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ABSTRACT 
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USING VMT TO IDENTIFY KEY LOCATIONS FOR DEVELOPMENT, 

FROM DOWNTOWN TO THE EXURBS 
 

Robert B. Case 
Old Dominion University, 2013 

Director: Dr. Asad Khattak 
 
 
 

The purpose of this dissertation is to discover the VMT impact of each level of proximity 

in order to help government identify key locations for housing development, and thereby 

lower VMT and reduce dependence on foreign oil.  By discovering the VMT impact of 

each level of proximity, this dissertation provides a) the first known means of calculating 

the proximity-based VMT benefit of subject locations by individual proximity level, and 

b) the new finding that it is likely that high VMT benefit can be achieved at moderate 

proximity levels acceptable to many households, enabling representative governments to 

be politically successful while promoting housing in locations that will lower the average 

VMT of the population. 

After discussing the impetus for the work, this dissertation presents a theory of the 

determinants of VMT, searches the literature for appropriate techniques for empirical 

analysis of the proximity-VMT relationship, and presents results of the empirical research 

to be expected based on the presented theory and literature.    

 Empirical efforts are used to discover VMT impact by proximity level using three 

differing measures of proximity: density, distance-threshold-based total opportunities, 



and centrality.  In the first effort, national data is used to discover VMT impact by 

proximity level, for both population and employment density.  In order to determine the 

role played by alternative modes in the VMT-density curves of the first effort, the second 

effort uses national data to discover the impact of each level of density on usage of 

alternative modes.  In the third and final effort, data from Hampton Roads, Virginia, are 

used to discover the VMT impact of each level of opportunity and centrality.  

 Governments can apply the discovered VMT impact of each level of proximity—

via a described “VMT Benefit Technique”—to accurately determine the VMT benefit of 

a given location, and use the VMT benefits of a set of candidate areas to select key 

locations for development.   

In addition, the discovered VMT impact of each level of proximity informs the 

key hypothesis of this dissertation that there exists a sweet spot on the VMT-proximity 

curve that has high VMT benefit and a proximity level acceptable to many households.  

Although the hypothesis tests indicate that it is not certain that the sweet spot exists, the 

mean coefficients of the models indicate that it is likely that the sweet spot exists, i.e. that 

there are high-VMT-benefit proximity levels acceptable to many households.  The overall 

implication of this is that representative governments in the U.S. who promote housing 

development at these moderate levels of proximity will not only lower average VMT in 

the short term, but they will not be punished politically for doing so, and therefore may 

be successful in thereby lowering average VMT in the long term. 

In summary, the dissertation provides encouragement to governments hoping to 

lower average VMT and an accurate method of calculating VMT for choosing SGAs with 



which to actually lower average VMT.  It is hoped that this combination will help U.S. 

governments become independent of foreign oil. 
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CHAPTER I 

INTRODUCTION 

 
Preview, Purpose, and Research Objective 

Although auto travel provides great benefits to the individual—enabling the traveler to 

quickly participate in a variety of desirable activities which occur away from the home—

it also causes unintended consequences to American society, including environmental 

threats, roadway congestion, and demand for energy resulting in a world-wide battle for 

petroleum resources.  Since these costs or disbenefits are not directly borne by the auto 

driver, they are not kept in check by market forces.  There is incentive therefore for the 

representative governments in the U.S., among other responses, to reduce the amount of 

auto travel while maintaining individual activity.  This dissertation therefore seeks to 

help governments reduce auto travel. 

 Given that much of U.S. electric power is generated with coal and nuclear fuel, 

auto travel produces disbenefits regardless of auto engine type.  This dissertation 

therefore uses vehicle miles traveled (VMT) to measure auto travel. 

Given that the cost of the aforementioned world-wide battle for petroleum 

resources is approximately one trillion dollars, this dissertation is dedicated to energy 

independence. 

The amount of VMT conducted by a household is a complex function of 1) the 

nature of the household (wealth, family structure, culture, etc.), 2) its economic 

environment (energy supply, energy taxes, tolls, subsidies, etc.), and 3) its physical 

environment, i.e. a) the location of origins/destinations, and b) the transportation 
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infrastructure between them.  Of these three, this dissertation will focus on changing the 

physical environment to reduce VMT. 

Although proposals of changes to the physical environment for lowering VMT 

have many different names—e.g. mixed-use developments, infill, higher density, 

downtown redevelopment, transit-oriented design, smart growth, public transit, and 

traditional neighborhood development—the vast majority of these proposals are 

promoted because they make origins and destinations proximate and/or they supply the 

infrastructure for alternative modes that require proximity.  Given that proximity reduces 

auto travel distances and provides environments in which government is willing to invest 

in higher-speed alternative modes (bus, rail) which compete with auto travel better than 

lower-speed alternative modes (walking, biking), this dissertation will focus on using 

proximity to reduce VMT. 

In the ideal mono-centric circular metro where density decreases with distance 

from center, as centrality decreases, both neighborhood-based proximity and regionally-

based proximity decreases.  Because most metros resemble—albeit imperfectly—this 

ideal metro, centrality is a proxy for proximity.  Because centrality is a proxy for 

proximity (which reduces auto travel) and centrality is easier to picture and measure than 

true proximity, centrality—achieved by locating new housing near the center, via, for 

example, downtown redevelopment or urban growth boundaries—has also been 

promoted as a way to lower auto travel.  Therefore, to accompany its focus on  proximity, 

this dissertation will also focus on using centrality to reduce VMT. 

The literature indicates that proximity reduces auto travel, the latter often 

measured by vehicle miles of travel (VMT).  Some governments have therefore used their 
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financial and regulatory powers to promote central living.  But how central should new 

housing be?  Should it all be downtown?  What about the suburbs?  Is their VMT impact 

or “VMT signature” more similar to that of downtown residences or that of exurban 

residences?  In other words, what is the shape of the VMT-centrality curve?  And, 

similarly, what is the shape of the VMT-proximity curve?  If these curves have a curved 

shape, where are the bends in the curves?  For example, how much centrality or 

proximity is “enough”, beyond which little benefit is realized?  As shown in the Impetus 

section below, the literature does not provide the VMT benefit by proximity level, 

creating a gap in knowledge.  Therefore, the purpose of this dissertation is as follows: 

to discover the VMT impact of each level of proximity in order to help 
government identify key locations for housing development, and thereby lower 
VMT and reduce dependence on foreign oil. 

 
From this purpose, the research objective is as follows: 

to discover the VMT impact of each level of proximity. 
 

In order to discover the shape of these VMT curves, this dissertation will explore the 

proximity-VMT relationships theoretically, then empirically.  The empirical analysis will 

use rigorous statistical methods to explore the travel of households living in various 

environments across the U.S. and across one large metro area, Hampton Roads.  It will 

regress VMT on certain proximity measures—and control variables—using, therefore, a 

survey containing travel data, socio-economic data, and location data—the 2009 NHTS—

from which centrality and proximity to destinations can be measured. 

By measuring the travel impact of various levels of proximity, this dissertation 

will inform governments—the target audience of this dissertation—on the relative 
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benefits of promoting housing construction/renovation at various levels of proximity and 

centrality—from downtown, to inner-suburb, to outer-suburb, to exurbs. 

 
Definitions- Proximity, Centrality, Opportunity, and Accessibility 

In this dissertation, “proximity” will be used to refer to the physical closeness of origins 

and destinations.  When referring to the proximity of a given household, the term will be 

used as an attribute of that household’s location that is the degree to which the home is 

located near activity destinations, e.g. schools, places of work, shopping centers, friends’ 

homes.  Therefore, a household’s proximity is not based on the speed of the 

transportation systems in its environment.  A household’s proximity is a function solely 

of the number and type of destinations near the home and the travel distances to them.   

In this dissertation, “centrality” will be used as an attribute of a home’s location 

that is the degree to which the home is located near the metro’s center.  Locations at the 

center have maximum centrality; locations at the metro edge have minimum centrality.  

Although, as discussed above, centrality is a proxy for proximity, for the sake of 

convenience, centrality is also discussed herein as a measure of proximity. 

In this transportation dissertation, an accessible destination is considered an 

“opportunity.”  Therefore, “total opportunities” is the sum of accessible destinations, and 

“distance-threshold-based total opportunities” is the sum of destinations within a given 

distance of the location of the traveler.  “Distance-threshold-based total opportunities” is 

one of the measures of a household’s proximity used in this dissertation.  Note also that 

the singular term “opportunity”, when used as an attribute of a home’s location, is 

shorthand  for the sum of destinations within a given distance. 
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Finally, the term “accessibility” must be defined for this dissertation.  In 

preparation for doing so, definitions from the literature are examined.  According to Chen 

et al. (22), accessibility is “…the ease (or difficulty) with which activity opportunities 

may be reached from a given location using one or more modes of transportation.”  This 

“ease” includes time and distance.  According to Handy (27), “Accessibility, as generally 

defined, consists of two parts: a transportation element or resistance factor and an activity 

element or motivation factor…”  Likewise this “resistance factor” includes time and 

distance.  The accessibility definition in TRB’s Highway Capacity Manual (HCM), 

however, is more restrictive, covering only time: “The percentage of the populace able to 

complete a selected trip within a specific time.”  Therefore, whereas proximity and 

centrality have no time component, accessibility—whether comprehensively or 

restrictively defined—always has a time component. 

In this dissertation the simple term "accessibility"—in accordance with the less 

restrictive definitions in the literature—will refer to the degree to which residents of the 

subject home can easily access desirable activity destinations.  Accessibility, therefore, 

will be considered a function of 1) the number of local activity destinations (by type), and 

2) the ease of reaching them, e.g. the “costs” (e.g. distance, time, fares) of the modal 

paths (e.g. sidewalks, bus routes, and roads) that connect the household to those 

locations.  When time is the only portion of that cost considered—as in the case of the 

above HCM definition—this dissertation will use the term “time-based accessibility.”   

 
Other Definitions 

Finally, in this dissertation: 

 the term “metro” is used to refer to a metropolitan area 
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 the term “neighborhood-based proximity” is used to refer to the degree to which 

there are destinations in the near vicinity of the subject household  
 

 the term “regionally-based proximity” is used to refer to the degree to which the 
subject household is near to destinations in the region in which it lies 



7 

CHAPTER II 

IMPETUS FOR THIS DISSERTATION 

 
Impetus for Reducing VMT 

 
Impetus for Reducing VMT in the Literature 
 
According to the literature, a) auto travel causes a variety of disbenefits, and b) vehicle 

miles of travel (VMT) is often chosen to represent auto travel in efforts undertaken to 

reduce auto travel.  According to Cervero and Murakami (6), “VMT per capita is widely 

viewed as the strongest correlate of environmental degradation and resource consumption 

in the transportation sector—as individuals log more and more miles in motorized 

vehicles, the amount of local pollution (eg particulate matter) and global pollution (eg 

greenhouse gas, or GHG, emissions) increases, as does the consumption of fossil fuels, 

open space, and other increasingly scarce resources.”  Dunphy and Fisher (16) focused on 

disbenefits related to air quality, and they chose VMT as their auto travel disbenefits 

measure: “Vehicle miles of travel (VMT) has joined vehicle trips as a critical travel 

demand indicator because it correlates closely to air quality.”  Schimek (13) added 

“congestion” to the list of auto travel by-products: “The source of the interest in travel 

behavior has been concern for the air quality, congestion, and quality-of-life impacts 

from increasing automobile usage.”  Ortuzar (14) added crashes to the list: “…side-

effects [original emphasis] associated with the production of transport services: accidents, 

pollution and environmental degradation in general.”  Salon et al. (25) added human 

health and social interaction as VMT issues: “These [benefits of reduced VMT] include 

alleviating traffic congestion, reducing air pollution, reducing greenhouse gas emissions, 
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…improving public health through increased exercise, and enhancing interactions within 

our communities.”  Shay and Khattak (33) add economic considerations (“public and 

household budgets”) to the list of negative effects. 

 
TABLE 1  VMT-Related Issues in the Transportation Literature 

 
 
Tables.xlsx 

 

The Problem of Depending on Foreign Oil in the Literature  Several transportation 

authors consider oil importation as a disbenefit of auto travel.  According to Salon et al. 

(25): “These [benefits of reduced VMT] include…reducing our dependence on foreign 

oil…”  Apparently alluding to the global effects of U.S. oil importation, Shay and 

Khattak (33) included “security” in their list of problematic issues related to auto travel, 

calling auto-based travel “untenable” for this (and various other) reasons.  According to 

unpublished slides by Khattak, the specific problems created by oil importation include: 

“I. Supply is subject to embargo (e.g. 1973 Arab Oil Embargo) 

II. Cost is subject to shocks (e.g. 1990 Iraq invasion of Kuwait decrease oil supply 
by more than 4 million barrels per day)” 

 
The authors of TRB Special Report 299 (15) also pointed to the problem of importing oil 

for auto travel: "[Transportation]…consumes twice as much petroleum as the United 

States produces annually."   

Article/Book (endnote ) Congestion
Pollution,

GHG

Oil 
Consumption, 

Oil 
Importation, 

Security
Open Space 

Consumption

Quality of 
Life, Health, 

Social 
Interaction, 

Finances
Crashes, 

Safety
Cervero & Murakami (6 ) √ √ √
Dunphy & Fisher (16 ) √
Schimek (13 ) √ √ √
Ortuzar (14 ) √ √
Salon et al. (25 ) √ √ √ √
Shay & Khattak (33 ) √ √ √ √ √
TRB Special Report 299 (15 ) √ √
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 Oil importation is, of course, also a concern of people outside of transportation 

academia.  According to Neela Banerjee of the McClatchy-Tribune Information Services, 

“ever since the Nixon administration, every president has pledged to reduce the United 

States’ dependence on foreign oil…” (36)  Unfortunately, “The U.S. imported 45 percent 

of its petroleum last year…” (39)   

 

 
 

FIGURE 1  Energy Dependency. (37) 
 
 
Impetus for Reducing VMT in this Dissertation 
 
Because 1) this dissertation seeks to inform government action (as stated above), and 2) 

U.S. government has a representative form, the impetus for reducing VMT in this 

dissertation is largely the desires of the voting public concerning VMT.  It is assumed in 

this dissertation that the voting public seeks to reduce many of the auto travel disbenefits 

listed in the literature concerning limiting VMT, i.e. congestion, pollution, oil 
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importation, and crashes.  Of these—given that the cost of the aforementioned world-

wide battle for petroleum resources is approximately one trillion dollars—this 

dissertation is dedicated to reducing VMT in order to reduce oil importation. 

 
The Problem of Depending on Foreign Oil in this Dissertation  Importing such a large 

amount of petroleum  has caused and will cause significant problems for Americans.  We 

have experienced the impact of instant reductions in the availability of oil overseas.  In 

1973, the U.S. suffered economically from the Arab Oil Embargo.  But more importantly, 

we have experienced—and are experiencing—the impact of U.S. military involvement in 

the Persian Gulf , a response to the natural insecurity of depending on foreign nations for 

a key commodity such as oil.  A shift in the balance of power in the Persian Gulf, i.e. 

Iraq’s takeover of Kuwait, led to Gulf War I.  Placing troops and planes in Saudi Arabia 

(the site of Muslim holy places) led—in part—to al Qaeda’s 9-11-01 attacks.  Gulf War I 

and 9-11 led to the current wars in Iraq and Afghanistan, which has cost the U.S. (to date) 

thousands of lives and approximately one trillion dollars.   

It should be noted that, at the end of 2011, the media outlets published many 

positive analyses in anticipation that 2011 would be the first year since 1949 in which the 

U.S. would be a net exporter of petroleum products, i.e. exporting more petroleum than it 

imports.  Titles included “The Coming Day of Energy Independence” and “Foreign Oil? 

Who Needs It!”  Unfortunately, in contrast to these misguided headlines, the fact that the 

U.S. is now a net oil exporter has not eliminated the problems caused by massive oil 

importation.  Because the global oil market—like any market—is largely driven by price, 

it was cheaper in 2011 for the U.S. to buy 45% of its oil overseas than to buy this 45% 

from domestic producers.  Likewise, producers got a higher net price for that portion of 
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domestic production which was sold overseas in 2011 than they would have gotten had 

they sold it domestically.  Therefore, disturbances overseas forcing U.S. consumers to 

buy some of that 45% from domestic production—although not necessarily causing 

shortages—would cause increased prices for U.S. consumers.  This price threat may 

explain why the U.S. is still fighting in Iraq and Afghanistan, recently added Libya to the 

list, and may soon add Syria and Iran. As the Associated Press stated, “the United States 

is nowhere close to energy independence” (38). 

Consequently, it is hoped that this dissertation will help governments lower U.S. 

VMT to lower oil importation and thereby reduce the incentive for U.S. military 

intervention around the world. 

 
Using Proximity to Reduce VMT 

 
Using Proximity to Reduce VMT- Popular Proposals 
 
In the planning departments of government, and in the supporting field of transportation 

research, there are several common proposals designed, at least in part, to reduce VMT, 

as follows: 

 mixed-use developments 
 infill 
 higher density 
 downtown redevelopment 
 transit-oriented design 
 smart growth 
 public transit, and  
 traditional neighborhood development 

 
The common component of these proposals is that they make origins and destinations 

proximate and/or they supply the infrastructure for alternative modes (walking, biking, 

bus, rail) that require proximity.   
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Using Proximity to Reduce VMT- this Dissertation 
 
Given that 1) many common proposals for lowering VMT—as listed above—are based 

on proximity, 2) theory leads one to expect that proximity reduces VMT, and 3) the 

literature indicates that proximity reduces VMT—the latter two points to be discussed in 

the Preparation section below—this dissertation will focus on using proximity to reduce 

VMT. 

This dissertation will also explore using centrality (i.e. placing homes near the 

metro center) to reduce VMT.  In the ideal mono-centric circular metro where density 

decreases with distance from center, as centrality decreases, both neighborhood-based 

proximity and regionally-based proximity decreases.  Because most metros resemble—

albeit imperfectly—this ideal metro, centrality is a proxy for proximity.  Because 

centrality is a proxy for proximity (which reduces auto travel) and centrality is easier to 

picture and measure than true proximity, this dissertation will also examine using 

centrality to reduce VMT. 

 
Identifying Key Locations for Development: The Need for Research to Estimate the 
VMT Impact of Each Level of Proximity 
 
The lack of VMT impact by proximity level in the literature and the value of knowing 

VMT impact by proximity level establishes a need for research to determine VMT impact 

by proximity level. 

 
The Lack of VMT Impact by Proximity Level in the Literature 
 
Unfortunately, the literature does not provide government with an understanding of the 

VMT signature of each level of proximity.  Although many of the studies which explored 
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the proximity-VMT relationship examined the existence, strength, and slope of that 

relationship, it appears that most did not delve into the shape of the relationship.  For 

example, in their VMT models, Bento et al (18), Cervero and Duncan (3), Cervero and 

Murakami (6), and Kockelman (19) simply reported the coefficients of their proximity 

variables, thereby treating the VMT-proximity curve as one of constant slope.  Likewise: 

 In 2005, Golob and Brownstone found: “Comparing two households that are 
similar in all respects except residential density, a lower density of 1,000 housing 
units per square mile [block group measure] implies a positive difference of 
almost 1,200 miles per year…” (21) 

 
 In 2007, Ewing et al. reportedly found "a 0.152 percent reduction in VMT from a 

1 percent increase in population density on the basis of their longitudinal 
model…" (1)  

 
That portion of the literature which did address the shape of the proximity-VMT 

relationship did so rudimentarily.  Using zip code density to measure proximity, Dunphy 

and Fisher (16) identified one bend in the VMT-density curve at 4,500 persons per square 

mile (zip code measure):  

“National data suggest that even doubling density [of zip codes] from the lowest 
levels typical in a low-density suburb has little effect on reducing travel. Above 
this level, higher densities begin to have a significant impact on driving, with each 
doubling of residential density resulting in an approximate reduction of 10 to 15 
percent in per capita driving.” 

 
The Dunphy and Fisher curve (with VMT on the right-hand axis) is shown below: 
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FIGURE 2  Travel Behavior by Population Density, U.S. Total. 
 

Note that it is impossible to isolate the impact of density from this research because 

Dunphy and Fisher did not control for socio-economics (e.g. income) in producing it. 

Schimek (13), who also examined the travel-density relationship, postulated—but 

did not investigate—a bend in the curve: 

“Because all three of these [density] effects—better walking, better transit, and 
more expensive car use— occur simultaneously, the overall effect of density may 
be nonlinear. There may be a threshold above which these factors begin to have a 
strong effect on travel behavior.” 

 
Concerning the relationship between density and vehicle ownership (a key 

determinant of VMT), Dunphy and Fisher (16) found one bend in the curve at 4,500 

persons per square mile (zip code measure), above which vehicle ownership declines 

more rapidly.  Likewise, Walls, Harrington, and Krupnick (20) found a bend in the curve 

at 4,500 persons / sq. mi. (zip code measure) above which ownership declines rapidly.  
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And they found a second bend at 10,000, above which vehicle ownership declines slowly. 

The S-shaped Walls curve is shown below: 

 

FIGURE 3  Likelihood of Owning One, Two, or Three Vehicles Relative to Owning 
Zero Vehicles, by Population Density. 
 
 
Because these two analyses 1) measured auto ownership (as opposed to VMT), and 2) did 

not control for socioeconomics (e.g. income), instead of identifying the density levels at 

which the VMT-density curve bends, they merely suggest that the VMT-density curve 

has one or more bends. 

 Finally, two papers presented travel-vs.-proximity coefficients/elasticities at 

various levels of proximity, but did not report expected VMT benefit at those various 

proximities.  Yoon, Golob, and Goulias (26) divided their dependent variable (solo 

driving time) into deciles and divided their land use independent variables (e.g. 

household density, retail employees within 10km) into deciles and used an Ordered Logit 

Regression to calculate coefficients for each land use decile.  Interpreting these 

coefficients, the authors simply stated that “households located in areas with lower local 
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(within 10 km) retail accessibility spend more time solo driving than households located 

in the highest level of retail accessibility”, i.e. the authors did not 1) plot a curve, 2) 

discuss the shape of the curve, or 3) present expected values of solo driving time for each 

proximity category, or—as one might do for an ordered logistic regression—provide odds 

ratios or chances for falling into each of the driving time deciles.  In summary, even 

though they stated that “spatial variables can contribute nonlinear and even non-ordinal 

effects”, they did not investigate those effects. 

The second paper found to measure VMT-vs.-proximity coefficients/elasticities at 

various levels of proximity was written by Boarnet et al. (29).  In that paper, the authors 

analyzed Los Angeles data subdivided by quintiles of proximity using a “stratified 

sample” approach and a “spline regression” approach.  Although the authors indicated 

that the VMT-proximity curve is non-linear, and they reported elasticities (VMT vs. 

proximity) for various proximity ranges, they did not report expected VMT benefit at 

various proximities. 

In summary, the existing transportation literature does not provide VMT impact 

by individual proximity level.  For comparing the VMT impact of certain proximity 

levels to each other, the literature only provides coefficients of the slope of proximity-

VMT relationship. 

 
The Value of VMT Impact by Proximity Level 
 
Government can use an understanding of the relationship between individual proximity 

levels and VMT as one input in the process of identifying key locations for development.  

One component of comprehensive planning is identifying key locations for development 

(i.e. areas in which government would prefer development occur), often referred to as 
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“strategic growth areas” (SGAs).  Whereas government currently considers many non-

VMT factors when choosing these areas—e.g. availability of land for development or 

redevelopment, existing supportive infrastructure, etc.—if it had a refined method of 

estimating the expected VMT impact of the proximity of the location of candidate SGAs, 

it could add VMT reduction as a factor in the process of identifying key locations for 

development.  Government could use the VMT impact of each level of proximity to score 

candidate SGAs on expected VMT impact, and combine those scores with other 

considerations (land availability, infrastructure, etc.) to select the best areas for 

development.  Once these areas have been identified, government could use its regulatory 

powers (e.g. zoning, use permits) and financial resources (e.g. provision of public works 

[schools, roads, utilities, and parks] which attract/enable development) to promote 

housing development in those areas and thereby reap the related VMT impact. 

Based only on common sense, some analysts in government currently understand 

that new households with high proximity tend to produce less VMT than those with low 

proximity, but they do not know how much proximity is necessary to provide a desired 

VMT benefit.  Those analysts with knowledge of the slope of the proximity-VMT 

relationship from the above-reviewed literature have more than a common sense 

understanding of the proximity-VMT relationship, but given—as will be shown—that the 

true relationship between VMT and proximity is not linear, any calculation they may 

make (using these slopes/coefficients) of the proximity necessary for a desired VMT 

benefit will be inaccurate.   

Furthermore, given that only the slope of the relationship can be found in the 

existing transportation literature, even the informed analyst is currently forced to assume 
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that low proximity provides low VMT impact, medium proximity provides medium VMT 

impact and high proximity provides high VMT impact. Therefore, if the analyst’s 

government desires to lower average VMT, he/she seeks high VMT impact which—

according to the current literature—can only be achieved with high proximity.  (By 

refining the measurement of the relationship between proximity and VMT—by 

measuring the VMT impact at each proximity level—this dissertation will reveal that 

high VMT impact can be achieved with moderate proximity.)  But because high 

proximity areas, being located near metro centers, often have lot sizes and school quality 

unacceptable to many persons, promoting housing development only in high proximity 

areas will fail.  High proximity housing will become partially empty, lower proximity 

housing will become scarce, and those politicians which promoted this occurrence will be 

replaced.  Consequently, given the representative form of American governments, 

knowing the VMT benefit of each level of proximity is critical to the success of 

governments using development to lower VMT.    

 
Summary of the Need for Research 
 
Given, as shown above, 1) that the literature does not provide government with an 

understanding of the relationship between proximity and VMT at various levels of 

proximity, and 2) that it is necessary for government to know the VMT impact of each 

level of proximity in order to a) accurately estimate the VMT impact of candidate SGAs, 

and b) successfully use proximity to lower VMT (i.e. in a manner amenable to the voting 

public), there is need for a means of estimating the VMT benefit at each level of 

proximity, the primary original work and product of this dissertation.   
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CHAPTER III 
 

PREPARATION FOR EMPIRICAL ANALYSIS- 
 

THEORY, TECHNIQUES, EXPECTED RESULTS, AND HYPOTHESES 
 
 
Annual VMT Theory Overview 
 
The theoretical determinants of annual household VMT can be identified by examining 

human nature.  It is assumed that people, due to their nature, desire personal interaction, 

recreation, productivity, rest, and consumption of goods.  Because these activities often 

occur outside the home, travel is desirable.  Given the constraint of the 24-hour day and 

limited income, people seek to minimize the amount of time and money spent on 

traveling.  Because auto travel is generally quicker but more expensive than alternative 

modes, it is expected that a) household income, and b) public transit service level are 

determinants of mode choice and therefore of annual household VMT.  In addition, it is 

assumed that, to a certain degree, people have individual biases toward the various travel 

modes, and therefore choose where they live, in part, in accordance with those biases 

(known in the literature as “self-selection”).  Consequently, it is expected that modal 

biases are a determinant of mode choice and thereby annual household VMT.  

 Given the high incomes in the United States, auto travel is the most common 

mode choice of Americans.  Because laws limit driving to persons who have reached a 

certain age, it is expected that the age of persons is a determinant of annual household 

VMT.  Because high roadway speeds allow drivers to reach distant but desirable 

destinations without spending much time, it is expected that time-based accessibility is a 

determinant of annual household VMT.   
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 Given the popularity of driving, that which affects the amount of travel also 

generally affects the amount of auto travel or VMT.  Due to the constraint of the 24-hour 

day and limited income, travel—and therefore auto travel—is a function of time and 

money issues.  Because short trips generally save time and money, it is expected that the 

proximity of a household to destinations is a determinant of annual household VMT.  

Likewise, centrality being a proxy for proximity, it is expected that the centrality of a 

household is a determinant of annual household VMT.  Given that internet connectivity 

allows persons to achieve activity without the time or expense of traveling, it is expected 

that internet connectivity is a determinant of annual household VMT.  Because the things 

and activities we desire often cost money, a household needs money, which comes either 

through payments (e.g. retirement income, welfare) or work, the latter usually occurring 

outside the home.  It is expected therefore that work status is a determinant of annual 

household VMT.   

 Time and money, however, are not the only things that affect travel and thereby 

auto travel.  Given that persons are the entities which have the aforementioned desires 

which induce travel, it is expected that the number of persons in a household is a 

determinant of annual household VMT.  But all persons do not have equal desire and 

ability to travel.  Due to the nature of men and women, women are typically more 

oriented toward the home than men.  Therefore, it is expected that gender is a 

determinant of annual household VMT.  Given that healthy/whole people are better able 

to travel, it is expected that disabilities are a determinant of annual household VMT.    
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TABLE 2  Summary of Theorized Determinants of Annual Household VMT 
 

 
 
Tables.xlsx 

 
 
 It should be noted that 1) some of these VMT determinants affect VMT through 

the intermediate step of auto ownership (as discussed the Auto Ownership section 

below), and 2) some VMT determinants affect other VMT determinants.  However, 

because the impact of proximity and socio-economics on transit infrastructure occurs 

over time, this impact is not applicable to the cross-sectional models of this dissertation. 

 In the following sections, some of the determinants of VMT summarized in the 

table above are examined in depth concerning theory, measurement, expected results, and 

hypotheses; starting first with “Proximity”, the variable of interest to this dissertation.  

Secondly “Socio-economics” are investigated, followed by a look at “Auto Ownership”, 

a step between proximity, transit infrastructure, and socio-economics (on one hand) and 

VMT (on the other).  Finally, “Time-Based Accessibility” and “Travel Mode Biases” are 

examined, followed by a look at “Subsets of VMT.”   

 
  

Determinant Universe
Proximity Household
Internet Connectivity Person, Household
Time-Based Accessibility Household
Public Transit Service Level Household
Travel Mode Biases ("self-selection") Person

Socio-economics
Work Status Person
Income Person, Household
Gender Person
Age Person
Number of Persons Household
Disabilities Person
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Proximity (and related hypotheses) 
 
This dissertation’s detailed examination of the determinants of annual household VMT 

begins with proximity, its variable of interest. 

 
Theory, Conceptual Structure, and Hypotheses of Proximity’s Impact on VMT 
 
Whereas the postulate that proximity’s impact on VMT is generally based on the desire to 

minimize travel time and cost was presented briefly in the overview above, it will be 

theorized in detail below.  The theoretical impact of proximity on VMT (i.e. distance 

traveled in auto) will be examined by looking at the two components of VMT:  

1) the choice of the auto mode, and  
 
2) given the choice of auto, the distance traveled to destinations of activity. 
 

 
Proximity’s Impact on Choosing Auto  First, concerning the choice of mode, proximity 

reduces reliance on the auto as follows.  Comparing the auto to alternative modes (walk, 

bike, public transit), the auto is generally faster, but the auto is pricier.  Therefore, 1) 

there is an income line above which auto is generally used and below which alternatives 

are generally used, and 2) the income line (and therefore mode choice) shifts with 

changes in the difference in price (between auto and alternative modes), and changes in 

the travel time difference (between auto and alternative modes).  Thus, proximity affects 

mode choice via affecting price and travel time.   

 In regards to price, places with high proximity tend to have high neighborhood-

based density, as discussed above.  In areas with high density, land is naturally more 

valuable, and a price is often charged for parking autos.  Given basic economics then, 
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proximity reduces the occurrence of choosing the auto mode by establishing (or 

increasing) a price for parking autos.   

 In regards to travel time, proximity reduces the choosing of auto by reducing the 

travel time difference between auto and alternative modes.  First, higher proximity results 

in the presence of alternatives (to the auto) with higher speed and therefore lower travel 

time than walking and biking.  At a certain high level of proximity, which is typically 

accompanied by a high level of neighborhood-based density, the high number of persons 

present—and therefore the high number of candidates for using public transit—lowers 

the expected subsidy per ride and causes government to be willing to invest in public 

transit, e.g. bus service.  And at even higher densities, government is willing—for the 

same reason—to invest in lower travel times for public transit travel, i.e. reducing wait 

times by supplying greater bus frequency, and increasing speeds by supplying dedicated 

rights-of-way (e.g. BRT and rail).  Concerning this impact of transit investment (and 

parking price, above), Salon et al. (25) note “Density is correlated with many of the other 

factors that we expect to affect VMT, including both land use factors and factors such as 

transit service and parking prices.”  Secondly, higher proximity affects the travel time 

difference between auto and all alternative modes.  Proximity reduces the distance to 

destinations (as shown in detail below), thereby reducing the time to get to those 

destinations via any mode, thereby reducing the difference in travel time between auto 

and alternatives, and thus increasing the choosing of alternative modes by persons of 

certain incomes.   
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 In summary of the above discussion of mode choice theory, proximity reduces 

VMT by reducing the choice of auto via increasing the cost of parking and reducing the 

difference in travel time between auto and alternative modes. 

 
Proximity’s Impact on Auto Travel Distance  Secondly, given the choice of auto, 

proximity reduces the distance traveled to destinations of activity via a theory known as 

the intervening opportunities model.  According to Schneider—who “developed the 

theory in the way it is presented today” (14)—the intervening opportunities model is 

based on the following assumptions (41):     

 “that the probability of a trip finding a terminal in any element of a region is 
proportional to the number of terminal opportunities contained in the element” 
 

 “that a trip prefers to be as short as possible, lengthening only as it fails to find a 
[closer] terminal.”  

 
It follows then that the more destinations that lie within a given distance, the higher will 

be the probability of the traveler being satisfied by traveling that distance or less.  Given 

that proximity is defined herein as “the degree to which the home is located near activity 

destinations”, residents of homes with higher proximity will have shorter trips than those 

living in lower proximity areas.  Therefore, given 1) the choice of auto (as established at 

the beginning of the paragraph), and 2) assuming a constant number of trips (assumption 

discussed in detail below), homes with higher proximity will have lower VMT. 

 Concerning the above assumption of a constant number of trips, the economic 

theory above of maximizing consumption leads one to conclude that drivers living in 

areas of high proximity will take advantage of being closer to destinations—each trip to 

an activity being less costly and requiring less time—by consuming more activities and 

(ignoring trip chaining) thus conducting more trips.  It should be noted, however, that the 
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trip-number-increasing effect of proximity being secondary to (i.e. in response to) the 

primary effect of proximity (shorter trip lengths), it is expected that proximity will 

decrease (overall) the VMT of auto users.   

 In summary, proximity reduces VMT 1) by reducing the choice of the auto mode 

(by increasing the cost of parking and reducing the difference in travel time between auto 

and alternative modes), and 2) by, given the choice of auto, reducing total trip distances. 

 
The Expected Shape of VMT-Proximity Curve and Key Hypothesis  Discovering the 

VMT impact at each level of proximity—the research objective of this dissertation—will 

result in VMT-proximity curves.  It is expected that the “ideal” (using the Platonic 

meaning of the word) VMT-proximity curve flattens at both extremes of proximity, 

giving the curve an S-shape, i.e. somewhat similar to the shape of the Walls curve shown 

in Figure 3 above.  At high levels of proximity, because there naturally exists a  minimum 

household VMT (zero), it is expected that the curve will approach this minimum 

asymptotically—as is the case of other natural phenomena approaching a limiting value.  

Therefore, one expects a flattening VMT-proximity curve at the upper end of proximity.  

At low levels of proximity, because Schneider set the cumulative probability of trip-

making equal to 1.0 (41), i.e. he assumed that the subject trip would be made regardless 

of how far one must travel to reach the first opportunity, the intervening opportunities 

model renders no maximum VMT.  In reality, however, due to limited income and time 

discussed above, it is expected that persons living in remote areas will combine and 

forego trips.  As a result, as one examines more-and-more remote (i.e. less-and-less 

proximate) households, a maximum VMT is expected.  And, given this limiting value, it 
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is expected that the curve will approach maximum VMT asymptotically, resulting in a 

flattening VMT-proximity curve at the lower end of proximity.   

 

 
diagrams.xlsx 

 
FIGURE 4  Expected Shape of VMT-Proximity Curve. 
 

The expectation that the VMT-proximity curve is S-shaped—i.e. sloping sharply 

between the above two flat portions—is supported, in part, by the finding of Pushkarev 

and Zupan that there exists a bend in the transit-trips-vs.-residential-density curve at 7 

dwelling units per acre (7).  According to Pushkarev and Zupan, “…densities in the 2 to 7 

dwellings per acre range produced only marginal use of public transportation…”, 

whereas densities “of 7 to 30 dwellings per acre were necessary to sustain significant 

transit use...”  This finding of a bend in the transit-use-vs.-density curve—below which 

density level transit use increases slowly with increasing density, and above which 

density level transit use increases more rapidly with increasing density—supports the 
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existence of the first bend in the above-assumed S-shaped VMT-proximity curve—below 

which proximity level VMT decreases slowly with increasing proximity, and above 

which proximity level VMT decreases more rapidly with increasing proximity.  And 

given the resulting steeply sloping section of the VMT-proximity curve, there must exist 

a second bend in order for the curve to flatten at higher proximity as theorized above. 

 The implication of the S-shape of the above theoretical VMT-proximity curve is 

that there exist points along the bend in the right-hand portion of the curve having low 

VMT and a moderate level of proximity as shown below.  If, along the bend, the VMT is 

well below the average VMT and the proximity level is acceptable to a significant portion 

of the population (as discussed in the Impetus section above), then governments could 

promote housing development at this “sweet spot” proximity and thereby lower the 

average VMT of the population. 

 

diagrams.xlsx 

 
FIGURE 5  Expected Sweet Spot on VMT-Proximity Curve. 
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Therefore, the key hypothesis of this dissertation is: 
 

There exists a sweet spot on the VMT-proximity curve that has high VMT benefit 
and a proximity level acceptable to many households. 

 
In order to test this hypothesis, a specific version of it must be developed.  Based on the 

above S-curve, the sweet spot would be somewhat above the 50% proximity level.  

Assuming that 67% of the maximum proximity level is low enough to be acceptable to a 

significant portion of the population, and that 80% of the VMT benefit at maximum 

proximity is high enough to significantly lower the average VMT of the subject 

population, the following specific key hypothesis will be tested: 

The VMT benefit at 67% of maximum proximity is equal to or greater than 80% 
of the VMT benefit at maximum proximity. 

 

The Expected Shape of VMT-Centrality Curve and Secondary Hypothesis  It is 

expected for two reasons that the VMT-centrality curve is also S-shaped.  First, centrality 

being a proxy for proximity, it is expected that the VMT-centrality curve will resemble 

the VMT-proximity curve and be, therefore, S-shaped as discussed above.  Secondly, 

because centrality, unlike proximity, has a maximum value (i.e. being at center)—were 

one to move along an imaginary line bisecting the ideal metro (such line referred to in the 

literature as a “transect” (35)), moving away from the outer metro edge and approaching 

the center—one would expect the amount of proximity to level off before declining as 

one moves across (and therefore away from) the center.  Therefore, VMT being related to 

proximity, it is expected that VMT would likewise level off—at some minimum average 

VMT value—as one approaches the metro center and, thus, the high-centrality-extreme 

of the VMT-centrality curve.  
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The implication of an S-shaped VMT-centrality curve is similar to the implication 

of an S-shaped VMT-proximity curve discussed above.  The implication of the S-shape 

of the theoretical VMT-centrality curve is that there exist points along the bend in the 

right-hand portion of the curve having low VMT and a moderate level of centrality.  If, 

along the bend, the VMT is below the average VMT and the centrality level is acceptable 

to a significant portion of the population, then governments could promote housing 

development at this “sweet spot” centrality and thereby lower the average VMT of the 

population. 

 Given that centrality is a proxy for proximity, a centrality-based hypothesis is 

secondary to the key proximity-based hypothesis.  Based on the expected shape of the 

VMT-centrality curve, the secondary hypothesis of this dissertation is: 

There exists a sweet spot on the VMT-centrality curve that has high VMT benefit 
and a centrality level acceptable to many households. 

 
In order to test this hypothesis, a specific version of it must be developed.  Assuming that 

67% of the maximum centrality level is low enough to be acceptable to a significant 

portion of the population, and that 80% of the VMT benefit at maximum centrality is 

high enough to significantly lower the average VMT of the subject population, the 

following specific secondary hypothesis will be tested: 

The VMT benefit at 67% of maximum centrality is equal to or greater than 80% 
of the VMT benefit at maximum centrality. 
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Measuring Proximity 
 
 
Measuring Proximity in the Literature  Researchers have measured proximity with 

various methods including methods based on centrality, density, thresholds, gravity 

model, etc. as discussed below.   

 
Using Centrality as a Proxy for Proximity  Given—as discussed above—that centrality is 

a proxy for proximity, some researchers have used centrality as an independent variable 

in their attempts to study the effect of land use on travel.  In their 2010 study, Cao, Xu, 

and Fan (30) “classified households into four types of locations based on the network 

distance between  households’ residence and the city center point.”  They “divided the 

distance into four intervals: [0, 5] miles (called urban areas for simplicity), (5, 10] miles 

(called inner-ring suburbs), (10, 15] miles (called suburbs), and 15+ miles (called 

exurbs).”  [The preceding quote is punctuated herein as originally written.] 

 
Using Other Proxies of Proximity  Salon et al. (25) analyzed the VMT impact of several 

proxies of proximity: land use mix, jobs-housing balance, and—considering the paths 

which join proximate locations—network connectivity. 

 
Land Use Units Used in Proximity Measures  When actually trying to measure 

proximity—as opposed to using the above proxies for proximity—authors usually 

represent the subject destinations (i.e. the locations to which the subject household is to 

some degree proximate) using discrete land use units, primarily population (i.e. the 

number of persons or households) and employment (i.e. the number of jobs).  For 
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example, for the simple proximity measurement discussed below—density—the discrete 

land use unit measured is usually population. 

Some authors have used combinations of land use units in their proximity 

measures.  Combining types of employment, Case (4) measured “Activity Location 

Units” (ALUs) within a certain threshold distance of the household, one ALU for each 

employee of a non-retail establishment and—to reflect the higher number of trips per 

employee attracted to retail businesses—three ALUs for each employee of a retail 

establishment.  Zhou and Kockelman (31), on the other hand, combining population and 

employment, measured “person equivalents per acre”, i.e. “zone population plus zone 

employment times the regional persons-per-job ratio…”  

 
Using Density to Measure Proximity  The most prevalent measure of proximity in the 

literature is density.  Density is the number of discrete units of interest in a certain area—

in this case, the area in which the subject household is located—divided by the size of 

that area (referred to herein as the “density area”).  An example of density measurement 

is the number of households per square mile in the block group in which the subject 

house is located.   

 Many authors used density to measure proximity and explore its effects.  Some 

used residential/population density: 

 In 2000, Badoe and Miller reportedly examined the relationship between 
residential density and mode choice (1).   
 

 In 2002, Holtzclaw et al. reportedly examined the relationship between residential 
density and VMT (1). 
 

 In 2005, Golob and Brownstone (21) examined the relationship between 
population and housing unit density and VMT. 
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 In 2007, Ewing et al. reportedly examined the relationship between population 
density and VMT (1). 
 

Some used employment density: 

 In 1998, Boarnet and Sarmiento reportedly examined the relationship between 
retail employment density and nonwork auto trips (1).   
 

 In 2005, Golob and Brownstone (21) examined the relationship between 
employment density and VMT.    

 

The scope of density measurement, i.e. the size of the density area, varies by author.  

Many authors measured density on a neighborhood basis.  In her dissertation, Shay (24) 

used “…a neighborhood typology…, which captures such environmental qualities as 

density, connectivity, and streetscape.”  Some authors, on the other hand, calculated 

density for entire metros.  For example, in 2010, Cervero and Murakami examined the 

relationship between metro density and traffic (6).   

 
Using Distance Thresholds to Measure Proximity  Some authors measured proximity by 

examining the contents of the environment of a subject household, that environment 

measured out to a threshold distance.  For example, Cervero and Duncan measured “the 

number of jobs in the same occupational category [as the human subject] within 4 miles 

of one’s residence” (3).  Yoon, Golob, and Goulias (26) measured employment within 

10km and 50km of the subject census tract.  This method will be referred to herein as 

“distance-threshold-based total opportunities.”   

 
Using the Gravity Model to Measure Proximity  Measuring the environment of a home by 

using the gravity model is a fairly complex method in that all destinations in the modeled 

region are considered, not simply those within a certain threshold distance.  Several 

authors have used the gravity model to measure the accessibility of homes.  In 1993, 
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Handy measured local and regional accessibility using gravity-based formulations (27).  

In 2001, Ewing and Cervero reportedly measured “destination accessibility” which was 

“represented by an accessibility index derived with a gravity model” (1).  In 2003, Krizek 

(32) measured “regional accessibility” by entering retail employment into a gravity 

formula.  The Access to Destinations Study (2010) used the gravity model to measure 

accessibility whereby “nearby things exert stronger attraction than those far away” (8).  If 

applied with distances instead of travel times, these uses of the gravity model could be 

modified to measure proximity instead of accessibility. 

 
Using Other Complex Methods of Measuring Proximity  In addition to the gravity model, 

other complex methods of measuring proximity have been used.  Khattak et al. (5) 

explored the relationship between various variables—including Claritas area types—and 

commute distance. For the 1995 Nationwide Personal Transportation Survey (NPTS) and 

the 2001 National Household Travel Survey (NHTS), Claritas measured proximity using 

a complex framework based on density (9).  Every part of the nation was classified into 

five “Area Types.”  First, to reduce distortions caused by the delineation and size of 

census areas, Claritas divided the U.S. into 900,000 squares (called “grids”), each 

approximately 2 miles by 2 miles or 4 square miles in area.  Secondly, each grid was 

assigned a “contextual density”, the population density of the nine grids (3x3) for which 

the subject grid is the central grid, i.e. not the density of the subject grid itself.  (Note that 

this is roughly equivalent to measuring the number of persons within a 3 mile threshold 

of the subject household.)  Thirdly, based on that contextual density, each grid was 

placed into one of three density categories: low density, medium/low density, medium-to-

high density.  The first two of these categories were used as the first two (of the five) area 
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types, which are therefore referred to by this author as the “Low Density Area Type” and 

“Medium/Low Density Area Type” (the Claritas labels for these two Area Types 

[“Rural” and “Town”, respectively] being misleading).  Fourthly, the “relational nature” 

of the grids in the third density category (medium-to-high) was identified, i.e. how a 

grid’s contextual density compares to that of adjacent grids.  Based on the relative 

contextual density of nearby grids, Claritas judged these grids as having one of two 

natures: a central nature (i.e. having the highest, or nearly the highest, contextual density 

in the vicinity), or a surrounding nature (i.e. having significantly lower contextual density 

than that of  its “population center”).  These surrounding grids comprise the third area 

type, which is therefore referred to by this author as the “Medium-to-High Density 

Surrounding Area Type” (imprecisely labeled “Suburban” by Claritas).  Finally, Claritas 

split the grids with a central nature into the fourth and fifth area types, based on the 

contextual density of a grid’s population center, placing those with medium density in the 

fourth area type, and placing those with high density in the fifth area type.   Therefore, 

this author refers to these two area types as the “Medium Density Central Area Type” and 

the “High Density Central Area Type” (misleadingly labeled “Second City” and “Urban” 

respectively by Claritas). 

In 2005, Bento et al. used annuli to measure proximity, another complex method.  

They computed “population centrality” (a property of the metro representing its spread, 

not to be confused with the “centrality,” a property of the household examined in this 

dissertation) by “averaging the difference between the cumulative population in annulus 

n (expressed as a percentage of total population) and the cumulative distance-weighted 
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population in annulus n (expressed as a percentage of total distance-weighted 

population)” (18). 

 
Measuring Proximity in this Dissertation  The above literature review discovered 

many different methods of measuring proximity: 

 Centrality 
 Other proxies (land use mix, jobs-housing balance, and network connectivity) 
 Density 
 Distance-threshold-based total opportunities 
 Complex methods (gravity-based, Claritas area types, and annuli-based) 

 
Although there is no perfect method of measuring proximity, several of these methods 

have unacceptable weaknesses.  Given that even the most dense and varied neighborhood 

can satisfy only a small portion of the desired activities of mobile citizens, it is expected 

that neighborhood-based measures, such as network connectivity, have little relationship 

to VMT, an assumption supported by the literature as discussed below in section “The 

Empirical Impact of Proximity on VMT in the Literature.”  Concerning the gravity-based 

and annuli-based methods, their complexity prevents them from being readily understood 

by potential consumers of this dissertation, and the categorical nature of the Claritas 

method prevents it from being plotted, disqualifying these methods from being applied 

herein for creation of VMT-proximity curves.   

 On the other hand, centrality, i.e. the closeness to the center of the metro area, is a 

common and simple way of considering location.  For example, someone might ask 

another person, “How far out do you live?”, i.e. “How far do you live from downtown?”  

Likewise, the popularity and simplicity of density make it an attractive method for this 

dissertation.  Density provides proximity over the density area.  Although this density 

area is often smaller than the large regional area over which proximity is best measured 
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(as discussed below), density over small areas is related to proximity over large areas, 

and is therefore useful for measuring that proximity.  And finally, given the intuitive 

theory of intervening opportunities discussed above, distance-threshold-based total 

opportunities—which measures at least a portion of those intervening opportunities—is 

also an appropriate measure of proximity for this dissertation.  Therefore, in this 

dissertation, VMT-proximity curves are developed using:  

1) centrality 
2) density, and  
3) distance-threshold-based total opportunities. 
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The Empirical Impact of Proximity on VMT in the Literature 
 
In this section, the findings in the transportation literature concerning the impact of 

proximity on VMT are summarized.  VMT is a mathematical function of three 

determinants: 1) the mode of travel, 2) the distance of trips, and 3) the number of trips. 

The findings below are organized by the above three determinants of VMT plus a fourth 

category for VMT itself. 

 
Relationship Between Proximity and Mode  According to the literature, an increase in 

the usage of alternative modes does not necessarily indicate an equivalent decrease in the 

usage of autos.  For example, according to Shay’s review of the literature (24), “The 

increased proximity afforded by mixing residential, retail, and office land uses appears to 

support walking trips; however, it is less clear whether such trips complement or 

substitute for existing trips that rely on motorized modes (Ewing and Cervero, 2001; 

Handy, 2006).”  And Salon et al. (25) state that “We expect that as transit ridership 

increases, VMT will decrease, but the effect is likely to be less than one-to-one, both 

because new transit trips do not always replace car trips and because of latent demand for 

road space….” 

Accordingly, some of the literature points to the small impact of alternative 

modes on VMT.  Concerning the effect of walking on VMT, according to Salon et al. 

(25): 

“There have been a handful of studies that identify the VMT effect of walking, 
and the results have been mixed. In a study of Portland, Oregon, Parsons 
Brinkerhoff (1993) found an elasticity of VMT with respect to a measure of 
pedestrian quality of -0.19.” 
 
“Kitamura, et al. (1997) found that the presence of sidewalks in the neighborhood 
was associated with a 0.14 percent decrease in vehicle trips.” 
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Concerning the effect of public transit on VMT, according to Salon et al. (25): 

“For fare, frequency, and service miles/hours, the literature provides evidence on 
the relationship of these characteristics of a transit system to transit ridership, but 
the effect on VMT is not quantified.”  
 
“Paulley et al. (2006) is one of the few studies that examined links from service 
characteristics to car use, and they found that the elasticity of automobile mode 
share with respect to bus transit fare was about -0.05, approximately one-tenth the 
fare elasticity estimate of transit ridership.” 

 
Concerning the effect of biking on VMT, according to Salon et al. (25), “To our 

knowledge, the link between increased bicycling and VMT reduction has not been 

empirically quantified.” 

 
Relationship Between Proximity and Trip Distance  Using 1995 NPTS data, Khattak 

et al. (5) explored the relationship between various variables—including Claritas area 

types—and commute distance.  As discussed above, the NPTS defined five area types: 1) 

Low Density (a.k.a. “Rural”); 2) Medium/Low Density (a.k.a. “Town”); 3) Medium-to-

High Density Surrounding Area (a.k.a. “Suburban”); 4) Medium Density Central Area 

(a.k.a. “Second City”); and 5) High Density Central Area (a.k.a. “Urban”).  Based on the 

detailed description of their composition in the “Measures of Proximity” section above, it 

appears that these area types are ordered according to proximity—from “Low Density” 

areas (representing the lowest proximity), to “High Density Central” areas (representing 

the highest proximity).  Based on this apparent order of proximity and the VMT theory of 

this dissertation, one would expect these area types to be also ordered according to 

commute distance—from “Low Density” areas having the longest commute distances, to 

“High Density Central” areas having the shortest commute distances.  Although this 

order held when simply examining average distances by area type, this order did not hold 
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when controlling for other variables, e.g. controlling for income to account for any 

“spatial mismatch hypothesis” effects.  Surprisingly, the coefficients from Khattak’s 

weighted least squares regression model indicated that workers living in Medium-to-High 

Density Surrounding Areas (the base area type) had shorter commute distances than 

those living in High Density Central areas (coefficient +1.91), ceteris paribus. 

 
Relationship Between Proximity and Number of Trips  Examining metro density, 

Cervero and Murakami (6) found “traffic-inducing effects of denser urban settings having 

denser road networks and better local-retail accessibility (indirect effect 

elasticity =0.223…).”  It is assumed that the higher VMT which they found is due, in part 

or whole, to increased trip making.  More directly, Shay (24) found a positive 

relationship, ceteris paribus, between number of trips and both 1) living in and around the 

CBD, and 2) residential density.   

 
Relationship Between Proximity and VMT  Just as the literature records the 

relationship between proximity and the three components of VMT—1) mode, 2) trip 

distance, and 3) number of trips—it also records the relationship between proximity and 

VMT itself.  Some studies examine the effect of density on VMT: 

 In 1997, Ross and Dunning (23) calculated VMT by various levels of population 
density but they did not control for any other variables. 
 

 In 2002, Holtzclaw et al. reportedly found that lower residential density is the 
cause of higher auto ownership and vehicle miles traveled (VMT) (1). 

 
 In 2005, Golob and Brownstone found: “Comparing two households that are 

similar in all respects except residential density, a lower density of 1,000 housing 
units per square mile [block group measure] implies a positive difference of 
almost 1,200 miles per year…” (21) 
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 In 2007, Ewing et al. reportedly found "a 0.152 percent reduction in VMT from a 
1 percent increase in population density on the basis of their longitudinal 
model…" (1)  

 
Some studies examine the effect of more complex measures of proximity on VMT.  In 

2005, Bento et al. found that “population centrality” (a measure of metro “spreadness” 

differing from the household “centrality” of this dissertation, as described above), by 

itself, had a modest effect on VMT: 

“Population centrality, which affects average VMTs only through its effect on 
vehicle choice, has a slightly larger, but still modest, effect. A 1% increase in 
population centrality reduces average annual miles driven by 1.5% when New 
York is removed from the sample. As we report elsewhere (Bento et al., 2003), 
the 10% increase in population centrality in the sample without New York 
reduces annual average VMTs by approximately 300 miles per year—
approximately half the size (in absolute value) of a 10% increase in household 
income.” (18) 

 
Some studies record the relationship between distance-threshold-based total opportunities 

and VMT.  According to Cervero and Duncan in their article "Which Reduces Vehicle 

Travel More: Jobs-Housing Balance or Retail-Housing Mixing?", job proximity ("the 

number of jobs in the same occupational category [as that of the human subject] within 4 

miles of one's residence") is a powerful VMT reducer.  They also found that retail and 

service proximity is a VMT reducer, but to a lesser extent than job proximity (3). 

 
Scope of Measurement of Proximity  Regardless of which of the above methods is used 

to measure proximity, the scope of that measure must be established.  According to 

Krizek (32), “It is…important to distinguish between the effects of urban form at the 

neighborhood scale versus the regional scale.”  In her writing, Handy differentiates 

between these two (27): 
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 “The amount that a person travels is influenced by both the character of the 
particular community in which he or she lives and the spatial structure of the 
region of which that community is a part.”  
 

 “Neotraditional developments with high levels of local accessibility…will have a 
greater effect on nonwork travel when located at the edges of the region than 
when they are located within the region surrounded by highly developed areas.” 

 
Although a) proximity measures with a neighborhood scope, and b) proximity 

measures with a regional scope are both related to VMT, the literature indicates that 

regionally-based proximity has a greater impact on VMT than does neighborhood-based 

proximity: 

 According to Badoe and Miller, Ewing found in his 1995 analysis that “good 
regional accessibility was found to cut down on household vehicular travel to a 
far greater extent than did localized density of mixed use” (2).   
 

 Measuring density on the metro level, Cervero and Murakami (6) found 
“population densities are shown to be strongly…associated with VMT per capita 
(direct effect elasticity =-0.604)…”   
 

 According to Shay (24), “Ewing (1995) determined total travel to be a function of 
regional access, and thus largely beyond the power of individual neighborhoods to 
shape.” 
 

 Both Badoe and Miller (2000) and Ewing and Cervero (2001) reportedly note "the 
futility of increasing density in the middle of nowhere as a policy to reduce VMT" 
(1). 
 

 As reported in TRB Special Report 298:  
 

o Concerning the immediate environment of a household, in 2002 Bagley 
and Mokhtarian found "little remaining effect of neighborhood type on 
VMT after controlling for attitudes, lifestyle preferences, and 
sociodemographic variables" (1).   
 

o In 2008, Arrington and Cervero concluded "that the location of a TOD in a 
region—its accessibility to desired locations—and the quality of 
connecting transit service are more important in influencing travel patterns 
than are the characteristics of the TOD itself (e.g., mixed uses, 
walkability)" (1). 

 
 According to Cervero and Duncan (3): 



42 

 
o “While we measured job accessibility indices within radii of 1 to 9 miles 

around survey respondents’ residences, the best-fitting estimates were for 
4-mile radii;” 

o “As with the study of job accessibility, the 4-mile radius provided the best 
statistical fit for estimating the influences of retail-service accessibility 
levels on the VMT of tours for shopping and personal services.” 
 

 Although not large enough to provide a truly regional scope, census tracts provide 
a scope of analysis larger than the neighborhood.  According to Yoon, Golob, and 
Goulias (26): 
 

o “…household density measured in census tracts explained better the 
indicators used here [non-motorized travel, high-occupancy-vehicle usage, 
and solo driving] than household density measured using block groups.” 

 

Scope of Measurement of Proximity in this Dissertation  Given that the literature 

indicates that large-scope proximity (i.e. regionally-based, census-tract-based) has a 

greater impact on VMT than does neighborhood-based proximity, in this dissertation 

proximity will primarily be measured at a large scope.  Secondarily, neighborhood-based 

proximity will be measured to determine and control for its impact. 

 
Summary of Empirical Impact of Proximity on VMT in the Literature  In summary, 

as one might expect, the existing literature generally indicates that proximity tends to 1) 

increase the usage of alternative modes, 2) decrease trip length, and 3) increase the 

number of trips, overall lowering VMT.  In addition, as discussed above, the literature 

contains a few findings that perhaps controvert conventional wisdom: 

 Workers living in Medium-to-High Density Surrounding Areas had shorter 
commute distances than those living in High Density Central Areas, ceteris 
paribus. 
 

 Large-scope proximity (i.e. regionally-based, census-tract-based) has a greater 
impact on VMT than does neighborhood-based proximity.  
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Socio-economics 
 
As briefed in the overview above, it is theorized that work status, income, gender, age, 

number of persons in the household, and disabilities are determinants of annual 

household VMT.  The term “socio-economics”,  meaning the “combination of social and 

economic factors” (40), covers these determinants. 

 
Socio-economics in the Literature 
 
Many studies which examined the impact of the built environment on travel and VMT 

used socio-economics as control variables in an attempt to isolate the impact of the built 

environment: 

 Most of the studies reviewed in Special Report 298 (1) treated socio-economics as 
control variables.  Holtzclaw et al. (2002), Bagley and Mokhtarian (2002), Frank 
et al. (2007), Bhat and Guo (2007), Brownstone (2008), and Brownstone and 
Golob (2009) all controlled for socio-economics in their analyses.  Holtzclaw 
used household size and income as control variables, whereas Bhat and Guo used 
various household characteristics, and found that household income strongly 
affects car ownership (and therefore travel). 
 

 In their analysis of transportation-land use literature, Badoe and Miller (2)—
referencing Peat Marwick & Mitchell (1975); Schimek (1995); Loutzenheiser 
(1997)—stated that “…socioeconomic factors…such as income, age, gender, 
occupation, etc., have a significant impact on travel behavior.” 
 

 Cervero and Duncan (3) controlled for socio-economics when they examined the 
relative impact of job proximity and retail/service proximity on travel. Their 
control variables reflected income level, type of employment, age, ethnicity, 
motor vehicle ownership, driver licensing, student status, and gender. 

 

Two of the studies reviewed in Special Report 298 (1)—Handy (2005) and Ewing and 

Cervero (2001)—examined the relative importance of socio-economics and the built 

environment in impacting travel.  Ewing and Cervero found that “socioeconomic factors 

are dominant in trip frequency decisions, whereas the built environment appears to be 

more influential with respect to trip length...”    
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Socio-economics in this Dissertation 

 
Given the theoretical and documented impact of socio-economics on travel and VMT, 

control variables reflecting work status, income, gender, and age, will be included in the 

models developed for this dissertation. 

 
Auto Ownership 
 
Household VMT being a mathematical product of the number of vehicles in the home 

and the amount of travel per vehicle, socio-economics and proximity impact VMT, in 

part, through the step of auto ownership.  Without auto ownership, there is no VMT.  

Given the time advantage and high cost of auto travel, as discussed above, higher 

incomes increase the tendency of a household to travel by auto, including the necessary 

and expensive step of purchasing and insuring an auto.  And given that proximity (with 

its above-described companions: transit service level and parking costs) reduces the 

advantage of auto travel by reducing the travel time difference between auto and 

alternative modes (as described above), greater proximity is expected to decrease the 

tendency of a household to purchase and insure an auto. 

 
Auto Ownership in the Literature 
 
The literature discusses the role of auto ownership in the relationship between urban 

design and VMT.  According to Badoe and Miller (2): 

“…auto ownership is a critical "intermediate link'' between household location 
choices (where to live, where to work) and their subsequent activity/travel 
decisions.” 
 
“Thus…a proper specification of the urban form - travel demand interaction - 
requires including auto ownership as an endogenous component of the system.” 
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Likewise, according to Schimek (13): 

“…given a neighborhood of a certain density, households choose the number of 
vehicles to hold (own, lease, etc.) and then decide the number of motor vehicle 
trips or total vehicle travel distance….” 

 
Bento et al., in their 2005 study of the effects of urban spatial structure on travel demand, 

estimate a VMT model in two parts (18): 

“The first part is a multinomial logit model that explains whether the household 
owns zero, one, two, or three or more vehicles. We then study the determinants of 
annual VMTs per vehicle separately for households that own one, two, or three or 
more vehicles.” 

 
Likewise in Shay’s dissertation examining the travel impact of the various types of urban 

environments in the Charlotte metro (24), “Path analysis is used to examine the 

relationship of environment with travel—both directly, and indirectly through auto 

ownership.” 

 
Auto Ownership in this Dissertation 
 
Given that auto ownership is an effect of proximity, modeling VMT without mixing 

causes and effects in the set of independent variables, may be achieved in two ways: 1) 

via two-part modeling (as done by Bento and Shay above), or 2) by excluding auto 

ownership from a set of independent variables that includes socio-economics and 

proximity.  If one desires to examine the components of the impact of socio-economics 

and proximity on VMT—i.e. what portion of that impact is exercised through auto 

ownership, and what portion of that impact is exercised through mileage-per-auto—then 

one would use two-part modeling to do so.  If, however, one is simply interested in the 

relationship between proximity and VMT—as in this dissertation—one can account for 

the endogeneity of auto ownership by simply excluding auto ownership from the set of 
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independent variables in a one-part model, including instead only exogenous variables 

such as proximity and socio-economics.  Consequently, for the sake of simplicity, one-

part models that exclude “number of vehicles” as an independent variable (IV) will be 

employed in this dissertation. 

 Note that—due to the strong logical and empirical relationship between the 

presence of vehicles and the presence of drivers in a household—the models in this 

dissertation will also exclude “number of drivers” as an independent variable. 

 
Time-Based Accessibility 
 
As briefly discussed in the overview above, it is expected that access to high-speed 

roadways tends to increase the VMT of households.  Comparing two households with 

their only difference being the speed of the roadways in their environments (i.e. they have 

the same [distance-based] proximity to destinations, but one is served by high-speed 

roadways, the other is served by low-speed roadways), one expects the household with 

high-speed highways to take advantage of those highways and sometimes choose distant 

but desirable destinations because they can be reached quickly.  Therefore, one expects 

households in an environment of  high-speed highways to have higher VMT than 

households in other environments. 

 Given that proximity, which reflects distance-based access to destinations, will be 

included in the set of independent variables in this dissertation’s models, the extra access 

to distant destinations provided by high-speed roadways can be represented in these same 

models by including a variable measuring the destinations within a certain travel time of 

the subject household, i.e. “time-based accessibility”, e.g. “number of persons within 20 

minutes.”  Whereas placing accessibility, without proximity, in a model would be 
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expected to result in accessibility being negatively related to VMT (because of the 

general similarity between accessibility and proximity), pairing accessibility with 

proximity in a model is expected to result in accessibility being positively related to VMT 

and thereby reflecting the impact of high-speed roadways. 

 
Travel Mode Biases (“Self-Selection”) 
 
As briefed in the overview above, it is assumed that, to a certain degree, people have 

individual biases toward the various travel modes, and therefore choose where they live, 

in part, in accordance with those biases (known in the literature as “self-selection”).  

Special Report 298 relates that "Boarnet and Crane (2001), among others, note that the 

observed correlation between higher-density neighborhoods and less automobile travel 

may be due in part to the fact that some residents who dislike driving and prefer transit or 

walking or bicycling may have self-selected into neighborhoods where these travel 

options are available" (1).  For example, people who do not like to drive will tend to 

choose to live in intensely urban places such as Manhattan.  Therefore, were one to 

attribute the walking habits of New Yorkers solely to the proximity of their homes to 

destinations (and to the associated alternative transportation infrastructure), one would be 

overestimating the impact of that proximity.   

 
Travel Mode Biases / Self-Selection in the Literature 
 
Researchers have found that self-selection can significantly distort the results of research.  

According to Cao et al. (30): 

“Using a sample of 1,903 households in a travel survey in Austin, TX, Zhou and 
Kockelman (Zhou and Kockelman, 2008) applied Heckman’s sample selection 
model. After controlling for self-selection, they found that households in suburban 
areas were likely to drive 27% more per day than those in urban areas. They 
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concluded that self-selection explained 42% of the total influence of the built 
environment on vehicle miles traveled (VMT).”  
 
“Using a 2003 data of respondents living in four traditional and four suburban 
neighborhoods in Northern California, Cao (Cao, 2009)…employed a sample 
selection model to quantify the influence of neighborhood type itself on driving 
behavior. He concluded that about 24% of the total influence of neighborhood 
type on vehicle miles driven resulted from residential self-selection.”  

 
According to Zhou and Kockelman (31): 
 

“Depending on model specification used, results suggest that at least half (58% to 
90%) of the differences in vehicle miles traveled observed between similar 
households living in CBD or urban versus rural or suburban neighborhoods of 
Austin is due to the location or treatment itself, whereas self-selection of such 
treatment (by households that wish to meet special travel needs or preferences) 
accounts for the remainder.”  

 
 In response to this threat of self-selection to the validity of analyses, authors have 

adopted various analytical methods to address this issue, as follows. 

 Walls, Harrington, and Krupnick (20) used a “selectivity correction term” to 

address self-selection: “Using techniques developed by Heckman (1978, 1979), Dubin 

and McFadden (1984) developed a selectivity correction term for use in situations when 

the discrete choice probabilities are logit and the errors in the regression equations (the 

VMT equations here) are normally distributed.” 

 Golob and Brownstone (21) used simultaneous equations to deal with self-

selection: 

“We adopt a more direct approach to the problem of selectivity bias in 
disaggregate studies. The approach is to apply a simultaneous equations model in 
which residential density, vehicle usage, and fuel consumption are joint 
endogenous variables. In this way we can model socioeconomic and demographic 
effects on each of these three endogenous variables, while simultaneously 
capturing the direct effects of residential location on the vehicle usage and energy 
consumption.” 

 



49 

In a later work, however, Brownstone (12) indicated that self-selection could be dealt 

with via the use of extensive independent variables in a traditional regression model: 

“Many studies with disaggregate data attempt to control for observable 
differences between people living in high and low density areas using regression 
methods. These studies are only valid to the extent that these people differ only on 
observable characteristics. Therefore studies like Bento et. al. (2005) which 
includes a rich set of household socioeconomic characteristics should be less 
affected by self-selection bias.” 

 
 
Travel Mode Biases in this Dissertation 
 
As in the case of Bento et. al. above, travel mode biases will be addressed in this 

dissertation by including several key socio-economic variables in the VMT models.  To 

the degree that any unobserved travel biases are correlated with these socio-economic 

variables, the effect of these biases will be captured in the coefficients of the subject 

socio-economic variables, and will consequently distort less the coefficients of the 

proximity variables. 

 
Subsets of VMT: Type of Travel 
 
To discover the proximity-travel relationship, some researchers analyze travel by 

dividing it into various types of trips.  Handy isolated shopping travel (27):  

 She found a relationship between two gravity-based measures and trip distance in 
her 1993 analysis—“In both cases [regional and local], shopping distance 
decreases with increasing accessibility.” 

 
 She found “The relationship between regional accessibility and shopping trips per 

person was virtually nonexistent…, as was the relationship between local 
accessibility and shopping trips per person…” 

 
According to Badoe and Miller (2), Ewing—in investigating “the effects of land-use 

patterns on household travel behavior”—classified tours as either work related or non-

work related.  Likewise, Salon et al. (25) surmised the importance of commute trips in 
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explaining VMT: “The effect of employment accessibility on VMT appears to be related 

to the large contribution of longer trips (presumably from commuting) to VMT.”  On the 

other hand, according to Krizek (32), “Hanson (1980) stressed the importance of 

analyzing work and nonwork travel jointly, because separating trips by type fails to 

capture the touring travel behavior that we know exists.” 

 In this dissertation, because energy independence is affected by total VMT (i.e. 

the sum of all subsets of VMT), household VMT will be examined as a whole, not broken 

down into subsets such as shopping or work.  Such detail is not necessary for the stated 

research objective of the dissertation: to discover the VMT impact of each level of 

proximity.    
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CHAPTER IV 
 

EMPIRICAL ANALYSIS 
 
 
Original empirical research was conducted to meet the research objective of this 

dissertation—to discover the VMT impact of each level of proximity—and fulfill the 

purpose of this dissertation identified above: 

to discover the VMT impact of each level of proximity in order to help 
government identify key locations for housing development, and thereby lower 
VMT and reduce dependence on foreign oil.  
 

Toward that end, three research efforts were completed that examine the impact of 

proximity on VMT at each proximity level: 

1. In the first effort, the proximity-VMT relationship was examined using data from 
across the nation and density as the measure of proximity.   
 

2. In the second effort, designed to parse the findings of the first effort, the national 
data was used to explore the relationship between density and the usage of 
alternative modes.   

 
3. In the third effort, the proximity-VMT relationship was examined using data from 

one region—Hampton Roads, Virginia—and distance-threshold-based total 
opportunities and centrality as measures of proximity. 
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Effort #1: Identifying Key Proximity Levels for VMT Using National Data 
 
In order to identify key locations for development, Effort #1 was designed to discover 

VMT impact by proximity level.  The analysis was conducted using a national dataset 

and density as the measure of proximity.  

 
Data Preparation 
 
All data for this effort came from the 2009 National Household Travel Survey (NHTS), 

using the special “DOT” file which contains additional variables not available from the 

NHTS website.  Given the immense size of the data set—150,147 households, 308,901 

persons, and 309,163 vehicles—I randomly extracted a subset of data that would be both 

manageable by modern PCs and render statistically significant results.  In order to retain 

at least 100 records for the least prevalent density level, I randomly selected 9,961 

household records. 

 
Choice of VMT Variable  Annual VMT was chosen over daily VMT as the dependent 

variable for three reasons.  First, the fact that annual VMT is more familiar to people than 

daily VMT renders annual VMT research more easily applied.  For example, people have 

a better idea of the significance of 15,000 miles per year than 15 miles per day.  

Secondly, annual VMT is more stable than daily VMT, the latter being subject to 

weather, temporary illness, holidays, etc.  And finally, annual VMT is more suitable for 

easily-interpreted ordinary least squares (OLS) regression models. 

Given that the NHTS contains three different types of estimates of annual VMT—

1) odometer-based, 2) self-reported, and 3) estimate based on sample day—a particular 
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type had to be chosen for this effort.  Concerning VMT based on the single odometer 

reading on the NHTS, the NHTS literature reads: 

“Unfortunately, not all vehicles had an odometer reading recorded.  Furthermore, 
of those that had their odometer reading recorded, the quality of some of the 
odometer readings is less than desirable.” (43) 

 
Given the difficulty of accurately converting the odometer readings included in the 

NHTS into annual VMT, this type of mileage data was rejected.  The annual VMT 

estimate (“BESTMILE”) calculated by the Oak Ridge National Laboratory (ORNL) for 

the NHTS using various sources including miles driven on sample day was estimated 

using NHTS socio-economic variables. Given this, using BESTMILE as my dependent 

variable would have inappropriately placed that socio-economic information on both 

sides (dependent and independent) of my regression.  Concerning the remaining type, 

self-reported annual VMT by vehicle (“ANNMILES”), excerpts from a comparison to 

FHWA’s Highway Statistics performed for the NHTS follows (43). 

 
TABLE 3  Comparison of ANNMILES to FHWA’s Highway Statistics 

 

Tables.xlsx 
  

Source and Item
Average Miles 

per Vehicle

Highway Statistics  (2008)
Passenger Cars 11,788
Other 2-Axle, 4-Tire Vehicles 10,951
All 11,432

NHTS "ANNMILES" (2008-2009)
Automobile/car/station wagon 10,054
Van (mini, cargo, passenger) 11,030
Sports utility vehicle 11,584
Pickup truck 9,891
All 10,088
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Based on the elimination of the first two types of annual VMT estimates, and the 

similarity between ANNMILES and the Highway Statistics, self-reported annual VMT by 

vehicle (ANNMILES) was used, aggregated to the household level. 

 
Handling Missing Data  Deleting those household records for households with vehicles 

having missing ANNMILES values (1,002 households) created the dataset of 8,959 

households (9,961 – 1,002 = 8,959) used in the analysis.  Concerning the independent 

variables of policy interest—the density variables—only one of the 8,959 household 

records had missing density data.  Median densities of population and employment were 

assumed for that record.  Concerning the set of control variables, missing household 

income was treated as a category of income, as shown in the “Descriptive Statistics” table 

below. 

 
Data Validity  Given that the NHTS (and its predecessor the National Personal 

Transportation Survey (NPTS)) has been conducted several times (1969, 1977, 1983, 

1990, 1995, 2001, and 2009), is based on telephone interviews, and is financed by the 

federal government, the 2009 NHTS data tends to be valid.  The annual household VMT 

used as the dependent variable in this analysis is based on the respondents’ estimate of 

annual miles for each household vehicle.  Although most people do not know exactly 

how many miles their vehicles have been driven during the past 12 months, it is expected 

that the error in those estimates is random and not correlated with any of the independent 

variables in the analysis.  The key independent variables measuring proximity discussed 

below (population and employment density by census tract), having been prepared by 

Nielsen Claritas, are assumed to be reliable. 
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Although the usage of a robust set of independent variables in this effort’s models 

removes any requirement that the subject sample dataset reflect exactly the population 

data, the following table demonstrates the similarity between the weighted full NHTS 

dataset and the unweighted analysis dataset. 

 
TABLE 4  Similarity Between Full Dataset and Analysis Dataset 
 

 
 
Tables.xlsx 

 

Selection and Preparation of Independent Variables  Independent variables (IVs) 

were chosen for this effort’s regression based on the theory and literature discussion in 

the “Preparation” section above, as summarized in the following table.  The selection of 

an IV for each determinant is discussed below. 

 
  

Full Dataset (150,147 HHs) Analysis Dataset (8,959 HHs)
Household 
Variable NHTS Name

Unweighted 
Mean

Weighted 
Mean

Unweighted 
Mean

Weighted 
Mean

Driver Count DRVRCNT 1.80 1.73 1.77 1.73
Person Count HHSIZE 2.34 2.47 2.29 2.36
Vehicle Count HHVEHCNT 2.05 1.86 2.00 1.81
Unit Owned HOMEOWN 87% 67% 87% 67%
Adult Count NUMADLT 1.89 1.88 1.86 1.83
Worker Count WRKCOUNT 0.93 1.09 0.91 1.06
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TABLE 5  Summary of Theorized Determinants of Annual Household VMT 

 

Tables.xlsx 

 
 
Proximity  As discussed in the “Measuring Proximity” section above, 1) centrality, 2) 

density, and  3) distance-threshold-based total opportunities are desirable methods of 

measuring proximity due to their ease-of-interpretation and theoretical relationship to 

VMT.  Given that—of these three—only density is readily available in the NHTS, this 

national analysis was performed using density.  (Although distance-threshold-based total 

opportunities can be measured using additional efforts of reasonable difficulty for one 

metro area—as shown in this dissertation’s third effort below—this is too difficult in a 

nation-wide analysis such as this first effort.)  Given that—as described in section “The 

Empirical Impact of Proximity on VMT” above—1) the literature indicates that 

regionally-based proximity has a greater impact on VMT than does neighborhood-based 

proximity, and 2) Yoon, Golob, and Goulias found that “household density measured in 

census tracts explained better [non-motorized travel, high-occupancy-vehicle usage, and 

solo driving] than household density measured using block groups” (26), the NHTS 

Determinant Universe
Proximity Household
Internet Connectivity Person, Household
Time-Based Accessibility Household
Public Transit Service Level Household
Travel Mode Biases ("self-selection") Person

Socio-economics
Work Status Person
Income Person, Household
Gender Person
Age Person
Number of Persons Household
Disabilities Person
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variables based on census tracts (HTEEMPDN for employment density and HTPPOPDN 

for population density) were chosen over that of block groups (HBPPOPDN) to prepare 

the two sets of density IVs, one for employment and one for population.  Because the 

NHTS variables contain values indicating ranges (e.g. in HTEEMPDN, “75” represents 

the density range 50-99 employed persons per square mile), a binary variable (e.g. “50-99 

Employed Persons /sqmi, tract”) was prepared for each range.  Because the dataset 

includes a set of variables based on employment locations—the destination of most 

trips—it is richer than the typical transportation dataset containing only population 

densities. 

In addition—given that the larger the metro area, the greater the distances to 

potential destinations—the NHTS variable MSASIZE was used to prepare the IVs “In 

MSA <1m Persons” and “In MSA/CMSA > 1m Persons”, with basis variable “Not in 

MSA or CMSA.”  (“Basis” variables are those variables [from a set of binary variables 

covering the whole dataset] excluded from regressions to avoid over-specifying models.  

The impact of included variables from the set is measured as compared to the excluded 

basis variable.)  Finally—given the popularity of land use mix analyses in the literature—

a variable was prepared to reflect any interaction between high population density and 

high employment density.  Of the eight population density levels, the top three levels (i.e. 

4,000+ persons per square mile) were considered to be “high” population density.  

Likewise, of the eight employment density levels, the top three levels (i.e. 1,000+ 

employed persons per square mile) were considered to be “high” employment density.  

Therefore, the land use mix interaction variable “Pop Density >4k and Emp Density >1k” 
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was prepared to identify those households which lie in census tracts which have both of 

these high density levels. 

 
Internet Connectivity  Concerning “internet connectivity” in the above table of 

determinants, the NHTS variable WEBUSE was used to calculate “Persons 16+ Used 

Internet Almost Every Day” and “Persons 16+ Never Used Internet in Past Mo.”  

Likewise, the NHTS variable PURCHASE was used to calculate “Internet Purchases in 

Past Month.” 

 
Time-based Accessibility, Public Transit Service Level, and Travel Mode Biases  Con-

cerning time-based accessibility, public transit service level, and travel mode biases, no 

NHTS variables were available to directly measure these determinants.  Concerning 

transit service level, however—as discussed in the “VMT Theory” section above—

density is highly related to transit service.  Therefore, the impact of transit service on 

VMT is part of the impact of this effort’s density variables, and is measured therefore—

along with the other impacts of density—in the coefficients of the density variables.  

Concerning travel mode biases, these biases (or “self-selection”) were addressed in this 

effort in the Brownstone (12) manner discussed in the Preparation section above, i.e. by 

including several key socio-economic variables in the model. 

 
Socio-economics  Concerning socio-economics, work status, gender, age, and number of 

persons were collectively represented by using the NHTS variables R_AGE, R_SEX, and 

WORKER to prepare the IVs “Male Workers (Age 16+)”, “Female Workers (Age 16+)”, 

“Male Non-Workers (Age 16+)”, “Female Non-Workers (Age 16+)”, and “Persons Age 5 

thru 15.”  (The NHTS does not record the age of household members younger than 5.)  
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Household income was represented 1) by using the NHTS variable HHFAMINC to 

prepare the set of binary income IVs (“HHFAMINC $20,000-$39,999”, “HHFAMINC 

$40,000-$59,999”, etc.), and 2) by using the NHTS variable HOMEOWN to prepare the 

binary variable “Home Owned.”  Disabilities were represented by using the NHTS 

variable MEDCOND to prepare the IV “Persons 16+ Having MEDCOND.”   

 
A drawing of the relationship between the dependent variable and key independent 

variables is shown below. 

 

 

key relationships1.png 

 
FIGURE 6  Key Relationships- Effort #1  
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TABLE 6  Descriptive Statistics 
 

 
 
Tables.xlsx 

Variable Obs Mean Std. Dev. Min Max
ANNMILES (annual household VMT) 8,959 19,011 18,381 0 265,200

Derived Total Household Income
basis: HHFAMINC <$20k 8,959 0.15 0.36 0 1
HHFAMINC missing 8,959 0.07 0.26 0 1
HHFAMINC $20,000-$39,999 8,959 0.21 0.41 0 1
HHFAMINC $40,000-$59,999 8,959 0.17 0.38 0 1
HHFAMINC $60,000-$99,999 8,959 0.21 0.41 0 1
HHFAMINC $100,000+ 8,959 0.18 0.39 0 1

1.00

Home Owned 8,959 0.87 0.33 0 1

All Household Members (Age 5+)
Male Workers (Age 16+) 8,959 0.47 0.57 0 3
Female Workers (Age 16+) 8,959 0.44 0.55 0 3
Male Non-Workers (Age 16+) 8,959 0.35 0.50 0 4
Female Non-Workers (Age 16+) 8,959 0.54 0.55 0 3
Persons Age 5 thru 15 8,959 0.26 0.66 0 5

Persons 16+ Having MEDCOND 8,959 0.22 0.46 0 3
Internet Purchases in Past Month 8,959 2.48 5.55 0 200
Persons 16+ Used Internet Almost Every Day 8,959 1.01 0.92 0 5
Persons 16+ Never Used Internet in Past Mo. 8,959 0.46 0.68 0 5

Size of Area of Residence
basis: Not in MSA or CMSA 8,959 0.21 0.41 0 1
In MSA <1m Persons 8,959 0.31 0.46 0 1
In MSA/CMSA >1m Persons 8,959 0.48 0.50 0 1

1.00
Population Density of HH Census Tract
basis: <100 Persons/sqmi, tract 8,959 0.16 0.37 0 1
100-499 Persons/sqmi, tract 8,959 0.19 0.39 0 1
500-999 Persons/sqmi, tract 8,959 0.10 0.30 0 1
1,000-1,999 Persons/sqmi, tract 8,959 0.14 0.34 0 1
2,000-3,999 Persons/sqmi, tract 8,959 0.19 0.39 0 1
4,000-9,999 Persons/sqmi, tract 8,959 0.18 0.39 0 1
10,000-24,999 Persons/sqmi, tract 8,959 0.03 0.18 0 1
25,000+ Persons/sqmi, tract 8,959 0.01 0.12 0 1

1.00

Employment Density of HH Census Tract, by Place of Employment
basis: <50 Employed Persons /sqmi, tract 8,959 0.24 0.42 0 1
50-99 Employed Persons /sqmi, tract 8,959 0.07 0.25 0 1
100-249 Employed Persons /sqmi, tract 8,959 0.12 0.33 0 1
250-499 Employed Persons /sqmi, tract 8,959 0.13 0.33 0 1
500-999 Employed Persons /sqmi, tract 8,959 0.15 0.36 0 1
1,000-1,999 Employed Persons /sqmi, tract 8,959 0.14 0.35 0 1
2,000-3,999 Employed Persons /sqmi, tract 8,959 0.09 0.29 0 1
4,000+ Employed Persons /sqmi, tract 8,959 0.06 0.24 0 1

1.00

Pop Density >4k and Emp Density >1k 8,959 0.16 0.37 0 1
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Descriptive Statistics 
 
The descriptive statistics in the above table provide a detailed view of American 

households.  Given the difference between weighted and unweighted values in the 

“Similarity” table above, some of the statistics in the above table of unweighted values 

will differ from actual average national values.  Concerning the dependent variable, the 

average household VMT is approximately 19,000 miles.   

Concerning the independent variables, the extensive presence of binary variables 

in the dataset allow for easy categorization of the dataset’s households.  With 

approximately 2/5ths of the households having lower income and an equal share having 

higher income, median household income is approximately $50,000.  (Fortunately, only 

7% of the household records are missing income information.)  Although home 

ownership in the dataset is very high (87%), note that the weighted value shown in the 

“Similarity” table above is significantly lower (67%).  Half the households are located in 

MSA/CMSAs with more than 1 million population, the other half in less populous areas.  

With approximately 2/5ths of the households being located in lower population-density 

tracts and an equal share located in higher density tracts, the median household census 

tract population density is in the 1,000-2,000 persons per square mile range.  Likewise, 

with approximately 2/5ths of the households being located in lower employment-density 

tracts and an equal share located in higher density tracts, the median household census 

tract employment density is in the 250-500 persons per square mile range.  The statistics 

for the interaction variable indicate that one in six households (“Pop Density >4k and 

Emp Density >1k”, mean=0.16) lie in both the highest three population density ranges 

and the highest three employment density ranges.   
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Based on the set of household member variables, the average household contains 

more than two persons, approximately one worker, more women than men, 1.80 persons 

age 16 and older, and 0.26 persons age 5 through 15.  (Persons younger than 5 were not 

individually counted in the NHTS.)  Of the 1.80 persons age 16 and older, 0.22 of them 

have a medical condition “making it hard to travel”, 1.01 of them use the internet almost 

every day, and 0.46 of them never used the internet in the past month.  Finally, the 

average household made two and a half purchases per month on the internet. 

 
Selection of Regression Type 
 
 

 
 
hh-8959.xls 

 
FIGURE 7  Histogram for Dependent Variable (ANNMILES). 
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Given, as shown in the figure above, that the histogram for the dependent variable (DV) 

is somewhat similar to a normal curve truncated at zero, several types of regression were 

considered for the analysis of the above dataset.   

 First, the Heckman model was considered.  The Heckman is for datasets wherein 

the DV is, at times, not observed.  This model may be appropriate for an analysis of daily 

VMT because people who regularly drive do not drive at all on some days, e.g. when 

they are sick.  But this is not the case for analysis of annual VMT, as in this dissertation.  

Households with zero annual VMT do not have unobserved VMT, they simply have zero 

VMT.  Zero-VMT households are similar to low-VMT households: both tend to have few 

people, have few workers, have low income, and be located in high-proximity areas.  For 

example, for households with more than one person of driving age, one might expect 

(ceteris paribus) such a household to have multiple vehicles if located in the outer 

suburbs (and thus high VMT), fewer vehicles (perhaps only one) if located in the inner 

suburbs (and thus medium VMT), and perhaps zero vehicles if located in the inner city 

(and thus zero VMT).  Therefore, the annual VMT-vs.-proximity (et al.) relationship is 

essentially a continuous relationship, from high VMT all the way to zero VMT.  In fact, 

as shown in the figure above, as many households have 2000-2999 VMT as have 0 

VMT.  Therefore, because we do not lack VMT information for a household with zero 

VMT, the Heckman model is not appropriate for this analysis. 

 The Tobit model was the second regression type considered.  The Tobit model is 

for datasets wherein certain DV values have been censored.  Because no VMT values 

have been censored, the Tobit model is not appropriate for this analysis. 
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 Given the rejection of the above model candidates, the most widely-used 

regression type—ordinary least squares (OLS) regression—was selected for the analysis 

of annual household VMT in the nationwide dataset.  Note that the ease of interpreting 

the coefficients of OLS regressions makes the results of this analysis more readily 

understood and applied by the target audience of this dissertation.   

 
Regression Analysis 
 
Ordinary least squares models are considered “linear” models in that each independent 

variable has a linear effect on the dependent variable, in this case VMT, as follows: 

 VMT = β0 + β1X1 + β2X2…+ βnXn 
 
where X1-n are the independent variables, β1-n are the coefficients of those independent 

variables, and β0 is the “Constant” at the bottom of the regression results. 
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TABLE 7  VMT-Density OLS Regression Results 
 

 
 
Tables.xlsx 

  

Source SS df MS Number of obs 8,959
Model 9.2E+11 32 2.9E+10 F( 32,  8926) 121.95

Residual 2.1E+12 8926 2.4E+08 Prob > F 0.0000
Total 3.0E+12 8958 3.4E+08 R-squared 0.3042

Adj R-squared 0.3017
Root MSE 15,360

DV: ANNMILES Coef. Std. Err. t P> |t| Signif* 95% Conf. Interval

Independent Variables- Control

Basis: HHFAMINC <$20k
HHFAMINC missing 3,727 745 5.00 0.000 √√ 2,267 5,188
HHFAMINC $20,000-$39,999 3,090 564 5.48 0.000 √√ 1,984 4,195
HHFAMINC $40,000-$59,999 6,215 616 10.08 0.000 √√ 5,007 7,423
HHFAMINC $60,000-$99,999 8,647 630 13.72 0.000 √√ 7,412 9,882
HHFAMINC $100,000+ 11,245 683 16.46 0.000 √√ 9,905 12,584
Home Owned 997 532 1.87 0.061 √ -46 2,041
All Household Members (Age 5+)
Male Workers (Age 16+) 9,108 426 21.38 0.000 √√ 8,273 9,943
Female Workers (Age 16+) 7,200 457 15.76 0.000 √√ 6,305 8,096
Male Non-Workers (Age 16+) 4,256 447 9.51 0.000 √√ 3,379 5,133
Female Non-Workers (Age 16+) 3,371 460 7.33 0.000 √√ 2,469 4,272
Persons Age 5 thru 15 1,057 258 4.10 0.000 √√ 551 1,562
Persons 16+ Having MEDCOND -1,834 390 -4.70 0.000 √√ -2,598 -1,069
Internet Purchases in Past Month 39 32 1.21 0.227 -- -24 102
Persons 16+ Used Internet Almost Every Day 71 320 0.22 0.824 -- -556 698
Persons 16+ Never Used Internet in Past Mo. -2,140 368 -5.81 0.000 √√ -2,862 -1,419
Basis: Not in MSA or CMSA
In MSA <1m Persons 527 502 1.05 0.294 -- -458 1,512
In MSA/CMSA >1m Persons 1,173 521 2.25 0.024 √√ 152 2,194

Independent Variables- Policy

Basis: <100 Persons/sqmi, tract
100-499 Persons/sqmi, tract -1,705 681 -2.50 0.012 √√ -3,041 -370
500-999 Persons/sqmi, tract -3,014 985 -3.06 0.002 √√ -4,946 -1,083
1,000-1,999 Persons/sqmi, tract -2,448 1,022 -2.39 0.017 √√ -4,452 -444
2,000-3,999 Persons/sqmi, tract -2,771 1,057 -2.62 0.009 √√ -4,843 -698
4,000-9,999 Persons/sqmi, tract -4,549 1,189 -3.83 0.000 √√ -6,879 -2,218
10,000-24,999 Persons/sqmi, tract -4,124 1,496 -2.76 0.006 √√ -7,057 -1,191
25,000+ Persons/sqmi, tract -11,320 1,931 -5.86 0.000 √√ -15,106 -7,533
Basis: <50 Employed Persons/sqmi, tract
50-99 Employed Persons /sqmi, tract -399 797 -0.50 0.616 -- -1,961 1,163
100-249 Employed Persons /sqmi, tract -1,938 798 -2.43 0.015 √√ -3,503 -374
250-499 Employed Persons /sqmi, tract -2,483 899 -2.76 0.006 √√ -4,245 -720
500-999 Employed Persons /sqmi, tract -4,189 939 -4.46 0.000 √√ -6,030 -2,348
1,000-1,999 Employed Persons /sqmi, tract -4,320 1,004 -4.30 0.000 √√ -6,288 -2,352
2,000-3,999 Employed Persons /sqmi, tract -5,579 1,082 -5.15 0.000 √√ -7,700 -3,457
4,000+ Employed Persons /sqmi, tract -6,450 1,206 -5.35 0.000 √√ -8,815 -4,086
Pop Density >4k and Emp Density >1k 390 964 0.40 0.686 -- -1,500 2,281
Constant 7,047 802 8.79 0.000 √√ 5,475 8,619
* "√": Significant at the 0.10 level; "√√": Significant at the 0.05 level
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Prior to discussing the above regression results, the threats to its validity will be 

addressed. 

 
Threats to Validity 
 
Threats to the validity of the model resulting from the above regression process were 

checked by addressing the following topics: 

 Logical coefficient signs and values 
 Influence points 
 Normality 
 Homoscedasticity 
 Linearity 
 Independence of error terms 
 Model fit 
 Self-selection  

 
 
Logical Coefficient Signs and Values  Having examined the signs (i.e. positive vs. 

negative) of the significant independent variable coefficients, they appear to be logical. 

For example, the coefficients for each of the five basic person variables [Male Workers 

(Age 16+), Female Workers (Age 16+), Male Non-Workers (Age 16+), Female Non-

Workers (Age 16+), and Persons Age 5 thru 15] are positive, and the coefficient for 

Persons 16+ Having MEDCOND is negative.  Likewise, the values of the coefficient are 

reasonable.  For example, the coefficients for the set of binary income range variables 

increase with increasing income. 

 
Influence Points  Influence points are individual outliers in the data which have an 

inordinate (and therefore undesirable) impact on the model results. Of the nine scalar 

independent variables in the model, only one (“Internet Purchases in Past Month”) has a 
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significant range (0-200).  But this variable is not significant in the model (t=1.21), 

eliminating the concern over undue influence from any high values of this variable.   

 
Normality  The validity of regression analyses is subject to the normality of the variables 

involved.  According to Hair et al. in their textbook Multivariate Data Analysis (11): 

“…larger sample sizes reduce the detrimental effects of nonnormality.” 
 
“For sample sizes of 200 or more…these same effects [on the results] may be 
negligible.” 
 
“Thus, in most instances, as the sample sizes become large, the researcher can be 
less concerned about nonnormal variables….” 

The sample size of the model (8,959) exceeding 200 observations, the issue of normality 

was considered not to be problematic. 

 
Homoscedasticity  The validity of regression analyses is subject to homoscedasticity, i.e. 

equal variance of the population error over the range of predictor values. For this 

analysis, the policy variables (density) being dichotomous (and therefore having no range 

of values), homoscedasticity is not a concern. 

 
Linearity  The validity of the interpretation of this regression analysis is subject to the 

linearity of the relationship between the policy independent variables (IV) and the 

dependent variable (DV).  The policy IVs in this model (the two sets of density variables) 

being dichotomous, linearity is not a concern. In fact, the theorized non-linearity of the 

relationship between proximity and VMT was the purpose of creating the sets of 

dichotomous density variables. 

 
Independence of Error Terms  The validity of regression analyses is subject to the 

independence of error terms. According to Hair, “we can best identify such an occurrence 



68 

[independence] by plotting the residuals against any possible sequencing variable” (11). 

Given the use of annual VMT for the dependent variable, sequencing (i.e. the date each 

survey was taken) is not a concern. 

 
Model Fit  In addition to the fact that most of the variables in the models (including all 

but one of the variables in the two sets of density variables) are significantly related to 

annual VMT (Type I error rate < 0.05), the Adjusted R-squared value is 0.30, 

demonstrating a good model fit. 

 
Self-Selection  Self-selection was addressed in the Data Preparation section above. 

 
Overall Assessment of the Model  Given the satisfactory survey of the threats to model 

validity, it appears that the model is reliable for use in estimating the VMT impact of 

each level of density. 

 
Regression Results and Findings 
 
The implications of the regression results concerning the control variables will be 

discussed, followed by the findings concerning the policy variables. 

 
Control Variable Results  VMT increases with each rise in income level, as expected.  

Income appears to have a large impact on VMT, with the highest income being 

associated with 11,000 miles a year more than that of the lowest income.  With a 

coefficient of approximately 1,000 miles, home ownership has a modest, but statistically 

significant, additional impact on VMT.  Given that income is also in the model, the 

additional VMT impact of home ownership may reflect the higher level of responsibility 

(resulting in higher credit ratings) which is necessary for both home and auto ownership, 
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and/or it may indicate that the homeowner had higher income in the past (e.g. is retired) 

which allowed him/her to both buy a home and an auto.  Although the driving habits of 

households in small MSAs do not significantly differ, ceteris paribus, from the base 

households located outside of MSAs, living in large metro areas—as expected—is 

associated with modestly higher VMT. 

 The set of household member variables had expected regression results.  Men, 

ceteris paribus, add more to household VMT than do women, and workers—even 

controlling for the income effect of working—add twice as much VMT to a household 

than do non-workers.  Children, being too young to drive add modestly to VMT, 

assumedly due to the additional need for trips created by their presence in the household.   

 Although the disability variable was highly significant and had the expected 

negative impact, two of the internet variables—“Internet Purchases in Past Month” and 

“Persons 16+ Used Internet Almost Every Day”—were not significantly related to VMT 

at the 0.10 level. The presence of persons who never use the internet had a significant and 

negative impact on VMT, the negative sign being surprising.  This negative relationship 

may be due to the high age of many of such persons (older people both use the internet 

less and travel less) and/or the personality type that places persons who are not old in the 

minority of non-internet usage. 

 
Policy Variable Results and Findings  The discussion of density-related findings begins 

with the lone interaction variable in the regression. 

 
Population and Employment Interaction Results  The lack of statistical significance for 

the “Pop Density >4k and Emp Density >1k” variable (p = 0.686) indicates that this 
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regression provides no evidence of interaction between high population and high 

employment densities.  If this result reflects a real lack of such interaction, then the VMT 

reduction benefit of a “mixed-use” census tract comes from its high population density 

and its high employment density, not a synergy between the two.  Given 1) the above-

reported finding from the literature that census-tract-based proximity has a greater impact 

on VMT than does neighborhood-based proximity, and 2) the lack of significance of 

population-employment interaction in this effort’s results, it does not appear that the 

interaction of population and employment in mixed-use developments lowers VMT.  In 

other words, placing much housing and much employment near a household appears to 

lower the subject household’s VMT, but it may not be necessary to place that housing 

and employment in the same developments. 
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VMT vs. Employment Density- Useful Results and Hypothesis Testing  Six of the seven 

variables in the employment variable set being highly significantly related to VMT, their 

coefficients fulfill the research objective—discovering the VMT impact of each level of 

proximity—and can therefore be used by government to score candidate SGAs according 

to the expected VMT benefit of their proximity level. . 

Although one might see these VMT model results based on census tract density 

and conclude that creating a certain density in a given census tract will give the homes in 

that census tract the modeled VMT benefit, that conclusion is called into question by the 

above-stated literature finding that regionally-based proximity has a greater impact on 

VMT than does neighborhood-based proximity.  Although census tracts are larger than 

neighborhoods, the measured VMT impact of higher density tracts likely reflects the 

environment beyond the subject tract, i.e. its regional environment (in addition to 

reflecting the environment within the subject tract).  Therefore, these model results will 

only be interpreted for providing guidance for identifying desirable census tracts for 

promoting housing development, not for identifying desirable density levels for census 

tracts. 
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VMT-density curves.xlsx 

 
FIGURE 8  VMT vs. Employment Density of Household Census Tract. 
 

Although the above curve does not exhibit the expected flattening at lower 

densities, the VMT curve does flatten at the right side as expected and discussed in “The 

Expected Shape of VMT-Proximity Curves and Key Hypothesis” section above.  This 

flattening provides hope that a sweet spot may be located on the curve. 

In preparation of testing the key hypothesis using the employment density 

variable coefficients shown on the curve, 1) the curve is re-plotted below showing 

standard errors (SE), and 2) the prevalence of the various NHTS census tract density 

levels is explored in the table below.  
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VMT-density curves.xlsx 

 
FIGURE 9  VMT vs. Employment Density of Household Census Tract. 
 

 
TABLE 8  Prevalence of Employment Density Levels in the U.S. 
 

 
 
hh-8959.xlsx 
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Mean

Mean - SE

Mean + SE

Employment 
Density Range, 
persons/sqmi, 
tract

Household 
Count 

Weighted 
Household 

Count

Weighted 
Household 

Count, %
<50 2,112 1,296,669 20% 0% 20%
50-99 614 378,456 6% 20% 26%
100-249 1,103 728,345 11% 26% 37%
250-499 1,127 700,887 11% 37% 48%
500-999 1,351 975,329 15% 48% 63%
1,000-1,999 1,284 982,978 15% 63% 78%
2,000-3,999 832 708,769 11% 78% 89%
4,000+ 536 716,887 11% 89% 100%

8,959 6,488,320 100%

Weighted 
Household 

Count, 
percentile 

range
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The key hypothesis of this dissertation is: 

There exists a sweet spot on the VMT-proximity curve that has high VMT benefit 
and a proximity level acceptable to many households. 

 
And the specific key hypothesis for testing is: 

The VMT benefit at 67% of maximum proximity is equal to or greater than 80% 
of the VMT benefit at maximum proximity. 
 

Given that the NHTS labels the highest employment density range as “5,000”, 67% of the 

maximum proximity level is 3,350 employment per square mile (census tract).  

According to the above table, this 3,350 level is approximately the 85 percentile level of 

U.S. households. 
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TABLE 9  Hypothesis Testing Worksheet based on Employment Density Curve 

 
 
tables.xlsx 

 

Based on the above hypothesis test for the VMT vs. employment density curve:  

It is likely that the VMT benefit at 67% of maximum proximity is much higher than 80% 
of the VMT benefit at maximum proximity, but—because the null hypothesis was not 
rejected—it is not certain that the VMT benefit at 67% of maximum proximity is higher 
than 80% of the VMT benefit at maximum proximity. 
 
 
 
  

Specific Hypothesis: The VMT benefit at 67% of max. proximity is >= 80% of the VMT benefit at max. proximity.
Null Hypothesis: The VMT benefit at 67% of max. proximity is < 80% of the VMT benefit at max. proximity.

source
Max. proximity: 5,000 employment per sq. mi., census tract VMT curve

67%
67% of max. proximity: 3,350 employment per sq. mi., census tract

Mean VMT benefit @ 67% of max. prox.: 5,579 miles Regression Table

Mean VMT benefit @ max. prox.: 6,450 miles Regression Table
80%

80% of mean VMT benefit @ max. prox.: 4,322 miles

Therefore, mean VMT benefit at 67% of max. prox. is much higher than 80% of mean VMT benefit at max. prox.

Testing this result considering the standard errors (SE) of the two benefits being compared:

t-test requirements: "two normally distributed but independent populations, σ is unknown" (10 )
The two populations are mostly independent of each other and σ is unknown.

Difference in the two benefits: 1,258 miles

SE of VMT benefit @ 67% of max. prox.: 1,082 miles Regression Table

SE of VMT benefit @ max. prox.: 1,206 miles Regression Table
80%

SE of 80% of VMT benefit @ max. prox.: 965 miles

Calculated t: 0.87 (calculated via formula for t for comparing two means)
vs.

Critical t value: 1.28 (for α=0.10 and df >1,000)

Therefore, the null hypothesis is not rejected.
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Given a) that the low VMT portion of the above VMT-proximity curve begins at 

lower proximity than theorized, and b) that the proximity level tested in the hypothesis 

test falls at the 85 percentile of U.S. households, the curve is examined here for an 

additional, more moderate point with high VMT benefit and a proximity level acceptable 

to many households.  As an addition to the above hypothesis test of whether the VMT 

benefit at 67% of maximum proximity is higher than 80% of the VMT benefit at 

maximum proximity, I also examined whether the VMT benefit at 33% of maximum 

proximity is higher than 50% of the VMT benefit at maximum proximity.   

Given that the NHTS labels the highest employment density range as “5,000”, 

33% of the maximum proximity level is 1,650 employment per square mile (census 

tract).  According to the above table, this 1,650 level is approximately the 73 percentile 

level of U.S. households.  Given that a) the mean VMT benefit at this 1,650 level is 4,320 

miles, and b) that 50% of the mean VMT benefit at maximum proximity (6,450 * 0.50 = 

3,225) is 3,225 miles, i.e. lower than 4,320 miles; the 1,650 level represents an additional, 

more moderate point on the curve with high VMT benefit and a proximity level 

acceptable to many households.  

Finally, the VMT benefit of this additional point is compared to the VMT benefit 

of the average household.  Given that the employment density VMT benefit of the 

average U.S. household is 3,115 miles—calculated by weighting the model coefficients 

according to the above weighted household counts—building new households with the 

4,320 mile benefit at this additional point on the curve would lower the average VMT in 

America.   
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Given the above analysis of mean VMT benefits—the 1,650 employment per 

square mile level being acceptable to many households and having a high VMT benefit—

it is likely that a sweet spot exists on the VMT-proximity curve at the 1,650 employment 

per square mile level. 
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VMT vs. Population Density- Useful Results and Hypothesis Testing  All seven variables 

in the population variable set—the lowest of the eight levels being excluded from the 

regression as the basis for the other seven—being highly significantly related to VMT, 

their coefficients fulfill this dissertation’s research objective—discovering the VMT 

impact of each level of proximity.  They can therefore be used by government to score 

candidate SGAs according to the expected VMT benefit of their proximity level. 

 

 
VMT-density curves.xlsx 

 
FIGURE 10  VMT vs. Population Density of Household Census Tract. 
 
 

The curve is S-shaped, but not in the fashion expected above in the “The 

Expected Shape of VMT-Proximity Curve and Secondary Hypothesis” section.  Whereas 

the theoretical curve is flat at low proximities, steep at medium proximities, and flat at 

high proximities; the empirical curve is steep at low proximities, flat at medium 

proximities, and steep at high proximities.   
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The bend in the empirical curve at 10,000-24,999 persons per square mile level 

(say the 17,500 level) may be related to the aforementioned bend in the public-transit-

use-vs.-residential-density curve found by Pushkarev and Zupan (7), but given that 

density was measured in this dissertation at the census tract level, and density was 

apparently measured at much smaller levels (e.g. block) in the studies reported in 

Pushkarev and Zupan, it is not possible to conflate the two findings.  (Pushkarev and 

Zupan did not state the level at which density was measured in the synthesis of studies 

from which they identified the bend in the curve, but—given that they presented the 

density data in terms of “dwelling units per acre”, it appears that these studies measured 

density over small areas such as blocks.)  Tract level population densities are not 

comparable to block level population densities because—in addition to housing—a 

census tract will contain land area used for streets and may contain land dedicated to 

commerce, parks, brownfields, etc.  Therefore, a high density block may be found in a 

low density census tract, and conversely a low density block may be found in a high 

density census tract.   

Likewise, the bend in the VMT-density curve at 17,500 persons per sq. mi. 

(census tract measure)—above which VMT drops rapidly—may be related to the bend in 

the auto-ownership-vs.-density curves at 4,500 persons per sq. mi. (zip code measure) 

found by  Dunphy and Fischer (16) and Walls et al. (20) discussed in the Impetus section 

above.  However, as in the case of Pushkarev and Zupan above, the measurement of 

density over areas of differing sizes (in this case, census tracts as opposed to zip codes) 

makes it impossible to conflate the two findings. 



80 

After addressing the dramatic drop in VMT associated with the very highest 

population density level (25,000+ persons per square mile), the curve will be interpreted 

in detail.  Whereas the VMT reduction benefit to a household being situated in 

moderately high population density census tracts (10,000-24,999 persons per square mile, 

say the 17,500 level) is approximately 4,000 miles (as compared to being situated in the 

lowest density tracts, the VMT reduction benefit to a household being situated in very 

high population density census tracts (25,000+ persons per square mile) is approximately 

11,000 miles, i.e. almost three times as great.  However, given that more than two-thirds 

of the 126 survey households in this very high density category are located in the New 

York metro area—which has a level of public transportation system investment much 

higher than any other metro in the U.S.—it is likely that census tracts with this density 

either do not exist—or where they do exist, do not have the modeled VMT benefit—in all 

but the very largest metro areas in the U.S. 

Setting aside, therefore, the impact of the eighth and highest population density 

level, the VMT-population-density curve for the seven “typical” population density levels 

(i.e. all levels other than the NY-dominated 25,000+ level) exhibits a crescent shape 

similar to that of the VMT-employment-density curve above.  In preparation of testing 

the key hypothesis using the coefficients for the seven typical population density levels 

shown on the above curve, 1) the curve is re-plotted below showing standard errors (SE), 

and 2) the prevalence of the various NHTS census tract density levels is explored in the 

following table. 
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VMT-density curves.xlsx 

 
FIGURE 11  VMT vs. Population Density of Household Census Tract. 
 

TABLE 10  Prevalence of Population Density Levels in the U.S. 

 
 
hh-8959.xlsx 
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Population 
Density Range, 
persons/sqmi, 
tract

Household 
Count 

Weighted 
Household 

Count

Weighted 
Household 

Count, %
<100 1,420 967,543 15% 0% 15%
100-499 1,664 960,530 15% 15% 30%
500-999 903 624,780 10% 30% 39%
1,000-1,999 1,225 775,265 12% 39% 51%
2,000-3,999 1,681 1,195,648 18% 51% 70%
4,000-9,999 1,631 1,275,410 20% 70% 89%
10,000-24,999 309 349,808 5% 89% 95%
25,000+ 126 339,337 5% 95% 100%

8,959 6,488,320 100%

Weighted 
Household 

Count, 
percentile 

range
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The key hypothesis of this dissertation is: 

There exists a sweet spot on the VMT-proximity curve that has high VMT benefit 
and a proximity level acceptable to many households. 

 
And the specific key hypothesis for testing is: 

The VMT benefit at 67% of maximum proximity is equal to or greater than 80% 
of the VMT benefit at maximum proximity. 
 

Examining the seven typical population density levels, 67% of the 10,000-24,999 

maximum proximity level (say 17,500) is 11,725 persons per square mile (census tract).  

According to the above table, this 11,725 level is approximately the 90 percentile level of 

U.S. households. 
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TABLE 11  Hypothesis Testing Worksheet based on Population Density Curve 

 
 
tables.xlsx 

 

Based on the above hypothesis test for the VMT vs. population density curve:  

It is likely that the VMT benefit at 67% of maximum proximity is much higher than 80% 
of the VMT benefit at maximum proximity, but—because the null hypothesis was not 
rejected—it is not certain that the VMT benefit at 67% of maximum proximity is higher 
than 80% of the VMT benefit at maximum proximity. 
 
  

Specific Hypothesis: The VMT benefit at 67% of max. proximity is >= 80% of the VMT benefit at max. proximity.
Null Hypothesis: The VMT benefit at 67% of max. proximity is < 80% of the VMT benefit at max. proximity.

source
Max. proximity (10,000-24,999/sqmi): 17,500 persons per sq. mi., census tract VMT curve

67%
67% of max. proximity: 11,725 persons per sq. mi., census tract

Mean VMT benefit @ 67% of max. prox.: 4,549 miles Regression Table
(since 11,725 falls in the max. proximity level, use the benefit of the next lowest level, 4,000-9,999 persons/sqmi, tract)

Mean VMT benefit @ max. prox.: 4,124 miles Regression Table
80%

80% of mean VMT benefit @ max. prox.: 2,763 miles

Therefore, mean VMT benefit at 67% of max. prox. is much higher than 80% of mean VMT benefit at max. prox.

Testing this result considering the standard errors (SE) of the two benefits being compared:

t-test requirements: "two normally distributed but independent populations, σ is unknown" (10 )
The two populations are mostly independent of each other and σ is unknown.

Difference in the two benefits: 1,786 miles

SE of VMT benefit @ 67% of max. prox.: 1,189 miles Regression Table

SE of VMT benefit @ max. prox.: 1,496 miles Regression Table
80%

SE of 80% of VMT benefit @ max. prox.: 1,197 miles

Calculated t: 1.06 (calculated via formula for t for comparing two means)
vs.

Critical t value: 1.28 (for α=0.10 and df >1,000)

Therefore, the null hypothesis is not rejected.
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Given a) that the low VMT portion of the above VMT-proximity curve begins at 

lower proximity than theorized, and b) that the proximity level tested in the hypothesis 

test falls at the 90 percentile of U.S. households, the curve is examined here for an 

additional, more moderate point with high VMT benefit and a proximity level acceptable 

to many households.  As an addition to the above hypothesis test of whether the VMT 

benefit at 67% of maximum proximity is higher than 80% of the VMT benefit at 

maximum proximity, the question of whether the VMT benefit at 33% of maximum 

proximity is higher than 50% of the VMT benefit at maximum proximity was also 

examined.   

Given that the highest population density of the seven typical population density 

levels is 17,500 (10,000-24,999), 33% of the maximum proximity level is 5,775 persons 

per square mile (census tract).  According to the above table, this 5,775 level is 

approximately the 80 percentile level of U.S. households.  Given that a) the mean VMT 

benefit at this 5,775 level is 4,549 miles, and b) that 50% of the mean VMT benefit at 

maximum proximity (4,124 * 0.50 = 2,062) is 2,062 miles, i.e. lower than 4,549 miles; 

the 5,775 level represents an additional, more moderate point on the curve with high 

VMT benefit and a proximity level acceptable to many households.  

Finally, the VMT benefit of this additional point is compared to the VMT benefit 

of the average household.  Given that the population density VMT benefit of the average 

U.S. household is 3,054 miles—calculated by weighting the model coefficients according 

to the above weighted household counts—building new households with the 4,549 mile 

benefit at this additional point on the curve would lower the average VMT in America. 
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Given the above analysis of mean VMT benefits—the 5,775 persons per square 

mile level being acceptable to many households and having a high VMT benefit—it is 

likely that a sweet spot exists on the VMT-proximity curve at the 5,775 persons per 

square mile level. 
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Effort #2: Identifying Key Proximity Levels for Alternative Modes Using National 
Data 
 
In order to determine the role played by alternative modes in the VMT-vs.-proximity 

relationship explored in Effort #1 above, Effort #2 was designed to discover the impact of 

each proximity level on usage of alternative modes, using national data and density as the 

measure of proximity, as in Effort #1. 

 
Data Preparation 
 
 
Choice of Dependent Variable  Whereas Effort #1 was conducted using household 

records, this modal analysis was conducted using person records because different 

persons in one household may choose different modes.  The NHTS variable 

WRKTRANS was chosen for building the dependent variable because it covers all 

modes.  (PTUSED, for example, only covers public transit.)  WKRTRANS records the 

response to the question: “How did {you/SUBJECT} usually get to work last week?”  It 

should be noted that the use of WRKTRANS limits the analysis to work travel, as 

opposed to all travel.   

 Using WRKTRANS, the binary dependent variable “Alternative Mode Used” was 

created.  “Alternative Mode Used” was set equal to 0 if the subject worker used a mode 

associated by the NHTS with household VMT (i.e. auto, motorcycle), and set equal to 1 

if the subject worker used an alternative mode. 

 
Handling Missing Data  The 8,959 households in Effort #1 are associated with 18,350 

person records in the NHTS person file.  Eliminating children (2,306), non-workers 

(7,900), and work status not attained (3), resulted in 8,141 worker records.  Eliminating 
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workers w/o WRKTRANS (1,293 “appropriate skip”, “refused”, and “don’t know”), 

rendered the 6,848 person records used in Effort #2.  As in the case of Effort #1, median 

densities of population and employment were assumed for the record with missing 

density data, and missing household income was treated as a category of income. 

 
Data Validity  Given that the NHTS (and its predecessor the National Personal 

Transportation Survey) has been conducted several times (1969, 1977, 1983, 1990, 1995, 

2001, and 2009) and is financed by the federal government, the 2009 NHTS data tends to 

be valid.  The “Alternative Mode Used” variable used as the dependent variable in this 

analysis is based on the respondents’ memory of the primary work mode used “last 

week”, a naturally reliable response.  The key independent variables measuring proximity 

discussed below (population and employment density by census tract), having been 

prepared by Nielsen Claritas, are assumed to be reliable. 

Although the usage of a robust set of independent variables in this effort’s models 

removes any requirement that the subject sample dataset reflect exactly the population 

data, the following table demonstrates the similarity between the weighted full NHTS 

dataset and the unweighted analysis dataset. 
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TABLE 12  Similarity Between Full Dataset and Analysis Dataset 
 

 
 
Tables.xlsx 

 
 
  

Full Dataset (139,068 workers) Analysis Dataset
(6,848 workers)

Variable NHTS Name
Unweighted 

Count %
Weighted 

Count %
Unweighted 

Count %
Mode to Work WRKTRANS

   No Data Available 22,308 16% 21,018,000 14% 0 0%
   VMT Mode (auto, motorcyc.) 109,658 79% 117,175,000 77% 6,421 94%
   Alternative Mode 7,102 5% 13,179,000 9% 427 6%

139,068 100% 151,372,000 100% 6,848 100%

Gender R_SEX

   Male 71,544 51% 81,939,000 54% 3,510 51%
   Female 67,524 49% 69,434,000 46% 3,338 49%

139,068 100% 151,373,000 100% 6,848 100%

Disabled MEDCOND

   Yes 4,377 3% 4,965,000 3% 179 3%
   No, No Data Available 134,691 97% 146,408,000 97% 6,669 97%

139,068 100% 151,373,000 100% 6,848 100%

Income HHFAMINC

HHFAMINC missing 6,751 5% 6,809,000 4% 289 4%
HHFAMINC <$20,000 8,495 6% 15,737,000 10% 365 5%
HHFAMINC $20,000-$39,999 19,885 14% 26,834,000 18% 956 14%
HHFAMINC $40,000-$59,999 23,927 17% 26,215,000 17% 1,180 17%
HHFAMINC $60,000-$99,999 40,249 29% 40,733,000 27% 2,106 31%
HHFAMINC $100,000+ 39,761 29% 35,046,000 23% 1,952 29%

139,068 100% 151,374,000 100% 6,848 100%

Residence MSASIZE

   No Data Available 1 0% 0 0% 1 0%
   Not in MSA or CMSA 26,880 19% 27,974,000 18% 1,359 20%
   In MSA <1m Persons 41,582 30% 34,309,000 23% 2,112 31%
   In MSA/CMSA >1m Persons 70,605 51% 89,091,000 59% 3,376 49%

139,068 100% 151,374,000 100% 6,848 100%
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Selection and Preparation of Independent Variables  Independent variables (IVs) 

were chosen for this effort’s regression based on the theory and literature discussion in 

the “Preparation” section above.  Because VMT is determined by those things which 

cause one to choose autos over alternative modes, and (if auto has been chosen) those 

things which affect the annual distance driven, the determinants of usage of alternative 

modes are largely the same as the determinants of VMT, listed in the table below 

reproduced from the Preparation section.  Therefore, the selection of an IV in the 

alternative mode regression for each VMT determinant is discussed below. 

 
TABLE 13  Summary of Theorized Determinants of Annual Household VMT 

 

Tables.xlsx 

 
 
Proximity  As in Effort #1 above, the NHTS density variables based on census tracts—

HTEEMPDN for employment density and HTPPOPDN for population density—were 

chosen to prepare the two sets of density IVs, one for employment and one for 

population.  Because the NHTS variables contain values indicating ranges (e.g. in 

HTEEMPDN, “75” represents the density range 50-99 employed persons per square 

Determinant Universe
Proximity Household
Internet Connectivity Person, Household
Time-Based Accessibility Household
Public Transit Service Level Household
Travel Mode Biases ("self-selection") Person

Socio-economics
Work Status Person
Income Person, Household
Gender Person
Age Person
Number of Persons Household
Disabilities Person
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mile), a binary variable (e.g. “50-99 Employed Persons /sqmi, tract”) was prepared for 

each range.  Because the dataset includes a set of employment variables based on 

employment locations—the destination of most trips—it is richer than the typical 

transportation dataset containing only population densities. 

In addition—given that the larger the metro area, the greater the distances to 

destinations—the NHTS variable MSASIZE was used to prepare the IVs “In MSA <1m 

Persons” and “In MSA/CMSA > 1m Persons” (with basis variable “Not in MSA or 

CMSA”).  Finally, given the lack of statistical significance of the land use mix variable 

used in Effort #1, no such interaction variable was used in this effort.   

 
Internet Connectivity  Given the statistical significance of the “Persons 16+ Never Used 

Internet in Past Mo.” variable in Effort #1 (prepared from the NHTS variable WEBUSE), 

the binary variable “Never Used Internet in Past Mo.” was created from WEBUSE for 

this person-based analysis.  As discussed in Effort #1, the lack of internet usage 

apparently indicates important travel-related characteristics of the subject person. 

 
Time-based Accessibility, Public Transit Service Level, and Travel Mode Biases  Con-

cerning time-based accessibility, public transit service level, and travel mode biases, no 

NHTS variables were available to directly measure these determinants.  Concerning 

transit service level, however—as discussed in the VMT Theory section above—density 

is highly related to transit service.  Therefore, the impact of transit service on VMT is 

part of the impact of this effort’s density variables, and is measured therefore—along 

with the other impacts of density—in the coefficients of the density variables.  

Concerning travel mode biases, these biases (or “self-selection”) were addressed in this 
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effort in the Brownstone (12) manner discussed in the Preparation section above, i.e. by 

including several key socio-economic variables in the model.   

 
Socio-economics  Concerning socio-economics, all persons in the analysis dataset being 

workers, “worker status” (listed in the above Determinants table) is moot.  Because 

personal income is not recorded in the NHTS database, household income was used, 

represented 1) by using the NHTS variable HHFAMINC to prepare the set of binary 

income IVs (“HHFAMINC $20,000-$39,999”, “HHFAMINC $40,000-$59,999”, etc.), 

and 2) by using the NHTS variable HOMEOWN to prepare the binary variable “Home 

Owned.”  Gender was represented by using the NHTS variable R_SEX.  The dataset 

covering only workers, age was not injected into the regression analysis.  Disabilities 

were represented by using the NHTS variable MEDCOND to prepare the IV “Persons 

16+ Having MEDCOND.”   

 
Descriptive Statistics 
 
As shown in the table below, 6% of the subject workers used alternative modes to get to 

work.  Of those, as many workers walked (157) as used bus and train combined (150). 
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TABLE 14  Descriptive Statistics- Modal Detail 

 
 
Tables.xlsx 

 
  

Mode Obs %

VMT Modes
Auto 6,390 93.3%

Motorcycle 31 0.5%
6,421 93.8%

Alternative Modes
Local Public Bus 60 0.9%

Commuter Bus 22 0.3%
Commuter Train 38 0.6%

Subway/Elevated Train 30 0.4%
Bicycle 42 0.6%

Walk 157 2.3%
Other 78 1.1%

427 6.2%

6,848 100%
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TABLE 15  Descriptive Statistics 
 

 
 
Tables.xlsx 

Obs Mean Std. Dev. Min Max

Dependent Variable
Alternative Mode Used 6,848 0.06 0.24 0 1

Independent Variables- Control

Worker Traits
Male 6,848 0.51 0.50 0 1
Having MEDCOND 6,848 0.03 0.16 0 1
Never Used Internet in Past Mo. 6,848 0.10 0.31 0 1

Household Traits

Income
HHFAMINC missing 6,848 0.05 0.22 0 1
HHFAMINC <$20,000 6,848 0.04 0.20 0 1
HHFAMINC $20,000-$39,999 6,848 0.14 0.35 0 1
HHFAMINC $40,000-$59,999 6,848 0.17 0.38 0 1
HHFAMINC $60,000-$99,999 6,848 0.31 0.46 0 1
HHFAMINC $100,000+ 6,848 0.29 0.45 0 1

1.00

Home Owned 6,848 0.90 0.30 0 1

Size of Metro Area
Not in MSA or CMSA 6,848 0.20 0.40 0 1
In MSA <1m Persons 6,848 0.31 0.46 0 1
In MSA/CMSA >1m Persons 6,848 0.49 0.50 0 1

1.00
Independent Variables- Policy

Population Density
<100 Persons/sqmi, tract 6,848 0.15 0.36 0 1
100-499 Persons/sqmi, tract 6,848 0.19 0.39 0 1
500-999 Persons/sqmi, tract 6,848 0.10 0.31 0 1
1,000-1,999 Persons/sqmi, tract 6,848 0.14 0.34 0 1
2,000-3,999 Persons/sqmi, tract 6,848 0.18 0.39 0 1
4,000-9,999 Persons/sqmi, tract 6,848 0.19 0.39 0 1
10,000-24,999 Persons/sqmi, tract 6,848 0.03 0.17 0 1
25,000+ Persons/sqmi, tract 6,848 0.01 0.12 0 1

1.00
Employment Density (by location of employment)
<50 Employed Persons/sqmi, tract 6,848 0.24 0.43 0 1
50-99 Employed Persons /sqmi, tract 6,848 0.07 0.26 0 1
100-249 Employed Persons /sqmi, tract 6,848 0.12 0.33 0 1
250-499 Employed Persons /sqmi, tract 6,848 0.14 0.34 0 1
500-999 Employed Persons /sqmi, tract 6,848 0.15 0.36 0 1
1,000-1,999 Employed Persons /sqmi, tract 6,848 0.14 0.34 0 1
2,000-3,999 Employed Persons /sqmi, tract 6,848 0.09 0.28 0 1
4,000+ Employed Persons /sqmi, tract 6,848 0.05 0.22 0 1

1.00
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The statistics in 1) the earlier Similarity table (Table 12) and 2) the two Descriptive 

Statistics tables (Tables 14 and 15) above provide a detailed view of American workers.  

Concerning the dependent variable, the use of alternative modes is 10% (13,179,000 / 

[13,179,000+117,175,000]) in the weighted full dataset.  Alternative mode usage is 6% 

(7,102 / [7,102+109,658]) in the unweighted full dataset, and 6% in the unweighted 

analysis dataset.  Alternative mode users were apparently less likely to respond to the 

NHTS survey. 

Concerning the independent variables, the extensive presence of binary variables 

in the dataset allow for easy categorization of the dataset’s households.  51% of the 

workers in the analysis dataset are male, similar to the male percentage (54%) in the 

weighted full dataset.  The percentage of workers with “medical condition making it hard 

to travel” (MEDCOND) is 3% in the analysis dataset, the unweighted full dataset, and the 

weighted full dataset.  Half the workers in both unweighted datasets (analysis and full) 

are located in MSA/CMSAs with more than 1 million population, the other half in less 

populous areas.   

 
Regression Analysis 
 
Given the binary nature of the dependent variable, logistic regression was performed, 

with the following results. The coefficients for the independent variables were estimated 

using the odds value as the dependent measure, as follows, from Hair et al. (11): 

 Oddsi = e ^ (β0 + β1X1 + β2X2…+ βnXn) 
 
where Oddsi is the odds of using an alternative mode, X1-n are the independent variables 

(IVs), β1-n are the coefficients of those IVs, and β0 is the “Constant” at the bottom of the 

regression results.  Note that the “Odds Ratio”, instead of the coefficient, for each IV is 
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reported in the regression results.  Given that each IV is binary, the reported “Odds 

Ratio” indicates the impact of the IV being 1 (or true) on the odds of using an alternative 

mode.  For example, given that the “Odds Ratio” for “Male” is 1.174, being male is 

associated with a 17% increase in the odds of using an alternative mode.  If—based on 

the values of the other variables—the odds for a female using an alternative mode were 

1:6 (or a 14% chance), then the odds for a male using such a mode would be 1.174:6 

(1*1.174=1.174), or a 16% chance.  
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TABLE 16  Alternative-Mode-vs.-Density Logistic Regression Results 
 

 
 
Tables.xlsx 

  

Logistic regression Number of obs 6,848
Log likelihood -1403
LR chi2 (25) 391
Prob > chi2 0.0000
Pseudo R2 0.122

DV: Alternative Mode Used
Odds 
Ratio Std. Err. z P > z Signif* 95% Conf. Interval

Independent Variables- Control

Worker Traits
Male 1.174 0.125 1.50 0.13 -- 0.952 1.447
Having MEDCOND 1.285 0.359 0.90 0.37 -- 0.744 2.222
Never Used Internet in Past Mo. 1.451 0.231 2.34 0.02 √√ 1.063 1.982

Household Traits

Income
(basis: HHFAMINC <$20k)
HHFAMINC missing 0.430 0.139 -2.61 0.01 √√ 0.228 0.810
HHFAMINC $20,000-$39,999 0.634 0.128 -2.25 0.02 √√ 0.426 0.943
HHFAMINC $40,000-$59,999 0.381 0.086 -4.30 0.00 √√ 0.245 0.592
HHFAMINC $60,000-$99,999 0.424 0.088 -4.14 0.00 √√ 0.282 0.636
HHFAMINC $100,000+ 0.545 0.114 -2.90 0.00 √√ 0.361 0.821

Home Owned 0.587 0.086 -3.66 0.00 √√ 0.441 0.781

Size of Metro Area
(basis: Not in MSA or CMSA)
In MSA <1m Persons 0.866 0.161 -0.78 0.44 -- 0.602 1.245
In MSA/CMSA >1m Persons 1.160 0.215 0.80 0.42 -- 0.807 1.668

Independent Variables- Policy

Population Density
(basis: <100 Persons/sqmi, tract)
100-499 Persons/sqmi, tract 0.858 0.219 -0.60 0.55 -- 0.520 1.416
500-999 Persons/sqmi, tract 0.924 0.337 -0.22 0.83 -- 0.452 1.890
1,000-1,999 Persons/sqmi, tract 0.456 0.182 -1.97 0.05 √√ 0.208 0.997
2,000-3,999 Persons/sqmi, tract 0.695 0.272 -0.93 0.35 -- 0.323 1.497
4,000-9,999 Persons/sqmi, tract 0.956 0.380 -0.11 0.91 -- 0.439 2.082
10,000-24,999 Persons/sqmi, tract 1.641 0.714 1.14 0.26 -- 0.699 3.850
25,000+ Persons/sqmi, tract 7.822 3.626 4.44 0.00 √√ 3.152 19.407

Employment Density (by location of employment)
(basis: <50 Employed Persons/sqmi, tract)
50-99 Employed Persons /sqmi, tract 0.981 0.299 -0.06 0.95 -- 0.539 1.784
100-249 Employed Persons /sqmi, tract 1.266 0.378 0.79 0.43 -- 0.705 2.272
250-499 Employed Persons /sqmi, tract 0.867 0.304 -0.41 0.68 -- 0.437 1.722
500-999 Employed Persons /sqmi, tract 1.771 0.599 1.69 0.09 √ 0.913 3.435
1,000-1,999 Employed Persons /sqmi, tract 1.585 0.560 1.30 0.19 -- 0.793 3.167
2,000-3,999 Employed Persons /sqmi, tract 1.792 0.650 1.61 0.11 -- 0.880 3.648
4,000+ Employed Persons /sqmi, tract 3.410 1.258 3.33 0.00 √√ 1.655 7.029

Constant 0.127 0.033 -8.03 0.00 √√ 0.076 0.210

* "√": Significant at the 0.10 level; "√√": Significant at the 0.05 level
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Prior to discussing the regression results, the threats to its validity will be addressed. 

 
Threats to Validity 
 
Threats to the validity of the model resulting from the above regression process were 

checked by addressing the following topics: 

 Logical coefficient signs and values 
 Influence points 
 Normality 
 Homoscedasticity 
 Linearity 
 Independence of error terms 
 Model fit 
 Self-selection 

 
 
Logical Coefficient Signs and Values  Being a logistic regression, instead of 

coefficients, odds ratios are published.  As do the negative coefficients from which they 

were calculated, odds ratios less than 1 indicate a negative relationship between the 

subject IV and the DV, whereas odds ratios greater than 1 indicate a positive relationship.  

Having examined the odds ratios of the significant independent variable coefficients, they 

appear to be logical. For example, the odds ratios for all levels of income higher than the 

low base level are less than 1, as is the odds ratio for having MEDCOND.  Likewise, the 

values of the odds ratios are reasonable when compared between variables.  For example, 

the odds ratios for the significant variables in the two sets of binary density variables 

increase with increasing density. 

 
Influence Points  Influence points are individual outliers in the data which have an 

inordinate (and therefore undesirable) impact on the model results.  All variables used in 
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the regression are binary, eliminating the concern over undue influence from any outlying 

values.   

 
Normality  The validity of regression analyses is subject to the normality of the variables 

involved.  All variables used in the regression are binary, eliminating the concern over 

any lack of normality.   

 
Homoscedasticity  The validity of regression analyses is subject to homoscedasticity, i.e. 

equal variance of the population error over the range of predictor values. For this 

analysis, the policy variables (density) being dichotomous (and therefore having no range 

of values), homoscedasticity is not a concern. 

 
Linearity  The validity of the interpretation of this regression analysis is subject to the 

linearity of the relationship between the policy independent variables (IV) and the 

dependent variable (DV).  The policy IVs in this model (the two sets of density variables) 

being dichotomous, linearity is not a concern. In fact, the theorized non-linearity of the 

relationship between proximity and use of alternative transportation was the purpose of 

creating the sets of dichotomous density variables. 

 
Independence of Error Terms  The validity of regression analyses is subject to the 

independence of error terms. According to Hair, “we can best identify such an occurrence 

[independence] by plotting the residuals against any possible sequencing variable” (11). 

Although it is expected that time of year affects the choice of alternative modes in colder 

portions of the US, because the dataset covers the entire United States, sequencing (i.e. 

the date each survey was taken) is not considered a concern. 
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Model Fit  In addition to the fact that many of the variables in the models—the internet 

variable, all of the income variables, and two of the binary variables in each of the two 

sets of density variables—are significantly related to annual VMT (Type I error rate < 

0.10), the Pseudo R-squared value is 0.12, demonstrating an adequate model fit. 

 
Self-Selection  Self-selection was addressed in the Data Preparation section above. 

 
Overall Assessment of the Model  Given the satisfactory survey of the threats to model 

validity, it appears that the model is reliable for use in estimating the impact of each level 

of density on the usage of alternative modes. 

 
Regression Results and Findings 
 
The implications of the regression results concerning the control variables will be 

discussed, followed by the findings concerning the policy variables. 

 
Control Variable Results  Although the odds ratios for all of the variables for higher 

levels of annual household income ($20k+) being less than 1 is in accordance with stated 

theory, the odds ratios unexpectedly do not decrease with each rise in income level.  

Although middle income ($40-$100k) has lower propensity to use alternative 

transportation than lower income (<$40k), the highest income level ($100k+) surprisingly 

has a higher odds ratio than that of the middle income levels.  Note that this finding of an 

inconsistent relationship between income and alternative mode usage is mitigated by the 

fact that the odds ratio of the highest level is within the 95% odds ratio confidence 

intervals of the middle income levels. 
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In light of the expectation that women, ceteris paribus, are more likely than men 

to use public transit, and men are more likely than women to walk; the lack of statistical 

significance for the gender variable is not surprising.  Medical condition and size of 

metro area are, however, surprisingly statistically insignificant.  Although it was expected 

that home ownership would be related to lower odds of using alternative modes, the 

strength of that relationship (i.e. the low odds ratio 0.587) is noteworthy given that 

income is already included in the model. 

 
Policy Variable Results and Findings  The discussion of density-related findings begins 

with employment density and ends with population density. 

 
Alternate Mode vs. Employment Density Results and Findings  The odds ratios for the 

two variables in the employment variable set (of seven total variables) for which the 

regression resulted in a tight confidence interval (Type I error rate < 0.10) are plotted 

below. 
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mode-density curves.xlsx 

 
FIGURE 12  Usage of Alternative Modes for Work vs. Employment Density of 
Household Census Tract. 
 

Although there were not enough statistically significant binary variables to 

discover the usage of alternative modes at each employment density level, the results 

confirm the above-documented literature finding—and the above-stated theory—that 

usage of alternative modes increases with increasing density, in this case, employment 

density. 

In preparation of the discussion of the implications of these employment density 

odds ratios, the prevalence of the various NHTS census tract density levels is provided in 

the table below (as initially shown in Effort #1 above). 

 
 
  

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

0 2,000 4,000 6,000

U
se

d
 A

lt
er

na
ti

ve
 M

od
e

(O
dd

s 
R

at
io

)

Emp. Density of HH Census Tract (persons / sq. mi.)



102 

TABLE 17  Prevalence of Employment Density Levels in the U.S. 
 

 
 
hh-8959.xlsx 

 

 The two statistically significant density odds ratios from the above regression can 

be discussed in light of the density distribution revealed in the above table.  Discussing 

density levels from lowest to highest, the first level for which the regression produced a 

statistically significant odds ratio was the 500-999 employment density level.  The 

regression revealed an odds ratio of 1.771 (say 1.8) for this moderate employment density 

range.  This 1.8 odds ratio represents significant alternative mode potential for the 500-

999 employment density range.  For example, consider a worker who would have 1:24 

odds (i.e. 4% chance) of using an alternative mode based on his/her characteristics (e.g. 

income) and residential location if located in the lowest employment density (<50 

persons / sq. mi.).  The 1.8 odds ratio indicates that placing that worker’s residence in a 

census tract with 500-999 employment density may increase their odds of using an 

alternative mode to 1.8:24 (or 1:13), i.e. a 7% chance (1 / [1+13] = 0.07), almost 

doubling the usage of alternative modes.  This doubling may explain a significant portion 

Employment 
Density Range, 
persons/sqmi, 
tract

Household 
Count 

Weighted 
Household 

Count

Weighted 
Household 

Count, %
<50 2,112 1,296,669 20% 0% 20%
50-99 614 378,456 6% 20% 26%
100-249 1,103 728,345 11% 26% 37%
250-499 1,127 700,887 11% 37% 48%
500-999 1,351 975,329 15% 48% 63%
1,000-1,999 1,284 982,978 15% 63% 78%
2,000-3,999 832 708,769 11% 78% 89%
4,000+ 536 716,887 11% 89% 100%

8,959 6,488,320 100%

Weighted 
Household 

Count, 
percentile 

range
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of the 4,000 annual household VMT benefit associated with this employment density 

level as revealed in Effort #1 above. 

 The regression also revealed an odds ratio of 3.410 for the highest (4,000+) 

employment density range.  This odds ratio represents significant alternative mode 

potential for the 4,000+ employment density range.  Comparing this 3.410 to the above 

1.771 odds ratio indicates that the odds of using an alternative mode may double (3.410 / 

1.771 = 1.93) for a worker with residence in a census tract with the highest employment 

density, as compared to being located in a census tract of moderate employment density 

(500-999).  This may explain a significant portion of the approximate 2,000 (6,450 - 

4,189 = 2,261) annual household VMT benefit revealed by the Effort #1 regression when 

comparing these two employment density levels.   

 The usage-of-alternative-modes-vs.-employment-density findings discussed 

above can be encapsulated as follows:  

There is an approximate doubling of odds of using an alternative mode (1.8 odds ratio) 
for a worker with residence situated in census tracts with 500-999 employment per square 
mile, as compared to being situated in census tracts with the lowest employment density 
(<50).   
 
This doubling may explain a significant portion of the 4,000 annual household VMT 
benefit associated with this employment density level. 
 
There is an additional doubling of odds of using an alternative mode (1.93 odds ratio) for 
a worker with residence situated in census tracts with the highest employment densities 
(4,000+ employed persons per square mile)—as compared to being situated in census 
tracts with moderate employment density (500-999 per square mile). 
 
This additional doubling may explain a significant portion of the approximate 2,000 
(6,450 - 4,189 = 2,261) annual household VMT benefit when comparing these two 
employment density levels. 
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Alternate Mode vs. Population Density Results and Findings  The odds ratios for the two 

variables in the population variable set (of seven total variables) for which the regression 

resulted in a tight confidence interval (Type I error rate < 0.10) are plotted below, one for 

the 1,000-1,999 level, and one for the 25,000+ density level. 

 

 
mode-density curves.xlsx 

 
FIGURE 13  Usage of Alternative Modes for Work vs. Population Density of 
Household Census Tract. 
 

Although there were not enough statistically significant binary variables to 

discover the usage of alternative modes at each population density level, the results 

confirm the above-documented literature finding—and the above-stated theory—that 

usage of alternative modes increases with increasing density, in this case, population 

density.  The unexpectedly higher usage of alternative modes at the lowest population 

density level (<100 persons per square mile)—as compared to the moderate density level 
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of 1,000-1,999 persons per square mile—may be due to farmers living at the lowest level 

reporting “walk” as their mode to work.   

No increase in the usage of alternative modes was found at the 500-999 persons 

per square mile bend in the curve shown on the VMT-vs.-Population-Density curve in 

Effort #1, indicating that the VMT benefit at that level is a product of shorter driving 

distances as opposed to greater usage of alternative modes. 

Although it would be desirable to compare the results for the statistically 

significant 1,000-1,999 and 25,000+ person per sq. mi. levels to the aforementioned 

identification of a bend in the transit-usage-vs.-residential-density curve by Pushkarev 

and Zupan (7), density in the latter work was apparently measured for small areas (e.g. 

blocks), as opposed to the census tract area densities used in this dissertation.  Tract level 

population densities are not comparable to block level population densities because—in 

addition to housing—a census tract will contain land area used for streets and may 

contain land dedicated to commerce, parks, brownfields, etc.; all of which affect census 

tract density. 

In preparation of the discussion of the implications of these population density 

odds ratios, the prevalence of the various NHTS census tract density levels is provided in 

the table below (as initially shown in Effort #1 above). 
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TABLE 18  Prevalence of Population Density Levels in the U.S. 

 
 
hh-8959.xlsx 

 
 
 The density odds ratios from the above regression can be discussed in light of the 

density distribution revealed in the above table.  The regression revealed an odds ratio of 

7.822 (say 8) for the highest population density range (25,000+ persons per square mile, 

tract).   

This 8 odds ratio represents significant alternative mode potential for the 25,000+ 

population density range.  For example, consider a worker who would have 1:24 odds 

(i.e. 4% chance) of using an alternative mode based on his/her characteristics (e.g. 

income) and residential location if located in the lowest population density (<100 persons 

/ sq. mi.).  The 8 odds ratio indicates that placing that worker’s residence in a census tract 

with 25,000+ population density may increase their odds of using an alternative mode to 

8:24 (or 1:3), i.e. a 25% chance (1 / [1+3] = 0.25), a six-fold increase in the usage of 

alternative modes.  This odds ratio of 8 may explain a significant portion of the 11,000 

Population 
Density Range, 
persons/sqmi, 
tract

Household 
Count 

Weighted 
Household 

Count

Weighted 
Household 

Count, %
<100 1,420 967,543 15% 0% 15%
100-499 1,664 960,530 15% 15% 30%
500-999 903 624,780 10% 30% 39%
1,000-1,999 1,225 775,265 12% 39% 51%
2,000-3,999 1,681 1,195,648 18% 51% 70%
4,000-9,999 1,631 1,275,410 20% 70% 89%
10,000-24,999 309 349,808 5% 89% 95%
25,000+ 126 339,337 5% 95% 100%

8,959 6,488,320 100%

Weighted 
Household 

Count, 
percentile 

range
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annual household VMT benefit associated with this population density level as revealed 

in Effort #1 above.   

The alternative-mode-vs.-population-density findings discussed above can be 

encapsulated as follows:  

No increase in the usage of alternative modes was found at the VMT threshold of 500-
999 persons per square mile discovered in Effort #1, indicating that the VMT benefit at 
that level is a product of shorter driving distances as opposed to greater usage of 
alternative modes. 
 
There is a large increase in the odds of using an alternative mode (8 odds ratio) for a 
worker with residence situated in census tracts with 25,000+ persons per square mile, as 
compared to being situated in census tracts with the lowest population density (<100).   
 
This large increase in the propensity to use an alternate mode may explain a significant 
portion of the 11,000 annual household VMT benefit associated with this highest 
population density level. 
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Effort #3: Identifying Key Proximity Levels for VMT Using Hampton Roads Data 
 
Like Effort #1, in order to identify key locations for development, Effort #3 was designed 

to discover the VMT impact of each level of proximity.  Whereas in the national dataset 

of Effort #1, density was the only available method for measuring proximity, in Effort 

#3—given the availability of several non-NHTS sources of proximity data for Hampton 

Roads, Virginia (regional, state, and federal sources)—proximity was measured using a) 

distance-threshold-based total opportunities, and b) centrality.  Adding the new 

opportunity and centrality data (developed by the author) to the NHTS data created a 

unique data set. 

 
Data Preparation 
 
The travel and control data for this effort came from the 2009 National Household Travel 

Survey (NHTS), using the special “DOT” file which contains additional variables not 

available from the NHTS website.  Policy-related opportunity data and centrality data 

from GIS and the regional four-step model was added to this NHTS data, as described 

below, to form the final data set.   

The data set for this effort was prepared starting with all 3,153 NHTS households 

located in the thirteen localities represented by the Metropolitan Planning Organization of 

Hampton Roads, Virginia: Chesapeake, Gloucester, Hampton, Isle of Wight, James City, 

Newport News, Norfolk, Poquoson, Portsmouth, Suffolk, Virginia Beach, Williamsburg, 

and York.  As in Effort #1 above, the NHTS variable ANNMILES—annual household 

VMT—was used as the dependent variable.   
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Handling Missing Data  Deleting those households for which the NHTS vehicle file had 

one or more vehicles with missing ANNMILES (342 households) resulted in 2,811 

households (3153-342=2811).  Eliminating the 370 households with less than 100% of 

“household members that completed the interview” (17), resulted in 2,441 household 

records (2811-370 = 2441).  Although the usage of a robust set of independent variables 

in this effort’s models removes any requirement that the subject sample dataset reflect 

exactly the population data, the following table demonstrates the similarity between the 

weighted full NHTS dataset and the unweighted analysis dataset. 

 
TABLE 19  Similarity Between Full Dataset and Analysis Dataset 
 

 
 
Tables.xlsx 

 
 

As in Effort #1, missing household income was treated as a category of income, 

as shown in the “Descriptive Statistics” table below.  The three persons age 16+ with 

missing worker status were assumed not to be workers. 

 
Selection and Preparation of Independent Variables  Independent variables (IVs) 

were chosen for this effort’s regression based on the theory and literature discussion in 

the “Preparation” section above, as summarized in the following table.  The selection of 

an IV for each determinant is discussed below.  

Full Dataset (3,153 HHs) Analysis Dataset (2,441 HHs)
Household 
Variable NHTS Name

Unweighted 
Mean

Weighted 
Mean

Unweighted 
Mean

Weighted 
Mean

Driver Count DRVRCNT 1.84 1.73 1.77 1.63
Person Count HHSIZE 2.39 2.49 2.27 2.31
Vehicle Count HHVEHCNT 2.15 1.93 2.06 1.82
Unit Owned HOMEOWN 88% 62% 88% 63%
Adult Count NUMADLT 1.94 1.90 1.84 1.75
Worker Count WRKCOUNT 0.98 1.11 0.99 1.12
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TABLE 20  Summary of Theorized Determinants of Annual Household VMT 

 

Tables.xlsx 

 

Proximity  As discussed in the “Measuring Proximity” section above, 1) density, 2) 

distance-threshold-based total opportunities, and 3) centrality are desirable methods of 

measuring proximity due to their ease-of-interpretation and theoretical relationship to 

VMT.  Density having been used in Effort #1 above, distance-threshold-based total 

opportunities and centrality variables were prepared for this third effort.  Concerning 

distance-threshold-based measures, given that both neighborhood and regional proximity 

have been explored in the literature, in this effort distance-threshold-based opportunity 

was measured in both the neighborhood and regional environments of the home.   

Concerning the neighborhood environment, destinations were measured within 

one-half mile (Euclidian measure), a walking distance threshold found to be significant in 

earlier research by the author (4).  In order to perform measurements at the neighborhood 

level, the block location of each surveyed household (not being publically available) was 

obtained from the Virginia Department of Transportation (VDOT).   Destinations within 

Determinant Universe
Proximity Household
Internet Connectivity Person, Household
Time-Based Accessibility Household
Public Transit Service Level Household
Travel Mode Biases ("self-selection") Person

Socio-economics
Work Status Person
Income Person, Household
Gender Person
Age Person
Number of Persons Household
Disabilities Person
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one-half mile of each subject household were measured via Geographic Information 

Systems (GIS) software, creating three variables: 

 Retail employees, by place of work, within one-half mile using employment data 
(2nd Quarter, 2008) from the Virginia Employment Commission (VEC) geo-coded 
to the street address level. 

 Non-retail employees, by place of work, within one-half mile using the same VEC 
employment data. 

 Housing units within one-half mile using Census 2000 data by block. 
 

Concerning the regional environment, destinations were typically measured 

within 10 miles, a threshold found to be significant in exploratory research conducted by 

the author during the spring semester of 2011 as a foundation for this dissertation.  In that 

research, trip attractions (as calculated by the regional four-step model) were summed 

within 10, 20, and 40 mile Manhattan distance (i.e. on-street) thresholds for a set of 

NHTS households in Hampton Roads similar to the set used in this dissertation Effort #3.  

Regression analysis of the earlier data set revealed that—of the three threshold 

distances—household VMT is most closely related to destinations within the 10-mile 

threshold. 

 In order to reflect the influence of the variety of trip types covered by household 

VMT, the opportunities in the regional environment of the households in this Effort #3 

were measured using three metrics: population, retail employment, and non-retail 

employment.  For population, the 10-mile threshold from the above exploratory research 

was used.  For non-retail employment, based on the exploratory research and Cervero and 

Duncan’s analysis of San Francisco Bay area data which  found a median work trip 

length of 9 miles (3), the 10-mile threshold was again used.  For retail employment, based 

on a median shopping trip length of 3 miles in Cervero and Duncan’s analysis, a shorter 

5-mile threshold was used.  Using these distances, regional distance-threshold-based total 
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opportunities variables were prepared for these three metrics—population, non-retail 

employment, and retail employment—as follows: 

 Based on a year 2000 highway network, the on-road distance from the 
Transportation Analysis Zone (TAZ) of the subject household to each TAZ was 
measured using a distance table from the regional four-step model obtained from 
the Hampton Roads Transportation Planning Organization (HRTPO). 

 The 2009 population, non-retail employment, and retail employment in each TAZ 
was obtained from the HRTPO. 

 
In order to be able to plot VMT-opportunity curves, the range of values for each 

of the three measures were divided into approximately ten sub-ranges, and a binary 

variable was created for each sub-range.  In order that each sub-range represent a 

statistically valid number of households, the maximum and minimum values of each sub-

range were established so that each sub-set would represent roughly 200 households. 

Concerning this effort’s final proximity measure—centrality—the network 

distance table discussed above was used to measure the distance from each household to 

a central point.  Because the wide and congested harbor crossings causes people in 

Hampton Roads to tend to restrict their trips to the side of the harbor in which they live 

(28), a central point was chosen for each side of Hampton Roads—Southside and 

Peninsula.  From an examination of Hampton Roads via Google Maps satellite view, 

Interstate I-264 & Ballentine Blvd. (represented via a diamond on the map below) 

appears to be in the middle of Southside activity locations, so it was chosen as the center 

of the Southside.  (This location differing from downtown Norfolk, the conventional 

“center” of Southside Hampton Roads, the selection was checked using employment 

data—by employment location—for the subject localities.)  Likewise, Peninsula Town 

Center (represented via triangle on the map below) appears to be in the middle of 

Peninsula activity locations, so it was chosen as the center of the Peninsula.  
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hamptonroads.jpg         source: Google Maps 

 
FIGURE 14  Hampton Roads, Showing Centers 
Legend- triangle: Peninsula Town Center; diamond: I-264 & Ballentine Blvd. 
 
 
Internet Connectivity  Concerning “internet connectivity” in the above table of 

determinants, the NHTS variable WEBUSE was used to calculate “Persons 16+ Never 

Used Internet in Past Mo.”   Because of their lack of significance in the regression in 
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Effort #1 above,  “Persons 16+ Used Internet Almost Every Day” and “Internet Purchases 

in Past Month” were not included as independent variables in Effort #3. 

 
Time-based Accessibility  As discussed in the Preparation section above, the extra access 

to destinations provided by high-speed roadways can be represented in these models by 

including a variable measuring the destinations within a certain travel time of the subject 

household, i.e. “time-based accessibility.”  As distance-threshold-based total 

opportunities was chosen to measure proximity, time-threshold-based total opportunities 

(e.g. population within X minutes) was chosen to measure time-based accessibility. 

 As in the above case of opportunity, the accessibility of destinations in the 

regional environment of the households in this Effort #3 were measured using three 

metrics: population, retail employment, and non-retail employment.  In order to have 

accessibility measures which would work well with the above opportunity measures, the 

time thresholds of the accessibility measures were calculated based on the distance 

thresholds of the opportunity measures.  For population, assuming 2 minutes per mile for 

the 10-mile opportunity threshold renders a 20-minute accessibility threshold.  Likewise, 

for non-retail employment, assuming 2 minutes per mile for the 10-mile opportunity 

threshold renders a 20-minute accessibility threshold.  For retail employment, assuming 3 

minutes per mile for the 5-mile opportunity threshold (i.e. slower travel due to the 

expectation of usage of surface streets for these short trips) renders a 15-minute 

accessibility threshold.   

 
Public Transit Service Level  The author conducted exploratory research during the 

spring semester of 2011 as a foundation for this dissertation using a Hampton Roads 
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NHTS-based data set similar to that of this effort.  He found that only 0.1% of trips were 

made on public transit.  Consequently, public transit service level was not measured for 

this effort.   

 
Travel Mode Biases (“self-selection”)  Travel mode biases were addressed in this effort 

in the Brownstone (12) manner discussed in the Preparation section above, i.e. by 

including several key socio-economic variables in the model.   

 
Socio-economics  As in Effort #1, several key socio-economic variables were included in 

the models of this effort.  From the NHTS data were extracted income, home ownership, 

work status, gender, age, number of persons, and disabilities. 

 
A drawing of the relationship between the dependent variable and key independent 

variables is shown below. 

 

 
 
key relationships1.png 

 
FIGURE 15  Key Relationships- Effort #3 
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Data Validity  The validity of the above data is a function of the care taken by the 

agency that collected the original data and the person that processed the data for this 

analysis (i.e. the author).  Given the experience of the agencies that collected the original 

data—the Federal Highway Administration (FHWA) for the NHTS data, the Census 

Bureau for the housing units (by block) data, the VEC for the employment (by address) 

data, and the HRTPO for the distances (by TAZ) and the population and employment (by 

TAZ) data—the original data is generally trustworthy.  Moreover, the fact that the VEC 

data is collected from unemployment insurance payments lends credibility to the VEC 

data.   

The annual household VMT used as the dependent variable in this analysis is 

based on the respondents’ estimate of annual miles for each household vehicle.  Although 

most people do not know exactly how many miles their vehicles have been driven during 

the past 12 months, it is expected that the error in those estimates is random and not 

correlated with any of the independent variables in the analysis. 

The key independent variables measuring proximity discussed above (opportunity 

and centrality), having been prepared by the author, are assumed to be reliable.  Although 

the accuracy of the opportunity variables is limited somewhat by a) the large size of the 

area units used to measure total opportunities within 10 miles (TAZs), and b) the age of 

the network used to measure distances (year 2000), the size of TAZs is small compared to 

10 miles and few new alignments have been added locally since 2000 which would affect 

actual year 2009 distances. 
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TABLE 21  Descriptive Statistics 
 

 
 
Tables.xlsx 

 
 
  

Variable Obs Mean Std. Dev. Min Max

Dependent Variable
ANNMILES (annual household VMT) 2,441 18,424 15,664 0 210,000

Independent Variables- Control

Derived Total Household Income
basis: HHFAMINC <$20k 2,441 0.10 0.31 0 1
HHFAMINC missing 2,441 0.07 0.26 0 1
HHFAMINC $20,000-$39,999 2,441 0.18 0.38 0 1
HHFAMINC $40,000-$59,999 2,441 0.19 0.39 0 1
HHFAMINC $60,000-$99,999 2,441 0.25 0.43 0 1
HHFAMINC $100,000+ 2,441 0.21 0.41 0 1

1.00

Home Owned 2,441 0.88 0.32 0 1

All Household Members (Age 5+)
Male Workers (Age 16+) 2,441 0.52 0.57 0 3
Female Workers (Age 16+) 2,441 0.47 0.57 0 3
Male Non-Workers (Age 16+) 2,441 0.35 0.50 0 2
Female Non-Workers (Age 16+) 2,441 0.55 0.56 0 3
Persons Age 5 thru 15 2,441 0.27 0.67 0 5

Persons 16+ Having MEDCOND 2,441 0.21 0.45 0 2
Persons 16+ Never Used Internet in Past Mo. 2,441 0.41 0.64 0 5

Accessiblity
2009 Pop. within 20min 2,441 271,852 167,672 5,427 664,761
2009 Retail Emp. within 15min 2,441 14,597 9,592 12 44,193

 2009 Other Emp. within 20min 2,441 144,151 101,072 854 414,376

Independent Variables- Policy

Proximity- Neighborhood Environment
Retail Emp w/in Half Mile 2,441 86 201 0 3,495
Non-Retail Emp w/in Half Mile 2,441 589 1,080 0 18,809
Housing Units w/in Half Mile 2,441 967 670 0 3,652

Proximity- Regional Environment
2009 Pop. within 10mi 2,441 270,099 157,690 5,427 639,074
2009 Retail Emp. within 5mi 2,441 10,259 7,186 3 30,698

 2009 Other Emp. within 10mi 2,441 150,583 102,038 952 400,550

Distance to Center, mi 2,441 13.78 10.04 0.10 51.85
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Descriptive Statistics 
 
The descriptive statistics in the above table provide a detailed view of households in 

Hampton Roads.  Given the difference between weighted and unweighted values in the 

“Similarity” table above, some of the statistics in the above table of unweighted values 

will differ from actual average regional values.  Concerning the dependent variable, the 

average household VMT is 18,424, similar to the 19,011 figure from the national dataset 

used in Effort #1.  Concerning the independent variables, the usage of a set of binary 

variables to represent household income allows for easy categorization of the dataset’s 

households.  With approximately half of the households in the lower three income levels 

and an equal share in the higher two income levels, median household income is 

approximately $60,000, somewhat higher than the $50,000 of the national dataset.  

Fortunately, only 7% of the household records are missing income information.  

Although home ownership in the dataset is very high (88%), note that the weighted value 

shown in the “Similarity” table above is significantly lower (63%).   

 The surveyed households represent a broad range of (distance-threshold-based) 

opportunity, centrality, and accessibility values.  Concerning the neighborhood 

environment, households ranged from the rural condition of having zero employment and 

housing units within one-half mile to the urban condition of having thousands of 

employment and housing units within that distance.  Concerning centrality, surveyed 

households were located in a range of less than one mile to more than fifty miles from the 

subject metro center. 

Based on the set of household member variables, the average surveyed household 

contains more than two persons, approximately one worker, more women than men, 1.89 
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persons age 16 and older, and 0.27 persons age 5 through 15.  (Persons younger than 5 

were not individually counted in the NHTS.)  Of the 1.89 persons age 16 and older, 0.21 

of them have a medical condition “making it hard to travel”, and 0.41 of them never used 

the internet in the past month.   
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VMT vs. Opportunity 
 
 
Regression Analysis  As in Effort #1 where the VMT impact of each level of density 

was determined, to determine the VMT impact of each level of opportunity in Effort #3, 

OLS regression was used.  Initially, an OLS regression was run using all of the theory-

based variables prepared as discussed above representing socio-economics, internet 

connectivity, high-speed roadways (represented via three time-threshold-based 

accessibility variables), and opportunity (represented via four sets of distance-threshold-

based total opportunities variables).  (As discussed below, another regression was run 

later that excluded the insignificant variables of the initial run.)  The results of the initial 

regression are shown below. 

 
TABLE 22  Initial VMT-Opportunity OLS Regression Results (page one) 
 

 

Source SS df MS Number of obs 2,441
Model 2.5E+11 45 5.6E+09 F( 32,  8926) 38.16

Residual 3.5E+11 2395 1.5E+08 Prob > F 0.0000
Total 6.0E+11 2440 2.5E+08 R-squared 0.4176

Adj R-squared 0.4066
Root MSE 12,068

DV: ANNMILES Coef. Std. Err. t P> |t| Signif* 95% Conf. Interval

Control Variables

Household Family Income
Basis: HHFAMINC <$20k
HHFAMINC missing 1,769 1,210 1.46 0.144 -- -604 4,142
HHFAMINC $20,000-$39,999 1,493 982 1.52 0.129 -- -434 3,419
HHFAMINC $40,000-$59,999 3,063 1,029 2.98 0.003 √√ 1,046 5,081
HHFAMINC $60,000-$99,999 4,877 1,042 4.68 0.000 √√ 2,833 6,921
HHFAMINC $100,000+ 8,486 1,129 7.51 0.000 √√ 6,272 10,701
Home Owned 2,925 818 3.58 0.000 √√ 1,321 4,528
All Household Members (Age 5+)
Male Workers (Age 16+) 10,950 573 19.11 0.000 √√ 9,826 12,073
Female Workers (Age 16+) 8,491 576 14.73 0.000 √√ 7,361 9,622
Male Non-Workers (Age 16+) 6,010 597 10.07 0.000 √√ 4,840 7,181
Female Non-Workers (Age 16+) 5,387 598 9.01 0.000 √√ 4,215 6,560
Persons Age 5 thru 15 585 392 1.49 0.135 -- -183 1,353
Persons 16+ Having MEDCOND -2,145 589 -3.64 0.000 √√ -3,301 -990
Persons 16+ Never Used Internet in Past Mo. -2,243 468 -4.79 0.000 √√ -3,161 -1,326
Accessibility
2009 Pop. within 20min 0.015 0.010 1.42 0.155 -- -0.005 0.034
2009 Retail Emp. within 15min -0.030 0.091 -0.33 0.740 -- -0.209 0.148

 2009 Other Emp. within 20min -0.028 0.015 -1.92 0.054 √ -0.058 0.001
* "√": Significant at the 0.10 level; "√√": Significant at the 0.05 level
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TABLE 22  Initial VMT-Opportunity OLS Regression Results (page two) 
 

 
 
Tables.xlsx 

 
 

With an R-squared value exceeding 0.4, the above regression shows an excellent 

statistical relationship between the theory-based set of independent variables and annual 

household VMT.  Concerning the control variables, most are statistically significant and 

have coefficients with logical size and sign.  The socio-economic variables are highly 

significant, and the Accessibility set of variables has mixed statistical significance—

DV: ANNMILES Coef. Std. Err. t P> |t| Signif* 95% Conf. Interval

Policy Variables

Neighborhood Environment
Retail Emp w/in Half Mile 0.405 1.378 0.29 0.769 -- -2.297 3.107
Non-Retail Emp w/in Half Mile 0.184 0.262 0.70 0.482 -- -0.330 0.699
Housing Units w/in Half Mile 0.060 0.533 0.11 0.910 -- -0.984 1.104

Regional Population Environment
Basis: 2009 Pop. within 10mi, 0-50k

 2009 Pop. within 10mi, 50k-100k -4,385 2,161 -2.03 0.043 √√ -8,622 -147
 2009 Pop. within 10mi, 100k-200k -6,335 2,626 -2.41 0.016 √√ -11,485 -1,185
 2009 Pop. within 10mi, 200k-250k -6,962 2,980 -2.34 0.020 √√ -12,807 -1,117
 2009 Pop. within 10mi, 250k-300k -7,289 3,177 -2.29 0.022 √√ -13,520 -1,059
 2009 Pop. within 10mi, 300k-350k -7,232 3,551 -2.04 0.042 √√ -14,195 -269
 2009 Pop. within 10mi, 350k-450k -6,278 4,088 -1.54 0.125 -- -14,293 1,738
 2009 Pop. within 10mi, 450k-550k -8,512 4,608 -1.85 0.065 √ -17,548 524
 2009 Pop. within 10mi, 550k+ -8,599 5,116 -1.68 0.093 √ -18,631 1,432

Regional Retail Environment
Basis: 2009 Ret. Emp. w/in 5mi, 0-1.5k
2009 Ret. Emp. w/in 5mi, 1.5k-3k -72 1,156 -0.06 0.950 -- -2,340 2,196

 2009 Ret. Emp. w/in 5mi, 3k-5k -913 1,412 -0.65 0.518 -- -3,682 1,856
 2009 Ret. Emp. w/in 5mi, 5k-7.5k -301 1,474 -0.20 0.838 -- -3,191 2,589

2009 Ret. Emp. w/in 5mi, 7.5k-10k -2,731 1,679 -1.63 0.104 -- -6,024 562
 2009 Ret. Emp. w/in 5mi, 10k-12.5k -1,060 1,718 -0.62 0.537 -- -4,429 2,309

2009 Ret. Emp. w/in 5mi, 12.5k-15k -1,212 1,932 -0.63 0.530 -- -5,000 2,576
2009 Ret. Emp. w/in 5mi, 15k-17.5k -1,141 2,132 -0.54 0.593 -- -5,321 3,040
2009 Ret. Emp. w/in 5mi, 17.5k-22.5k -513 2,347 -0.22 0.827 -- -5,116 4,090
2009 Ret. Emp. w/in 5mi, 22.5k+ -881 2,818 -0.31 0.754 -- -6,408 4,645
Regional Other Employment Environment
Basis: 2009 Oth. Emp. w/in 10mi, 0-20k
2009 Oth. Emp. w/in 10mi, 20k-50k 2,143 2,180 0.98 0.326 -- -2,132 6,418

 2009 Oth. Emp. w/in 10mi, 50k-80k 2,360 2,571 0.92 0.359 -- -2,682 7,402
 2009 Oth. Emp. w/in 10mi, 80k-110k 3,702 2,843 1.30 0.193 -- -1,873 9,276

2009 Oth. Emp. w/in 10mi, 110k-140k 2,229 3,039 0.73 0.464 -- -3,732 8,189
2009 Oth. Emp. w/in 10mi, 140k-150k 1,775 3,181 0.56 0.577 -- -4,462 8,013
2009 Oth. Emp. w/in 10mi, 150k-180k 3,244 3,181 1.02 0.308 -- -2,994 9,482
2009 Oth. Emp. w/in 10mi, 180k-250k 2,383 3,549 0.67 0.502 -- -4,577 9,343
2009 Oth. Emp. w/in 10mi, 250k-310k 3,723 3,863 0.96 0.335 -- -3,852 11,298
2009 Oth. Emp. w/in 10mi, 310k+ 3,756 4,263 0.88 0.378 -- -4,604 12,115
Constant 3,216 1,475 2.18 0.029 √√ 323 6,109
* "√": Significant at the 0.10 level; "√√": Significant at the 0.05 level
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population accessibility having moderate significance, retail accessibility having 

practically no significance, and other employment accessibility having high significance.  

Concerning the policy variables, the Regional Population Environment set of opportunity 

variables is highly statistically significant, but the Regional Retail Environment, and 

Regional Other Employment Environment sets of variables have practically no statistical 

significance.  The insignificance of employment-based opportunity in this effort, 

contrasts with the significance of employment density in Effort #1.  Finally, the 

Neighborhood Environment set of variables has little statistical significance.  This latter 

result concurs with the above-reported research of Bagley and Mokhtarian (1) who found 

"little…effect of neighborhood type on VMT…” 

 Given the VMT significance of regionally-based opportunity, and the lack of 

VMT significance of neighborhood-based opportunity, demonstrated by this effort and 

the literature, 

Effort #3 identifies the best regional locations for the promotion of housing development, 
and does not address the best neighborhood form of the housing  to be built at those 
locations.   

 
The housing which is built in VMT-desirable locations (desirable due to its regional 

location) may itself consist of one or many units, and single-family or multi-family 

units—these choices depending on the availability of land, market demand, and the 

ultimate design of the subject city favored by government.  Likewise, Effort #1 identifies 

the best census tracts for the promotion of housing development, and does not address the 

best neighborhood form of the housing to be built in those tracts.  Although it is widely 

held that neighborhood form affects the usage of alternative modes, it was not necessary 
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to address neighborhood form in Effort #2 because its purpose was to parse the findings 

of Effort #1. 

 In order to prevent the large number of insignificant variables from affecting the 

coefficients of the (statistically significant) Regional Population Environment set of 

variables; the Regional Retail, Regional Other Employment, and Neighborhood 

Environment sets of variables were removed for the final regression.  In order to reflect 

the impact of high-speed roadways, the population accessibility variable was retained to 

be paired with the population set of opportunity variables.  Because the Regional Retail 

and Regional Other Employment variable sets were dropped, the Retail Employment and 

Other Employment accessibility variables were also dropped.  (See “Time-based 

Accessibility” above for discussion of pairing accessibility with opportunity to allow 

accessibility to reflect the impact of high-speed roadways on VMT.)   

The resulting final VMT-opportunity regression (with opportunity measured via 

the distance-threshold-based total opportunities measure of population within 10 miles) is 

shown on the following page: 
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TABLE 23  Final VMT-Opportunity OLS Regression Results 
 

 
 
Tables.xlsx 

 

Prior to discussing the above final VMT-opportunity regression results, the threats to its 

validity will be addressed. 

 
Threats to Validity  Threats to the validity of the model resulting from the above 

regression process were checked by addressing the following topics: 

Source SS df MS Number of obs 2,441
Model 2.5E+11 22 1.1E+10 F( 32,  8926) 77.29

Residual 3.5E+11 2418 1.5E+08 Prob > F 0.0000
Total 6.0E+11 2440 2.5E+08 R-squared 0.4129

Adj R-squared 0.4075
Root MSE 12,059

DV: ANNMILES Coef. Std. Err. t P> |t| Signif* 95% Conf. Interval

Control Variables

Household Family Income
Basis: HHFAMINC <$20k
HHFAMINC missing 1,957 1,202 1.63 0.103 -- -399 4,313
HHFAMINC $20,000-$39,999 1,656 977 1.70 0.090 √ -259 3,571
HHFAMINC $40,000-$59,999 3,060 1,022 2.99 0.003 √√ 1,056 5,064
HHFAMINC $60,000-$99,999 5,010 1,033 4.85 0.000 √√ 2,984 7,036
HHFAMINC $100,000+ 8,693 1,113 7.81 0.000 √√ 6,510 10,877
Home Owned 3,100 806 3.85 0.000 √√ 1,519 4,680
All Household Members (Age 5+)
Male Workers (Age 16+) 10,951 568 19.27 0.000 √√ 9,837 12,065
Female Workers (Age 16+) 8,519 569 14.96 0.000 √√ 7,402 9,635
Male Non-Workers (Age 16+) 5,997 593 10.12 0.000 √√ 4,835 7,159
Female Non-Workers (Age 16+) 5,485 592 9.26 0.000 √√ 4,323 6,646
Persons Age 5 thru 15 631 387 1.63 0.103 -- -128 1,390
Persons 16+ Having MEDCOND -2,153 587 -3.67 0.000 √√ -3,304 -1,002
Persons 16+ Never Used Internet in Past Mo. -2,310 465 -4.97 0.000 √√ -3,222 -1,399
Accessibility
2009 Pop. within 20min -0.002 0.005 -0.38 0.703 -- -0.011 0.007

Policy Variables

Regional Population Environment
Basis: 2009 Pop. within 10mi, 0-50k

 2009 Pop. within 10mi, 50k-100k -3,545 1,128 -3.14 0.002 √√ -5,757 -1,332
 2009 Pop. within 10mi, 100k-200k -3,911 1,267 -3.09 0.002 √√ -6,396 -1,426
 2009 Pop. within 10mi, 200k-250k -4,861 1,420 -3.42 0.001 √√ -7,645 -2,076
 2009 Pop. within 10mi, 250k-300k -5,553 1,556 -3.57 0.000 √√ -8,604 -2,501
 2009 Pop. within 10mi, 300k-350k -5,612 1,747 -3.21 0.001 √√ -9,036 -2,187
 2009 Pop. within 10mi, 350k-450k -4,772 2,084 -2.29 0.022 √√ -8,858 -685
 2009 Pop. within 10mi, 450k-550k -6,470 2,486 -2.60 0.009 √√ -11,345 -1,596
 2009 Pop. within 10mi, 550k+ -6,473 3,009 -2.15 0.032 √√ -12,373 -573

Constant 3,127 1,357 2.30 0.021 √√ 467 5,788
* "√": Significant at the 0.10 level; "√√": Significant at the 0.05 level
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 Logical coefficient signs and values 
 Influence points 
 Normality 
 Homoscedasticity 
 Linearity 
 Independence of error terms 
 Model fit 
 Self-selection 

 
 
Logical Coefficient Signs and Values  Having examined the signs (i.e. positive vs. 

negative) of the significant independent variable coefficients, they appear to be logical. 

For example, the coefficients for each of the five basic person variables [Male Workers 

(Age 16+), Female Workers (Age 16+), Male Non-Workers (Age 16+), Female Non-

Workers (Age 16+), and Persons Age 5 thru 15] are positive, and the coefficient for 

Persons 16+ Having MEDCOND is negative.  Likewise, the values of the coefficient are 

reasonable.  For example, the coefficients for the set of binary income range variables 

increase with increasing income. 

 
Influence Points  Influence points are individual outliers in the data which have an 

inordinate (and therefore undesirable) impact on the model results. Of the eight scalar 

independent variables in the model, seven count the number of persons of a certain type 

in the household.  The maximum value of all seven variables being 5, there are no 

outliers.  The final scalar variable (population within 20 minutes) has a significant range 

(5,427-664,761), but an examination of a histogram of this variable reveals no outliers, 

eliminating the concern over undue influence from stray low or high values of this 

variable.   
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Normality  The validity of regression analyses is subject to the normality of the variables 

involved.  According to Hair et al. in their textbook Multivariate Data Analysis (11): 

“…larger sample sizes reduce the detrimental effects of nonnormality.” 
 
“For sample sizes of 200 or more…these same effects [on the results] may be 
negligible.” 
 
“Thus, in most instances, as the sample sizes become large, the researcher can be 
less concerned about nonnormal variables….” 

The sample size of the model (2,441) exceeding 200 observations, the issue of normality 

was considered not to be problematic. 

 
Homoscedasticity  The validity of regression analyses is subject to homoscedasticity, i.e. 

equal variance of the population error over the range of predictor values. For this 

analysis, the set of policy variables (Regional Population Environment) being 

dichotomous and therefore having no range of values, homoscedasticity is not a concern. 

 
Linearity  The validity of the interpretation of this regression analysis is subject to the 

linearity of the relationship between the policy independent variables (IV) and the 

dependent variable (DV).  The policy IVs in this model being dichotomous, linearity is 

not a concern. In fact, the theorized non-linearity of the relationship between proximity 

and VMT was the purpose of creating the set of dichotomous opportunity variables. 

 
Independence of Error Terms  The validity of regression analyses is subject to the 

independence of error terms. According to Hair, “we can best identify such an occurrence 

[independence] by plotting the residuals against any possible sequencing variable” (11). 

Given the use of annual VMT for the dependent variable, sequencing (i.e. the date each 

survey was taken) is not a concern. 
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Model Fit  In addition to the fact that most of the variables in the models (including all of 

the policy variables) are significantly related to annual VMT (Type I error rate < 0.05), 

the Adjusted R-squared value is 0.41, demonstrating an excellent model fit. 

 
Self-Selection  Self-selection was addressed in the Data Preparation section above. 

 
Overall Assessment of the Model  Given the satisfactory survey of the threats to model 

validity, it appears that the model is reliable for use in estimating VMT impact by 

opportunity level. 

 
Useful Regression Results and Hypothesis Testing  The results of the regression 

concerning the control variables will be discussed first, followed by the results 

concerning the policy variables. 

 
Control Variables  First, most of the control variables behaved as expected.  VMT 

increases with each rise in income level.  And income appears to have a large impact on 

VMT, with the highest income being associated with approximately 9,000 miles a year 

more than that of low income, a similar result to that of Effort #1 (11,000 miles).  Home 

ownership has a large additional impact on VMT (3,000 miles), three times that of the 

home ownership variable in Effort #1 (1,000).    

The set of household member variables had expected regression results.  Men, 

ceteris paribus, add more to household VMT than do women, and workers—even 

controlling for the income effect of working—add almost twice as much VMT to a 

household than do non-workers.  Children, being too young to drive, add only modestly 

to VMT.  The disability variable was highly significant and had the expected negative 
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impact, and the presence of persons who never use the internet had a significant and 

negative impact on VMT.  As in Effort #1, this negative relationship may be due to the 

high age of many of such persons (older people both use the internet less and travel less) 

and/or the personality type that places persons who are not old in the minority of non-

internet usage. 

The final control variable, the accessibility variable “2009 Pop. within 20min” 

intended to reflect the impact of high-speed roadways available to the subject 

household—was highly insignificant (Type I error rate = 0.703).  This may indicate that 

high-speed roadways do not contribute as much to VMT as theorized above. 

 
Policy Variables- Useful Results and Hypothesis Testing  It should be noted that—

because 1) population within 10 miles is highly correlated to employment within 10 

miles, and 2) the two employment-based opportunity variable sets dropped out of the 

regression—the remaining population opportunity variable set reflects to a certain degree 

the shared impact of both population opportunity and employment-based opportunity. 

All eight of the dichotomous variables in the population opportunity set being highly 

significantly related to VMT, their coefficients fulfill the research objective—discovering 

the VMT impact of each level of proximity—and can therefore be used by government to 

score candidate SGAs according to the expected VMT benefit of their proximity level. 
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VMT-proximity curves.xlsx 

 
FIGURE 16  VMT vs. Opportunity. 
 

Although the above curve does not exhibit the theoretical flattening at lower 

proximity, the VMT curve does flatten at the right side as expected and discussed in “The 

Expected Shape of VMT-Proximity Curves and Key Hypothesis” section above.  This 

flattening provides hope that a sweet spot may be located on the curve.   

In preparation of testing the key hypothesis using the coefficients of the 

opportunity variables shown on the above curve, 1) the curve is re-plotted below showing 

standard errors (SE), and 2) the prevalence of the various proximity levels is explored in 

the table below. 
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VMT-proximity curves.xlsx 

 
FIGURE 17  VMT vs. Opportunity. 
 

TABLE 24  Prevalence of Opportunity Levels in Hampton Roads 

 
 
2009_TAZ_data.xlsx 
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Mean

Mean - SE

Mean + SE

Population within 10 Miles

Count of 
Households 
in Hampton 
Roads, 2009 %

 2009 Pop. within 10mi, 0k-50k 38,512 6% 0% 6%
 2009 Pop. within 10mi, 50k-100k 47,715 8% 6% 14%
 2009 Pop. within 10mi, 100k-200k 65,681 11% 14% 25%
 2009 Pop. within 10mi, 200k-250k 70,962 12% 25% 37%
 2009 Pop. within 10mi, 250k-300k 88,761 15% 37% 52%
 2009 Pop. within 10mi, 300k-350k 82,081 14% 52% 65%
 2009 Pop. within 10mi, 350k-450k 78,710 13% 65% 78%
 2009 Pop. within 10mi, 450k-550k 84,021 14% 78% 92%
 2009 Pop. within 10mi, 550k+ 45,782 8% 92% 100%

602,224 100%

Household 
Count, 

percentile 
range
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The key hypothesis of this dissertation is: 

There exists a sweet spot on the VMT-proximity curve that has high VMT benefit 
and a proximity level acceptable to many households. 

 
And the specific key hypothesis for testing is: 

The VMT benefit at 67% of maximum proximity is equal to or greater than 80% 
of the VMT benefit at maximum proximity. 
 

Given that the average opportunity of the households in the highest opportunity level 

(550k+) is 580,571 persons within 10 miles, 67% of the 580,571 maximum proximity 

level is 388,983 persons within 10 miles.  According to the above table, this 390k level is 

approximately the 70 percentile level of Hampton Roads households. 
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TABLE 25  Hypothesis Testing Worksheet based on VMT-Opportunity Curve 

 
 
tables.xlsx 

 

Based on the above hypothesis testing worksheet for the VMT-opportunity curve:  

It is likely that the VMT benefit at 67% of maximum proximity is higher than 80% of the 
VMT benefit at maximum proximity, but—because the null hypothesis was not 
rejected—it is not certain that the VMT benefit at 67% of maximum proximity is higher 
than 80% of the VMT benefit at maximum proximity. 
 
Only similar research on other metros would reveal whether these Hampton Roads 

findings are transferrable.   

Specific Hypothesis: The VMT benefit at 67% of max. proximity is >= 80% of the VMT benefit at max. proximity.
Null Hypothesis: The VMT benefit at 67% of max. proximity is < 80% of the VMT benefit at max. proximity.

source
Max. proximity (550k+ within 10 mi): 580,571 persons within 10 miles VMT curve

67%
67% of max. proximity: 388,983 persons within 10 miles

Mean VMT benefit @ 67% of max. prox.: 4,772 miles Regression Table

Mean VMT benefit @ max. prox.: 6,473 miles Regression Table
80%

80% of mean VMT benefit @ max. prox.: 4,337 miles

Therefore, mean VMT benefit at 67% of max. prox. is higher than 80% of mean VMT benefit at max. prox.

Testing this result considering the standard errors (SE) of the two benefits being compared:

t-test requirements: "two normally distributed but independent populations, σ is unknown" (10 )
The two populations are mostly independent of each other and σ is unknown.

Difference in the two benefits: 435 miles

SE of VMT benefit @ 67% of max. prox.: 2,084 miles Regression Table

SE of VMT benefit @ max. prox.: 3,009 miles Regression Table
80%

SE of 80% of VMT benefit @ max. prox.: 2,407 miles

Calculated t: 0.14 (calculated via formula for t for comparing two means)
vs.

Critical t value: 1.28 (for α=0.10 and df >1,000)

Therefore, the null hypothesis is not rejected.
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 Given that the proximity level tested in the hypothesis test falls at the 70% of 

households (as stated above), i.e. a moderate level, it was not necessary to examine an 

additional, more moderate point on the curve as done in Effort #1 above. 
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VMT vs. Centrality 
 
 
Regression Analysis  As in the VMT-vs.-opportunity analysis above (where the VMT 

impact of each level of opportunity was determined, to determine the VMT impact of 

each level of centrality, OLS regression was used.  The OLS regression was run using a 

set of binary variables based on the “Distance to Center” variable discussed in the Data 

Preparation section above and the control variables from the above VMT-opportunity 

regression, except for the statistically insignificant accessibility variable “2009 Pop. 

within 20min.”  The results are shown below. 
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TABLE 26  VMT-Centrality OLS Regression Results 
 

 
 
Tables.xlsx 

 

With an R-squared value exceeding 0.4, the above regression shows an excellent 

statistical relationship between the theory-based set of independent variables and annual 

household VMT.  Concerning the control variables, most are statistically significant and 

have coefficients with logical size and sign.  Concerning the policy variables, nine out of 

ten of the binary variables are statistically significant at the 0.05 level. Prior to discussing 

the VMT-centrality regression results, the threats to its validity will be addressed.

Source SS df MS Number of obs 2,441
Model 2.5E+11 22 1.1E+10 F( 32,  8926) 78.84

Residual 3.5E+11 2418 1.4E+08 Prob > F 0.000
Total 6.0E+11 2440 2.5E+08 R-squared 0.418

Adj R-squared 0.412
Root MSE 12,009

DV: ANNMILES Coef. Std. Err. t P> |t| Signif* 95% Conf. Interval

Control Variables

Household Family Income
Basis: HHFAMINC <$20k
HHFAMINC missing 1,577 1,201 1.31 0.189 -- -778 3,931
HHFAMINC $20,000-$39,999 1,492 974 1.53 0.126 -- -418 3,402
HHFAMINC $40,000-$59,999 2,899 1,016 2.85 0.004 √√ 907 4,891
HHFAMINC $60,000-$99,999 4,784 1,029 4.65 0.000 √√ 2,767 6,801
HHFAMINC $100,000+ 8,272 1,110 7.45 0.000 √√ 6,095 10,448
Home Owned 2,995 801 3.74 0.000 √√ 1,424 4,566
All Household Members (Age 5+)
Male Workers (Age 16+) 10,984 566 19.42 0.000 √√ 9,875 12,094
Female Workers (Age 16+) 8,452 565 14.95 0.000 √√ 7,343 9,561
Male Non-Workers (Age 16+) 5,970 590 10.12 0.000 √√ 4,814 7,127
Female Non-Workers (Age 16+) 5,430 590 9.21 0.000 √√ 4,274 6,587
Persons Age 5 thru 15 514 386 1.33 0.183 -- -243 1,271
Persons 16+ Having MEDCOND -2,101 584 -3.60 0.000 √√ -3,246 -956
Persons 16+ Never Used Internet in Past Mo. -2,204 464 -4.75 0.000 √√ -3,114 -1,295

Policy Variables

Centrality
Basis: Distance to Center, <4mi

 Distance to Center, 4-6mi 1,559 1,080 1.44 0.149 -- -560 3,677
 Distance to Center, 6-8mi 2,118 1,050 2.02 0.044 √√ 60 4,176
 Distance to Center, 8-10mi 2,109 1,036 2.04 0.042 √√ 78 4,140
 Distance to Center, 10-12mi 2,630 1,062 2.48 0.013 √√ 549 4,712
 Distance to Center, 12-14mi 2,491 1,239 2.01 0.044 √√ 62 4,919
 Distance to Center, 14-18mi 4,704 1,065 4.41 0.000 √√ 2,614 6,793
 Distance to Center, 18-25mi 5,000 1,228 4.07 0.000 √√ 2,593 7,407
 Distance to Center, 25-30mi 2,790 1,216 2.29 0.022 √√ 405 5,174
 Distance to Center, 30+ mi 8,645 1,119 7.73 0.000 √√ 6,451 10,839

Constant -4,728 1,276 -3.71 0.000 √√ -7,230 -2,226
* "√": Significant at the 0.10 level; "√√": Significant at the 0.05 level
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Threats to Validity  Threats to the validity of the model resulting from the above 

regression process were checked by addressing the following topics: 

 Logical coefficient signs and values 
 Influence points 
 Normality 
 Homoscedasticity 
 Linearity 
 Independence of error terms 
 Model fit 
 Self-selection 

 
 
Logical Coefficient Signs and Values  The control variables in this regression being the 

same as the control variables in the above VMT-opportunity regression (except for 

having dropped the accessibility variable), and coefficients being very similar between 

the two models, the coefficient signs and values of this regression are again logical. 

 
Influence Points  The maximum value of the seven scalar variables being 5, there are no 

outliers, eliminating the concern over undue influence from stray low or high values.   

 
Normality  As in the VMT-opportunity regression above, the sample size of the VMT-

centrality model (2,441) exceeding 200 observations, the issue of normality was 

considered not to be problematic. 

 
Homoscedasticity  and Linearity  The centrality set of policy variables being 

dichotomous, homoscedasticity and linearity are not a concern.  In fact, the theorized 

non-linearity of the relationship between proximity and VMT was the purpose of creating 

the set of dichotomous centrality variables. 
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Independence of Error Terms  As in the VMT-opportunity regression above, given the 

use of annual VMT for the dependent variable of the VMT-centrality regression, 

sequencing (i.e. the date each survey was taken) is not a concern. 

 
Model Fit  In addition to the fact that most of the variables in the models (including nine 

out of ten of the policy variables) are significantly related to annual VMT (Type I error 

rate < 0.05), the Adjusted R-squared value is 0.41, demonstrating an excellent model fit. 

 
Travel Mode Biases (“self-selection”)  Travel mode biases were addressed in this effort 

in the Brownstone (12) manner discussed in the Preparation section above, i.e. by 

including several key socio-economic variables in the model.   

 
Overall Assessment of the Model  Given the satisfactory survey of the threats to model 

validity, it appears that the model is reliable for use in investigating VMT impact by 

centrality level. 

 
Useful Regression Results and Hypothesis Testing  The coefficients of the control 

variables being very similar to those of the earlier VMT-opportunity regression (and the 

implications of these control variable coefficients having been discussed under that 

regression above), only the policy variable results are discussed here.  Eight of the nine 

dichotomous variables in the centrality set being highly significantly related to VMT (and 

the ninth variable being significant at the 0.10 level), their coefficients can be used by 

government to score candidate SGAs according to the expected VMT benefit of their 

proximity level. 
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The set of policy variables in the subject regression being based on distance-to-

center, the above coefficients indicate the VMT disbenefit as compared to the highest 

level of centrality, <4 miles distance-to-center.  In order to couch the result in terms of 

VMT benefit, as done for all the other regressions in this dissertation, the following table 

was prepared by subtracting the model coefficients from the VMT disbenefit at the 

lowest level of centrality (30+ miles distance-to-center, 8,645 miles VMT disbenefit). 

 
TABLE 27  VMT Benefit at Each Level of Centrality (as compared to lowest level) 
 

 
 
Tables.xlsx 

 
 
A curve based on this table can be found below. 

Distance to Center

Centrality 
(distance of most 
distant level - 
distance of level), 
miles

Model 
Coef., 
miles

VMT 
Benefit, 

miles
Basis: Distance to Center, <4mi (avg. 2.83) 33.91 n.a. 8,645

 Distance to Center, 4-6mi 30.74-32.74 1,559 7,086
 Distance to Center, 6-8mi 28.74-30.74 2,118 6,527
 Distance to Center, 8-10mi 26.74-28.74 2,109 6,536
 Distance to Center, 10-12mi 24.74-26.74 2,630 6,015
 Distance to Center, 12-14mi 22.74-24.74 2,491 6,154
 Distance to Center, 14-18mi 18.74-22.74 4,704 3,941
 Distance to Center, 18-25mi 11.74-18.74 5,000 3,645
 Distance to Center, 25-30mi 6.74-11.74 2,790 5,855

 Distance to Center, 30+ mi (avg. 36.74) 0 8,645 0
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VMT-centrality curves.xlsx 

 
FIGURE 18  VMT vs. Centrality. 
 

The VMT curve exhibits neither the flattening at lower centrality nor the 

flattening at higher proximity expected and discussed in “The Expected Shape of VMT-

Centrality Curves and Secondary Hypothesis” section above.  Except for the data point 

for the 6.74-11.74 miles centrality level (25-30 miles distance-to-center) discussed below, 

the curve is fairly linear.  This linearity provides little hope that a sweet spot may be 

located on the curve.   
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2009 HR Employment.jpg     source: HRTPO (34), modified by adding place labels 

 
FIGURE 19  Hampton Roads Employment Locations 
 

 An examination of the 170 surveyed households situated 25-30 miles from center 

revealed that 149 (or 88%) are located near Williamsburg and downtown Suffolk, two 

significant employment sub-centers, as shown on the above map.  It is assumed that this 

proximity to these sub-centers explains the anomalous data point for 25-30 miles from 

center shown on the above graph. 

In preparation of testing the secondary hypothesis using the coefficients from the 

VMT-vs.-centrality regression and curve, 1) the curve is re-plotted below with standard 

errors (SE), and 2) the prevalence of the various centrality levels in Hampton Roads is 

provided in the table below.  
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VMT-centrality curves.xlsx 

 
FIGURE 20  VMT vs. Centrality. 
 

TABLE 28  Prevalence of Population Centrality Levels in Hampton Roads 

 
 
2009_TAZ_data.xlsx 
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Mean + SE

basis

Population within 10 Miles

Centrality (distance 
of most distant level - 
distance of level), 
miles

Count of 
Households 
in Hampton 
Roads, 2009 %

 2009 Pop. within 10mi, 0k-50k 33.91 38,512 6% 0% 6%
 2009 Pop. within 10mi, 50k-100k 30.74-32.74 47,715 8% 6% 14%
 2009 Pop. within 10mi, 100k-200k 28.74-30.74 65,681 11% 14% 25%
 2009 Pop. within 10mi, 200k-250k 26.74-28.74 70,962 12% 25% 37%
 2009 Pop. within 10mi, 250k-300k 24.74-26.74 88,761 15% 37% 52%
 2009 Pop. within 10mi, 300k-350k 22.74-24.74 82,081 14% 52% 65%
 2009 Pop. within 10mi, 350k-450k 18.74-22.74 78,710 13% 65% 78%
 2009 Pop. within 10mi, 450k-550k 11.74-18.74 84,021 14% 78% 92%
 2009 Pop. within 10mi, 550k+ 6.74-11.74 45,782 8% 92% 100%

0 602,224 100%

Household 
Count, 

percentile 
range



142 

The secondary hypothesis of this dissertation is: 

There exists a sweet spot on the VMT-centrality curve that has high VMT benefit 
and a centrality level acceptable to many households. 

 
And the specific secondary hypothesis for testing is: 

The VMT benefit at 67% of maximum centrality is equal to or greater than 80% 
of the VMT benefit at maximum centrality. 

 
Given that the average centrality of the households in the highest centrality level (0-4 

miles distance from center) is 33.91 miles (as shown on the table above), 67% of the 

33.91 level is 22.72 miles, which falls in the 18.74-22.74 centrality level.  According to 

the above table, this 22.72 level is approximately the 65 percentile level of Hampton 

Roads households. 

 
TABLE 29  Hypothesis Testing Worksheet based on VMT-Centrality Curve 

 
 
tables.xlsx 

 

  

Specific Hypothesis: The VMT benefit at 67% of max. centrality is >= 80% of the VMT benefit at max. centrality.
Null Hypothesis: The VMT benefit at 67% of max. centrality is < 80% of the VMT benefit at max. centrality.

source
Max. centrality (<4mi distance to center): 33.91 miles VMT curve

67%
67% of max. centrality: 22.72 miles (centrality 18.74-22.74 mi.; distance to center: 14-18 mi.)

Mean VMT benefit @ 67% of max. cent.: 3,941 miles Regression Table

Mean VMT benefit @ max. cent.: 8,645 miles Regression Table
80%

80% of mean VMT benefit @ max. cent.: 5,792 miles

Therefore, mean VMT benefit at 67% of max. centrality is less than 80% of mean VMT benefit at max. centrality.

Given the above result, there is no need to conduct a t-test to test the null hypothesis.

Therefore, the null hypothesis is not rejected.
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Based on the above hypothesis testing worksheet for the VMT-centrality curve—and as 

feared given the linearity of the VMT-centrality curve:  

It is very unlikely that the VMT benefit at 67% of maximum centrality is higher than 80% 
of the VMT benefit at maximum centrality. 
 
Given that centrality is a proxy for proximity—as opposed to a true measure of 

proximity—this finding concerning the secondary hypothesis does not negate the earlier 

positive findings in this dissertation concerning the key hypothesis that there exists a 

sweet spot on the VMT-proximity curve that has high VMT benefit and a proximity level 

acceptable to many households. 

Given the varying sizes of U.S. metros, it is doubtful that the slope and intercept 

of the Hampton Roads VMT-centrality curve are transferrable to other metros.  It may be, 

however, that the centrality-VMT relationship is roughly linear in many metros.   
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CHAPTER V 
 

CONCLUSION 
 
 
Fulfillment of Research Objective- The VMT Impact of Each Proximity Level 

The research objective of this dissertation is: 
 

to discover the VMT impact of each level of proximity. 
 
Given that the empirical research in Efforts #1 and #3 above discovered the VMT impact 

of each level of proximity, the research objective of this dissertation was fulfilled.   

The coefficients of the two sets of density variables (population and employment) 

in Effort #1 reveal the VMT benefit at each level of census tract density.  For example, 

the regression revealed that the 50-99 per-square-mile (census tract) level of employment 

density is associated with a VMT benefit of 400 annual miles (as compared to the lowest 

employment level), and the 100-499 per-square-mile (census tract) level of population 

density is associated with a VMT benefit of 1,700 annual miles (as compared to the 

lowest population level).   

The coefficients of the sets of policy variables in the two analyses in Effort #3 

reveal—using the first analysis—the relationship between opportunity (in this case, 

population within 10 miles) and VMT at each level of opportunity, and—using the 

second analysis—the relationship between centrality and VMT at each level of centrality.  

For example, the opportunity regression revealed that the 50,000-100,000 persons-within-

10-miles level of opportunity is associated with a VMT benefit of 3,500 annual miles (as 

compared to the lowest opportunity level).  And the centrality regression revealed that the 

4-6 miles-from-center level of centrality is associated with a VMT benefit of 7,000 

annual miles (as compared to the lowest centrality level). 
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Fulfillment of Dissertation Purpose and Application of Dissertation Models 

The purpose of this dissertation is:  

to discover the VMT impact of each level of proximity in order to help 
government identify key locations for housing development, and thereby lower 
VMT and reduce dependence on foreign oil. 

 
Given that this dissertation’s discovery of the VMT impact of each level of proximity can 

be applied—using the technique described below—to help government identify key 

locations for housing development, the purpose of this dissertation has been fulfilled. 

 
Application of the Dissertation Models 

Governments can use the policy variable coefficients from the final models in Efforts #1 

and #3—via the VMT Benefit Technique described below—to accurately determine the 

VMT benefit of a given location, and use the VMT benefits of a set of candidate areas to 

select key locations for development.   

 
The VMT Benefit Technique   The process of determining the VMT benefit of a given 

location, known herein as the “VMT Benefit Technique”, is described as follows.  

Governments around the U.S. can use the coefficients from the policy variables in Effort 

#1 to accurately determine the VMT benefit of any U.S. location, and governments in 

Hampton Roads can use the coefficients from the policy variables in the models of Effort 

#3 to accurately determine the VMT benefit of any Hampton Roads location. 

 First, governments around the U.S. can apply the policy variable coefficients from 

the final regressions in Effort #1 to calculate the VMT benefit of any location in America.   

Simply:  
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 determine the population and employment densities (census tract level) of the 
subject location,  

 look up the coefficients for those densities in the VMT-Density regression results 
table above, and  

 add the population coefficient and the employment coefficient together to 
calculate the VMT benefit. 

 
For example, a location with 6,432 persons per square mile and 1,233 employed persons 

per square mile is at the 4,000-9,999 population density level and the 1,000-1,999 

employment density level, and has therefore a VMT benefit of 9,000 annual miles (4,549 

+ 4,320 = 8,869) vs. a location with the lowest density levels.   

Likewise, local governments in Hampton Roads can apply the policy variable 

coefficients from the regressions in Effort #3 to calculate the VMT benefit of any 

location in Hampton Roads.  And they can do so using either the opportunity analysis or 

the centrality analysis.  Using the opportunity analysis, simply:  

 determine the TAZ of the subject location (by examining the TAZ document 
available on the website of the Hampton Roads Transportation Planning 
Organization [HRTPO]), 

  look up the amount of population within 10 miles of that TAZ (using a table 
developed for this dissertation), and  

 look up the coefficient for that opportunity level in the VMT-Opportunity 
regression results table above, the coefficient being the VMT benefit of the 
subject location.  

 
For example, a location in TAZ 1 has 514,503 persons within 10 miles.  Looking up the 

coefficient for the 450,000-550,000 opportunity level, indicates that the subject location 

has a VMT benefit of 6,500 annual miles (coefficient 6,470).  Alternately, using the 

centrality analysis in Effort #3, simply:  

 determine the TAZ of the subject location (by examining the TAZ document 
available on the website of the HRTPO),  

 calculate the distance (perhaps using Google maps) from that TAZ to the 
appropriate center (the Ballentine-264 interchange on the Southside; the Peninsula 
Town Center on the Peninsula), and  
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 look up the VMT disbenefit for that centrality level in the VMT-Centrality 
regression results table above, or—more directly—look up the VMT benefit for 
that centrality level in the “VMT Benefit at Each Level of Centrality” table above.   

 
For example, for the same location above (in TAZ 1), TAZ 1 is 2.79 miles from the 

Ballentine-264 interchange.  Looking up the coefficient for the <4 mile centrality level in 

the “VMT Benefit at Each Level of Centrality” table above indicates that the subject 

location has a VMT benefit of 8,645 annual miles.  Note that, for TAZ 1, the two 

models—the VMT-opportunity model and the VMT-proximity model—appropriately 

give similar results. 

 
Using VMT Benefit Technique to Consider VMT in Choosing SGAs Governments 

around the U.S. and in Hampton Roads can apply this VMT Benefit Technique to 

identify locations in which they would prefer development occur, e.g. strategic growth 

areas (SGAs).  They can locate a set of candidate SGAs, use the coefficients from any of 

the Effort #1 and Effort #3 models to calculate the VMT benefit of each candidate area, 

and use those results as one input to the process of choosing final SGAs, i.e. “to identify 

key locations for development” as in the dissertation title.  Whereas government currently 

considers many non-VMT factors when identifying SGAs—e.g. availability of land for 

development or redevelopment, existing supportive infrastructure, etc.—by using the 

coefficients of the final models in Efforts #1 and #3 to estimate the expected VMT 

impacts of the proximities of the locations of the candidate SGAs, it can add VMT 

reduction as a factor in the process of identifying key locations for development. 

 
Key Hypothesis and Implication of the Coefficients in the Dissertation Models 

The key hypothesis of this dissertation is: 
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There exists a sweet spot on the VMT-proximity curve that has high VMT benefit 
and a proximity level acceptable to many households. 
 

Given the hypothesis tests conducted using the results of the preceding empirical 

analyses, the key null hypothesis of this dissertation is not rejected, i.e. it is not certain 

that the sweet spot exists.  However, the mean coefficients of each VMT-proximity 

analysis in this dissertation indicate that it is likely that there are high-VMT-benefit 

proximity levels acceptable to many households, i.e. that the sweet spot exists.  The 

overall implication of this is that representative governments in the U.S. who promote 

housing development at these moderate levels of proximity will not only lower average 

VMT in the short term, they will not be punished politically for doing so, and therefore 

may be successful in thereby lowering average VMT in the long term. 

 
Key Implications, Primary Contribution to the Literature, and Long-term Value  
 
The key implications, primary contribution to the literature, and long-term value of this 

dissertation is that:  

a) it provides encouragement to governments hoping to lower average VMT, and  
 
b) it provides an accurate method of calculating VMT for choosing SGAs with 
which to actually lower average VMT.  

 
 
Future Research Directions 
 
The findings of Efforts #1 and #2, being based on a nationwide dataset, are applicable 

nationwide, but this dataset lacked details available on the local level, such as a rigorous 

measurement of proximity and a measure of the availability of public transportation.  The 

findings of Effort #3, being based on a local dataset, are only applicable locally.  

Therefore, future research of several dissimilar metros (including some having significant 
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usage of public transit) that includes a rigorous measurement of proximity (e.g. the 

opportunity and centrality used in Effort #3) and a measure of the availability of public 

transportation could provide widely applicable results.   

 
Final Conclusion 
 
Given that many Americans would dislike living in high proximity locations known for 

having a low VMT signature, and that American government has a representative form, 

the lack of VMT benefit information by individual proximity level in the literature made 

the application of the “higher-proximity equals lower-VMT” message of the existing 

literature difficult to apply to date.  Fortunately, this dissertation discovered the VMT 

impact of each level of proximity.  

Governments can apply the discovered VMT impact of each level of proximity—

via a described “VMT Benefit Technique”—to accurately determine the VMT benefit of 

a given location, and use the VMT benefits of a set of candidate areas to select key 

locations for development.   

In addition, the discovered VMT impact of each level of proximity informs the 

key hypothesis of this dissertation that there exists a sweet spot on the VMT-proximity 

curve that has high VMT benefit and a proximity level acceptable to many households.  

Although the hypothesis tests indicate that it is not certain that the sweet spot exists, the 

mean coefficients of the models indicate that it is likely that the sweet spot exists, i.e. that 

there are high-VMT-benefit proximity levels acceptable to many households.  The overall 

implication of this is that representative governments in the U.S. who promote housing 

development at these moderate levels of proximity will not only lower average VMT in 
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the short term, they will not be punished politically for doing so, and therefore may be 

successful in thereby lowering average VMT in the long term. 

In summary, the dissertation provides encouragement to governments hoping to 

lower average VMT and an accurate method of calculating VMT for choosing SGAs with 

which to actually lower average VMT.  It is hoped that this combination will help U.S. 

governments become independent of foreign oil. 
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