28 

80 3.18 

175 6.97 
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Figure 52. Load vs mid-span deflection relations for Case B 

 

 

3.6.3.3   Deflection of HCB for case C  

The supposed cross section of the box beam for case B is shown in Figure 53. The properties 

of the beam are as follows: 

Moment of inertial about centroidal axis: Ib = 73091.27 in4  

Modulus of elasticity: Eb = 3240 ksi 

 

The stiffness of the spring representing tied arch is given by: 

 

𝑘 =
3240(480.6)

828
  

𝑘 = 1880.60 𝑘/𝑖𝑛 
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Figure 53. Cross section of box beam for Case C. (Dimensions in inches) 

 

 

The deflections given by the tied arch and beam and two-hinged arch and beam models for 

the supposed cross section and stiffness are shown in Figure 54 alongside the experimental 

curve. The deflection response behavior for both models for Case C is nearly same and 

resembles the response obtained in the previous case. 
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Table 39: Deflections for tied arch-and-beam model for Case C 

 

Total Load, 
(Kips) 

Deflection 
(in.) 

0 0 

4 0.16 

7 0.28 

80 3.20 

175 7.00 

 

 

Table 40: Deflections for two-hinged arch-and-beam model for Case C 

 

Total Load, 
(Kips) 

Deflection 
(in.) 

0 0 

4 0.16 

7 0.28 

80 3.17 

175 6.93 



 

108 

 

 

Figure 54. Load vs mid-span deflection relations for Case C 

 

 

3.7   Discussion on arch and beam model of HCB 

The comparison of deflections for HCB without slab given by beam approach are 15% higher 

than the experimental values2 which suggest that the beam approach does not give exact values 

of the deflections. The application of the arch and beam model for various supposed 

configurations of HCB cross section and spring stiffness values shows that the model that takes 

average cross section of the HCB for beam and the transformed area of the same cross section 

for calculating stiffness and using tied arch and box beam approach gives the best results. The 

application of the model to the externally applied load with slab included in the analysis does not 

tell anything about the model as the concrete arch fails at very small loads and HCB ceases to act 

as a combination of arch and beam. 
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4. LOAD-DEFFECTION BEHAVIOUR OF PRESTRESSED HCB 

 

Since its inception, the HCB has never been practically used as prestressed member in any 

construction nor is there any published research work available on the behavior of prestressed 

HCB. This chapter presents the theoretical study of the behavior of prestressed HCB using finite-

difference method for analysis up to the collapse load. The behavior of the HCB is investigated 

for two possible ways of prestressing, namely: 

1. Prestressing of HCB without concrete slab 

2. Prestressing of HCB with concrete slab included  

The first method is easier for the application of prestressing force. The second method, 

however, allows a large cross-sectional area for prestressing.  

 

4.1   Behavior of prestressed HCB without concrete slab 

The cross section of HCB to which prestressing force is applied is shown in Figure 55.  The 

overlaying concrete slab, shown dotted in the figure, is supposed to be constructed later on the 

top of the already prestressed HCB.   
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Figure 55. Cross section of prestressed HCB without concrete slab 

 

 

4.1.1   Maximum prestressing force 

The maximum prestressing force applied to the cross section can be limited by the following 

limit states: 

1. Fracture of concrete due to tension at top of concrete fin 

 

𝐹 ≤  
𝑓𝑟

(
1
𝐴 +

𝑒𝑐
𝐼 )

 

                                                                                                                 

where 

F   = Maximum prestressing force  

𝑓𝑟  = Modulus of rupture of concrete = 7.5√𝑓𝑐
,
 

E   = Eccentricity of the prestressing force 

A   = Transformed cross-sectional area 
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I    = Moment of inertial of the transformed cross section 

 

2. Failure of FRP top flange in tension  

 

𝐹 ≤  
𝐹𝑓𝑡

(
𝑒𝑐
𝐼 −

1
𝐴)

 

 

where 

F    = Maximum prestressing force  

𝐹𝑓𝑡 = Ultimate tensile strength of flange FRP 

e    = Eccentricity of the prestressing force 

A   = Transformed cross-sectional area 

I     = Moment of inertial of the transformed cross section 

 

3. Failure of FRP web in tension 

 

𝐹 ≤  
𝐹𝑤𝑡

(
𝑒(𝑐 − 𝑡𝑓1)

𝐼 −
1
𝐴)

 

 

where 

F     = Maximum prestressing force  

𝐹𝑤𝑡 = Ultimate tensile strength of web FRP  

 

4. Failure of FRP web in compression 

 

𝐹 ≤  
𝐹𝑤𝑐

(
𝑒(𝑑 − 𝑐 − 𝑡𝑓2)

𝐼 −
1
𝐴)

 

 

where 

F     = Maximum prestressing force  
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𝐹𝑤𝑐 = Ultimate compressive strength of web FRP 

 

5. Failure of  FRP bottom flange in compression 

 

𝐹 ≤  
𝐹𝑓𝑐

(
𝑒(𝑑 − 𝑐)

𝐼 −
1
𝐴)

 

 

where 

F    = Maximum prestressing force  

𝐹𝑓𝑐 =Ultimate compressive strength of flange FRP 

The   lowest value of the prestressing forces given by the above mentioned limit states for the 

HCB finite-difference nodal locations is chosen as safe prestressing force. The summary of the 

prestressing forces for nodes i = 0, 2, 4, … , 10 is shown in Table 41.    

 

 

Table 41. Summary of prestressing force for applied limit states 

Node 

Prestressing Force (kips) 

At Failure (in Compression) of:  At Failure (in Tension) of: 

Web Bottom Flange Web Top Flange Concrete 

0 10797 11643 25685 27260 215 

2 4970 5351 6375 6815 53.76 

4 3546 3822 7331 7796 61.5 

6 3313 3575 13288 13955 110 

8 3286 3548 26455 27083 213.65 

10 3285 3547 38340 38382 302.78 
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The results in the table suggest that safe prestressing force for the beam is 53.76 kips which 

is given by the tension failure of fin concrete at node 3. Since, tensions cracking at the top of 

concrete fin does not disturb the structural integrity of HCB during the prestressing process and 

these cracks are later closed by the dead load of the overlaying concrete. Therefore, the limiting 

prestressing force of 302.78 kip, given by the tension cracking of concrete arch at the midspan 

node, is chose as the safe prestressing force. 

 

4.1.2   Moment-curvature relations for prestressed HCB 

The moment curvature relations for the prestressed cross sections at the nodes are generated 

by a computer algorithm written in MATLAB. The script of the program is given in Appendix E 

whereas the curves generated by the program are shown in Appendix F.  The moment-curvature 

curves at midspan and support cross sections for the prestressed and non-prestressed HCB are 

also shown in Figure 56 and Figure 57.  

 

 

 

Figure 56. Moment-curvature relation for prestressed and  

non-prestressed HCB at support 
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Figure 57. Moment-curvature curves for prestressed and  

non-prestressed HCB at midspan 

 

 

4.1.3   Nonlinear finite-difference analysis 

The nodal deflection of prestressed HCB are calculated using the finite-difference method 

and nonlinear moment-curvature analysis as described in Chapter 2.  The nodal interval ‘h’ is 

taken as 82 inches.  The nodal deflections and corresponding moments and curvature values 

given by the analysis for different loads are given in Table 42 through 46.  
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Table 42. Results for prestressed HCB with P = 100 kips. 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 8200.00 0.00001981 1.97 

4 16400.00 0.00002473 3.80 

6 24600.00 0.00008083 5.46 

8 32604.00 0.00011148 6.59 

10 32604.00 0.00011092 6.96 

 

 

Table 43. Results for prestressed HCB with P = 170 kips. 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 13940.00 0.00004372 3.93 

4 27880.00 0.00009795 7.57 

6 41820.00 0.00014695 10.54 

8 55426.80 0.00019746 12.53 

10 55426.80 0.00019686 13.20 
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Table 44. Results for prestressed HCB with P = 212 kips. 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 17384.00 0.00005806 5.08 

4 34768.00 0.00012388 9.78 

6 52152.00 0.00018625 13.64 

8 69120.48 0.00025885 16.25 

10 69120.48 0.00025819 17.12 

 

 

Table 45. Results for prestressed HCB with P = 222 kips. 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 18204.00 0.00006147 5.41 

4 36408.00 0.00012994 10.41 

6 54612.00 0.00019591 14.53 

8 72380.88 0.00028015 17.34 

10 72380.88 0.00027431 18.26 
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Table 46. Results for prestressed HCB with P = 231 kips 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 18942.00 0.00006455 6.84 

4 37884.00 0.00013540 13.26 

6 56826.00 0.00020460 18.76 

8 75315.24 0.00041101 22.88 

10 75315.24 0.00040481 24.24 

 

 

4.1.4   Load-deflections relationship for prestressed HCB 

Figure 58 shows load versus midspan deflections relations for the non-prestressed and 

prestressed HCB (without concrete slab). The prestressed HCB deflections are 10 to 20% less 

than the corresponding non-prestressed HCB values; the effect of prestressing being more 

noticeable at the smaller loads. The theoretical ultimate strength of the prestressed HCB for four-

point loading is 10 % higher than the non-prestressed HCB. 
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Figure 58. Midspan load-deflection relations for prestressed and non-prestressed HCB 

 

 

4.2 Behavior of prestressed HCB with concrete slab 

The nonlinear analysis procedure for prestressed HCB with concrete slab is same as used for 

the prestressed HCB without concrete slab except that the entire cross section (including the 

concrete slab) receives the prestressing force. The cross section used for the analysis is shown in 

Figure 59. 
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Figure 58. Cross section of the prestressed HCB with concrete slab 

 

 

4.2.1 Maximum prestressing force 

The limit states for the determination of maximum prestressing force for the beam cross 

section are same as used in the previous case except the values of different variables in the 

current case are influenced by the presence of the concrete slab.  The equations used for 

determining the limiting values of prestressing force are given below: 

1. Fracture of concrete due to tension at top of concrete fin 

 

𝐹 ≤  
𝑓𝑟

(
1
𝐴 +

𝑒𝑐
𝐼 )

 

 

        where 

F  = Maximum prestressing force  



 

120 

 

𝑓𝑟 = Modulus of rupture of concrete = 7.5√𝑓𝑐
,
 

e   = Eccentricity of prestressing force 

A  = Transformed cross sectional area 

I    = Moment of inertial of transformed cross section 

 

2. Failure of FRP top flange in tension  

 

𝐹 ≤  
𝐹𝑓𝑡

(
𝑒(𝑐 − ℎ𝑐)

𝐼 −
1
𝐴)

 

 

where 

F    = Maximum prestressing force  

𝐹𝑓𝑡 = Ultimate tensile strength of flange FRP 

e    = Eccentricity of prestressing force 

A   = Transformed cross sectional area 

I     = Moment of inertial of the transformed cross section 

 

3. Failure of FRP web in tension 

 

𝐹 ≤  
𝐹𝑤𝑡

(
𝑒(𝑐 − ℎ𝑐 − 𝑡𝑓1)

𝐼
−

1
𝐴

)

 

 

where 

F     = Maximum prestressing force  

𝐹𝑤𝑡 = Ultimate tensile strength of web FRP  

 

4. Failure of FRP web in compression 

𝐹 ≤  
𝐹𝑤𝑐

(
𝑒(𝑑 − 𝑐 − 𝑡𝑓2)

𝐼 −
1
𝐴)

 

          where 
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F     = Maximum prestressing force  

𝐹𝑤𝑐 = Ultimate compressive strength of web FRP 

 

5. Failure of FRP flange in compression 

 

𝐹 ≤  
𝐹𝑓𝑐

(
𝑒(𝑑 − 𝑐)

𝐼 −
1
𝐴)

 

 

where 

F    = Maximum prestressing force  

𝐹𝑓𝑐 = Ultimate compressive strength of flange FRP 

The summary of the prestressing forces given by the above given formulas for the HCB cross 

sections at nodes is shown in Table 47. 

 

 

Table 47. Summary of prestressing force given by limiting states 

Node 

Prestressing Force (kips) 

At Failure (in Compression) of:  At Failure (in Tension) of: 

Web Bottom Flange Web Top Flange Concrete 

1 2975 3215 19146 19964 157.5 

3 2991 3232 18126 18937 149.39 

5 3107 3357 16102 16901 133.33 

7 3568 3854 15209 16041 126.55 

9 4931 5325 17863 18894 149.05 

11 8259 8921 29272 30892 244.5 
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The prestressing force of 157.5 kips given by the concrete failure in tensions at the midspan 

is used as the applied prestressing force.  

 

4.2.2   Moment-curvature relations and nodal deflections 

The moment-curvature relations for the prestressed HCB with concrete slab included are 

shown in Appendix G.  For comparison purpose, the moment-curvature curves for both cases of 

prestressed HCB at the midspan and support are shown in Figures 60 and 61. The curvature and 

nodal deflections for the prestressed HCB with slab included generated by the finite-difference 

method are given in Tables 48 through 51.  

 

 

 

Figure 59. Moment-curvature relations for prestressed HCB with and without concrete 

slab at midspan 
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Figure 61. Moment-curvature curves at for prestressed HCB with and without concrete 

slab at support 

 

 

Table 48. Results for prestressed HCB with P = 100 kips 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 8200.00 0.00001679 2.19 

6 16400.00 0.00005028 4.27 

6 24600.00 0.00008449 6.01 

8 32604.00 0.00011619 7.18 

10 32604.00 0.00011613 7.57 
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Table 49.  Results for prestressed HCB with P = 212 kips 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 17384.00 0.00005504 5.17 

6 34768.00 0.00012459 9.97 

6 52152.00 0.00018963 13.93 

8 69120.48 0.00026632 16.62 

10 69120.48 0.00026672 17.52 

 

 

Table 50.  Results for prestressed HCB with P = 222 kips 

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 18204.00 0.00005845 5.98 

6 36408.00 0.00013066 11.56 

6 54612.00 0.00019929 16.27 

8 72380.88 0.00033360 19.63 

10 72380.88 0.00033370 20.75 
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Table 51.  Results for prestressed HCB with P = 231 kips  

Node 
Moment  

(K-in.) 
ɸ  

(rad./in.) 
Deflection 

(in.) 

0 0 0 0 

2 18942.00 0.00006153 7.49 

6 37884.00 0.00013611 14.57 

6 56826.00 0.00020798 20.73 

8 75315.24 0.00047195 25.49 

10 75315.24 0.00047255 27.08 

 

 

4.3   Comparison of results of prestressed HCB analysis 

The load-deflection relations for prestressed HCB without and with concrete slab are shown 

in Figure 62 along with the experimental curve [10]. It can be seen from the figure that strength 

and stiffness of the prestressed HCB without slab for a prestressing force of 302.78 kips is 

comparable with the strength and stiffness of the prestressed HCB with slab for a prestressing 

force of 157.5 kips. It can be concluded form the results that the prestressing of HCB with slab 

included  though less preferable practically gives same performance for half the prestressing 

force used when slab not prestressed. 
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Figure 62: Theoretical load-midspan deflection relations for prestressed, non-prestressed 

HCB and experimental curve [1]  
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5.  FLEXURAL BEHAVIOR OF CFRP-RETROFITTED HCB  

 

The theoretical study of the behavior of HCB retrofitted with CFRP at different positions 

across the cross section is presented herein. The retrofitting scheme which shows best results is 

then studied for the prestressed behavior of HCB.  The physical properties of the commonly 

available CFRP are used in the analysis. Three settings of CFRP retrofitting of HCB without 

prestressing are studied, namely: 

1. Retrofitting at bottom of flange 

2. Retrofitting at the top of concrete slab 

3. Retrofitting at both top and bottom 

The analysis of the nonlinear load-deflection behavior of HCB under bending loading for the 

above mentioned CFRP use for retrofitting is presented as herein.  

5.1   CFRP retrofitting at bottom of HCB 

The setting for CFRP sheets is shown in Figure 63. The strength and modulus of elasticity of  

CFRP used in the analysis are 250 ksi and 20,000 ksi, respectively.  The total area of CFRP used 

is 3.46 in2.  

The finite-difference scheme used for the analysis of non-retrofitted HCB is used here as 

well.  The theoretical moment-curvature curve for the midspan cross section for the retrofitted 

HCB is shown in Figure 64.  The load-deflection relations for the retrofitted and non-retrofitted 

HCB are shown is Figure 65. It can be seen from the figure that the strength of retrofitted HCB is 

19.34 % higher than the non-retrofitted HCB whereas the deflections for the retrofitted HCB in 

linear range are 18 % less than the corresponding values for non-retrofitted HCB.  
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Figure 60. CFRP retrofitting at the bottom of HCB 
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Figure 61. Moment-curvature curve at midspan for CFRP retrofitted HCB  

at bottom of flange 

 

 

Table 52. Load versus midspan deflections for HCB with CFRP retrofitting done 

 at bottom flange 

Total Load, 2P 
(Kips) 

Deflection 
(in.) 

0 0 

200 7.14 

472.5 17.45 

476 17.58 

506 19.04 
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Figure 62. Load-deflection relation for CFRP retrofitted HCB at bottom  

and non-retrofitted HCB 

 

 

5.2   CFRP retrofitting at top of concrete slab 

In this case the flexural behavior of HCB up to the collapse is analyzed for CFRP plates 

embedded in the concrete slab as shown in Figure 66. The magnitude of CFRP sued for the 

previous case i.e., 3.46 in2 is used here as well. The moment-curvature relation for the midspan 

cross section for the under discussion HCB retrofitting case is shown in Figure 67 whereas the 

midspan load-deflection relation is shown in Figures 68.  The figure shows that the strength gain 

for retrofitting at the top of concrete slab is only 3.77% when compared with the non-retrofitted 

HCB whereas the stiffness remains the same as non-retrofitted HCB. 
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Figure66. CFRP retrofitting at top of concrete slab
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Figure 67. Moment-curvature curve at midspan for CFRP retrofitted HCB at top of 

concrete slab 

 

 

Table 53. Load versus midspan deflections of HCB retrofitted at top of slab 
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Figure 68. Load-deflection relation for HCB retrofitted at top of slab  

and non-retrofitted HCB 
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Figure 69. CFRP retrofitting at top and bottom for HCB 
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Figure 70. Moment-curvature curve at midspan for CFRP retrofitted HCB at top of 

concrete slab and bottom of flange 
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535 20.76 

 

Figure 71. Load-deflection relation for HCB retrofitted at top and bottom  

and non-retrofitted HCB 
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The comparison of the relations for retrofitted HCB cases with the non-retrofitted show that 

the use of CFRP at the top of slab shows no improvement of HCB at all. The maximum 

performance of HCB can be achieved by applying retrofitting both at the top and bottom. 

 

Figure 72.  Load-deflection curves for CFRP retrofitted HCBs  

and non-retrofitted HCB 
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5.5   HCB retrofitting at top and bottom for greater performance  

The behavior of HCB retrofitted with larger area of CFRP and having higher modulus of 

elasticity used at the top and bottom of HCB is studied in herein. The area of CFRP used is 18 

in2 for top and bottom position each whereas the modulus of elasticity used for analysis is 29,000 

ksi. The moment-curvature relation at midspan for such retrofitting of HCB is shown in Figure 

73 whereas Figure 74 shows midspan load-deflection relation for the HCB. The figure shows 

that the strength of the retrofitted HCB is 123% more than the strength of the corresponding non-

retrofitted HCB whereas the deflections of the retrofitted HCB in the linear range are 66% lesser 

than the corresponding deflections of non-retrofitted HCB. 

 

 

 

Figure 73.  Moment-curvature relation at midspan for HCB retrofitted with CFRP 
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Table 55. Load versus midspan deflections for high performance CFRP retrofitted HCB  

at top and bottom 

Total Load, 2P 
(Kips) 

Deflection 
(in.) 

0 0 

440 6.79 

947 14.76 

 

 

 

Figure 74.  Load-deflection relation for high performance CFRP retrofitted HCB  
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5.6   HCB retrofitting at top and bottom used with CFRP shell  

The behavior of HCB retrofitted at top and bottom with CFRP and FRP box replace with 

CFRP is presented here. The properties and locations of CFRP used for retrofitting is same as 

used in the previous section but here the properties of the HCB shell are replaced with the 

properties of CFRP to investigate its influence on behavior of HCB. The moment-curvature 

relations for the HCB with above mentioned properties and midspan load-deflection relation 

generated by the finite-difference analysis are given in Figures 75 and 76, respectively. Figure 76 

shows that the strength of HCB retrofitted at top and bottom with CFRP and using CFRP shell is 

129 % higher than that of the HCB with no CFRP used at all. Similarly, the deflections of such 

HCB are 68% less than those of the non-retrofitted HCB in the linear range of loading.  

 

 

 

Figure 75. Moment-curvature curve at midspan for HCB having CFRP shell and 

retrofitted at top and Bottom with CFRP  
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Table 56. Load versus midspan deflections for high performance CFRP retrofitted HCB 

with CFRP shell 

Total Load, 2P 
(Kips) 

Deflection 
(in.) 

0 0 

700 10.07 

973.5 13.98 

 

 

 

Figure 76. Load-deflection relation for high performance CFRP retrofitted HCB with 

CFRP shell 
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5.7   HCB behavior for CFRP shell   

The load-deflection behavior of HCB having CFRP under bending load is presented here. 

The dimensions of the box remain the same as been used throughout the analysis. The moment-

curvature relationship for such HCB at midspan cross section is shown in Figure 77 along with 

the relation for HCB with FRP shell. The load-deflection relationship for the HCB with CFRP 

shell yielded by the nonlinear finite-difference analysis is shown in Figure 78. The figure shows 

that the replacement of FRP shell with CFRP one increases the strength of HCB by 45.7% and 

deflections in the linear range by 48.4%.  

 

 

 

Figure 77.  Moment-curvature curve for HCB with CFRP shell  
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Table 57. Load versus midspan deflections of HCB with CFRP shell 

Total Load, 2P 
(Kips) 

Deflection 
(in.) 

0 0 

400 9.37 

618 15.8 

 

 

 

Figure 78. Load-deflection curve for HCB with CFRP shell  
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5.8   Behavior of prestressed HCB retrofitted at top and bottom and having CFRP shell   

The load-deflection behavior of prestressed HCB having CFRP shell and retrofitted at top 

and bottom with CFRP strips is persistent herein.  The beam with CFRP shell and retrofitting at 

the top and bottom gives best performance without prestressing. This section investigates the 

performance of the HCB with best retrofitting setting under prestressed conditions. The first step 

is the determination of the safe prestressing force. The same formulas applied to the non-

retrofitted prestressed HCB in chapter 4 are used here. The summary of the prestressing force 

given by the applied limiting states is given in Table 58. 

 

 

Table 58. Summary of prestressing force for applied limit states 

Node 

Prestressing Force (kips) 

At Failure (in Compression) of:  At Failure (in Tension) of: 

Web Bottom Flange Web Top Flange Concrete 

0 18777 18526 61695 62487 1011.2 

2 15745 15512 74012 75563 12232 

4 13831 12789 82610 82546 14256 

6 12631 12462 92889 96278 15581 

8 12059 12862 95776 99607 16120 

10 11889 11693 96376 10033 16236 

 

 

It can be seen that the prestressing of 1011.2 kips given by the tension failure of concrete at 

the support is the minimum and same. Therefore, this is used as the safe prestressing force for 

analysis.  

The moment-curvature curve for the prestressed HCB made of CFRP shell and retrofitted 

with CFRP at top and bottom is shown in Figure 79. The moment-curvature relations for the 
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non-prestressed HCB with the same shell properties and retrofitting  and non-prestressed HCB 

with GFRP shell and not retrofitted are also shown for comparison.  

 

 

 

Figure 63. Moment-curvature relations for prestressed and retrofitted, retrofitted only and 

non-prestressed/non-retrofitted HCB  
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the same HCB. The curve for non-retrofitted, non-prestressed HCB is also shown for 

comparison.  It can be seen from the figure that ultimate strength for the prestressed HCB made 

of CFRP shell and retrofitted with 18 in2  of CFRP retrofitting done at the top and bottom each,  

is 163% higher that of that of the HCB used by HC Bridge Company in Knickerbocker Bridge 

[10]. Likewise, the deflection for the HCB are on average 77% less than the HCB used in the 

Knickerbocker Bridge [10]. 

 

 

Table 59. Load versus midspan deflections of prestressed and retrofitted HCB made of 

CFRP shell 

Total Load, 2P 
(Kips) 

Deflection 
(in.) 

0 -1.27 

139 -0.25 

650 6.86 

1115 13.83 
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Figure 80. Midspan load-deflection relation for prestressed HCB having CRFP shell and 

retrofitted with CFRP at top and bottom 
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6. CONCLUSIONS 

 

The following conclusions can be drawn from the study presented in this dissertation: 

1. The materially nonlinear analysis of HCB based on Bernoulli beam approach formulated 

and programmed in this dissertation is found to be computationally efficient.  

2. Retrofitting of HCB with CFRP results in a 123 percent increase in the strength and 66 

decrease in the midspan deflections.  

3. Replacing FRP shell with that made of CFRP combined with the concrete slab CFRP 

retrofitting gives a 46 percent increase in strength and 48.4 reduction in the midspan 

HCB deflection. 

4. Retrofitting of HCB with CFRP combined with replacement of FRP with CFRP results in 

130 percent increase in the strength and 68 percent decrease in the deflections. 

5. Prestressing HCB retrofitted with CFRP and FRP shell replaced with CFRP results in a 

163 percent increase in strength and a 77 percent reduction in midspan deflections.  

6. When the arch-and-beam model is used with tie stiffness estimation based on the steel 

tensile reinforcement only, it does not agree with elastic load-deflection curve from HC 

Bridge Company experiments.  

7. When the arch–and-beam elastic model is used with tie stiffness values based on the 

average fin height, FRP shell and steel reinforcement, it provides a reasonable agreement 

with the HC Bridge Company experiment. 

8. The HCB behavior predicted using Bernoulli beam model indicates that the concrete arch 

and fin do not contribute much to the overall stiffness and strength. 

9. The HCB stiffness and ultimate strength without concrete arch, fin and FRP shell are 

respectively 13 and 15 percent smaller than  those for HCB with complete cross section. 

10. The HCB elastic deflection owing to the slab weight predicted by Bernoulli beam 

approach is 15 percent greater than that form HCB Bridge Company experiment 

verifying the inherent arch action. 

11. The central finite-difference based nonlinear algorithm for predicting HCB behavior and 

strength based on Bernoulli beam model provided good convergence. 
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12. In the linear elastic range, the predicted HCB response to external loads based on 

Bernoulli beam approach shows an excellent agreement with HC Bridge Company 

experiment indicating the lack of arch action. 
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APPENDICES 

 A. 

Script of Computer Program in MATLAB for generating M-ϕ Curve for HCB Section 

 

% PROGRAM FOR PLOTTING MOMENT-CURVATURE (M-Phi) CURVE FOR HILLMAN-COMPOSITE 
BEAM(HCB) 
% Description of the program: 
% The program takes inputs from user and plots moment-curvature 
% (M-Phi)curve for HCB. 

  
clear; 
clc; 

  
% User inputs for analysis 

  
% General inputs 
% Bc = input('Enter width of concrete slab (in inches); Bc: '); 
% hc = input('Enter thickness of concrete slab (in inches); hc: '); 
% NoB = input('Enter total number of steel rebars used as top reinforcement 

in slab; NoB: '); 
% B.Num = input('Enter rebar number used as top reinforcement  in slab; 

B.Num: '); 
% db = input('Enter depth of top steel reinforcement in slab (in inches); db: 

'); 
% Asb = input('Enter bottom steel reinforcement area in slab (in sq. inches); 

Asb: '); 
% dbb = input('Enter depth of bottom slab steel reinforcement in slab (in 

inches); dbb: '); 
% Af = input('Enter area of CFRP reinforcement in slab (in sq. inches); Af: 

'); 
% df = input('Enter depth of CFRP reinforcement in slab (in inches); df: '); 
% f = input('Enter thickness of fillet (in inches); f: '); 
% b = input('Enter width of HCB (in inches); b: '); 
% d  = input('Enter depth of HCB (in inches); d: '); 
% tf1 = input('Enter thickness of top flange of HCB (in inches); tf1: '); 
% tf2 = input('Enter thickness of bottom flange of HCB (in inches); tf2: '); 
% tw = input('Enter thickness of web of HCB (in inches); tw: '); 
% bf = input('Enter thickness of fin (in inches); bf: '); 
% hf = input('Enter depth of fin (in inches); hf: '); 
% ba = input('Enter width of arch (in inches); ba: '); 
% ha = input('Enter thickness of arch (in inches); ha: '); 
% Aas = input('Enter area of arch steel (in sq. inches); Aas: '); 
% has = input('Enter distance of arch steel from bottom of HCB (inches); has: 

'); 
% Aaf = input('Enter area of arch CFRP reinforcement (in sq. inches); Aaf: 

'); 
% haf = input('Enter distance of arch CFRP reinforcement from bottom of HCB 

(inches); haf: '); 
% Ast = input('Enter area of tension reinforcement (steel strands) (in sq. 

inches); Ast: '); 
% hs = input('Enter distance of tension reinforcement (steel strands) from 

bottom of HCB (in inches); hs: '); 
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% Ec = input('Enter modulus of elasticity value for slab concrete (in ksi); 

Ec: '); 
% Eac = input('Enter modulus of elasticity value for arch concrete (in ksi); 

Eac: '); 
% Es = input('Enter modulus of elasticity value for steel rebars (in ksi); 

Es: '); 
% Ef = input('Enter modulus of elasticity value for CFRP reinforcement(in 

ksi); Ef: '); 
% Ee = input('Enter tension modulus of elasticity value for FRP webs (in 

ksi); Ee: '); 
% Eec = input('Enter compression modulus of elasticity value for FRP webs(in 

ksi); Eec: '); 
% Eef = input('Enter tension modulus of elasticity value for FRP flanges (in 

ksi); Eef: '); 
% Eecf = input('Enter compression modulus of elasticity value for FRP flanges 

(in ksi); Eecf: '); 
% Est = input('Enter modulus of elasticity value for tension reinforcement 

(steel strands) (in ksi); Est: '); 
% fc = input('Enter ultimate strength of slab concrete (in ksi); fc: '); 
% fac = input('Enter ultimate strength of arch concrete (in ksi); fac: '); 
% Fs = input('Enter yield strength of steel rebars (in ksi); Fs: '); 
% Ff = input('Enter ultimate strength of CFRP (in ksi); Ff: '); 
% Fe = input('Enter ultimate strength of FRP in tension for webs (in ksi); 

Fe: '); 
% Fec = input('Enter ultimate strength of FRP in compression for webs (in 

ksi); Fec: '); 
% Fef = input('Enter ultimate strength of FRP in tension for flanges (in 

ksi); Fef: '); 
% Fecf = input('Enter ultimate strength of FRP in compression for flanges (in 

ksi); Fecf: '); 
% Fst = input('Enter yield strength of tension reinforcement (steel strands) 

(in ksi); Fst: '); 

  

 
switch B.Num 
         case 3 
        Ab=0.11; 
         case 4 
        Ab=0.20; 
         case 5 
        Ab=0.31; 
         case 6 
        Ab=0.44; 
         case 7 
        Ab=0.6; 
         case 8 
        Ab=0.79; 
         case 9 
        Ab=1.00; 
         case 10 
        Ab=1.27; 
         case 11 
        Ab=1.56; 
         case 14 
        Ab=2.25; 
         case 18 
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        Ab=4.00; 
         otherwise 
        disp('Invalid bar number'); 
end 

  
% Total area of top steel rebars in slab 
As=Ab*NoB; 
% Area of concrete in slab 
Ac=Bc*hc-As-Af-Asb; 
% Equivalent width of concrete slab 
bc=Ac/hc; 
% Equivalent width of arch 
be=(ba*ha-Aas-Aaf)/ha; 
% Yield strain of steel rebars 
Ts=Fs/Es; 
% Yield strain of tension reinforcement (steel strands) 
Tst=Fst/Est; 
% Rupture strain of CFRP 
Tf=Ff/Ef; 
% Rupture strain of FRP in tension for webs 
Te=Fe/Ee; 
% Rupture strain of FRP in compression for webs 
Tec=Fec/Eec; 
% Rupture strain of FRP in tension for flanges 
Tef=Fef/Eef; 
% Rupture strain of FRP in compression for flanges 
Tecf=Fecf/Eecf; 

  

  

  
Ay=2*tw*(d-tf1-tf2)*(hc+f+tf1+(d-tf1-

tf2)/2)+b*tf1*(hc+f+tf1/2)/(Ee/Eef)+b*tf2*(hc+f+d-

tf2/2)/(Ee/Eef)+Ac/(Ee/Ec)*hc/2+As/(Ee/Es)*db+Asb/(Ee/Es)*dbb+Af/(Ee/Ef)*df+b

f*hf/(Ee/Eac)*(hc+f+tf1+hf/2)+be*ha/(Ee/Eac)*(hc+f+tf1+hf+ha/2)+Aas/(Ee/Es)*(

hc+f+d-has)+Aaf/(Ee/Ef)*(hc+f+d-haf)+Ast/(Ee/Est)*(hc+f+d-hs); 
A=2*tw*(d-tf1-

tf2)+b*tf1/(Ee/Eef)+b*tf2/(Ee/Eef)+Ac/(Ee/Ec)+As/(Ee/Es)+Asb/(Ee/Es)+Af/(Ee/E

f)+bf*hf/(Ee/Eac)+be*ha/(Ee/Eac)+Aas/(Ee/Es)+Aaf/(Ee/Ef)+Ast/(Ee/Est); 
c=Ay/A; 
s=c; 

  
for Epc=0.0001:0.0001:0.003;     

         
if c > hc+f+tf1+hf+ha 

         
        % Strain in top slab steel 
          Eps=Epc/c*(c-db);          
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb);           
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 
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          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);           

         
        % Compressive force: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac; 
        elseif  0.001 < Epc <= 0.002 
            if Epc/c*(c-hc) < 0.001 
                Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*(0.001+Epc/c*(c-

hc))*Ec*bc*(hc-c/Epc*(Epc-0.001)); 
            else 
                Cc=fc*Ac; 
            end 
        else 
            if Epc/c*(c-hc) < 0.002 
                if Epc/c*(c-hc) < 0.001 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-Epc/c*(c-

hc)); 
                else 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*(0.002-Epc/c*(c-hc)); 
                end 
            else 
                Cc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc; 
            end 
        end 

        
        % Compressive force in top slab steel 
        if Eps < Ts 
            Cs=Eps*Es*As; 
        else 
            Cs=Fs*As; 
        end 

         
        % Compressive force in bottom slab steel 
        if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
        else 
            Csb=Fs*Asb; 
        end 

         
        % Compressive force in slab CFRP reinforcement 
        if Epf < Tf 
            Cf=Epf*Ef*Af; 
        else 
            Cf=0; 
        end 

         
        % Compressive force in top HCB flange 
        if  Epc/c*(c-hc-f) < Tecf 
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            Cfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1; 
        else 
            Cfl=0; 
        end 

             
        % Compressive force in HCB webs     
        if  Epc/c*(c-hc-f-tf1) < Tec 
            Cw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1); 
        else 
            Cw=0; 
        end 

         
        % Compressive force in fin 
        if Epc/c*(c-hc-f-tf1) <= 0.001 
            Cfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf; 
        elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-hc-f-

tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-c/Epc*0.001)); 
            else 
                Cfn=fac*bf*hf; 
            end 
        else                 
            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-

hf)*Eac)*bf*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf)); 
            else 
                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-

tf1)-0.002)); 
                else 
                Cfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*bf*hf; 
                end 
            end 
        end 

         
        % Compressive force in arch concrete 
        if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
            Cac=Epc/c*(c-hc-f-tf1-hf-ha/2)*Eac*be*ha; 
        elseif 0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Cac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-

hc-f-tf1-hf-ha))*Eac*be*(ha-(c-hc-f-tf1-hf-c/Epc*0.001)); 
            else 
                Cac=fac*be*ha; 
            end 
        else  
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)+fac*be*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-hf-

ha)*Eac)*be*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf-ha)); 
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            else 
                if Epc/c*(c-hc-f-tf1-hf-ha) < 0.002 
                Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)+fac*be*c/Epc*(0.002-Epc/c*(c-

hc-f-tf1-hf-ha)); 
                else 
                Cac=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf-ha)-0.002)))*be*ha; 
                end                   
            end 
        end 

          
        % Compressive force in arch steel 
        if Eas < Ts 
        Cas = Epc/c*(c-(hc+f+d-has))*Es*Aas; 
        else 
        Cas = Fs*Aas; 
        end 

         
        % Compressive force in arch CFRP  
        if Eaf < Tf 
        Caf = Epc/c*(c-(hc+f+d-haf))*Ef*Aaf; 
        else 
        Caf = 0; 
        end                 

         
        C=Cc+Cs+Csb+Cf+Cfl+Cw+Cfn+Cac+Cas+Caf;         

             
        % Tensile force: 

         
        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            Tw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2); 
        else 
            Tw=0; 
        end         

         
        T=Tss+Tbf+Tw;          

         
elseif hc < c <= hc+f+tf1+hf+ha 
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        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);        

         
        % Compressive force: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac; 
        elseif  0.001 < Epc <= 0.002 
            if Epc/c*(c-hc) < 0.001 
                Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*(0.001+Epc/c*(c-

hc))*Ec*bc*(hc-c/Epc*(Epc-0.001)); 
            else 
                Cc=fc*Ac; 
            end 
        else 
            if Epc/c*(c-hc) < 0.002 
                if Epc/c*(c-hc) < 0.001 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-Epc/c*(c-

hc)); 
                else 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*(0.002-Epc/c*(c-hc)); 
                end 
            else 
                Cc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc; 
            end 
        end 

        
        % Compressive force in top slab steel 
        if Eps < Ts 
            Cs=Eps*Es*As; 
        else 
            Cs=Fs*As; 
        end 

         
        % Compressive force in bottom slab steel 
        if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
        else 
            Csb=Fs*Asb; 
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        end 

  
        % Compressive force in slab CFRP reinforcement 
        if Epf < Tf 
            Cf=Epf*Ef*Af; 
        else 
            Cf=0; 
        end 

         
        % Compressive force in top HCB flange 
        if c > hc+f+tf1 
           if  Epc/c*(c-hc-f) < Tecf 
            Cfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1; 
           else 
            Cfl=0; 
           end 
        else 
           if Epc/c*(c-hc-f) < Tecf 
           Cfl=1/2*Epc/c*(c-hc-f)*Eecf*b*(c-hc-f); 
           else 
           Cfl=0; 
           end 
        end 

             
        % Compressive force in HCB webs 
        if c > hc+f+tf1 
         if  Epc/c*(c-hc-f-tf1) < Tec 
            Cw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1); 
         else 
            Cw=0; 
         end 
        else 
            Cw=0; 
        end 

         
        % Compressive force in fin 
        if hc+f+tf1 < c 
           if hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Cfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf; 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-hc-f-

tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-c/Epc*0.001)); 
             else 
                Cfn=fac*bf*hf; 
             end 
            else                 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-

hf)*Eac)*bf*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf)); 
             else 
                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
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                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-

tf1)-0.002)); 
                else 
                Cfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*bf*hf; 
                end 
             end 
            end 
           else 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Cfn=1/2*Epc/c*(c-hc-f-tf1)*Eac*bf*(c-hc-f-tf1); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*fac*bf*c/Epc*0.001;  
            else 
             Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*fac*bf*c/Epc*0.001; 
            end 
           end 
        else             
            Cfn=0; 
        end 

         
        % Compressive force in arch concrete 
        if  hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
             Cac=1/2*Epc/c*(c-hc-f-tf1-hf)*Eac*be*(c-hc-f-tf1-hf); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
             Cac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)+1/2*fac*be*c/Epc*0.001; 
            else 
             Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)+fac*be*c/Epc*0.001+1/2*fac*be*c/Epc*0.001; 
            end 
        else 
            Cac=0; 
        end 

          
        % Compressive force in arch steel 
        if hc+f+d-has < c 
         if Eas < Ts 
          Cas = Eas*Es*Aas; 
         else 
          Cas = Fs*Aas; 
         end 
        else 
         Cas=0; 
        end 

         
        % Compressive force in arch CFRP 
        if hc+f+d-haf < c 
         if Eaf < Tf 
          Caf = Eaf*Ef*Aaf; 
         else 
          Caf = 0; 
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         end  
        else 
         Caf = 0; 
        end         

         
        C=Cc+Cs+Csb+Cf+Cfl+Cw+Cfn+Cac+Cas+Caf;          

         
        % Tensile force: 

         
        % Tensile force in arch steel 
        if c < hc+f+d-has 
         if Epc/c*(hc+f+d-c-has) < Ts 
            Tas=Epc/c*(hc+f+d-c-has)*Es*Aas; 
         else  
            Tas=Fs*Aas; 
         end 
        else 
            Tas=0; 
        end                

         
        % Tensile force in arch CFRP  
        if c < hc+f+d-haf 
         if Epc/c*(hc+f+d-c-haf) < Tf 
            Taf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf; 
         else  
            Taf=0; 
         end 
        else 
            Taf=0; 
        end               

         
        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            if c >= hc+f+tf1 
            Tw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2); 
            else 
            Tw=2*Epc/c*(hc+f+d-c-tf2-1/2*(d-tf1-tf2))*Ee*tw*(d-tf1-tf2); 
            end 
        else 
            Tw=0; 
        end         
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        T=Tas+Taf+Tss+Tbf+Tw;          

         
else 
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);        

             

         
        % Compressive forces: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*Epc*Ec*bc*c; 
        elseif  0.001 < Epc <= 0.002 
            Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*fc*bc*c/Epc*0.001; 
        else 
            Cc=1/2*((fc+Ecc*(Epc-0.002))+fc)*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*fc*bc*c/Epc*0.001;      
        end 

         
        % Compressive force in top slab steel  
        if c > db 
         if Eps < Ts 
            Cs=Eps*Es*As; 
         else 
            Cs=Fs*As; 
         end 
        else 
         Cs=0; 
        end 

         

  
        % Compressive force in bottom slab steel  
        if c > dbb 
         if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
         else 
            Csb=Fs*Asb; 
         end 
        else 
         Csb=0; 
        end 
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        % Compressive force in slab CFRP reinforcement 
        if c > df 
         if Epf < Tf 
            Cf=Epf*Ef*Af; 
         else 
            Cf=0; 
         end 
        else 
         Cf=0; 
        end                 

         
        C=Cc+Cs+Csb+Cf;          

         
        % Tensile forces: 

         
        % Tensile force in bottom slab steel  
        if c < dbb 
         if Epc/c*(dbb-c) < Ts 
            Tsb=Epc/c*(dbb-c)*Es*Asb; 
         else 
            Tsb=Fs*Asb; 
         end 
        else 
         Tsb=0; 
        end 

         
        % Tensile force in top HCB flange 
        if Epc/c*(hc+f+d-c-(d-tf1)) < Tef 
            Ttf=Epc/c*(hc+f+d-c-(d-tf1/2))*Eef*b*tf1; 
        else 
            Ttf=0; 
        end 

             
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in arch CFRP  
        if Epc/c*(hc+f+d-c-haf) < Tf 
            Taf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf; 
        else  
            Taf=0; 
        end               

         
        % Tensile force in arch steel 
        if Epc/c*(hc+f+d-c-has) < Ts 
           Tas=Epc/c*(hc+f+d-c-has)*Es*Aas; 
        else 
           Tas=Ts*Aas; 
        end   

         
        % Tensile force in tension reinforcement (steel strands) 
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        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            Tw=2*Epc/c*(hc+f+d-c-tf2-1/2*(d-tf1-tf2))*Ee*tw*(d-tf1-tf2); 
        else 
            Tw=0; 
        end          

         
        T=Tsb+Ttf+Tbf+Taf+Tas+Tss+Tw;         
end     

     
    C=C*1000; 
    T=T*1000;  

     

   
 while abs(C-T) > 1         
     c=c-0.000001; 
     if c <= 0 
         break 
     end 

      
if c > hc+f+tf1+hf+ha 

         
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);           

         
        % Compressive force: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac; 
        elseif  0.001 < Epc <= 0.002 
            if Epc/c*(c-hc) < 0.001 
                Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*(0.001+Epc/c*(c-

hc))*Ec*bc*(hc-c/Epc*(Epc-0.001)); 
            else 
                Cc=fc*Ac; 
            end 
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        else 
            if Epc/c*(c-hc) < 0.002 
                if Epc/c*(c-hc) < 0.001 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-Epc/c*(c-

hc)); 
                else 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*(0.002-Epc/c*(c-hc)); 
                end 
            else 
                Cc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc; 
            end 
        end 

        
        % Compressive force in top slab steel 
        if Eps < Ts 
            Cs=Eps*Es*As; 
        else 
            Cs=Fs*As; 
        end 

         
        % Compressive force in bottom slab steel 
        if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
        else 
            Csb=Fs*Asb; 
        end 

         
        % Compressive force in slab CFRP reinforcement 
        if Epf < Tf 
            Cf=Epf*Ef*Af; 
        else 
            Cf=0; 
        end 

         
        % Compressive force in top HCB flange 
        if  Epc/c*(c-hc-f) < Tecf 
            Cfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1; 
        else 
            Cfl=0; 
        end 

             
        % Compressive force in HCB webs     
        if  Epc/c*(c-hc-f-tf1) < Tec 
            Cw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1); 
        else 
            Cw=0; 
        end 

         
        % Compressive force in fin 
        if Epc/c*(c-hc-f-tf1) <= 0.001 
            Cfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf; 
        elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
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            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-hc-f-

tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-c/Epc*0.001)); 
            else 
                Cfn=fac*bf*hf; 
            end 
        else                 
            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-

hf)*Eac)*bf*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf)); 
            else 
                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-

tf1)-0.002)); 
                else 
                Cfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*bf*hf; 
                end 
            end 
        end 

         
        % Compressive force in arch concrete 
        if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
            Cac=Epc/c*(c-hc-f-tf1-hf-ha/2)*Eac*be*ha; 
        elseif 0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Cac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-

hc-f-tf1-hf-ha))*Eac*be*(ha-(c-hc-f-tf1-hf-c/Epc*0.001)); 
            else 
                Cac=fac*be*ha; 
            end 
        else  
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)+fac*be*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-hf-

ha)*Eac)*be*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf-ha)); 
            else 
                if Epc/c*(c-hc-f-tf1-hf-ha) < 0.002 
                Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)+fac*be*c/Epc*(0.002-Epc/c*(c-

hc-f-tf1-hf-ha)); 
                else 
                Cac=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf-ha)-0.002)))*be*ha; 
                end                   
            end 
        end 

          
        % Compressive force in arch steel 
        if Eas < Ts 
        Cas = Epc/c*(c-(hc+f+d-has))*Es*Aas; 
        else 



 

165 

 

        Cas = Fs*Aas; 
        end 

         
        % Compressive force in arch CFRP  
        if Eaf < Tf 
        Caf = Epc/c*(c-(hc+f+d-haf))*Ef*Aaf; 
        else 
        Caf = 0; 
        end                 

         
        C=Cc+Cs+Csb+Cf+Cfl+Cw+Cfn+Cac+Cas+Caf;         

             
        % Tensile force: 

         
        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            Tw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2); 
        else 
            Tw=0; 
        end         

         
        T=Tss+Tbf+Tw;          

         
elseif hc < c <= hc+f+tf1+hf+ha 

       
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);        

         
        % Compressive force: 
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        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac; 
        elseif  0.001 < Epc <= 0.002 
            if Epc/c*(c-hc) < 0.001 
                Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*(0.001+Epc/c*(c-

hc))*Ec*bc*(hc-c/Epc*(Epc-0.001)); 
            else 
                Cc=fc*Ac; 
            end 
        else 
            if Epc/c*(c-hc) < 0.002 
                if Epc/c*(c-hc) < 0.001 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-Epc/c*(c-

hc)); 
                else 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*(0.002-Epc/c*(c-hc)); 
                end 
            else 
                Cc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc; 
            end 
        end 

        
        % Compressive force in top slab steel 
        if Eps < Ts 
            Cs=Eps*Es*As; 
        else 
            Cs=Fs*As; 
        end 

         
        % Compressive force in bottom slab steel 
        if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
        else 
            Csb=Fs*Asb; 
        end 

  
        % Compressive force in slab CFRP reinforcement 
        if Epf < Tf 
            Cf=Epf*Ef*Af; 
        else 
            Cf=0; 
        end 

         
        % Compressive force in top HCB flange 
        if c > hc+f+tf1 
           if  Epc/c*(c-hc-f) < Tecf 
            Cfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1; 
           else 
            Cfl=0; 
           end 
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        else 
           if Epc/c*(c-hc-f) < Tecf 
           Cfl=1/2*Epc/c*(c-hc-f)*Eecf*b*(c-hc-f); 
           else 
           Cfl=0; 
           end 
        end 

             
        % Compressive force in HCB webs 
        if c > hc+f+tf1 
         if  Epc/c*(c-hc-f-tf1) < Tec 
            Cw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1); 
         else 
            Cw=0; 
         end 
        else 
            Cw=0; 
        end 

         
        % Compressive force in fin 
        if hc+f+tf1 < c 
           if hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Cfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf; 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-hc-f-

tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-c/Epc*0.001)); 
             else 
                Cfn=fac*bf*hf; 
             end 
            else                 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-

hf)*Eac)*bf*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf)); 
             else 
                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-

tf1)-0.002)); 
                else 
                Cfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*bf*hf; 
                end 
             end 
            end 
           else 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Cfn=1/2*Epc/c*(c-hc-f-tf1)*Eac*bf*(c-hc-f-tf1); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*fac*bf*c/Epc*0.001;  
            else 
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             Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*fac*bf*c/Epc*0.001; 
            end 
           end 
        else             
            Cfn=0; 
        end 

         
        % Compressive force in arch concrete 
        if  hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
             Cac=1/2*Epc/c*(c-hc-f-tf1-hf)*Eac*be*(c-hc-f-tf1-hf); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
             Cac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)+1/2*fac*be*c/Epc*0.001; 
            else 
             Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)+fac*be*c/Epc*0.001+1/2*fac*be*c/Epc*0.001; 
            end 
        else 
            Cac=0; 
        end 

          
        % Compressive force in arch steel 
        if hc+f+d-has < c 
         if Eas < Ts 
          Cas = Eas*Es*Aas; 
         else 
          Cas = Fs*Aas; 
         end 
        else 
         Cas=0; 
        end 

         
        % Compressive force in arch CFRP 
        if hc+f+d-haf < c 
         if Eaf < Tf 
          Caf = Eaf*Ef*Aaf; 
         else 
          Caf = 0; 
         end  
        else 
         Caf = 0; 
        end         

         
        C=Cc+Cs+Csb+Cf+Cfl+Cw+Cfn+Cac+Cas+Caf;          

         
        % Tensile force: 

         
        % Tensile force in arch steel 
        if c < hc+f+d-has 
         if Epc/c*(hc+f+d-c-has) < Ts 
            Tas=Epc/c*(hc+f+d-c-has)*Es*Aas; 
         else  
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            Tas=Fs*Aas; 
         end 
        else 
            Tas=0; 
        end                

         
        % Tensile force in arch CFRP  
        if c < hc+f+d-haf 
         if Epc/c*(hc+f+d-c-haf) < Tf 
            Taf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf; 
         else  
            Taf=0; 
         end 
        else 
            Taf=0; 
        end               

         
        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            if c >= hc+f+tf1 
            Tw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2); 
            else 
            Tw=2*Epc/c*(hc+f+d-c-tf2-1/2*(d-tf1-tf2))*Ee*tw*(d-tf1-tf2); 
            end 
        else 
            Tw=0; 
        end         

         
        T=Tas+Taf+Tss+Tbf+Tw;          

         
else 
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 
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          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);        

             

         
        % Compressive forces: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*Epc*Ec*bc*c; 
        elseif  0.001 < Epc <= 0.002 
            Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*fc*bc*c/Epc*0.001; 
        else 
            Cc=1/2*((fc+Ecc*(Epc-0.002))+fc)*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*fc*bc*c/Epc*0.001;      
        end 

         
        % Compressive force in top slab steel  
        if c > db 
         if Eps < Ts 
            Cs=Eps*Es*As; 
         else 
            Cs=Fs*As; 
         end 
        else 
         Cs=0; 
        end 

         

  
        % Compressive force in bottom slab steel  
        if c > dbb 
         if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
         else 
            Csb=Fs*Asb; 
         end 
        else 
         Csb=0; 
        end 

         
        % Compressive force in slab CFRP reinforcement 
        if c > df 
         if Epf < Tf 
            Cf=Epf*Ef*Af; 
         else 
            Cf=0; 
         end 
        else 
         Cf=0; 
        end                 

         
        C=Cc+Cs+Csb+Cf;          

         
        % Tensile forces: 
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        % Tensile force in bottom slab steel  
        if c < dbb 
         if Epc/c*(dbb-c) < Ts 
            Tsb=Epc/c*(dbb-c)*Es*Asb; 
         else 
            Tsb=Fs*Asb; 
         end 
        else 
         Tsb=0; 
        end 

         
        % Tensile force in top HCB flange 
        if Epc/c*(hc+f+d-c-(d-tf1)) < Tef 
            Ttf=Epc/c*(hc+f+d-c-(d-tf1/2))*Eef*b*tf1; 
        else 
            Ttf=0; 
        end 

             
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in arch CFRP  
        if Epc/c*(hc+f+d-c-haf) < Tf 
            Taf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf; 
        else  
            Taf=0; 
        end               

         
        % Tensile force in arch steel 
        if Epc/c*(hc+f+d-c-has) < Ts 
           Tas=Epc/c*(hc+f+d-c-has)*Es*Aas; 
        else 
           Tas=Ts*Aas; 
        end   

         
        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            Tw=2*Epc/c*(hc+f+d-c-tf2-1/2*(d-tf1-tf2))*Ee*tw*(d-tf1-tf2); 
        else 
            Tw=0; 
        end          

         
        T=Tsb+Ttf+Tbf+Taf+Tas+Tss+Tw;         
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end     

     
    C=C*1000; 
    T=T*1000;     

     
 end 

      
while abs(C-T) > 1 
     c=c+0.000001; 

  
if c > hc+f+tf1+hf+ha 

         
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);           

         
        % Compressive force: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac; 
        elseif  0.001 < Epc <= 0.002 
            if Epc/c*(c-hc) < 0.001 
                Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*(0.001+Epc/c*(c-

hc))*Ec*bc*(hc-c/Epc*(Epc-0.001)); 
            else 
                Cc=fc*Ac; 
            end 
        else 
            if Epc/c*(c-hc) < 0.002 
                if Epc/c*(c-hc) < 0.001 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-Epc/c*(c-

hc)); 
                else 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*(0.002-Epc/c*(c-hc)); 
                end 
            else 
                Cc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc; 
            end 
        end 
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        % Compressive force in top slab steel 
        if Eps < Ts 
            Cs=Eps*Es*As; 
        else 
            Cs=Fs*As; 
        end 

         
        % Compressive force in bottom slab steel 
        if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
        else 
            Csb=Fs*Asb; 
        end 

         
        % Compressive force in slab CFRP reinforcement 
        if Epf < Tf 
            Cf=Epf*Ef*Af; 
        else 
            Cf=0; 
        end 

         
        % Compressive force in top HCB flange 
        if  Epc/c*(c-hc-f) < Tecf 
            Cfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1; 
        else 
            Cfl=0; 
        end 

             
        % Compressive force in HCB webs     
        if  Epc/c*(c-hc-f-tf1) < Tec 
            Cw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1); 
        else 
            Cw=0; 
        end 

         
        % Compressive force in fin 
        if Epc/c*(c-hc-f-tf1) <= 0.001 
            Cfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf; 
        elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-hc-f-

tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-c/Epc*0.001)); 
            else 
                Cfn=fac*bf*hf; 
            end 
        else                 
            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-

hf)*Eac)*bf*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf)); 
            else 
                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
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                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-

tf1)-0.002)); 
                else 
                Cfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*bf*hf; 
                end 
            end 
        end 

         
        % Compressive force in arch concrete 
        if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
            Cac=Epc/c*(c-hc-f-tf1-hf-ha/2)*Eac*be*ha; 
        elseif 0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Cac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-

hc-f-tf1-hf-ha))*Eac*be*(ha-(c-hc-f-tf1-hf-c/Epc*0.001)); 
            else 
                Cac=fac*be*ha; 
            end 
        else  
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)+fac*be*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-hf-

ha)*Eac)*be*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf-ha)); 
            else 
                if Epc/c*(c-hc-f-tf1-hf-ha) < 0.002 
                Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)+fac*be*c/Epc*(0.002-Epc/c*(c-

hc-f-tf1-hf-ha)); 
                else 
                Cac=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf-ha)-0.002)))*be*ha; 
                end                   
            end 
        end 

          
        % Compressive force in arch steel 
        if Eas < Ts 
        Cas = Epc/c*(c-(hc+f+d-has))*Es*Aas; 
        else 
        Cas = Fs*Aas; 
        end 

         
        % Compressive force in arch CFRP  
        if Eaf < Tf 
        Caf = Epc/c*(c-(hc+f+d-haf))*Ef*Aaf; 
        else 
        Caf = 0; 
        end                 

         
        C=Cc+Cs+Csb+Cf+Cfl+Cw+Cfn+Cac+Cas+Caf;         

             
        % Tensile force: 
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        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            Tw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2); 
        else 
            Tw=0; 
        end         

         
        T=Tss+Tbf+Tw;          

         
elseif hc < c <= hc+f+tf1+hf+ha 

       
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);        

         
        % Compressive force: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac; 
        elseif  0.001 < Epc <= 0.002 
            if Epc/c*(c-hc) < 0.001 
                Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*(0.001+Epc/c*(c-

hc))*Ec*bc*(hc-c/Epc*(Epc-0.001)); 
            else 
                Cc=fc*Ac; 
            end 
        else 
            if Epc/c*(c-hc) < 0.002 
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                if Epc/c*(c-hc) < 0.001 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-Epc/c*(c-

hc)); 
                else 
                    Cc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*(0.002-Epc/c*(c-hc)); 
                end 
            else 
                Cc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc; 
            end 
        end 

        
        % Compressive force in top slab steel 
        if Eps < Ts 
            Cs=Eps*Es*As; 
        else 
            Cs=Fs*As; 
        end 

         
        % Compressive force in bottom slab steel 
        if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
        else 
            Csb=Fs*Asb; 
        end 

  
        % Compressive force in slab CFRP reinforcement 
        if Epf < Tf 
            Cf=Epf*Ef*Af; 
        else 
            Cf=0; 
        end 

         
        % Compressive force in top HCB flange 
        if c > hc+f+tf1 
           if  Epc/c*(c-hc-f) < Tecf 
            Cfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1; 
           else 
            Cfl=0; 
           end 
        else 
           if Epc/c*(c-hc-f) < Tecf 
           Cfl=1/2*Epc/c*(c-hc-f)*Eecf*b*(c-hc-f); 
           else 
           Cfl=0; 
           end 
        end 

             
        % Compressive force in HCB webs 
        if c > hc+f+tf1 
         if  Epc/c*(c-hc-f-tf1) < Tec 
            Cw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1); 
         else 
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            Cw=0; 
         end 
        else 
            Cw=0; 
        end 

         
        % Compressive force in fin 
        if hc+f+tf1 < c 
           if hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Cfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf; 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*(0.001+Epc/c*(c-hc-f-

tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-c/Epc*0.001)); 
             else 
                Cfn=fac*bf*hf; 
             end 
            else                 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*(fac+Epc/c*(c-hc-f-tf1-

hf)*Eac)*bf*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf)); 
             else 
                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
                Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-

tf1)-0.002)); 
                else 
                Cfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*bf*hf; 
                end 
             end 
            end 
           else 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Cfn=1/2*Epc/c*(c-hc-f-tf1)*Eac*bf*(c-hc-f-tf1); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             Cfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)+1/2*fac*bf*c/Epc*0.001;  
            else 
             Cfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-

0.002)+fac*bf*c/Epc*0.001+1/2*fac*bf*c/Epc*0.001; 
            end 
           end 
        else             
            Cfn=0; 
        end 

         
        % Compressive force in arch concrete 
        if  hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
             Cac=1/2*Epc/c*(c-hc-f-tf1-hf)*Eac*be*(c-hc-f-tf1-hf); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
             Cac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)+1/2*fac*be*c/Epc*0.001; 
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            else 
             Cac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)+fac*be*c/Epc*0.001+1/2*fac*be*c/Epc*0.001; 
            end 
        else 
            Cac=0; 
        end 

          
        % Compressive force in arch steel 
        if hc+f+d-has < c 
         if Eas < Ts 
          Cas = Eas*Es*Aas; 
         else 
          Cas = Fs*Aas; 
         end 
        else 
         Cas=0; 
        end 

         
        % Compressive force in arch CFRP 
        if hc+f+d-haf < c 
         if Eaf < Tf 
          Caf = Eaf*Ef*Aaf; 
         else 
          Caf = 0; 
         end  
        else 
         Caf = 0; 
        end         

         
        C=Cc+Cs+Csb+Cf+Cfl+Cw+Cfn+Cac+Cas+Caf;          

         
        % Tensile force: 

         
        % Tensile force in arch steel 
        if c < hc+f+d-has 
         if Epc/c*(hc+f+d-c-has) < Ts 
            Tas=Epc/c*(hc+f+d-c-has)*Es*Aas; 
         else  
            Tas=Fs*Aas; 
         end 
        else 
            Tas=0; 
        end                

         
        % Tensile force in arch CFRP  
        if c < hc+f+d-haf 
         if Epc/c*(hc+f+d-c-haf) < Tf 
            Taf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf; 
         else  
            Taf=0; 
         end 
        else 
            Taf=0; 
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        end               

         
        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            if c >= hc+f+tf1 
            Tw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2); 
            else 
            Tw=2*Epc/c*(hc+f+d-c-tf2-1/2*(d-tf1-tf2))*Ee*tw*(d-tf1-tf2); 
            end 
        else 
            Tw=0; 
        end         

         
        T=Tas+Taf+Tss+Tbf+Tw;          

         
else 
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);        

             

         
        % Compressive forces: 

         
        % Compressive force in slab concrete 
        if Epc <= 0.001 
            Cc=1/2*Epc*Ec*bc*c; 
        elseif  0.001 < Epc <= 0.002 
            Cc=fc*bc*c/Epc*(Epc-0.001)+1/2*fc*bc*c/Epc*0.001; 
        else 
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            Cc=1/2*((fc+Ecc*(Epc-0.002))+fc)*bc*c/Epc*(Epc-

0.002)+fc*bc*c/Epc*0.001+1/2*fc*bc*c/Epc*0.001;      
        end 

         
        % Compressive force in top slab steel  
        if c > db 
         if Eps < Ts 
            Cs=Eps*Es*As; 
         else 
            Cs=Fs*As; 
         end 
        else 
         Cs=0; 
        end 

         

  
        % Compressive force in bottom slab steel  
        if c > dbb 
         if Epsb < Ts 
            Csb=Epsb*Es*Asb; 
         else 
            Csb=Fs*Asb; 
         end 
        else 
         Csb=0; 
        end 

         
        % Compressive force in slab CFRP reinforcement 
        if c > df 
         if Epf < Tf 
            Cf=Epf*Ef*Af; 
         else 
            Cf=0; 
         end 
        else 
         Cf=0; 
        end                 

         
        C=Cc+Cs+Csb+Cf;          

         
        % Tensile forces: 

         
        % Tensile force in bottom slab steel  
        if c < dbb 
         if Epc/c*(dbb-c) < Ts 
            Tsb=Epc/c*(dbb-c)*Es*Asb; 
         else 
            Tsb=Fs*Asb; 
         end 
        else 
         Tsb=0; 
        end 

         
        % Tensile force in top HCB flange 
        if Epc/c*(hc+f+d-c-(d-tf1)) < Tef 
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            Ttf=Epc/c*(hc+f+d-c-(d-tf1/2))*Eef*b*tf1; 
        else 
            Ttf=0; 
        end 

             
        % Tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            Tbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2; 
        else 
            Tbf=0; 
        end 

         
        % Tensile force in arch CFRP  
        if Epc/c*(hc+f+d-c-haf) < Tf 
            Taf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf; 
        else  
            Taf=0; 
        end               

         
        % Tensile force in arch steel 
        if Epc/c*(hc+f+d-c-has) < Ts 
           Tas=Epc/c*(hc+f+d-c-has)*Es*Aas; 
        else 
           Tas=Ts*Aas; 
        end   

         
        % Tensile force in tension reinforcement (steel strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            Tss=Epc/c*(hc+f+d-c-hs)*Est*Ast; 
        else  
            Tss=Fst*Ast; 
        end 

         
        % Tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            Tw=2*Epc/c*(hc+f+d-c-tf2-1/2*(d-tf1-tf2))*Ee*tw*(d-tf1-tf2); 
        else 
            Tw=0; 
        end          

         
        T=Tsb+Ttf+Tbf+Taf+Tas+Tss+Tw;         
end  

  
    C=C*1000; 
    T=T*1000; 

     
end 

  
%  end 

  
 fprintf('Epc = %10.5f\n', Epc) 
 fprintf('c = %10.6f in\n', c) 
 fprintf('C = %10.4f lb\n', C) 
 fprintf('T = %10.4f lb\n', T) 
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% Moments:  

  
 if c > hc+f+tf1+hf+ha 

      
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);        

                       
        % Moment due to compressive force in slab concrete 
        if Epc <= 0.001 
            Mc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac*(c-hc/3*(Epc+2*Epc/c*(c-

hc))/(Epc+Epc/c*(c-hc))); 
        elseif  0.001 < Epc <= 0.002 
            if c/Epc*(Epc-0.001) < hc 
                Mc=fc*bc*c/Epc*(Epc-0.001)*(c-1/2*c/Epc*(Epc-

0.001))+1/2*(0.001+Epc/c*(c-hc))*Ec*bc*(hc-c/Epc*(Epc-0.001))*(c-c/Epc*(Epc-

0.001)-(hc-c/Epc*(Epc-0.001))/3*(0.001+2*Epc/c*(c-hc))/(0.001+Epc/c*(c-hc))); 
            else 
                Mc=fc*Ac*(c-hc/2); 
            end 
        else 
            if Epc/c*(c-hc) < 0.002 
                if Epc/c*(c-hc) < 0.001 
                    Mc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-0.002)*(c-

1/3*c/Epc*(Epc-0.002)*(Epc+2*0.002)/(Epc+0.002))+fc*bc*c/Epc*0.001*(c-

c/Epc*(Epc-0.002)-1/2*c/Epc*0.001)+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-

Epc/c*(c-hc))*(c-c/Epc*(Epc-0.001)-1/3*(hc-c/Epc*(Epc-

0.001))*(0.001+2*Epc/c*(c-hc))/(0.001+Epc/c*(c-hc))); 
                else 
                    Mc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-0.002)*(c-

1/3*c/Epc*(Epc-0.002)*(Epc+2*0.002)/(Epc+0.002))+fc*bc*c/Epc*(0.002-Epc/c*(c-

hc))*(c-hc+1/2*c/Epc*(0.002-Epc/c*(c-hc))); 
                end 
            else 
                Mc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc*(c-1/3*hc*(Epc+2*Epc/c*(c-hc))/(Epc+Epc/c*(c-hc))); 
            end 
        end 

        
        % Moment due to compressive force in top slab steel 
        if Eps < Ts 
            Ms=Eps*Es*As*(c-db); 
        else 
            Ms=Fs*As*(c-db); 
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        end 

         
        % Moment due to compressive force in bottom slab steel 
        if Epsb < Ts 
            Msb=Epsb*Es*Asb*(c-dbb); 
        else 
            Msb=Fs*Asb*(c-dbb); 
        end 

         
        % Moment due to compressive force in slab CFRP reinforcement 
        if Epf < Tf 
            Mf=Epf*Ef*Af*(c-df); 
        else 
            Mf=0; 
        end 

         
        % Moment due to compressive force in top HCB flange 
        if  Epc/c*(c-hc-f) < Tecf 
            Mfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1*(c-hc-f-tf1/2); 
        else 
            Mfl=0; 
        end 

             
        % Moment due to compressive force in HCB webs     
        if  Epc/c*(c-hc-f-tf1) < Tec 
            Mw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1)*(2/3*(c-hc-f-

tf1)); 
        else 
            Mw=0; 
        end 

         
        % Moment due to compressive force in fin 
        if Epc/c*(c-hc-f-tf1) <= 0.001 
            Mfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf*(c-hc-f-tf1-

1/3*hf*(Epc/c*(c-hc-f-tf1)+2*Epc/c*(c-hc-f-tf1-hf))/(Epc/c*(c-hc-f-

tf1)+Epc/c*(c-hc-f-tf1-hf))); 
        elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Mfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)*(c-hc-f-tf1-1/2*(c-hc-f-

tf1-c/Epc*0.001))+1/2*(0.001+Epc/c*(c-hc-f-tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-

c/Epc*0.001))*(c-hc-f-tf1-(c-hc-f-tf1-c/Epc*0.001)-1/3*(hf-(c-hc-f-tf1-

c/Epc*0.001))*(0.001+2*Epc/c*(c-hc-f-tf1-hf))/(0.001+Epc/c*(c-hc-f-tf1-hf))); 
            else 
                Mfn=fac*bf*hf*(c-hc-f-tf1-hf/2); 
            end 
        else                 
            if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Mfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)*(c-hc-f-tf1-1/3*c/Epc*(Epc/c*(c-

hc-f-tf1)-0.002)*(Epc/c*(c-hc-f-tf1)+2*0.002)/(Epc/c*(c-hc-f-

tf1)+0.002))+fac*bf*c/Epc*0.001*(c-hc-f-tf1-c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)-

1/2*c/Epc*0.001)+1/2*(fac+Epc/c*(c-hc-f-tf1-hf)*Eac)*bf*c/Epc*(0.001-

Epc/c*(c-hc-f-tf1-hf))*(c-hc-f-tf1-hf+1/3*(hf-(c-hc-f-tf1-

c/Epc*0.001))*(2*0.001+Epc/c*(c-hc-f-tf1-hf))/(0.001+Epc/c*(c-hc-f-tf1-hf))); 
            else 
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                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
                Mfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)*(c-hc-f-tf1-1/3*c/Epc*(Epc/c*(c-

hc-f-tf1)-0.002)*(Epc/c*(c-hc-f-tf1)+2*0.002)/(Epc/c*(c-hc-f-

tf1)+0.002))+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-tf1)-0.002))*(c-hc-f-tf1-

hf+1/2*(hf-c/Epc*(Epc/c*(c-hc-f-tf1)-0.002))); 
                else 
                Mfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*be*ha*(c-hc-f-tf1-

hf/3*(Epc/c*(c-hc-f-tf1)+2*Epc/c*(c-hc-f-tf1-hf))/(Epc/c*(c-hc-f-

tf1)+Epc/c*(c-hc-f-tf1-hf))); 
                end 
            end 
        end 

         
        % Moment due to compressive force in arch concrete 
        if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
            Mac=Epc/c*(c-hc-f-tf1-hf-ha/2)*Eac*be*ha*(c-hc-f-tf1-hf-

1/3*ha*(Epc/c*(c-hc-f-tf1-hf)+2*Epc/c*(c-hc-f-tf1-hf-ha))/(Epc/c*(c-hc-f-tf1-

hf)+Epc/c*(c-hc-f-tf1-hf-ha))); 
        elseif 0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Mac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)*(c-hc-f-tf1-hf-1/2*(c-

hc-f-tf1-hf-c/Epc*0.001))+1/2*(0.001+Epc/c*(c-hc-f-tf1-hf-ha))*Eac*be*(ha-(c-

hc-f-tf1-hf-c/Epc*0.001))*(c-hc-f-tf1-hf-(c-hc-f-tf1-hf-c/Epc*0.001)-1/3*(ha-

(c-hc-f-tf1-hf-c/Epc*0.001))*(0.001+2*Epc/c*(c-hc-f-tf1-hf-

ha))/(0.001+Epc/c*(c-hc-f-tf1-hf-ha))); 
            else 
                Mac=fac*be*ha*(c-hc-f-tf1-hf-ha/2); 
            end 
        else  
            if Epc/c*(c-hc-f-tf1-hf-ha) < 0.001 
                Mac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)*(c-hc-f-tf1-hf-

1/3*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)*(Epc/c*(c-hc-f-tf1-

hf)+2*0.002)/(Epc/c*(c-hc-f-tf1-hf)+0.002))+fac*be*c/Epc*0.001*(c-hc-f-tf1-

hf-c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)-1/2*c/Epc*0.001)+1/2*(fac+Epc/c*(c-hc-

f-tf1-hf-ha)*Eac)*be*c/Epc*(0.001-Epc/c*(c-hc-f-tf1-hf-ha))*(c-hc-f-tf1-hf-

ha+1/3*(ha-(c-hc-f-tf1-hf-c/Epc*0.001))*(2*0.001+Epc/c*(c-hc-f-tf1-hf-

ha))/(0.001+Epc/c*(c-hc-f-tf1-hf-ha))); 
            else 
                if Epc/c*(c-hc-f-tf1-hf-ha) < 0.002 
                Mac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)*(c-hc-f-tf1-hf-

1/3*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)*(Epc/c*(c-hc-f-tf1-

hf)+2*0.002)/(Epc/c*(c-hc-f-tf1-hf)+0.002))+fac*be*c/Epc*(0.002-Epc/c*(c-hc-

f-tf1-hf-ha))*(c-hc-f-tf1-hf-c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)-

1/2*c/Epc*(0.002-Epc/c*(c-hc-f-tf1-hf-ha))); 
                else 
                Mac=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf-ha)-0.002)))*be*ha*(c-hc-f-tf1-hf-

ha/3*(Epc/c*(c-hc-f-tf1-hf)+2*Epc/c*(c-hc-f-tf1-hf-ha))/(Epc/c*(c-hc-f-tf1-

hf)+Epc/c*(c-hc-f-tf1-hf-ha))); 
                end 
            end 
        end 
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        % Moment due to compressive force in arch steel 
        if Eas < Ts 
        Mas=Epc/c*(c-(hc+f+d-has))*Es*Aas*(c-(hc+f+d-has)); 
        else 
        Mas=Fs*Aas*(c-(hc+f+d-has)); 
        end 

         
        % Moment due to compressive force in arch CFRP  
        if Eaf < Tf 
        Maf=Epc/c*(c-(hc+f+d-haf))*Ef*Aaf*(c-(hc+f+d-haf)); 
        else 
        Maf=0; 
        end                 

         
        MC=Mc+Ms+Msb+Mf+Mfl+Mw+Mfn+Mac+Mas+Maf;         

             
        % Moment due to tensile forces: 

         
        % Moment due to tensile force in tension reinforcement (steel 

strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            MTss=Epc/c*(hc+f+d-c-hs)*Est*Ast*(hc+f+d-c-hs); 
        else  
            MTss=Fst*Ast*(hc+f+d-c-hs); 
        end 

         
        % Moment due to tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
            MTbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2*(hc+f+d-c-tf2/2); 
        else 
            MTbf=0; 
        end 

         
        % Moment due to tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            MTw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2)*2/3*(hc+f+d-

c-tf2); 
        else 
            MTw=0; 
        end         

         
        MT=MTss+MTbf+MTw;         

  
 elseif hc <= c < hc+f+tf1+hf+ha 

       
        % Moment due to compressive forces: 

         
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
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        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);   

                 
        % Moment due to compressive force in slab concrete 
        if Epc <= 0.001 
            Mc=1/2*(Epc+Epc/c*(c-hc))*Ec*Ac*(c-hc/3*(Epc+2*Epc/c*(c-

hc))/(Epc+Epc/c*(c-hc))); 
        elseif  0.001 < Epc <= 0.002 
            if c/Epc*(Epc-0.001) < hc 
                Mc=fc*bc*c/Epc*(Epc-0.001)*(c-1/2*c/Epc*(Epc-

0.001))+1/2*(0.001+Epc/c*(c-hc))*Ec*bc*(hc-c/Epc*(Epc-0.001))*(c-c/Epc*(Epc-

0.001)-(hc-c/Epc*(Epc-0.001))/3*(0.001+2*Epc/c*(c-hc))/(0.001+Epc/c*(c-hc))); 
            else 
                Mc=fc*Ac*(c-hc/2); 
            end 
        else 
            if Epc/c*(c-hc) < 0.002 
                if Epc/c*(c-hc) < 0.001 
                    Mc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-0.002)*(c-

1/3*c/Epc*(Epc-0.002)*(Epc+2*0.002)/(Epc+0.002))+fc*bc*c/Epc*0.001*(c-

c/Epc*(Epc-0.002)-1/2*c/Epc*0.001)+1/2*(fc+Epc/c*(c-hc)*Ec)*bc*c/Epc*(0.001-

Epc/c*(c-hc))*(c-c/Epc*(Epc-0.001)-1/3*(hc-c/Epc*(Epc-

0.001))*(0.001+2*Epc/c*(c-hc))/(0.001+Epc/c*(c-hc))); 
                else 
                    Mc=1/2*(fc+(fc+Ecc*(Epc-0.002)))*bc*c/Epc*(Epc-0.002)*(c-

1/3*c/Epc*(Epc-0.002)*(Epc+2*0.002)/(Epc+0.002))+fc*bc*c/Epc*(0.002-Epc/c*(c-

hc))*(c-hc+1/2*c/Epc*(0.002-Epc/c*(c-hc))); 
                end 
            else 
                Mc=1/2*((fc+Ecc*(Epc-0.002))+(fc+Ecc*(Epc/c*(c-hc)-

0.002)))*bc*hc*(c-1/3*hc*(Epc+2*Epc/c*(c-hc))/(Epc+Epc/c*(c-hc))); 
            end 
        end 

        
        % Moment due to compressive force in slab steel 
        if Eps < Ts 
            Ms=Eps*Es*As*(c-db); 
        else 
            Ms=Fs*As*(c-db); 
        end 

         
        % Moment due to compressive force in bottom slab steel 
        if Epsb < Ts 
            Msb=Epsb*Es*Asb*(c-dbb); 
        else 
            Msb=Fs*Asb*(c-dbb); 
        end 

         
        % Moment due to compressive force in slab CFRP reinforcement 
        if Epf < Tf 
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            Mf=Epf*Ef*Af*(c-df); 
        else 
            Mf=0; 
        end 

           
        % Moment due to compressive force in top HCB flange 
        if c > hc+f+tf1 
           if  Epc/c*(c-hc-f) < Tecf 
            Mfl=Epc/c*(c-hc-f-tf1/2)*Eecf*b*tf1*(c-hc-f-tf1/2); 
           else 
            Mfl=0; 
           end 
        else 
           if Epc/c*(c-hc-f) < Tecf 
           Mfl=1/2*Epc/c*(c-hc-f)*Eecf*b*(c-hc-f)*2/3*(c-hc-f); 
           else 
           Mfl=0; 
           end 
        end 

             
        % Moment due to compressive force in HCB webs 
        if c > hc+f+tf1 
         if  Epc/c*(c-hc-f-tf1) < Tec 
            Mw=2*1/2*Epc/c*(c-hc-f-tf1)*Eec*tw*(c-hc-f-tf1)*2/3*(c-hc-f-tf1); 
         else 
            Mw=0; 
         end 
        else 
            Mw=0; 
        end 

         
        % Moment due to compressive force in fin 
        if hc+f+tf1 < c 
          if hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Mfn=Epc/c*(c-hc-f-tf1-hf/2)*Eac*bf*hf*(c-hc-f-tf1-

1/3*hf*(Epc/c*(c-hc-f-tf1)+2*Epc/c*(c-hc-f-tf1-hf))/(Epc/c*(c-hc-f-

tf1)+Epc/c*(c-hc-f-tf1-hf))); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Mfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)*(c-hc-f-tf1-1/2*(c-hc-f-

tf1-c/Epc*0.001))+1/2*(0.001+Epc/c*(c-hc-f-tf1-hf))*Eac*bf*(hf-(c-hc-f-tf1-

c/Epc*0.001))*(c-hc-f-tf1-(c-hc-f-tf1-c/Epc*0.001)-1/3*(hf-(c-hc-f-tf1-

c/Epc*0.001))*(0.001+2*Epc/c*(c-hc-f-tf1-hf))/(0.001+Epc/c*(c-hc-f-tf1-hf))); 
             else 
                Mfn=fac*bf*hf*(c-hc-f-tf1-hf/2); 
             end 
            else                 
             if Epc/c*(c-hc-f-tf1-hf) < 0.001 
                Mfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)*(c-hc-f-tf1-1/3*c/Epc*(Epc/c*(c-

hc-f-tf1)-0.002)*(Epc/c*(c-hc-f-tf1)+2*0.002)/(Epc/c*(c-hc-f-

tf1)+0.002))+fac*bf*c/Epc*0.001*(c-hc-f-tf1-c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)-

1/2*c/Epc*0.001)+1/2*(fac+Epc/c*(c-hc-f-tf1-hf)*Eac)*bf*c/Epc*(0.001-

Epc/c*(c-hc-f-tf1-hf))*(c-hc-f-tf1-hf+1/3*(hf-(c-hc-f-tf1-

c/Epc*0.001))*(2*0.001+Epc/c*(c-hc-f-tf1-hf))/(0.001+Epc/c*(c-hc-f-tf1-hf))); 
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             else 
                if Epc/c*(c-hc-f-tf1-hf) < 0.002 
                Mfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)*(c-hc-f-tf1-1/3*c/Epc*(Epc/c*(c-

hc-f-tf1)-0.002)*(Epc/c*(c-hc-f-tf1)+2*0.002)/(Epc/c*(c-hc-f-

tf1)+0.002))+fac*bf*(hf-c/Epc*(Epc/c*(c-hc-f-tf1)-0.002))*(c-hc-f-tf1-

hf+1/2*(hf-c/Epc*(Epc/c*(c-hc-f-tf1)-0.002))); 
                else 
                Mfn=1/2*((fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002))+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-0.002)))*be*ha*(c-hc-f-tf1-

hf/3*(Epc/c*(c-hc-f-tf1)+2*Epc/c*(c-hc-f-tf1-hf))/(Epc/c*(c-hc-f-

tf1)+Epc/c*(c-hc-f-tf1-hf))); 
                end 
             end 
            end 
          else 
            if Epc/c*(c-hc-f-tf1) <= 0.001 
             Mfn=1/2*Epc/c*(c-hc-f-tf1)*Eac*bf*(c-hc-f-tf1)*2/3*(c-hc-f-tf1); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1) <= 0.002 
             Mfn=fac*bf*(c-hc-f-tf1-c/Epc*0.001)*(c-hc-f-tf1-1/2*(c-hc-f-tf1-

c/Epc*0.001))+1/2*fac*bf*c/Epc*0.001*2/3*c/Epc*0.001;  
            else 
             Mfn=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1)-

0.002)))*bf*c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)*(c-hc-f-tf1-1/3*c/Epc*(Epc/c*(c-

hc-f-tf1)-0.002)*(Epc/c*(c-hc-f-tf1)+2*0.002)/(Epc/c*(c-hc-f-

tf1)+0.002))+fac*bf*c/Epc*0.001*(c-hc-f-tf1-c/Epc*(Epc/c*(c-hc-f-tf1)-0.002)-

1/2*c/Epc*0.001)+1/2*fac*bf*c/Epc*0.001*2/3*c/Epc*0.001; 
            end 
          end 
        else             
            Mfn=0; 
        end 

         
        % Moment due to compressive force in arch concrete 
        if  hc+f+tf1+hf < c 
            if Epc/c*(c-hc-f-tf1-hf) <= 0.001 
            Mac=1/2*Epc/c*(c-hc-f-tf1-hf)*Eac*be*(c-hc-f-tf1-hf)*2/3*(c-hc-f-

tf1-hf); 
            elseif  0.001 < Epc/c*(c-hc-f-tf1-hf) <= 0.002 
            Mac=fac*be*(c-hc-f-tf1-hf-c/Epc*0.001)*(c-hc-f-tf1-hf-

1/2*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-

0.001))+1/2*fac*be*c/Epc*0.001*2/3*c/Epc*0.001; 
            else 
            Mac=1/2*(fac+(fac+Eacc*(Epc/c*(c-hc-f-tf1-hf)-

0.002)))*be*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)*(c-hc-f-tf1-hf-

1/3*c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)*(Epc/c*(c-hc-f-tf1-

hf)+2*0.002)/(Epc/c*(c-hc-f-tf1-hf)+0.002))+fac*be*c/Epc*0.001*(c-hc-f-tf1-

hf-c/Epc*(Epc/c*(c-hc-f-tf1-hf)-0.002)-

1/2*c/Epc*0.001)+1/2*fac*be*c/Epc*0.001*2/3*c/Epc*0.001; 
            end 
        else 
            Mac=0; 
        end 

          
        % Moment due to compressive force in arch steel 
        if hc+f+d-has < c 
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           if Epc/c*(c-(hc+f+d-has)) < Ts 
             Mas=Epc/c*(c-(hc+f+d-has))*Es*Aas*(c-(hc+f+d-has)); 
           else 
             Mas=Fs*Aas*(c-(hc+f+d-has)); 
           end 
        else 
        Mas=0; 
        end 

         
        % Moment due to compressive force in arch CFRP 
        if hc+f+d-haf < c 
           if Epc/c*(c-(hc+f+d-haf)) < Tf 
             Maf=Epc/c*(c-(hc+f+d-haf))*Ef*Aaf*(c-(hc+f+d-haf)); 
           else 
             Maf=Ff*Aaf*(c-(hc+f+d-haf)); 
           end 
        else 
         Maf=0; 
        end         

         
        MC=Mc+Ms+Msb+Mf+Mfl+Mw+Mfn+Mac+Mas+Maf;          

         
        % Moment due to tensile forces: 

         
        % Moment due to tensile force in arch steel 
        if c < hc+f+d-has 
         if Epc/c*(hc+f+d-c-has) < Ts 
            MTas=Epc/c*(hc+f+d-c-has)*Es*Aas*(hc+f+d-c-has); 
         else  
            MTas=Fs*Aas*(hc+f+d-c-has); 
         end 
        else 
            MTas=0; 
        end                

         
        % Moment due to tensile force in arch CFRP  
        if c < hc+f+d-haf 
         if Epc/c*(hc+f+d-c-haf) < Tf 
            MTaf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf*(hc+f+d-c-haf); 
         else  
            MTaf=0; 
         end 
        else 
            MTaf=0; 
        end               

         
        % Moment due to tensile force in tension reinforcement (steel 

strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            MTss=Epc/c*(hc+f+d-c-hs)*Est*Ast*(hc+f+d-c-hs); 
        else  
            MTss=Fst*Ast*(hc+f+d-c-hs); 
        end 

         
        % Moment due to tensile force in bottom HCB flange 
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        if Epc/c*(hc+f+d-c) < Tef 
            MTbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2*(hc+f+d-c-tf2/2); 
        else 
            MTbf=0; 
        end 

         
        % Moment due to tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            if c >= hc+f+tf1 
             MTw=2*1/2*Epc/c*(hc+f+d-c-tf2)*Ee*tw*(hc+f+d-c-tf2)*2/3*(hc+f+d-

c-tf2); 
            else 
             MTw=2*Epc/c*(hc+f+d-c-tf2-1/2*(d-tf1-tf2))*Ee*tw*(d-tf1-

tf2)*(hc+f+d-c-tf2-1/3*(d-tf1-tf2)*(Epc/c*(hc+f+d-c-tf2)+2*Epc/c*(hc+f+d-c-

tf2-(d-tf1-tf2)))/(Epc/c*(hc+f+d-c-tf2)+Epc/c*(hc+f+d-c-tf2-(d-tf1-tf2)))); 
            end 
        else 
            MTw=0; 
        end         

         
        MT=MTas+MTaf+MTss+MTbf+MTw;         

         
 else 

             
        % Moment due to compressive forces: 

         
        % Strain in top slab steel 
          Eps=Epc/c*(c-db); 
        % Strain in bottom slab steel 
          Epsb=Epc/c*(c-dbb); 
        % Strain in slab CFRP reinforcement 
          Epf=Epc/c*(c-df); 
        % Strain in arch steel 
          Eas=Epc/c*(c-(hc+f+d-has)); 
        % Strain in arch CFRP reinforcement 
          Eaf=Epc/c*(c-(hc+f+d-haf)); 

           
          Ecc=(0.85*fc-fc)/(0.003-0.002); 
          Eacc=(0.85*fac-fac)/(0.003-0.002);  

                 
        % Moment due to compressive force in slab concrete 
        if Epc <= 0.001 
            Mc=1/2*Epc*Ec*bc*c*2/3*c; 
        elseif  0.001 < Epc <= 0.002 
            Mc=fc*bc*c/Epc*(Epc-0.001)*(c-1/2*c/Epc*(Epc-

0.001))+1/2*fc*bc*c/Epc*0.001*2/3*c/Epc*0.001; 
        else 
            Mc=1/2*((fc+Ecc*(Epc-0.002))+fc)*bc*c/Epc*(Epc-0.002)*(c-

1/3*c/Epc*(Epc-

0.002)*(Epc+2*0.002)/(Epc+0.002))+fc*bc*c/Epc*0.001*(1/2*c/Epc*0.001+c/Epc*0.

001)+1/2*fc*bc*c/Epc*0.001*2/3*c/Epc*0.001;      
        end 

         
        % Moment due to compressive force in top slab steel  
        if c > db 
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         if Eps < Ts 
            Ms=Eps*Es*As*(c-db); 
         else 
            Ms=Fs*As*(c-db); 
         end 
        else 
         Ms=0; 
        end 

         
        % Moment due to compressive force in bottom slab steel  
        if c > dbb 
         if Epsb < Ts 
            Msb=Epsb*Es*Asb*(c-dbb); 
         else 
            Msb=Fs*Asb*(c-dbb); 
         end 
        else 
         Msb=0; 
        end 

         
        % Moment due to compressive force in slab CFRP reinforcement 
        if c > df 
         if Epf < Tf 
            Mf=Epf*Ef*Af*(c-df); 
         else 
            Mf=0; 
         end 
        else 
         Mf=0; 
        end                 

         
        MC=Mc+Ms+Msb+Mf;          

         
        % Moment due to tensile forces: 

         
        % Moment due to tensile force in bottom slab steel  
        if c < dbb 
         if Epc/c*(dbb-c) < Ts 
            MTsb=Epc/c*(dbb-c)*Es*Asb*(dbb-c); 
         else 
            MTsb=Fs*Asb*(dbb-c); 
         end 
        else 
         MTsb=0; 
        end 

         
        % Moment due to tensile force in top HCB flange 
        if Epc/c*(hc+f+d-c-(d-tf1)) < Tef 
            MTtf=Epc/c*(hc+f+d-c-(d-tf1/2))*Eef*b*tf1*(hc+f+tf1/2-c); 
        else 
            MTtf=0; 
        end 

             
        % Moment due to tensile force in bottom HCB flange 
        if Epc/c*(hc+f+d-c) < Tef 
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            MTbf=Epc/c*(hc+f+d-c-tf2/2)*Eef*b*tf2*(hc+f+d-c-tf2/2); 
        else 
            MTbf=0; 
        end 

         
        % Moment due to tensile force in arch CFRP  
        if Epc/c*(hc+f+d-c-haf) < Tf 
            MTaf=Epc/c*(hc+f+d-c-haf)*Ef*Aaf*(hc+f+d-c-haf); 
        else  
            MTaf=0; 
        end               

         
        % Moment due to tensile force in arch steel 
        if Epc/c*(hc+f+d-c-has) < Ts 
           MTas=Epc/c*(hc+f+d-c-has)*Es*Aas*(hc+f+d-c-has); 
        else 
           MTas=Ts*Aas*(hc+f+d-c-has); 
        end   

         
        % Moment due to tensile force in tension reinforcement (steel 

strands) 
        if Epc/c*(hc+f+d-c-hs) < Tst 
            MTss=Epc/c*(hc+f+d-c-hs)*Est*Ast*(hc+f+d-c-hs); 
        else  
            MTss=Fst*Ast*(hc+f+d-c-hs); 
        end 

         
        % Moment due to tensile force in HCB webs 
        if Epc/c*(hc+f+d-c-tf2) < Te 
            MTw=2*Epc/c*(hc+f+d-c-tf2-(d-tf1-tf2)/2)*Ee*tw*(d-tf1-

tf2)*(hc+f+d-c-tf2-1/3*(d-tf1-tf2)*(Epc/c*(hc+f+d-c-tf2)+2*Epc/c*(hc+f+d-c-

d+tf1))/(Epc/c*(hc+f+d-c-tf2)+Epc/c*(hc+f+d-c-d+tf1))); 
        else 
            MTw=0; 
        end          

         
        MT=MTsb+MTtf+MTbf+MTaf+MTas+MTss+MTw;    
  end 

  
 Cy(1)=s; 
 CF(1)=0; 
 TF(1)=0; 
 M(1)=0; 
 Phi(1)=0; 
 i=1+Epc/0.0001; 
 i=round(i) 

  
 Cy(i)=c 
 CF(i)=C 
 TF(i)=T 
 M(i)=MC+MT 
 Phi(i)=atan(Epc/c) 

  
end   
plot(Phi,M) 
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B. 

 

The complete form of square matrix C used in Equations 28 & 29 is: 

 

[𝐶𝑛𝑛] =

























































220......00000

121......00000

012......00000

..............................

..............................

000......21000

000......12100

000......01210

000......00121

000......00012
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C. 

Theoretical M-ɸ Curves for HCB Cross sections at Nodes 
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D. 

 

a. Finite-difference Formulation of Curvature Equation for n = 10  

The central difference equation for the finite-difference formulation of the curvature 

equation is: 

 

𝑑2𝑣𝑖

𝑑𝑥2 =
𝑣𝑖−1  −2𝑣𝑖  +𝑣𝑖+1  

ℎ2                                                                                                         

ф𝑖ℎ
2  = 𝑣𝑖−1  − 2𝑣𝑖  + 𝑣𝑖+1                                                                                                

Where i = 1, 2, 3,….., n 

For  n =10 , we get following set of linear equations: 

  

ф2ℎ2 = 𝑣1  − 2𝑣2  + 𝑣3   

ф3ℎ2 = 𝑣2  − 2𝑣3  + 𝑣4   

ф4ℎ2 = 𝑣3  − 2𝑣4  + 𝑣5   

ф5ℎ2 = 𝑣4  − 2𝑣5  + 𝑣6   

ф6ℎ2 = 𝑣5  − 2𝑣6  + 𝑣7   

ф7ℎ2 = 𝑣6  − 2𝑣7  + 𝑣8   

ф8ℎ2 = 𝑣7  − 2𝑣8  + 𝑣9   

ф9ℎ2 = 𝑣8  − 2𝑣9  + 𝑣10   

ф10ℎ2 = 𝑣9  − 2𝑣10  + 𝑣11   

 

The boundary condition and symmetry of loads gives: 

𝑣1  =  0      

𝑣9  =  𝑣11                                                                 
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The first and the last equations in the above set would change to the following: 

ф2ℎ2 = −2𝑣2  + 𝑣3    

ф10ℎ2 = 2𝑣9  − 2𝑣10    

The set of equations in matrix form will be:  

ℎ2
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






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1
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
















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















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

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


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The nodal deflections are given by the following matrix equation: 
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Where h = 41 in. 
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b. Finite-difference Formulation of Curvature Equation for n = 10 

The nodal deflections for n=5, are given by the following equation: 
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Where h = 82 in. 
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 E. 

Theoretical M-ɸ Curves for HCB Cross sections without Concrete Slab 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014

M
 (

k-
in

)

ф (rad.in./in.)

M-ф curve at support



 

205 

 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014

M
 (

k-
in

)

ф (rad.in./in.)

M-ф curve at 82" from support

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014 0.00016 0.00018

M
 (

k-
in

)

ф (rad.in./in.)

M-ф curve at 164" from support



 

206 

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

M
 (

k-
in

)

ф (rad.in./in.)

M-ф curve at 246" from support



 

207 

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014 0.00016 0.00018

M
 (

k-
in

)

ф (rad.in./in.)

M-ф curve at 328" from support



 

208 

 

 

  

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014 0.00016 0.00018

M
 (

k-
in

)

ф (rad.in./in.)

M-ф curve at midspan



 

209 

 

F. 

 

Theoretical M-ɸ Curves for Prestressed HCB Cross sections without Concrete Slab 
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G. 

Theoretical M-ɸ Curves for Prestressed HCB Cross sections with Concrete Slab 
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