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ABSTRACT	

BEHAVIOR AND STRENGTH OF RC SPANDREL MEMBERS UNDER 
UNSYMMETRICAL BENDING AND TORSION INCLUDING CFRP RETROFITTING 

 
Muhammad Fahim 

Old Dominion University, 2017 
Director: Dr. Zia Razzaq 

 

This dissertation presents the outcome of an experimental and theoretical investigation of the 

behavior and strength of reinforced concrete spandrel members both with and without carbon 

fiber reinforced polymer (CFRP) retrofitting. Both isolated spandrel members with L-shaped 

cross section as well as those integrated with reinforced concrete slabs are studied. A series of 

isolated spandrel members were tested under separate and combined actions of unsymmetrical 

bending and torsion. Six of these specimens were retrofitted externally with high-strength CFRP 

strips. Materially nonlinear analysis procedures are also formulated and programmed for the 

spandrel members with and without CFRP retrofitting. Furthermore, ultimate bending-torsion 

interaction expressions for the spandrel members are developed including the influence of CFRP 

retrofitting. Tests are also conducted on three slab-beam systems up to their load-carrying 

capacities. Theoretically predicted behavior and strength of the spandrel members and slab-beam 

systems are found to be in good agreement with those based on the laboratory tests. The study 

shows that CFRP retrofitting results in a significant to a dramatic increase in the bending 

strength of L-shaped spandrel members. The use of CFRP retrofitting is also shown to increase 

the torsional strength of such members by up to fifty percent. 
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1. INTRODUCTION 

1.1 Introduction 

Spandrel members are often used in reinforced concrete buildings such as the outermost beam-

like members integrated with reinforced concrete slabs. These members are generally subjected 

to unsymmetrical bending and torsion. The cross section of the spandrel member is L-shaped due 

to the contribution of the connecting slab approximated as a flange. The available methods for 

analyzing and designing spandrel members are flawed in that they make unjustifiable 

approximations such as assuming a horizontal neutral axis under unsymmetrical bending 

moments subsequently combined with applied torsional loading effects.  

The strength and behavior of reinforced concrete rectangular sections subjected to combined 

bending and torsional moments have been extensively studied in the past both theoretically and 

experimentally. This includes development of ultimate strength interaction relations between 

bending and torsion. However, the methods developed for predicting the response of spandrel 

members of L-shaped cross sections subjected to unsymmetrical bending, torsion, or combined 

unsymmetrical bending and torsion have not adequately been developed previously.    

In addition to a need for the development of theoretical behavior and strength prediction models 

for spandrel members, it is also becoming increasingly important to devise retrofitting 

procedures for enhancing their flexural-torsional capacity. One particular retrofitting technique 

utilizes high strength Carbon Fiber Reinforced Polymer (CFRP) strips bonded externally to steel-

reinforced concrete members. The use of CFRP retrofitting methods for reinforced concrete 

members with rectangular cross sections has been studied in the past. However, such a 

methodology has not been developed for spandrel members of L-shaped cross sections with 

unsymmetrical bending, torsion, or combined unsymmetrical bending and torsion.  

The primary goal of this dissertation is to present the outcome of a theoretical and experimental 

study of isolated spandrel members subjected to unsymmetrical bending, torsion, and combined 

unsymmetrical bending and torsion both with and without CFRP retrofitting. The theoretical 

behavior and strength prediction models account for material nonlinearities. The experimental 

study is conducted on scaled-down spandrel members using a bending-torsion testing apparatus.  
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In addition to the member level study, three steel-reinforced slabs with four surrounding spandrel 

members are also tested without CFRP and their load carrying capacities compared to those 

predicted theoretically. Finally, the effectiveness of CFRP retrofitting for a typical spandrel 

member as an integral part of a slab-beam system is demonstrated through use of a flexural-

torsional interaction expression presented in this dissertation that accounts for CFRP retrofitting.    

1.2 Literature Review  

Chen and Shoraka [1] used tangent stiffness method to develop moment-thrust-curvature 

relations for rectangular reinforced concrete sections. They studied the influence of concrete 

strength, reinforcement strength, and percentage of reinforcement on the shape of the curves.  

Historically, the very first equation to determine the strength of a homogenous elastic section 

under torsion was developed by Coulomb in 1784 while conducting experiments on electric 

charges [2]. However, his equation was completely empirical without any theoretical basis. 

Navier was the first person to develop a torsion theory for linear elastic and homogenous 

materials with circular cross sections in 1826 [3]. St. Venant [2] extended the theory to 

rectangular sections and accounted for warping deformations in 1856. He used a semi inverse 

method to solve all fifteen differential and algebraic equations in theory of elasticity developed 

by Cauchy [2]. According to St. Venant’s theory, the maximum shear stress occurs on the 

outside face of a rectangular section at midpoint of each long side.   

In 1896, Bredt [2] derived a formula for constant shear flow in thin-walled tubular sections 

subject to torsion. In 1903, Prandtl [2] discovered membrane analogy by observing that both the 

stress function in torsion problem and the deflection of a membrane under uniform loading are 

governed by Laplace’s harmonic differential equation and must satisfy the same boundary 

conditions. This analogy has been used to determine torsional properties of complicated cross 

sections.  

Bach [2] proposed a simplification of St. Venant’s theory for thin walled open sections in 1911. 

Based on the assumption that the angle of twist is the same for all rectangular components of a 

flanged section, the strength of the entire section is the algebraic sum of rectangular components. 

In 1923, Nadai [2] extended the membrane analogy to plastic materials which is called Nadai’s 

sand-heap analogy. 
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Both elastic and plastic theories have been used to predict the torsional capacity of plain concrete 

members by assuming a failure criteria that a plain concrete member fails when the maximum 

principal tensile stress reaches the tensile strength of concrete [2]. Since maximum tensile stress 

equals maximum shear stress under pure torsion, it can be substituted in equations for torsion to 

obtain torsional strength. Hsu [4] developed an equation for the torsional strength of plain 

concrete members by assuming a bending-type failure and utilizing an empirical relation for the 

modulus of rupture as a measure of tensile strength of concrete. He also derived an equation to 

find angle of twist at failure which is independent of material properties of concrete.  

The first theory of torsion for reinforced concrete members was presented by Rausch [2] in 1929 

known as “Rausch Space Truss Analogy”. Rausch proposed that a reinforced concrete member 

under torsion can be modelled as a space truss that consists of 45o
 concrete struts in compression 

and longitudinal and transverse rebars in tension. Cowan [5] introduced an efficiency coefficient 

by considering non-uniform stresses in reinforcement bars and considered the contribution of 

concrete. Hsu[6] concluded that the cracking torque of a reinforced concrete member is 1.0-1.3 

times the failure torque of the corresponding plain concrete member. Hsu [7] presented skew 

bending theory in 1968. 

Nadai [8] sand-heap analogy can be used to determine the torsional strength of flanged concrete 

sections. Hsu [4] attempted to develop equation for the torsional strength of flanged cross 

sections using the skew bending theory but concluded that the mathematical complexity has 

rendered it useless in practice. 

The most important factors affecting the behavior of reinforced concrete spandrel members 

subjected to combined bending and torsion are T/M ratio, amount and distribution of transverse 

and longitudinal reinforcement, cross section shape, and concrete strength [9]. 

The bending-torsion interaction for members without transverse reinforcement has been 

experimentally studied by various researchers. For rectangular sections, McMullen and 

Woodhead [10] suggested a linear interaction, Kemp et al. [11] proposed a trilinear interaction, 

and Zia [12] observed that a circular interaction curve serves as a lower bound for most 

experimental results. Hsu [13] recommended a trilinear interaction for members without stirrups.  

McMullen and Warwaruk [14] developed the normalized bending-torsion interaction curves for 

symmetrically and unsymmetrically reinforced sections. For unsymmetrically reinforced beams, 
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the torsional strength increases in the presence of a small flexural moment. With the addition of a 

bending moment equal to 40 percent of the pure flexure strength, McMullen and Warwaruk [14] 

observed an increase of up to 30 percent in the torsional strength and Onsongo [15] observed a 

25 percent increase. In the case of pure torsion, the additional bottom reinforcement doesn’t 

increase the ultimate strength because the top weaker reinforcement is critical. The compression 

introduced by flexure in the top reinforcement increases its resistance to torsional shear stresses 

[9]. Onsongo [15] observed only a 6 percent increase in torsional strength with the addition of 

flexural moment in over-reinforced beam. Onsongo [15] also developed the interaction for two 

series of unsymmetrically reinforced sections with different ratios of compression to tension 

longitudinal reinforcement yield force. The torsion predominant member is subjected to overall 

reverse curvature because the weaker top reinforcement elongates more than the bottom 

reinforcement [9]. 

Haung et al. [16] introduced a functional interaction formula for a symmetrically reinforced 

concrete section under combined axial, bending, shear, and torsion. They used experimental data 

available in literature to find the coefficients through calibration.  They also deducted an 

interaction between less than four actions as special cases. They only considered one moment 

and one shear.  

For flanged sections, Victor and Ferguson [17] proposed a trilinear interaction for L-sections and 

square interaction for T-sections. Lim and Mirza [18] also suggested a square interaction for T-

sections. Zararis and Penelis [19] observed 18 percent increase in torsional strength with the 

addition of flexural moment for unsymmetrically reinforced T-sections. 

For members with only longitudinal steel reinforcement, the torque twist relationship is very 

close to that of plain concrete before cracking. After cracking, the member may collapse 

suddenly if the reinforcement ratio is small. The ultimate strength may exceed cracking torque if 

the member is heavily reinforced but the increase is usually less than 15 percent. Therefore, the 

relations developed for plain concrete members can be used to find the strength of concrete 

sections with only longitudinal reinforcement [2].  

Hsu [6] found that about 1% of total steel, the ultimate strength of the beam is almost equal to 

the cracking torque and the beam fails in a ductile fashion with the torque-twist curve showing a 

long horizontal plateau. McMullen and Warwaruk [14] experimentally developed torque-twist 
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curves for 6 x 12 in symmetrically reinforced beams at T/M = 0 to 0.25. They observed that the 

presence of bending moment significantly reduced the torsional strength, ductility, and post-

cracking stiffness. The cracking torque is a mild function of the total steel reinforcement.  

The post cracking torsional stiffness of unsymmetrically reinforced members increases 

significantly with the addition of a small bending moment [15]. The torsional ductility reduces in 

the presence of flexural moment for both symmetrically and unsymmetrically reinforced beams 

[14, 15]. The torque-twist diagrams show that the ultimate torsional strength was reached at a 

smaller value of twist in the presence of flexural moment for both symmetrically and 

unsymmetrically reinforced beams. Onsongo [15] developed the torque-twist curves for 

unsymmetrically under-reinforced hollow sections at various T/M ratios. 

American Concrete Institute (ACI) established Committee 438 on torsion in 1958. In 1977, 

Committee 426 was merged with 438 and Committee 445 (shear and torsion) was formed. 

Torsion provisions were first added to the 1971 code which were applicable to only 

nonprestressed rectangular sections.  Provisions for torsion limit design of spandrel members 

were added to the 1977 code [20]. A new procedure was adopted in the 1995 code [21]. 

To the best of the author’s knowledge, the study of spandrel members including CFRP 

retrofitting and its application to slab-beam systems has not been published in the past.  

1.3 Problem Definition 

The primary problem addressed in this dissertation is to develop theoretical behavior and 

strength prediction models for spandrel members subjected to unsymmetrical bending, torsion, 

and combined unsymmetrical bending and torsion both with and without CFRP retrofitting. The 

experimental part of the problem is to conduct a series of experiments on isolated spandrel 

members of square and L-shaped cross sections and on spandrel members as part of a slab-beam 

system and compare the results with the theoretical predictions.  

A typical isolated spandrel member with CFRP retrofitting is shown in Figure 1. A small axial 

compressive force, P, is applied in the beginning of each experiment. A bending moment, Mx, is 

applied at the top end of the specimen which varies linearly to a zero value at the bottom end. A 

torsional moment T is applied at the bottom end of the member which remains uniform along the 

length of the specimen. A schematic of an isolated spandrel member is shown in Figure 2 where 
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Lt is the total length between end gimbals and L is the clear length of specimen. A detailed 

description of the test setup is given in Chapter 2. 

The spandrel members in the slab-beam specimens are subjected to bending and torsional 

moments developed by transverse point load(s) applied on the surface of the slabs. The first slab-

beam specimen was subjected to one concentrated load applied at the middle of the slab as 

shown in Figure 3. The remaining two specimens were subjected to two point loads, as shown in 

Figure 4. 

Another problem addressed in this dissertation is to determine the effectiveness of a CFRP 

retrofitting scheme for improving flexural-torsional capacity of L-shaped spandrel members. The 

CFRP retrofitting was used for both undamaged and pre-damaged specimens. 

The theoretical challenge in this research study is to develop nonlinear behavior and strength 

models for unsymmetrical bending and torsion to predict the observed experimental behavior. 

These include development of expressions for cracking and ultimate bending capacity by 

assuming various failure patterns with inclined neutral axis and moment-curvature relations for 

unsymmetrical bending using tangent stiffness method. The torsion part of the problem includes 

the development of an iterative algorithm based on Modified Compression Field Theory (MCFT) 

for predicting complete torque-twist behavior of members. Finally, the problem of flexural-

torsional interaction is addressed by assuming a parabolic interaction relation.  
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Figure 1. Spandrel member with applied loads 
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Figure 2. Schematic of specimen and its cross section  
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Figure 3. Slab-beam specimen with one point load 

 

 

 

Figure 4. Slab-beam specimen with two point loads 
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1.4 Objectives and Scope  

This research presents the outcome of experimental and theoretical investigations of reinforced 

concrete spandrel members under the action of separate and combined unsymmetrical bending 

and torsion with and without CFRP retrofitting. The main objectives of this study are as follows: 

1. Conduct a series of tests on isolated RC spandrel members under separate and combined 

unsymmetrical bending and torsion to calculate their ultimate capacity, cracking patterns, 

and load-deformation relations.  

2. Investigate the behavior of spandrel members as part of a slab-beam system subjected to 

combined bending and torsion transferred from the slab under the application of point 

load(s).    

3. Develop cracking and ultimate bending capacity expressions for L-shaped reinforced 

concrete members. 

4. Develop moment-curvature relations for unsymmetrical bending of reinforced concrete 

square and L-shaped cross sections.   

5. Develop an iterative algorithm for L-shaped cross sections incorporating Modified 

Compression Field Theory (MCFT) to predict their torsional behavior.   

6. Develop an effective retrofitting scheme for spandrel members of L-shaped cross sections 

to enhance their bending and torsion capacities. 

7. Verify the parabolic interaction relation of bending and torsion for L-shaped RC 

members with and without CFRP retrofitting.  

8. Develop a relation linking the bending and torsion interaction of isolated spandrel 

members to the spandrel members in slab-beam specimens.  

Three isolated members of square cross section, sixteen isolated spandrel members, and three 

slab-beam specimens are tested in this research study. The concrete used in the fabrication of 

these specimens has a specified 28-day ultimate compressive strength of 5,000 psi. Grade 50, #2 

steel rebars are used as both longitudinal and transverse reinforcements in the isolated spandrel 

members and as shear reinforcement in the spandrel members of slab-beam specimens. Grade 

60, #3 rebars are used as slab reinforcement and as longitudinal reinforcement in the spandrel 

members of slab-beam specimens. The CFRP strips used for retrofitting purposes have a 

specified tensile strength of 250 ksi. 
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1.5 Assumptions and Conditions  

The following and assumptions and conditions have also been made: 

1. Plane sections before bending remain plane after bending. 

2. Small deflection theory is applicable. 

3. Shear deformation is ignored in the analysis of spandrel members.   

4. Perfect bond between reinforcing bars and surrounding concrete exists. 

5. Effects of shrinkage and creep are ignored. 

6. A monotonically increasing load is considered is the analysis. 

7. No material unloading is considered.  
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2. EXPERIMENTAL STUDY 

2.1 Introduction 

This chapter presents the experimental part of the research conducted. Three isolated members of 

a square cross section were first tested to gain a basic understanding of their behavior under 

combined bending and torsion. A total of sixteen isolated spandrel members of L-shaped cross 

section, both non-retrofitted and CFRP-retrofitted, were then tested to collapse condition under 

gradually increasing quasi-static unsymmetrical bending, uniform torsion, and combined 

unsymmetrical bending and torsion. Lastly, three slab specimens with monolithic spandrel 

members along all four slab edges were tested.   

2.2 Material Properties 

The specimens tested in the experimental part of the study were fabricated using three types of 

materials, namely concrete, steel reinforcing rebars, and high strength Carbon Fiber Reinforced 

Polymer (CFRP) strips. The mechanical properties of these materials were found by conducting 

appropriate tests following ASTM standards. The details of these tests and the results are 

presented in this section. These properties are utilized in the analyses presented in Chapter 3. 

2.2.1 Concrete	

Companion test cylinders having 4 in. diameter and 8 in. height were cast to determine actual 

compressive strength of concrete for each specimen. A minimum of 28-day curing period was 

used for all cylinders. Figure 5(a) shows one such cylinder mounted with a longitudinal strain 

gage. A P3 strain indicator box, made by Vishay Micromeasurements, is used to record the 

values of strain. Figure 5(b) shows the compression testing apparatus made by Tinius Olsen used 

for cylinder tests. Figure 6 shows a couple of experimental stress-strain relations along with  a 

second degree curve approximation [22]:   

௖݂ 	ൌ ௖݂
ᇱ ቈ
2߳
߳଴
– ൬

߳
߳଴
൰
ଶ

቉ 
(1) 
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where ௖݂
ᇱ represents the ultimate compressive strength of concrete, ߳଴ is the strain corresponding 

to ௖݂
ᇱ, and ௖݂  is concrete stress at any strain level ߳. Table 1 shows the average cylinder values of 

ultimate and failure strains and stresses for each specimen where ௨݂
ᇱ and ߳௨ represent stress and 

strain at failure, respectively.  

 

   

           

 

Figure 5. (a) Concrete test cylinder with strain gage (b) Compression apparatus 

 

 

(a) (b) 
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Figure 6. Stress-strain relationship of concrete 

 

Table 1. Summary of concrete cylinder test results 

Batch No. Specimens ࢉࢌᇱ  (psi) ࣕ૙ (in/in) ࢛ࢌᇱ  (psi) ࢛ࣕ	(in/in) 

1 SL01 3697 - - - 

2 SL02 5149 0.00267 4997 0.00284 

3 SL03 4667 0.00294 4379 0.00350 

4 SS01—SS03 5365 0.00389 5268 0.00399 

5 SM04—SM07 5765 0.00362 5516 0.00398 

6 SM08—SM10 5849 0.00332 5588 0.00353 

7 SM11—SM13 6416 0.00368 6030 0.00406 

8 SM14—SM16 5765 0.00362 5516 0.00398 

9 SM17—SM19 5392 0.00287 5201 0.00323 
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2.2.2 Steel	Reinforcement	

There were two types of reinforcing bars used in this study; Grade 60, #3 rebars (3/8 in. 

diameter) and Grade 50, #2 rebars (2/8 in. diameter). The #3 rebars were used in the slab 

specimens as slab reinforcement as well as longitudinal rebars in the spandrel members. The #2 

rebars were used in the isolated spandrel members as both longitudinal and transverse 

reinforcement and as transverse reinforcement in spandrel members of slab specimens. Figure 7 

shows tensile test setup for a typical rebar. The test specimens were mounted with extensometer 

to record strain values during tests.  

 

 

           

Figure 7. Typical rebar test setup 

 

 

Tension test results of #2 and #3 rebars are shown in Figure 8 and Figure 9, respectively. The 

stress-strain relationship was found to be initially a straight line with a constant slope. This initial 

straight part is followed by an almost horizontal part, as shown in Figure 8 and Figure 9.  For #2 

rebars, the average tensile yield strength was found to be 49.5 ksi. The modulus of elasticity (E) 
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for #2 rebars was found to be 28700 ksi. Similarly for #3 rebars, the average tensile strength was 

determined to be 63.5 ksi and the modulus of elasticity for #3 rebars was found to be 29420 ksi.  

The stress-strain relationship for steel rebars is idealized by a bilinear approximation in the 

numerical analysis given in Chapter 3. The bilinear approximation is represented mathematically 

as:   

௦݂ 	ൌ ௦ߝܧ		 ݄݊݁ݓ |௦ߝ| ൑  ௬ (2)ߝ

௦݂ 	ൌ 		 ௬݂ ݄݊݁ݓ |௦ߝ| ൐  ௬ (3)ߝ

where ௬݂ represents the yield strength of steel rebars and ߳௬  is the corresponding yield strain.  

 

 

 

Figure 8. Stress strain relationship for #2 steel rebars 
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 Figure 9. Stress strain relationship of #3 rebars  

 

2.2.3 Carbon	Fiber	Reinforced	Polymer	(CFRP)	Strips	

Carbon Fiber Reinforced Polymer (CFRP) strips with commercial name “Aslan 500 6mm Tape” 

sold by Hughes Brothers is used for retrofitting purposes.  The strips are 0.63 in. wide and 0.079 

in. thick with a cross sectional area of 0.0498 in2. These strips have been tested by Nakul [23] for 

tensile properties using ASTM D7205/D7205M-06. The tensile strength was found to be 255.6 

ksi at an ultimate strain of 0.01325 in/in. The modulus of elasticity (Ef) was found to be 20 x 106 

psi. The linear approximation of the stress-strain relationship is represented graphically in Figure 

10 and mathematically as: 

௙݂ 	ൌ 		 ௙ߝ௙ܧ ݄݊݁ݓ หߝ௙ห ൑ ߳௙
ᇱ  (4)

௙݂ 	ൌ 		0 ݄݊݁ݓ หߝ௙ห ൐ ߳௙
ᇱ  (5)
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where ௙݂ is the stress level at a strain ߝ௙	and ߳௙
ᇱ  represents the ultimate strain in CFRP strips. As 

indicated by the graph, the CFRP is less stiff than steel and has no ductility. The details about the 

number of CFRP strips used and their locations for each member are given in the subsequent 

sections.    

 

 

 

Figure 10. Stress strain relationship of CFRP strips 

 

 

2.2.4 Sikadur	30	Epoxy	Paste	Adhesive	

The CFRP strips are bonded externally with concrete members using Sikadur 30 epoxy paste. 

Sikadur 30 is a high modulus and high strength structural epoxy paste adhesive. It is a 2-

component, hundred percent solids, and moisture-insensitive adhesive. It conforms to the current 

ASTM C-881 and AASHTO M-235 specifications. Figure 11 shows the two components which 
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were mixed in a 3:1 ratio as recommended. The paste should be used within seventy minutes of 

mixing the two components and the member should not be disturbed for a minimum of 24 hours. 

Sikadur 30 needs a seven days curing time at room temperature to gain its design strength.  

 

 

      

Figure 11. Two components of the epoxy 

 

 

2.3 Test Specimens 

Table 2 presents the reinforcement details of square section members and L-shaped spandrel 

members tested in the laboratory. In this table, square section members are designated as 

Specimens SS01 through SS03 whereas L-shaped spandrel members are named as Specimens 

SM04 through SM19. The last column in Table 2 shows the type of loading applied on a given 

specimen and the loading sequence where applicable. The unsymmetric applied bending moment 

Mx and the torque T are shown in Figure 1.   A detailed description of each specimen is given in 

the subsequent sections.  
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Table 2. Reinforcement details of isolated members  

Specimen No. of Rebars Shear Reinforcement No. of CFRP strips Loading 

SS01 - - - Mx ,  T 

SS02 4, # 2 - - Mx ,  T 

SS03 4, # 2 #2 @ 5 in c/c - Mx ,  T 

SM04 - - - T 

SM05 4, # 2 #2 @ 5 in c/c - T 

SM06 4, # 2 #2 @ 5 in c/c - Mx 

SM07 4, # 2 #2 @ 5 in c/c - Mx ,  T 

SM08 5, # 2 #2 @ 5 in c/c - T 

SM09 5, # 2 #2 @ 5 in c/c - Mx 

SM10 5, # 2 #2 @ 5 in c/c - Mx ,  T 

SM11 5, # 2 #2 @ 5 in c/c - T 

SM12 5, # 2 #2 @ 5 in c/c - Mx ,  T 

SM13 5, # 2 #2 @ 5 in c/c - T  , Mx  

SM14 4, # 2 #2 @ 5 in c/c 2 T 

SM15 4, # 2 #2 @ 5 in c/c 6 Mx ,  T 

SM16 4, # 2 #2 @ 5 in c/c 6 Mx ,  T 

SM17 5, # 2 #2 @ 5 in c/c 4 T 

SM18 5, # 2 #2 @ 5 in c/c 4 Mx ,  T 

SM19 5, # 2 #2 @ 5 in c/c 4 Mx ,  T 
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In addition to the isolated members, three slab-beam specimens with monolithic spandrel 

members on all four edges were also tested. Table 3 shows reinforcement and loading details for 

the slab-beam specimens. All three slabs were isotropically reinforced for positive bending 

moment with no negative reinforcement. In the first slab (SL01), the spandrel members had only 

longitudinal tensile reinforcement with no compression rebars or shear stirrups. However, 

spandrel members of the remaining two slabs were reinforced with longitudinal and transverse 

rebars. The one- and two-point loading conditions indicated in the last column of Table 3 are 

schematically shown in Figure 3 and Figure 4.  Further details are given in the subsequent 

sections.  

 

 

Table 3. Reinforcement details of slabs with spandrel members  

Specimen 

Slab 

Reinforcement 

(Isotropic) 

Spandrel 

Member 

Tension 

Rebars 

Spandrel 

Member 

Compression 

Rebars 

Spandrel Member 

Shear 

Reinforcement 

Point 

Loading 

SL01 #3 @ 3 in c/c 2, # 3 - - One point 

SL02 #3 @ 4 in c/c 2, # 3 2, # 3 #2 @ 6 in c/c Two point 

l d
SL03 #3 @ 4 in c/c 2, # 3 2, # 3 #2 @ 6 in c/c Two point 

l d
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2.3.1 Isolated	Members	of	Square	Cross	Section	

Three isolated members having square cross section were tested under the combined action of 

bending and torsional moments. All specimens were 28 in. long and had 5 in. x 5 in. cross 

section. The first specimen (SS01) was a plain concrete member without any steel reinforcement. 

This member served as a control specimen for square spandrel members. The cross sectional 

details are shown in Figure 12 and the longitudinal details are shown in Figure 13.  

 

 

 

Figure 12. Cross section of SS01  

 

 

 

Figure 13. Long section of SS01.  
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The second specimen (SS02) had only longitudinal reinforcement without any transverse 

stirrups. The reinforcement consists of 4, #2 rebars as shown in Figure 14. The rebars were hold 

in place by a #2 rebar stirrup at each end as shown in long section of specimen in Figure 15.  

 

 

 

Figure 14. Cross section of SS02 

 

 

 

Figure 15. Long section of SS02 
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The third specimen (SS03) had both longitudinal reinforcement and transverse stirrups. The 

longitudinal reinforcement consists of 4, #2 rebars as shown in Figure 16. The shear 

reinforcement was provided by #2 stirrups at a distance of 5 in. center-to-center as shown in long 

section of specimen in Figure 17. 

 

 

 

Figure 16. Cross section of SS03 

 

 

 

Figure 17. Long section of SS03 
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2.3.2 Spandrel	Members	of	L‐Shaped	Cross	Section	

A total of sixteen isolated spandrel members of L-shaped cross section were tested. A plain 

concrete specimen was tested first as a control member. The cross sectional details of this 

member are shown in Figure 18 and the long section is given in Figure 19. The cross sectional 

dimensions shown in Figure 18 are used for all L-shaped spandrel members. According to ACI 

8.12.3 [24], the effective flange width was calculated to be 2 in. These dimensions correspond to 

the dimensions of spandrel members of the slab-beam specimens. A geometric scale factor of 2 

was used to scale down the dimensions to half of that used in slab-beam specimens. For example, 

the overall depth of isolated spandrel members is 4 in. as compared to 8 in. in slab specimens.  

   

 

 

Figure 18. Cross section of SM04 
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Figure 19. Long section of SM04 

 

The remaining 15 L-shaped spandrel members consist of five sets with three specimens in each 

set. The cross sectional and long sectional details of the first set are shown in Figure 20 and 

Figure 21, respectively. The longitudinal reinforcement consists of 2, #2 rebars on the tension 

side and 2, #2 rebars on the compression side. The shear reinforcement is provided by closed 

stirrups of the same #2 size rebars at 5 in. center-to-center. All specimens have a total length of 

28 in.  

 

 

 

Figure 20. Cross section of SM05-SM07  
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Figure 21. Long section of SM05-SM07 

 

 

In addition to the longitudinal and transvers reinforcement provided in the web of the cross 

section as in the first set of specimens, the second set of specimens have a longitudinal rebar in 

the flange part of each member cross section. Since the flange is actually a part of the slab, 

therefore this rebar is provided to study the effects of slab reinforcement parallel to the length of 

the member on the strength and behavior of spandrel members. This rebar was provided in the 

middle of the flange with a concrete cover of 0.5 in. Figure 22 and Figure 23 show the cross 

section and long section of the second set of specimens, respectively.   
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Figure 22. Cross section of SM08-SM10 

 

 

 

Figure 23. Long section of SM08-SM10 

 

 

The longitudinal reinforcement of set 3 specimens is similar to that of set 2. However, these 

specimens have additional transverse straight rebars representing the transverse positive 

reinforcement in the slab. They are located at 5 in. center-to-center in the middle of transverse 

stirrups. Figure 24 and Figure 25 show the cross section and long section of set 3 specimens, 

respectively.   
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Figure 24. Cross section of SM11-SM13 

 

 

 

Figure 25. Long section of SM11-SM13 

 

 

High strength Carbon Fiber Reinforced Polymer (CFRP) strips were used as retrofitting for 

members in the last two sets of specimens. Three specimens of set 4 have CFRP strips mounted 

externally and the last three specimens of set 5 have CFRP strips as internal reinforcement. 

Figure 26 and Figure 27 show the cross section and long section of SM14, respectively. This 

specimen was tested under torsional moment only. Therefore the retrofitting was applied at the 

reentrant corner to diminish the stress concentration at the corner.   
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Figure 26. Cross section of SM14 having two external CFRP strips 

 

 

 

Figure 27. Long section of SM14 

 

 

The details of steel reinforcement and CFRP retrofitting for SM15 are shown in Figure 28 and 

Figure 29. This specimen was tested under combined unsymmetrical bending and torsion. 

Therefore, in addition to the two CFRP strips provided at the reentrant corner in SM14, three 

CFRP strips were installed on the tension side and one on the compression side as shown in 

Figure 28. The exact locations of these elements were decided based on the cracking pattern of 
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similar unretrofitted specimens and after numerically comparing the results of many possible 

combinations. The details of this numerical study is given in Chapter 3.  

 

 

 

Figure 28. Cross section of SM15 

 

 

 

Figure 29. Long section of SM15 

 

 

The details of steel reinforcement and CFRP retrofitting for SM16 are shown in Figure 30 and 
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on each side and one strip at mid depth on the web. The flange experienced cracking in the 

unretrofitted tests of similar specimens, therefore additional strips were installed on the flange to 

study the effectiveness in avoiding such cracking. Similarly diagonal cracks were observed in the 

unretrofitted specimens on the outer side of the web, therefore a CFRP was installed in the mid 

depth location to evaluate its effectiveness in avoiding or delaying such cracking.  

 

 

 

Figure 30. Cross section of SM16 

 

 

 

Figure 31. Long section of SM16 
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The fifth and final set of specimens have an additional steel rebar in the flange and four CFRP 

strips installed internally before pouring of concrete. The reinforcement and CFRP details are as 

shown in Figure 32 and Figure 33. The CFRP strips were attached to the steel stirrups with the 

help of binding wire. These specimens were similar to set 2 in terms of steel reinforcement and 

were intended to study effects of internal CFRP strips.  

 

 

 

Figure 32. Cross section of SM17-SM19 with internal CFRP strips 

 

 

 

Figure 33. Long section of SM17-SM19 
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2.3.3 Slabs	with	Spandrel	Members	

The third type of specimens investigated as part of the research study consisted of slabs with 

spandrel members on all four edges. The spandrel members were cast monolithically with the 

slab and were subjected to bending and torsional moments transferred from the slab under 

concentrated transverse loading. A total number of three such specimens were fabricated and 

tested.  

The slab specimens represent a scaled model of typical room slab with four edge beams. A 

geometric scale factor of 2 was selected to arrive at dimensions suitable for the testing facilities 

available. For example, the overall plan dimensions of 4.5 ft. x 4.5 ft. of the slab correspond to a 

room dimension of 9 ft. x 9 ft. Companion test cylinders were cast along with each slab 

specimen. A minimum of 28 days curing period was allowed before the test. 

The first slab specimen (SL01) was fabricated and tested under a point load applied at the center 

of the slab. Based on the results obtained from this test, the dimensions and loading for the final 

two slab specimens (SL02 and SL03) were modified as discussed in the subsequent sections.  

The first slab specimen (SL01) had overall plan dimensions of 48 in. x 48 in. including spandrel 

members as shown in Figure 34. The slab had a thickness of 2.5 in. The reinforcement was 

provided isotropically with #3 rebars at a distance of 3 in. center-to-center in both directions, as 

shown in Figure 35.  
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Figure 34. Plan of SL01 showing slab reinforcement 

 

 

 

Figure 35. Slab cross section of SL01 
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ACI 8.12.3 [24], the effective flange width was calculated to be 4 in. The longitudinal 

reinforcement of the spandrel members was provided by 2, #3 rebars on the tension side. The 

rebars had a concrete cover of 0.5 in. at the bottom and on the sides. The rebars were bent at the 

ends to provide appropriate development length. The spandrel members had no shear 

reinforcement in the first slab specimen.    

 

 

 

Figure 36. Cross section of spandrel member in SL01 

 

 

 

Figure 37. Long section of spandrel member in SL01 
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The last two slabs (SL02 and SL03) had overall plan dimensions of 54 in. x 54 in. including 

spandrel members as shown in Figure 38. The slab thickness was 4 in., relatively thick to make 

sure failure occurs at the spandrel members. The reinforcement was provided isotropically with 

of #3 rebars at 4 in. center-to-center in both directions, as shown in Figure 39. 

 

 

 

Figure 38. Plan of SL02 and SL03 showing slab reinforcement 
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Figure 39. Slab cross section of SL02 and SL03 

 

 

The spandrel members were provided on all four edges of the slab having dimensions of 8 in. 

deep and 6 in. wide as shown in Figure 40 and Figure 41.  The longitudinal reinforcement 

consisted of 2, #3 rebars on the tension side and 2, #3 rebars on the compression side. The 

transverse reinforcement was provided by stirrups at a distance of 6 in. center-to-center. The 

standard 135-degree hooks were provided in the stirrups. The effective flange width was 

calculated to be 4 in. based on ACI 8.12.3 [24].  

 

 

 

Figure 40. Cross section of spandrel members in SL02 and SL03 
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Figure 41. Long section of spandrel members in SL02 and SL03  

 

 

2.4 Specimen Preparation 

The specimen was fabricated at the casting yard of the structural engineering laboratory at Old 

Dominion University. The reinforcement skeleton was first made and placed in the formwork 

before pouring of concrete as shown in Figure 42 and Figure 43. Spacers were used to ensure 

sufficient cover at the bottom and sides. Two hooks made up of reinforcement rebars were 

placed in slab specimens for lifting. The hooks were anchored with slab reinforcement to avoid 

overstressing of the slab concrete in the lifting process. Companion test cylinders were cast for 

each batch of concrete.  

 

 

 

Figure 42. Formwork with reinforcement for spandrel members 
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Figure 43. Reinforcement skeleton in formwork for slab specimens 

 

 

2.5 Test Setup  

All specimens were tested under monotonically increasing quasi static loading. The isolated 

members were subjected to end moments and torsion. The slab-beam specimens were subjected 

to point load(s) which induces bending and torsion in the spandrel members at the edges. The 

subsequent sections discuss the test setups in detail.  

2.5.1 Test	Setup	for	Isolated	Spandrel	Members	

The testing apparatus developed by Razzaq and McVinnie [25] for biaxial bending of steel 

beam-column was used for testing the isolated spandrel members. A similar type of apparatus 

was designed and fabricated in the Structural Engineering Laboratory of Old Dominion 

University and used by Sanders [26] and Zhao [27]. Konate [28] modified the same apparatus to 

apply torsion at the end for testing steel members.  

The bending part of the test setup along with a test specimen is shown in Figure 44. The main 

components shown in the figure are upper end gimbal, lower end gimbal, steel casing for 

Hydraulic Jack A with Load Cell A, Hydraulic Jack B, and Load Cell B. Figure 45 shows 

schematic of the bending part of the test setup. A closer view of the lower gimbal is shown in 
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Figure 46. The upper end gimbal is bolted to the heavy steel cross beam in an upside down 

position. The cross beam is attached at its ends to steel columns which in turn are anchored to the 

laboratory test bed forming a large reaction frame.   

A solid rectangular steel moment arm having dimensions 1.0 in. x 2.0 in. x 24.0 in. is bolted to 

the upper gimbal inner box to apply bending moment at the top end of the member as shown 

schematically in Figure 47. The load is applied through two 75 in. long tie rods having 0.75 in. 

diameter. The rods are separated at each end by 12 in. long and 0.5 in. thick steel plates. The top 

plate B sits on the machined arm with the help of ball and socket arrangement. The bottom plate 

B is attached to a 22 kips. capacity compression Load Cell B through a similar arrangement. 

Load Cell B is mounted on Hydraulic Jack B as illustrated in Figure 45. The Hydraulic Jack B is 

firmly bolted to a small steel reaction frame. The reaction frame is mounted to the laboratory test 

bed. The Hydraulic Jack B is controlled through an Enerpac manual hydraulic pump.   
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Figure 44. Bending test setup for spandrel members 
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Figure 45. Schematic of portion of apparatus for applying bending [28] 
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Figure 46. Lower end gimbal [28] 

 

 

 

Figure 47. Schematic of moment arm attached to upper gimbal [28] 
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The torsion apparatus along with a test specimen is shown in the Figure 48 and Figure 49 shows 

schematic of the portion of the apparatus for applying torsional moment. The eccentric force 

generating torsional moment at the bottom end is applied through Hydraulic Jack C and 

measured by Load Cell C.  The load is transmitted to the specimen by a chain, as shown in 

Figure 48. The bottom end gimbal is attached to Steel Plate 1 which rotates on solid steel 

spheres, as shown schematically in Figure 49. A shaft is welded to the Steel Plate 2 which is 

connected to the circular bearing on Steel Plate 1. When an eccentric load is applied, Steel Plate 

2 rotates freely on Steel Plate 1.  

The apparatus is further modified for testing concrete specimens. A square steel box of plane 

dimensions 6 in. x 6 in. and height 2 in. is attached to the lower gimbal to provide a plan surface 

for the concrete specimens. Steel plates were welded on the top of the box except on one side 

which is bolted after placing the specimen. These plates hold the specimens in place during test. 

Figure 50 shows one such box for L-shaped spandrel members.  

The distance between the centerlines of the end gimbals is 37.75 in., which is shown as Lt in 

Figure 2, and is the length used in the analysis given in Chapter 3. This length includes the actual 

length L of the specimen and the solid portions of the end fixtures. The bending and torsional 

moments are applied slowly and incrementally with regular stops to manually record the output 

data during tests.  
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Figure 48. Torsion test setup for spandrel members 
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Figure 49. Schematic of a portion of the apparatus for applying torque [28] 
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Figure 50. Steel box for connecting and holding specimen 

 

 

2.5.2 Test	Setup	for	Slab	with	Spandrel	Members	

The schematic of a typical test setup for slab specimens is shown in Figure 51 along with a test 

specimen. A steel frame was constructed to support the specimen during testing. The spandrel 

members of the specimen were simply supported at four corners on heavy steel columns. The 

steel columns were made up of 8 in. x 8 in. tubes with ¾ in. thick walls as shown in Figure 51. 

The steel columns were connected through braces so as to avoid any lateral movement during the 

application of load on the slab. The hydraulic jacks were firmly bolted to a heavy steel cross 

beam bolted at its ends to steel columns. The columns are anchored to the laboratory test bed. 

The cross beam along with the steel columns form a strong reaction frame supporting the 

hydraulic jacks. A 22 kips capacity load cell is attached to each hydraulic jack. The hydraulic 

jacks were controlled manually through hydraulic pumps. The first slab specimen was tested 
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under one point load as shown in Figure 52. The remaining two slab specimens were tested 

under two concentrated loads, as shown in Figure 53 and Figure 54. 

 

 

 

Figure 51. Schematic of test setup for slab with spandrel members  
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Figure 52. Test setup for SL01 

 

 

 

Figure 53. Test setup for SL02 

 

 



51 

 

 

 

Figure 54. Test setup for SL03 

 

 

2.5.3 Measurement	of	Deflection	

A number of dial gages were installed to measure displacement at critical points, as shown is 

Figure 55 for each isolated spandrel member. For isolated spandrel members, the displacement 

was measured at the supports to monitor their movements, if any, and at the mid height of 

specimens in both orthogonal directions. Similarly, for the slab specimens, one dial gage was 

installed at the center of the slab on the bottom side to measure the vertical deflection of slab. 

The vertical and horizontal deflections of spandrel members were recorded at mid span by means 

of additional dial gages. The dial gages have a least count of 0.01 in. The dial gages were 

installed perpendicular to the surface and checked for free movement before the start of each test. 

Initial readings of all dial gages were noted before the application of load, and also after each 

subsequent load increment. The load-deflection relations are given in the subsequent sections.  
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Figure 55. Dial gages for measuring displacements 

 

 

2.5.4 Measurement	of	Rotation	

Two dial gages were installed at the same location to measure deflections for calculating rotation 

at a particular section. These dial gages gave two values of member deflections in one direction, 

so with the distance between the gages known, the rotation of the members can be readily 

calculated. Figure 56 shows such arrangement of gages for a spandrel member in the slab 

specimens.  

The rotation of the isolated spandrel members was calculated at the bottom and at midheight for 

specimens involving torsional moment. Similarly for each spandrel member in the slab 

specimens, the rotation was calculated at midspan. The initial readings of the dial gages were 

noted down before the application of any load. Then the readings were recorded after each 

subsequent increments of load. These readings were taken after the system came to a complete 

static equilibrium as demonstrated by no changes in displacement readings after the application 
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of each load increment. The torque-angle of twist relations are given and discussed in the 

subsequent sections.  

 

 

 

Figure 56. Dial gages to calculate rotation of spandrel members 

 

 

2.5.5 Measurement	of	Strains		

Four strain gages were installed on each isolated spandrel member at different locations 

depending upon the type of loading used during the test. They were either installed parallel to the 

axis of the member to capture maximum normal strains due to bending or at an angle of 45 

degrees with the axis of the member to capture maximum normal strains due to torsion. For the 

retrofitted specimens, some of the strain gages were installed on top of the CFRP strips.   

For the first two slab specimens (SL01 and SL02), one strain gage was mounted on each 

spandrel member to measure the strain on the compression side of the member. They were 

mounted along the axis of each member at mid span. In case of the third slab (SL03), ten strain 

gages were mounted at different locations of the spandrel members. Two spandrel members had 

four strain gages in the same plan at mid span, two on the compression side and two on the 
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tension side. Each of the remaining two spandrel members had one strain gage on the 

compression side. Strain readings were recorded using Model P3 strain indicator and recorder by 

Vishay Micromeasurements, as shown in Figure 57. 

 

 

 

Figure 57. Location of strain gages on spandrel members 

 

 

2.6 Test Procedures 

All isolated spandrel members were subjected to monotonically increasing static loading until 

failure. The following steps were followed to complete each test: 

1. The strain gages were installed on the specimen at proper locations and left untouched for 

a minimum of 24 hours to develop enough bondage with the surface.  

2. The dial gages were mounted at required locations and checked for proper movement 

before applying any load.  

3. The strain indicator was properly charged before starting the test.  
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4. The load cell meters were given a minimum of half hour warming time before the start of 

each test.  

5. The initial readings of dial gages, strain gages, and load cells were noted before applying 

any load.  

6.  A small axial compression load was applied in the beginning of each test to hold the 

specimen in place during test. 

7. For tests with combined bending and torsion loading, the bending moment was applied 

first to a fraction of cracking bending capacity and then the torsion moment was applied 

until failure.   

8. The load was applied in small increments until failure of the specimen.  

9. After each load increment, enough time was given until the system came to a static 

equilibrium by noting the deflection at regular time intervals. 

10. Strain and dial gage readings were noted corresponding to each load increment.  

11. The progression of cracks was noted by marking each crack with a number and using 

markers of different colors.  

12. A number of photos were taken during and after the test.  

13.  The data were recorded and plotted using MS Excel during tests which helped in 

noticing any mistake in recording data or other erroneous activity during the test.  

14. The data were further processed and discussed by compiling a report about each test.  

 

2.7 Test Results of Isolated Members 

This section presents the experimental results of spandrel members and slab specimens in the 

form of load deflection relations. The results are compiled and plotted in MS Excel.  

2.7.1 Specimen	SS01	Test	Results	

The isolated member SS01 was tested under combined bending and torsional moments. A 

moment equal to 35% of the cracking moment of the specimen was applied first. The torsional 

moment was gradually increased next until failure without increasing the applied bending 

moment. However, the applied torsion caused a gradual release in the bending moment and it 

dropped to only 12% of the cracking moment at failure. Figure 58 shows the moment-deflection 



56 

 

 

relation for SS01 which is a straight line indicating linear elastic behavior before the application 

of torsional moment. The maximum applied moment was 4.08 k-in. producing a deflection of 

92.9 x 10-3 in. deflection. The torque versus angle of twist relation for SS01 is shown in Figure 

59.  The maximum torsional moment was noted as 9.11 k-in. at angle of rotation of 63.77 x 10-3 

rad. The specimen failed in a brittle fashion after reaching the maximum torsion. The cracking 

pattern of the specimen SS01 at the end of the test is shown in Figure 60. 

 

 

 

Figure 58. Moment-deflection relation for SS01 
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Figure 59. Torque versus angle of twist relation for SS01 

 

 

           

Figure 60. Final crack pattern of SS01 
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2.7.2 Specimen	SS02	Test	Results	

The isolated member SS02 was also tested under combined bending and torsional moments. A 

moment equal to 25% of the cracking moment of the specimen was applied first. The torsional 

moment was gradually increased next, until failure without increasing the applied bending 

moment. However, the applied torsion caused a gradual release in the bending moment and it 

dropped to only 11% of the cracking moment at failure. Figure 61 shows the moment-deflection 

relation for SS02 which is almost a straight line indicating linear elastic behavior before the 

application of torsional moment. The maximum applied moment is 3.12 k-in. producing a 

deflection of 83.10 x 10-3 in. The torque versus angle of twist relation for SS02 is shown in 

Figure 62.  The maximum torsional moment was recorded as 9.90 k-in. at an angle of rotation of 

89.60 x 10-3 rad. The specimen failed in a brittle fashion after reaching the maximum torsion 

with inclined shear cracking. The cracking pattern of the specimen SS02 at the end of the test is 

shown in Figure 63. 

 

 

 

Figure 61. Moment-deflection relation for SS02 
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Figure 62. Torque versus angle of twist relation for SS02  

 

 

           

Figure 63. Final crack pattern of SS02  
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2.7.3 Specimen	SS03	Test	Results	

The isolated member SS03 was tested under combined bending and torsional moments. A 

moment equal to 47% of the cracking moment of the specimen was first applied. The torsional 

moment was gradually increased next until failure without increasing the applied bending 

moment. However, the applied torsion caused a gradual release in the bending moment and it 

dropped to only 11% of the cracking moment at failure. Figure 64 shows the moment-deflection 

relation for SS03 which is a straight line indicating linear elastic behavior before the application 

of torsional moment. The maximum applied moment is 6 k-in. producing a deflection of 116 x 

10-3 in. The torque versus angle of twist relation for SS03 is shown in Figure 65.  The maximum 

torsional moment was recorded as 13.82 k-in. at an angle of rotation of 104.33 x 10-3 rad. The 

specimen failed in a brittle fashion due to inclined shear cracking after reaching the maximum 

torsion. The cracking pattern of the specimen SS03 at the end of the test is shown in Figure 66. 

 

 

 

Figure 64. Moment-deflection relation for SS03  
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Figure 65. Torque-angle of twist relation for SS03 

 

 

           

Figure 66. Final rack pattern for SS03  
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2.7.4 Specimen	SM04	Test	Results	

The spandrel member SM04 was tested under torsional moment only. Figure 67 shows the 

torque versus angle of twist relation for SM04. The maximum torsional moment observed was 

3.33 k-in. causing a rotation of 26.09 x 10-3 rad. at the bottom. The failure occurred at torsional 

moment of 2.61 k-in. at an angle of twist equal to 32.36 x 10-3 rad. The relation shows a linear 

behavior of the member before failure. Figure 68 shows the cracking of the specimen at the end 

of the test. The cracks are inclined on all the faces except along the depth of the flange and along 

the width of the web where they are almost normal to the edges. The cracks resulted in a 3D 

failure surface, as shown in Figure 68.   

 

 

 

Figure 67. Torque versus angle of twist relation for SM04 
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Figure 68. Final crack pattern for SM04  

 

 

2.7.5 Specimen	SM05	Test	Results	

The spandrel member SM05 was tested under torsional moment only. Figure 69 shows the 

torque versus angle of twist relation for SM05. The maximum torsional moment observed was 

4.99 k-in. causing a rotation of 30.80 x 10-3 rad. at the bottom. The failure occurred at torsional 

moment of 4.40 k-in. at an angle of twist equal to 44.03 x 10-3 rad. Figure 70 shows the cracking 

of the specimen at the end of the test. The cracks are numbered to show the order of their 

occurrence. The first crack was developed near the top end at the outside tip of the flange, 

followed by another crack on the inner tip of the flange at the lower end as marked 1 and 2, 

respectively. Crack 1 extended along the depth of the flange and further extension occurred with 

increase in load as marked 3. Crack 4 was the final and longest crack extending along the width 

of the flange and along depth of the web, as shown in Figure 69.  
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Figure 69. Torque versus angle of twist relation for SM05 

 

 

           

Figure 70. Final crack pattern for SM05 
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2.7.6 Specimen	SM06	Test	Results	

The spandrel member SM06 was tested under bending moment only. However the specimen 

failed immaturely near the top end of the specimen and no useful data were obtained. The failure 

pattern is shown in Figure 71. As a result of this test, it was realized that the bending setup (rods 

and plates) develop a significant bending moment at the top end and must be accounted for in the 

subsequent tests. In subsequent tests, steel shims were used to fill the gap between the specimen 

and the steel box at both ends. These shims helped in reducing any slippage and concentration of 

forces at the ends.      

 

 

 

Figure 71. Final crack pattern of SM06  
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2.7.7 Specimen	SM07	Test	Results	

The spandrel member SM07 was tested under combined bending and torsional moments. A 

moment equal to 78% of the cracking moment of the specimen was first applied. The torsional 

moment was then gradually increased until failure without increasing the applied bending 

moment. However, the applied torsion caused a gradual release in the bending moment and it 

dropped to only 29% of the cracking moment at failure. Figure 72 shows the moment-deflection 

relation for SM07. The maximum applied moment is 3.84 k-in. producing a deflection of 31 x 

10-3 in. The torque versus angle of twist relation for SM07 is shown in Figure 73.  The maximum 

torsional moment was recorded as 5.15 k-in. at an angle of rotation of 27.71 x 10-3 rad. The 

failure occurred at torsional moment of 4.36 k-in. at an angle of twist equal to 43.01 x 10-3 rad. 

Figure 74 shows the cracking of the specimen at the end of the test. The specimen failed in a 

sudden fashion with no prior cracking. The crack started at the corner of the flange and web, 

extending in an inclined direction towards the tip of the flange and passing through the whole 

depth of the flange, as shown in Figure 74.  

 

 

 

Figure 72. Moment-deflection relation for SM07 
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Figure 73. Torque versus angle of twist relation for SM07  

 

 

           

Figure 74. Final crack pattern of SM07 
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2.7.8 Specimen	SM08	Test	Results	

The spandrel member SM08 was tested under torsional moment only. Figure 75 shows the 

torque versus angle of twist relation for SM08. The maximum torsional moment observed was 

5.15 k-in. causing a rotation of 40.67 x 10-3 rad. at the bottom. The failure occurred at torsional 

moment of 4.36 k-in. at an angle of twist equal to 45.84 x 10-3 rad. Figure 76 shows the cracking 

of the specimen at the end of the test. The cracking initiated from the corner of the flange and 

web and extended upward in an inclined direction towards the tip of the flange as shown in the 

figure. Upon increasing the load, two additional long cracks were developed covering the width 

of the flange and the depth of the web as marked 3 in Figure 76.  

 

 

 

Figure 75. Torque versus angle of twist relation for SM08 
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Figure 76. Final crack pattern of SM08 

 

 

2.7.9 Specimen	SM09	Test	Results	

The spandrel member SM09 was tested under bending moment only. Figure 77 shows the 

moment-deflection relation for SM09. The maximum moment observed was 7.2 k-in. 

corresponding to a midheight deflection of 293.5 x 10-3 in. The moment at failure was 6.24 k-in. 

at a midheight deflection of 319 x 10-3 in. Figure 78 shows the cracking pattern of SM09 at the 

end of the test. The specimen failed locally at the tip of the flange due to high concentrating 

moment at the top end. No cracks were observed anywhere else in the specimen.  
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Figure 77. Moment-deflection relation for SM09  

 

 

          

Figure 78. Final crack pattern of SM09 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0.0 100.0 200.0 300.0 400.0

B
e
n
d
in
g 
m
o
m
e
n
t 
(k
‐i
n
)

Deflection at midheight (0.001 in)



71 

 

 

2.7.10 Specimen	SM10	Test	Results	

The spandrel member SM10 was tested under the action of combined bending and torsional 

moments. A moment equal to 49% of the cracking moment of the specimen was first applied. 

The torsional moment was then gradually increased until failure without increasing the applied 

bending moment. However, the applied torsion caused a gradual release in the bending moment 

and it dropped to only 29% of the cracking moment at failure. Figure 79 shows the moment-

deflection relation for SM10. The maximum applied moment is 2.40 k-in. producing a deflection 

of 55.8 x 10-3 in. The torque versus angle of twist relation for SM10 is shown in Figure 80.  The 

maximum torsional moment was recorded as 5.43 k-in. at an angle of rotation of 39.67 x 10-3 

rad. The final torsional moment observed was 4.67 k-in. at an angle of twist equal to 42.31 x 10-3 

rad. Figure 81 shows the cracking of the specimen at the end of the test. The test was stopped 

after observing crack 1 extending along the width of the flange and depth of the web, as shown 

in Figure 81.  

 

 

 

Figure 79. Moment-deflection relation for SM10 
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Figure 80. Torque versus angle of twist relation for SM10 

 

 

           

Figure 81. Final crack pattern of SM10 
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2.7.11 Specimen	SM11	Test	Results	

The spandrel member SM11 was tested under torsional moment only. Figure 82 shows the 

torque versus angle of twist relation for SM11. The test was carried out until minor cracking was 

observed on the flange tip near the bottom of end of the member as shown in Figure 83. The 

maximum torsional moment observed was 4.83 k-in. causing a rotation of 40.39 x 10-3 rad. at the 

bottom. The cracks were developed at a torsional moment of 4.40 k-in. at an angle of twist equal 

to 41.77 x 10-3 rad.  

 

 

 

Figure 82. Torque versus angle of twist relation for SM11 
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Figure 83. Final crack pattern of SM11 

 

 

2.7.12 Specimen	SM12	Test	Results	

The spandrel member SM12 was tested under the action of combined bending and torsional 

moments. A moment equal to 54% of the cracking moment of the specimen was first applied and 

maintained at this level while applying torsion in the next phase. Figure 84 shows the moment-

deflection relation for SM12. The maximum applied moment is 2.64 k-in. producing a deflection 

of 44.3 x 10-3 in. The torque versus angle of twist relation for SM12 is shown in Figure 85.  The 

maximum torsional moment noted was 5.12 k-in. at an angle of rotation of 25.4 x 10-3 rad. The 

final torsional moment observed was 4.56 k-in. at an angle of twist equal to 29.8 x 10-3 rad. 

Figure 86 shows the cracking of the specimen at the end of the test. A small crack was developed 

in the flange near the bottom end followed by a major crack passing through the flange width 

and depth of the web, as shown in Figure 86.  
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Figure 84. Moment-deflection relation for SM12 

 

 

 

Figure 85. Torque versus angle of twist relation for SM12 
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Figure 86. Final crack pattern of SM12 

 

 

2.7.13 Specimen	SM13	Test	Results	

The spandrel member SM13 was tested under the action of combined bending and torsional 

moments. However torsional moment was applied first in this case. Figure 87 shows the torque 

versus angle of twist relation for SM13. The torsional moment was applied until minor cracking 

was observed in the flange near the bottom end as shown in Figure 89. The torque value was 

4.40 k-in. at a rotation angle of 43.8 x 10-3 rad. Figure 88 shows the moment-deflection relation 

for SM13. The failure occurred at a moment equal to 7.2 k-in. producing a deflection of 144.2 x 

10-3 in. The failure was caused by cracking of the flange at the top end with widening of the 

cracks at the bottom, as shown in Figure 88.  
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Figure 87. Torque versus angle of twist relation for SM13 

 

 

 

Figure 88. Moment-deflection relation for SM13 
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Figure 89. Final crack pattern of SM13 

 

 

2.7.14 Specimen	SM14	Test	Results	

The spandrel member SM14 was tested under torsional moment only. Figure 90 shows the 

torque versus angle of twist relation for SM14. The maximum torsional moment observed was 

5.23 k-in. at a rotation of 45.11 x 10-3 rad. at the bottom. The failure occurred due to inclined 

cracks on the flange face and along the depth of the web as shown in Figure 91. The torsional 

moment at this point was 4.91 k-in. at an angle of rotation equal to 48.79 x 10-3 rad.  
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Figure 90. Torque versus angle of twist relation for SM14 

 

 

           

Figure 91. Final crack pattern of SM14 
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2.7.15 Specimen	SM15	Test	Results	

The spandrel member SM15 was tested under the action of combined bending and torsional 

moments. A moment equal to 74% of the cracking moment of the unretrofitted specimen was 

first applied and maintained at this level while applying torsion in the next phase. Figure 92 

shows the moment-deflection relation for SM15. The maximum applied moment is 3.60 k-in. 

producing a deflection of 67.1 x 10-3 in. The torque versus angle of twist relation for SM15 is 

shown in Figure 93.  The maximum torsional moment noted was 6.61 k-in. at an angle of 

rotation of 73.1 x 10-3 rad. The final torsional moment observed was 6.34 k-in. at an angle of 

twist equal to 79.3 x 10-3 rad. Figure 94 shows the cracking of the specimen at the end of the test. 

The cracking initiated at the top end in the middle of the flange and extended in an inclined 

direction towards the tip of the flange marked as 1 in the figure. Upon increasing the load, a 

similar crack was developed near the midspan marked as 3. Two cracks having similar 

inclinations were observed on along the depth of the web marked as 5 and 7 in Figure 94. There 

were no cracks formed in the CFRP elements. 

 

 

 

Figure 92. Moment-deflection relation for SM15 
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Figure 93. Torque versus angle of twist relation for SM15 

 

 

          

Figure 94. Final crack pattern of SM15 
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2.7.16 Specimen	SM16	Test	Results	

The spandrel member SM16 was tested under the action of combined bending and torsional 

moments. A moment equal to 74% of the cracking moment of the unretrofitted specimen was 

first applied and maintained at this level while applying torsion in the next phase. Figure 95 

shows the moment-deflection relation for SM16. The maximum applied moment is 3.60 k-in. 

producing a deflection of 52.5 x 10-3 in. The torque versus angle of twist relation for SM16 is 

shown in Figure 96.  The maximum torsional moment noted was 8.29 k-in. at an angle of 

rotation of 67.4 x 10-3 rad. The final torsional moment observed was 7.89 k-in. at an angle of 

twist equal to 72.97 x 10-3 rad. Figure 97 shows the cracking of the specimen at the end of the 

test. The cracking initiated in the center of the flange near the top end and moved towards the 

outer edge of the flange in an inclined direction. However the CFRP strip at the edge prevented it 

from passing through the depth of the flange. At a higher load level, another crack developed 

across the depth of the flange marked as 3 in Figure 97.  

 

 

 

Figure 95. Moment-deflection relation for SM16 
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Figure 96. Torque versus angle of twist relation for SM16 

 

 

           

Figure 97. Final crack pattern of SM16 
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2.7.17 Specimen	SM17	Test	Results	

The spandrel member SM17 was tested under torsional moment only. Figure 98 shows the 

torque versus angle of twist relation for SM17. The maximum torsional moment observed was 

4.32 k-in. at a rotation of 51.50 x 10-3 rad. at the bottom. The cracking initiated at the corner of 

flange and web marked as 1 in Figure 99. It was followed a few more small cracks on the flange 

outer face and across the depth of the flange. Finally, a big crack developed across the width of 

the flange marked as 6 in the figure. The torsional moment at this point was 4.24 k-in. at an angle 

of rotation equal to 55.42 x 10-3 rad. 

 

 

 

Figure 98. Torque versus angle of twist relation for SM17 
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Figure 99. Final crack pattern of SM17 

 

 

2.7.18 Specimen	SM18	Test	Results	

The spandrel member SM18 was tested under bending moment only. Figure 100 shows the 

moment-deflection relation for SM18. The maximum moment observed was 9.36 k-in. 

corresponding to a midheight deflection of 230.5 x 10-3 in. The moment at failure was 6.24 k-in. 

at a midheight deflection of 242.80 x 10-3 in. Figure 101 shows the cracking pattern of SM18 at 

the end of the test. A few small cracks developed across the width of the web initially as shown 

in the figure. However, the cracks did not extend across the depth. At a higher load, the top of 

specimen cracked all across the cross section.   
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Figure 100. Moment-deflection relation for SM18 

 

 

           

Figure 101. Final crack pattern for SM18 
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2.7.19 Specimen	SM19	Test	Results	

The spandrel member SM19 was tested under both bending and torsional moments. A moment 

equal to 68% of the cracking moment of the specimen was first applied and maintained at this 

level while applying torsion in the next phase. Figure 102 shows the moment-deflection relation 

for SM19. The maximum applied moment is 3.60 k-in. producing a deflection of 112.0 x 10-3 in. 

The torque versus angle of twist relation for SM19 is shown in Figure 103.  The maximum 

torsional moment noted was 4.67 k-in. at an angle of rotation of 49.8 x 10-3 rad. The final 

torsional moment observed was 4.44 k-in. at an angle of twist equal to 55.86 x 10-3 rad. Figure 

104 shows the cracking of the specimen at the end of the test. Two major cracks were developed 

at the same load level marked as 1 in the figure. One of the cracks runs in an inclined direction 

across the width of the flange and extending through the depth of the flange tip. Another crack 

crossed the depth of the web in a similar inclined fashion.  

 

 

 

Figure 102. Moment-deflection relation for SM19 
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Figure 103. Torque versus angle of twist relation for SM19 

 

 

        

Figure 104. Final crack pattern of SM19 
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2.8 Slab Specimens Test Results 

Three slab specimens with spandrel members on all four sides were tested as part of this research 

study. The following sub sections discuss the test results for these specimens one by one.  

2.8.1 Specimen	SL01	Test	Results	

The slab specimen SL01 was tested under a point load applied at the center of the slab as shown 

in Figure 52. Slab deflection was recorded at the midspan under the point of application of the 

load. Figure 105 shows load-midspan deflection for the slab. The maximum load was recorded as 

27.24 kips. The maximum deflection was recorded as 474 x 10-3 in. corresponding to a load of 

24.97 kips. 

 

 

 

Figure 105. Load-deflection relation for slab of SL01 
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Deflections of spandrel members were recorded with the help of dial gages and are shown in 

Figure 106. Spandrel members A and B appear to deflect in a similar fashion while spandrel 

members C and D have approximately same deflections. The position of these spandrel members 

in the slab-beam specimen SL01 is shown in Figure 34. The difference in the response of the 

spandrel members could be due to the difference of the slab moments in two directions caused by 

the difference in distances from the top to the rebar centers.  

 

 

 

Figure 106. Load-deflection relation for spandrel members of SL01 

 

 

At load level of 24.5 kips., major cracks were observed at the bottom face of the slab.  The 
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spandrel members C and D in the opposite direction. These cracks are shown in Figure 107. 
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Figure 107. Cracks at the bottom surface of slab in SL01 

 

 

After the formation of initial cracks, the test was conducted in a displacement control fashion. 

The displacement at the midspan of the slab was used as a reference displacement. At a load 

level of 25.72 kips., diagonal cracks were observed in spandrel members A and D, marked as 3 

in Figure 108. 
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Figure 108. Cracks in spandrel member of SL01 at a load of 25.72 kip 

 

 

At a load value of 27.24 kips., major spalling of concrete occurred from the bottom of the slab as 

shown in Figure 109. The load stopped increasing while the slab mid-span deflection kept 

increasing.  Readings were taken and the test was stopped. The load dropped to a new value of 

24.97 kips.  
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Figure 109. Bottom view of SL01 after test 

 

 

2.8.2 Specimen	SL02	Test	Results	

The slab specimen SL02 was tested under two point loads applied at one third points along the 

middle of the slab as shown in Figure 53. The distance between the two concentrated loads was 

18 in. Slab deflection was recorded at midpoint by installing a dial gage on the bottom side of the 

slab. Figure 110 shows load-midspan deflection for the slab. The maximum value of each load 

was recorded as 17.80 kips. causing a deflection of 254.0 x 10-3 in. The maximum deflection was 

recorded as 265.2 x10-3 in. corresponding to a load of 16.85 kips. 
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Figure 110. Load-deflection relation for slab of SL02 

 

 

The vertical deflections of spandrel members were recorded with the help of dial gauges and are 

shown in Figure 111. Spandrel members B and D were closer to the loads and experienced 

higher deflections as compared to spandrel members A and C which were located away from the 

loads as shown in the figure. The positions of the spandrel members in the slab-beam specimen 

SL02 are shown in Figure 38. The maximum deflection was recorded in spandrel member B as 

147.60 x10-3 in. 
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Figure 111. Load-deflection relation for spandrel members of SL02 

 

 

The cracking pattern of the slab at the end of the test is shown in Figure 112. The cracks run 

parallel to the edge between the points of application of the loads and then extend towards the 

corners in an inclined direction.   
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Figure 112. Bottom view of SL02 after test 

 

 

The cracking pattern of typical spandrel member is shown in Figure 113. The cracks are normal 

to the axis of the member near the middle and becomes more and more inclined toward the 

corners.  

 

 

 

Figure 113. Final cracking pattern in typical spandrel member of SL02 
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2.8.3 Specimen	SL03	Test	Results	

The slab specimen SL03 was tested under two point loads applied at 5.5 inches from the outer 

edges of the slab as shown in Figure 54. The distance between the two point loads was 43 in. 

Slab deflection was recorded at midpoint by installing a dial gage on the bottom side of the slab. 

Figure 114 shows load-midspan deflection for the slab. The maximum value of load was 

recorded as 21.77 kips. causing a deflection of 254.0 x 10-3 in. The maximum deflection was 

recorded as 233.60 x10-3 in. 

 

 

 

Figure 114. Load-deflection for slab of SL03 
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(SMD) deflection is plotted against load P2 which was closer to it. The position of these spandrel 

members in slab-beam specimen SL03 is shown in Figure 38. 

 

 

 

Figure 115. Load-deflection relation of SMB in SL03 
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Figure 116. Load-deflection relation of SMD in SL03 

 

 

The cracking pattern of the slab at the end of the test is shown in Figure 117. The cracks started 

closer to the spandrel members where loads are applied and extended gradually towards the 

middle of the slab. The cracks eventually met in the middle and formed continuous lines of 

cracks from one spandrel member to the opposite spandrel member.    
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Figure 117. Bottom view of SL03 after test 

 

 

The cracking pattern of spandrel members closer to the loads is shown in Figure 118 and Figure 

119. The cracks are mostly formed in the middle one third of the members and are perpendicular 

to the axis of the members indicating primarily a bending type failure.  

 

 

 

Figure 118. Final crack pattern of SMB in SL03 
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Figure 119. Final crack pattern of SMD in SL03 

 

 

2.9 Comparison and Discussion 

In SM14, the two strips at the corner prevented the stress concentration and prevented the 

premature crack at that location. The specimen failed in a brittle fashion once the peak load was 

reached with a big crack on the front face. 

The summary of test results for spandrel members is given in Table 4. In this table, Mmax is the 

maximum applied bending moment, Tmax is the maximum applied torsional moment, Dmax is the 

deflection at midheight of the member corresponding to maximum bending moment, and ϴmax is 

the angle of twist at the bottom of the specimen corresponding to maximum applied torsion.  
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Table 4. Summary of test results for spandrel members 

Specimen 
Mmax  

(k-in.) 

Dmax  

(0.001 in.)

Tmax  

(k-in.)

ϴmax 

(0.001 rad.) 

SS01 4.08 95.9 9.11 63.77 

SS02 3.12 83.1 9.90 89.6 

SS03 6.00 116.0 13.82 104.3 

SM04 - - 3.32 26.1 

SM05 - - 4.99 30.8 

SM06 - - - - 

SM07 3.84 31.0 5.15 27.7 

SM08 - - 5.15 40.67 

SM09 7.20 293.5 - - 

SM10 2.40 55.8 5.43 39.7 

SM11 - - 4.83 40.4 

SM12 2.64 44.3 5.12 25.4 

SM13 7.20 144.2 4.40 43.8 

SM14 - - 5.23 45.1 

SM15 3.60 67.1 6.61 73.1 

SM16 3.60 52.5 7.89 72.9 

SM17 - - 4.32 51.5 

SM18 9.36 230.5 - - 

SM19 3.60 112.0 4.67 49.8 
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3. THEORETICAL ANALYSIS 

 

3.1 Introduction 

This chapter presents the theoretical analysis part of the study. Material nonlinear bending and 

torsional analysis procedures are formulated at the cross-sectional and member levels.  

3.2 Bending Strength Analysis 

This section describes the cross-sectional bending analysis of all specimens. Both crack initiation 

and ultimate bending strength analyses are formulated for sections of isolated members.    

3.2.1 Uncracked	Section	Analysis	

Transformed area method is utilized for cross-sectional analysis including CFRP retrofitting 

under unsymmetrical bending in the elastic range. Figure 120 shows a typical cross section along 

with general non-principal coordinate axes, x and y. Let β be the angle which the neutral axis 

makes with the horizontal x-axis, as shown in Figure 120.   

 

 

 

Figure 120. Typical cross section for transformed area method 
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The axial stress, ߪ௭,	due to a moment having components ܯ௫	and ܯ௬ about x and y axes, 

respectively, is given [29]: 

௭ߪ 	ൌ 	െ ቈ
௫ܫ௬ܯ ൅ ௫௬ܫ௫ܯ
௫௬ଶܫ௬ିܫ௫ܫ

቉ ݔ ൅ ቈ
௬ܫ௫ܯ ൅ ௫௬ܫ௬ܯ
௫௬ଶܫ௬ିܫ௫ܫ

቉  ݕ
(6) 

 

 

 

 

where ܫ௫	is the moment of inertia about x-axis, ܫ௬	is the moment of inertia about y-axis, and ܫ௫௬ 

is the product of inertia about these axes. In this study, the spandrel members are subjected to 

moments only about the x-axis. Therefore, Equation 7 simplifies to:  

௭ߪ 	ൌ 	െ ቈ
௫௬ܫ௫ܯ
௫௬ଶܫ௬ିܫ௫ܫ

቉ ݔ ൅ ቈ
௬ܫ௫ܯ

௫௬ଶܫ௬ିܫ௫ܫ
቉  ݕ

(7) 

 

 

 

 

Cracking starts on the tension side of cross section when the normal tensile stress in concrete 

reaches modulus of rupture of concrete. Therefore, the bending moment causing initiation of 

cracking, ܯ௫௖௥, is given by: 

௫௖௥ܯ ൌ
௥݂൫	ܫ௫ܫ௬ െ ௫௬ଶܫ ൯
ݕ௬ܫ െ ݔ௫௬ܫ

 
(8) 

 

 

 

 

where fr is the modulus of rupture of concrete equal to 7.5ඥ ௖݂
ᇱ according to ACI 318-14 [30]. 

The angle of inclination of the neutral axis is obtained by setting the normal stress ߪ௭ equal to 

zero in Equation 7 resulting in: 

	ߚ݊ܽݐ ൌ
௫௬ܫ
௬ܫ

 
(9) 
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Therefore, under the action of unsymmetrical bending, the neutral axis orientation depends only 

on the geometry of the cross section before cracking. Once the cross section is cracked, the 

orientation of the neutral axis changes with an increase in	ܯ௫. Since ܫ௫௬ for the unsymmetrical 

cross section is not zero, the neutral axis is inclined.    

Table 5 summarizes the results of uncracked section analysis for all square section and L-shaped 

specimens using the transformed area method. The location of the neutral axis is completely 

determined by distances Y1 and Y2 and angle β as shown in Figure 120.  The values given in the 

table indicate that the neutral axis for L-shaped specimens is inclined. 

The crack initiation location and Mxcr values are also given in Table 5. It is worth mentioning 

that cracking starts at the bottom right corner of the L-shaped sections, that is, at location B as 

shown in Figure 120. The four steel rebars in SS02 and SS03 increase the value of ܯ௫௖௥ by 10% 

as compared to the similar plain concrete section SS01. Similarly, ܯ௫௖௥ value of the plain 

concrete L-shaped section SM04 increases by 15% in specimens SM05 through SM07 having 

four longitudinal rebars.  

The additional rebar in the flange of SM08 through SM10 has negligible impact on the cracking 

capacity because it is located very close to the neutral axis. The difference in cracking moment 

of specimens SM08 through SM10 and specimens SM11 through SM13 is caused by the 

difference in their compressive strengths of concrete since both sets of specimens have similar 

longitudinal reinforcements. The introduction of two CFRP strips in SM14 at the corner of the 

flange and web caused only 2.2 percent increase in the cracking moment because of their 

proximity with the neutral axis. The cracking moment is increased by 30 percent in case of 

SM15 and SM16 with the application of additional CFRP strips.   
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Table 5. Results of uncracked section analysis 

Specimen 
b  

(deg.) 

Y1  

(in.) 

Y2 

(in.) 

Crack 

Location 

Mxcr 

(k-in.) 

SS01 0.00 2.50 2.50 - 11.44 

SS02- SS03 0.00 2.50 2.50 - 12.53 

SM04 14.46 2.30 1.01 B 4.23 

SM05—SM07 14.10 2.29 1.04 B 4.88 

SM08—SM10 14.14 2.29 1.03 B 4.92 

SM11—SM13 14.18 2.29 1.03 B 5.05 

SM14 13.57 2.29 1.08 B 4.99 

SM15 11.70 2.30 1.27 B 6.34 

SM16 12.07 2.27 1.21 B 6.36 

SM17—SM19 13.12 2.31 1.15 B 5.25 

 

 

3.2.2 Ultimate	Strength	Analysis	

In the materially nonlinear range, the orientation of the neutral axis depends not only on the 

magnitude of ܯ௫, geometric properties of the cross section, and the amount of reinforcement but 

also on the mechanical properties of concrete, steel, and CFRP. For any combination of these 

characteristics, a total of eleven ultimate stress patterns is possible based on the orientation and 

location of the neutral axis [31]. However, based on the size and geometry of the cross sections 

used in this dissertation, only two of the eleven ultimate stress patterns were found to be 

applicable. These two patterns are shown in Figure 121 and Figure 122.  
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Figure 121. Pattern 1 for ultimate strength analysis 
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Figure 122. Pattern 2 for ultimate strength analysis 

 

 

The ultimate strain of concrete ߳௖௨  occur at point F in Figure 121 and Figure 122, therefore the 

strain in each reinforcing element is given as: 

߳௜ ൌ ߳௖௨ ൤1 െ
௜ݔ
ଵݔ
െ
௜ݕ
ଵݕ
൨ (10) 

where (ݔ௜, ݕ௜ሻ are coordinates of the ith element, ݔଵ is the x intercept of neutral axis, and ݕଵ is the 

y intercept of neutral axis. This equation can be used for both steel rebars and CFRP elements. 

Once the strain in an element is known, the stress is determined using stress strain relationship of 

the corresponding material. Knowing the concrete compression block and forces in each 

reinforcing element, total axial force and bending moments can be determined readily by 

satisfying equilibrium conditions. The axial force equilibrium for pattern 1 shown in Figure 121 

can be expressed as: 
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ܲ ൌ 0.85 ௖݂
ᇱ ൤
1
2
ଵߚ
ଶݔଵݕଵ൨ ൅෍ ௦݂௜ܣ௕௜

௡

௜ୀଵ

൅෍ ௙݂௜ܣ௙௜

௠

௜ୀଵ

 
(11) 

where ߚଵ is the ACI coefficient which depends on compressive strength of concrete. The first 

term on the right hand side is the total compressive force in concrete. The second term is the 

summation of forces in steel rebars where ܣ௕௜	is the area and ௦݂௜ is the stress in ith steel rebar. The 

last term on the right hand side is the summation of forces in CFRP elements where ܣ௙௜ is the 

area and ௙݂௜ is the stress in ith CFRP element. The bending moment equilibrium about x axis in 

Figure 121 results in:  

௫ܯ ൌ 0.85 ௖݂
ᇱ ൤
1
2
ଵߚ
ଶݔଵݕଵ൨ തݕ ൅෍ ௦݂௜ܣ௦௜ݕ௦௜

௡

௜ୀଵ

൅෍ ௙݂௜ܣ௙௜ݕ௙௜

௠

௜ୀଵ

 
(12) 

where ݕത  is the y centroidal coordinate of the concrete compression area, ݕ௦௜ is the distance of ith 

steel rebar along y axis from origin, and ݕ௙௜is the distance of the ith CFRP element along y axis 

from origin. Finally, the bending moment equilibrium about y axis in Figure 121 gives:  

௬ܯ ൌ 0.85 ௖݂
ᇱ ൤
1
2
ଵߚ
ଶݔଵݕଵ൨ ݔ̅ ൅෍ ௦݂௜ܣ௦௜ݔ௦௜

௡

௜ୀଵ

൅෍ ௙݂௜ܣ௙௜ݔ௙௜

௠

௜ୀଵ

 
(13) 

where ̅ݔ  is the x centroidal coordinate of the concrete compression area, ݔ௦௜ is the distance of ith 

steel rebar along x axis from origin, and ݔ௙௜is the distance of the ith CFRP element along x axis 

from origin. Similarly, the	ܲ,	ܯ௫, and ܯ௬ equilibrium equations for the pattern 2 shown in 

Figure 122 are:  

ܲ ൌ 0.85 ௖݂
ᇱ ൤ߚଵܾ௙ݕଶ ൅

1
2
ଵߚ ௙ܾሺݕଵ െ ଶሻ൨ݕ ൅෍ ௦݂௜ܣ௕௜

௡

௜ୀଵ

൅෍ ௙݂௜ܣ௙௜

௠

௜ୀଵ

 
(14) 

௫ܯ ൌ 0.85 ௖݂
ᇱ ൤ߚଵܾ௙ݕଶ ൅

1
2
ଵߚ ௙ܾሺݕଵ െ ଶሻ൨ݕ തݕ ൅෍ ௦݂௜ܣ௦௜ݕ௦௜

௡

௜ୀଵ

൅෍ ௙݂௜ܣ௙௜ݕ௙௜

௠

௜ୀଵ

 
(15) 
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௬ܯ ൌ 0.85 ௖݂
ᇱ ൤ߚଵܾ௙ݕଶ ൅

1
2
ଵߚ ௙ܾሺݕଵ െ ଶሻ൨ݕ ݔ̅ ൅෍ ௦݂௜ܣ௦௜ݔ௦௜

௡

௜ୀଵ

൅෍ ௙݂௜ܣ௙௜ݔ௙௜

௠

௜ୀଵ

 
(16) 

An iterative procedure is used to determine the correct location and orientation of neutral axis by 

satisfying equilibrium conditions. An initial value of ݕଵ is assumed as 0.001, which is then 

incremented with 0.001 in each cycle. Similarly, the value of angle ߚ starts with a value of 0.01o 

and incremented by 0.01o in each cycle. This process is continued until equilibrium conditions 

are satisfied. A MATLAB program is compiled to determine ultimate strength of each specimen 

using this process and is given in Appendix B. 

Table 6 shows results of ultimate strength analysis. The method is not applicable to plain 

concrete specimens, namely SS01 and SM04. It was also found that the neutral axis for SM14 

with two CFRP strips is horizontal so this method cannot be used. Pattern 2 governs the rest of 

the specimens as indicated by the nonzero values of ݕଶ. A comparison with the uncracked 

section analysis shows that the neutral axis tend towards horizontal at higher loads. The 

additional rebar in the flange caused about 15% increase in the ultimate bending capacity. The 

bending capacity is increased six times with the introduction of CFRP strips in case of specimens 

SM15 and SM16. The increase is almost identical even though SM15 has only six CFRP 

elements as compared to the nine elements of SM16. The CFRP elements in SM15 are stressed 

to higher values so they contribute more to the bending capacity. A significant increase is also 

noted in the case of specimens SM17-SM19 having four CFRP strips.  
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Table 6. Results of ultimate bending strength analysis 

Specimen 
b  

(deg.) 

Y1  

(in.) 

Y2 

(in.) 

Φxu 

(rad./in.) 

Mxu 

(k-in.) 

SS01 NA NA NA NA NA 

SS02-SS03 0 0.46 0.46 0.0087 23.75 

SM04 NA NA NA NA NA 

SM05—SM07 6.14 0.69 0.15 0.0058 17.42 

SM08—SM10 2.38 0.60 0.39 0.0059 20.06 

SM11—SM13 2.57 0.59 0.37 0.0069 20.34 

SM14 NA NA NA NA NA 

SM15 0.70 1.31 1.25 0.0030 105.38 

SM16 4.26 1.44 1.07 0.0028 105.60 

SM17—SM19 7.50 1.27 0.61 0.0026 56.76 

 

 

3.3 Nonlinear Moment-Curvature Relations 

The numerical procedure of tangent stiffness method [32] is adopted to determine the complete 

moment-curvature relations for the specimens. The method is an iterative procedure which can 

be used for any geometric cross section and any distribution of reinforcing elements. Although, 

in the laboratory tests of specimens, the spandrel members are only subjected to moment about 

x-axis, the numerical analysis also considers axial load and moment about y-axis, as shown in 

Figure 123, for broader application and to satisfy all three equilibrium conditions.    
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Figure 123. Member segment schematic under biaxial bending 

 

 

3.3.1 Formulation	of	Equations	

The normal strain ߝ	at any point (x, y) of the cross section subjected to bending moments Mx and 

My about x and y axes is expressed as: 

ߝ ൌ ௢ߝ ൅ ௫߮ݕ െx߮௬ (17) 

in which ߝ௢ is the axial strain at origin whereas ߮௫ and ߮௬ are the bending curvatures about x 

and y axes. The cross sectional equilibrium equations for axial force and bending moments about 

x and y axes can be represented as:  

ܲ ൌ නܣ݀ߪ 
(18) 

௫ܯ ൌ නܣ݀ݕߪ 
(19) 
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௬ܯ ൌ െනܣ݀ݔߪ 
(20) 

In order to numerically evaluate the integrals, the concrete area is divided into small rectangular 

area elements by passing horizontal and vertical grid lines, as shown in Figure 124. Each steel 

rebar and CFRP strip is considered a separate element.  

 

 

 

Figure 124. Partitioning of the cross section 

 

For the cross section of a retrofitted reinforced concrete spandrel member, the integrals are 

calculated by taking summation over the areas of the constituent materials, namely concrete, 

steel rebars, and CFRP strips. Therefore Equations 18 through 20 take the following forms: 

ܲ ൌ෍ߪ௖௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ߪ௦௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ߪ௙௞݀ܣ௙

ே೑

௞ୀଵ

 

(21) 

௫ܯ ൌ෍ߪ௖௜ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ߪ௦௝ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ߪ௙௞ݕ௞݀ܣ௙

ே೑

௞ୀଵ

 

(22) 

x

 y

O

Yi

Xi
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௬ܯ ൌ െ෍ߪ௖௜ݔ௜݀ܣ௖

ே೎

௜ୀଵ

െ෍ߪ௦௝ݔ௝݀ܣ௦

ேೞ

௝ୀଵ

െ෍ߪ௙௞ݔ௞݀ܣ௙

ே೑

௞ୀଵ

 

(23) 

where Nc is the total number of concrete elements, Ns is the number of rebars, and Nf is the 

number of CFRP strips.  The inelastic behavior is path dependent and requires step-by-step 

calculations following the load history. Therefore, the applied moments are increased in the form 

of small increments so that the relationship between load vector and displacement vector can be 

considered as linear. Therefore, the incremental forms of the equilibrium equations are given as:  

ሶܲ ൌ ෍݅ܿߪሶ ܿܣ݀

ܰܿ

݅ൌ1

൅෍݆ݏߪሶ ݏܣ݀

ݏܰ

݆ൌ1

൅ ෍݂݇ߪሶ ݂ܣ݀

݂ܰ

݇ൌ1

 (24) 

௫ሶܯ ൌ෍݅ܿߪሶ ܿܣ݀݅ݕ

ܰܿ

݅ൌ1

൅෍݆ݏߪሶ ݏܣ݆݀ݕ

ݏܰ

݆ൌ1

൅ ෍݂݇ߪሶ ݂ܣ݀݇ݕ

݂ܰ

݇ൌ1

 (25) 

௬ሶܯ ൌ െ෍݅ܿߪሶ ܿܣ݀݅ݔ

ܰܿ

݅ൌ1

െ෍݆ݏߪሶ ݏܣ݆݀ݔ

ݏܰ

݆ൌ1

െ ෍݂݇ߪሶ ݂ܣ݀݇ݔ

݂ܰ

݇ൌ1

 (26) 

where the dot on top of an action represents a small change. The change in stress is equal to the 

tangent modulus multiplied by change in strain. Therefore Equations 24 through 26 can be 

written as: 

ሶܲ ൌ ෍݅ܿ߳ݐܿܧሶ ܿܣ݀

ܰܿ

݅ൌ1

൅෍݆ݏߝݐݏܧሶ ݏܣ݀

ݏܰ

݆ൌ1

൅ ෍݂݇߳ݐ݂ܧሶ ݂ܣ݀

݂ܰ

݇ൌ1

 (27) 

௫ሶܯ ൌ෍݅ܿ߳ݐܿܧሶ ܿܣ݀݅ݕ

ܰܿ

݅ൌ1

൅෍݆ݏߝݐݏܧሶ ݏܣ݆݀ݕ

ݏܰ

݆ൌ1

൅ ෍݂݇߳ݐ݂ܧሶ ݂ܣ݀݇ݕ

݂ܰ

݇ൌ1

 (28) 

௬ሶܯ ൌ െ෍݅ܿ߳ݐܿܧሶ ܿܣ݀݅ݔ

ܰܿ

݅ൌ1

െ෍݆ݏߝݐݏܧሶ ݏܣ݆݀ݔ

ݏܰ

݆ൌ1

െ ෍݂݇߳ݐ݂ܧሶ ݂ܣ݀݇ݔ

݂ܰ

݇ൌ1

 (29) 
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Tangent modulus for each material is calculated using Equations 1-5. The increment in strain can 

be determined by writing Equation 17 in the following form: 

ሶߝ  ൌ ௢ሶߝ ൅ ௫ሶ߮ݕ െx ሶ߮ ௬ (30) 

 

Substituting Equation 30 into Equations 27 through 29:  

ሶܲ ൌ ෍ܧ௖௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧݀ܣ௙

ே೑

௞ୀଵ

 

(31) 

௫ሶܯ ൌ ෍ܧ௖௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧ݕ௞݀ܣ௙

ே೑

௞ୀଵ

 

(32) 

௬ሶܯ ൌ െ෍ܧ௖௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧ݔ௜݀ܣ௖

ே೎

௜ୀଵ

െ෍ܧ௦௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧ݔ௝݀ܣ௦

ேೞ

௝ୀଵ

െ෍ܧ௙௧ൣߝ௢ሶ ൅ ௫ሶ߮ݕ െ x ሶ߮௬൧ݔ௞݀ܣ௙

ே೑

௞ୀଵ

 

(33) 

Rearranging the terms, these three equations can be written as: 
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ሶܲ ൌ ቎෍ܧ௖௧݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧݀ܣ௙

ே೑

௞ୀଵ

቏ ௢ሶߝ

൅ ቎෍ܧ௖௧ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݕ௞݀ܣ௙

ே೑

௞ୀଵ

቏߮௫ሶ

െ ቎෍ܧ௖௧ݔ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞݀ܣ௙

ே೑

௞ୀଵ

቏߮௬ሶ  

(34) 

௫ሶܯ ൌ ቎෍ܧ௖௧ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݕ௞݀ܣ௙

ே೑

௞ୀଵ

቏ ௢ሶߝ

൅ ቎෍ܧ௖௧ݕ௜
ଶ݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݕ௝
ଶ݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݕ௞
ଶ݀ܣ௙

ே೑

௞ୀଵ

቏߮௫ሶ

െ ቎෍ܧ௖௧ݔ௜ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞ݕ௞݀ܣ௙

ே೑

௞ୀଵ

቏߮௬ሶ  

(35) 

௬ሶܯ ൌ െ ቎෍ܧ௖௧ݔ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞݀ܣ௙

ே೑

௞ୀଵ

቏ ௢ሶߝ

െ ቎෍ܧ௖௧ݔ௜ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞ݕ௞݀ܣ௙

ே೑

௞ୀଵ

቏߮௫ሶ

൅ ቎෍ܧ௖௧ݔ௜
ଶ݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝
ଶ݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞
ଶ݀ܣ௙

ே೑

௞ୀଵ

቏߮௬ሶ  

(36) 

These equations can be expressed in matrix form as: 

ቐ

ሶܲ
௫ሶܯ

௬ሶܯ
ቑ ൌ ቎

݇ଵଵ ݇ଵଶ ݇ଵଷ
݇ଶଵ 									݇ଶଶ ݇ଶଷ
݇ଷଵ 									݇ଷଶ ݇ଷଷ

቏ ቐ
ሶܲ

߮௫ሶ
߮௬ሶ
ቑ 

(37) 
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where the coefficients of the tangent stiffness matrix are given as: 

݇ଵଵ ൌ ቎෍ܧ௖௧݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧݀ܣ௙

ே೑

௞ୀଵ

቏ (38) 

݇ଵଶ ൌ ݇ଶଵ ൌ ቎෍ܧ௖௧ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݕ௞݀ܣ௙

ே೑

௞ୀଵ

቏ (39) 

݇ଵଷ ൌ ݇ଷଵ ൌ െ ቎෍ܧ௖௧ݔ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞݀ܣ௙

ே೑

௞ୀଵ

቏ (40) 

݇ଶଶ ൌ ቎෍ܧ௖௧ݕ௜
ଶ݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݕ௝
ଶ݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݕ௞
ଶ݀ܣ௙

ே೑

௞ୀଵ

቏ (41) 

݇ଶଷ ൌ ݇ଷଶ ൌ െ ቎෍ܧ௖௧ݔ௜ݕ௜݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝ݕ௝݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞ݕ௞݀ܣ௙

ே೑

௞ୀଵ

቏ (42) 

݇ଷଷ ൌ ቎෍ܧ௖௧ݔ௜
ଶ݀ܣ௖

ே೎

௜ୀଵ

൅෍ܧ௦௧ݔ௝
ଶ݀ܣ௦

ேೞ

௝ୀଵ

൅෍ܧ௙௧ݔ௞
ଶ݀ܣ௙

ே೑

௞ୀଵ

቏ (43) 

The equations developed in this section are utilized in the tangent stiffness procedure given in 

the next section to develop moment-curvature relations for the cross sections studied in this 

research.  

3.3.2 Tangent	Stiffness	Procedure	

If the tangent stiffness matrix is known at any stage of loading, displacement vector 

corresponding to a load vector can be calculated by using Equation 37 and vice versa. The steps 

involved in computing moment-curvature relations using tangent stiffness method are 

summarized below [32]: 

1. Calculate initial values for the tangent stiffness coefficients using Equations 38 through 

43, assuming a small deflection vector so that the whole cross section is in elastic state. 
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2. Assume an increment in external load vector, in this case a small change in the bending 

moment Mx. 

3. Compute the change in displacements caused by the assumed increment in the load using 

Equation 37.  

4. Based on calculated displacements, find the strains in each element using Equation 17. 

5. Find stresses in each element using stress strain relationship of each material given in 

Equations 1 through 5.  

6. Find the corresponding total internal actions by adding the contribution from all elements 

using Equations 21 through 23. 

7. Check the equilibrium of the external and internal actions. If equilibrium is satisfied, 

another increment of the load vector is considered and steps 2 to 7 are repeated. If 

equilibrium is not satisfied, find the unbalanced load vector. 

8. Find the unbalanced displacement vector using Equation 37. Add the unbalanced 

displacements to the computed displacements and recalculate the internal actions 

following steps 4 through 7 until equilibrium is satisfied.   

9. Repeat steps 2 through 8 until the maximum concrete strain reaches a predetermined 

ultimate strain value. 

A MATLAB program is developed based on the above procedure to plot moment-curvature 

relationships and is given in Appendix C. Although, there is no significant applied axial load in 

the laboratory tests, it is considered in the program to make sure summation of internal 

compressive and tensile forces due to applied bending moment is equal to zero.  

3.3.3 Moment‐Curvature	Relations	

Moment-curvature relations of all specimens subjected to unsymmetrical bending are obtained 

using tangent stiffness procedure described in the previous section. The relations are shown in 

Figure 125 through Figure 134. Bending moment is increased until maximum compressive strain 

in concrete reached ultimate strain value given in Table 1. However, for the plain concrete 

sections (SS01 and SM04) bending moment is applied until tensile stress in concrete reached 

modulus of rupture of concrete which is given as 7.5ඥ ௖݂
ᇱ. 
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The moment-curvature relations of plain concrete sections are a single straight line as shown in 

Figure 125 and Figure 127. The sections fail in a brittle manner once the maximum tensile stress 

reaches modulus of rupture of concrete. The relations of specimens SS02, SS03, and SM05 

through SM07 have four distinct regions as shown in Figure 126 and Figure 128. The initial 

straight part is followed by a small horizontal region representing cracking of concrete in 

tension. This is followed by another upward straight line which ends with yielding of steel 

tension rebars. The stiffness of the section represented by the slope of the relation in this part is 

less than the stiffness in the initial uncracked straight part. The section fails in a ductile manner 

as demonstrated by the horizontal branch of the relation.  

The relations of specimens SM08 through SM10 and SM11 through SM13 have five distinct 

regions as shown in Figure 129 and Figure 130. The initial straight part is followed by a small 

horizontal region representing cracking of concrete in tension. This is followed by another 

upward straight line which ends with yielding of steel tension rebars in the web part of the 

section. The stiffness of the section represented by the slope of the relation in this part is less 

than the stiffness in the initial uncracked straight part. This is followed by another upward line 

which ends with yielding of the longitudinal rebar provided in the flange part of the section. 

Finally, the section fails in a ductile manner as demonstrated by the horizontal branch of the 

relation. 

The relations of specimens SM14 through SM19 with CFRP strips do not have a horizontal final 

branch but an upward straight line as shown in Figure 131 through Figure 134. After yielding of 

steel rebars, the stiffness of the section reduces further as demonstrated by the smaller slope of 

the last branch. The members fail in a brittle fashion once the maximum compressive strain in 

concrete reaches a predetermined ultimate value.  
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Figure 125. Moment-curvature relation of SS01 

 

 

 

Figure 126. Moment-curvature relation of SS02 and SS03 
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Figure 127. Moment-curvature relation of SM04 

 

 

 

Figure 128. Moment-curvature relation of SM05-SM07 
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Figure 129. Moment-curvature relation of SM08-SM10 

 

 

 

Figure 130. Moment-curvature relation of SM11-SM13  
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Figure 131. Moment-curvature relation of SM14 

 

 

 

Figure 132. Moment-curvature relation of SM15 
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Figure 133. Moment-curvature relation of SM16 

 

 

 

Figure 134. Moment-curvature relation of SM17-SM19 
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Table 7 shows a summary of the results obtained by moment-curvature analysis. A comparison 

of these values with the ones obtained by ultimate strength analysis show close agreement.  

 

 

Table 7. Summary of results of moment-curvature analysis 

Specimen 
b  

(deg.) 

Y1  

(in.) 

Y2 

(in.) 

Φxu  

(rad./in.) 

Mxu  

(k-in.) 

SS01 0.00 2.50 2.50 0.00008 11.88 

SS02-SS03 0.00 0.48 0.48 0.00790 23.40 

SM04 14.68 2.31 1.00 0.00008 4.60 

SM05—SM07 5.94 0.69 0.17 0.00550 17.30 

SM08—SM10 2.18 0.60 0.41 0.00610 20.08 

SM11—SM13 2.29 0.59 0.39 0.00660 20.30 

SM14 0.00 0.93 0.93 0.00430 36.90 

SM15 1.14 1.33 1.23 0.00300 105.36 

SM16 4.23 1.45 1.08 0.00270 105.12 

SM17—SM19 7.07 1.27 0.65 0.00260 56.70 

 

 

3.4 Retrofitting Schemes for L-shaped section under Unsymmetrical Bending 

The program developed for tangent stiffness method was used to investigate many retrofitting 

schemes for L-shaped section by calculating the ultimate capacity under unsymmetrical bending. 

The purpose of this exercise is to determine the locations of a given number of CFRP strips that 

will maximize the bending capacity of a given section. The specimen SM05 is used as a control 

section for this purpose. Table 8 through Table 10 show the location of a given number of CFRP 
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strips to maximize bending capacity, the value of the maximum bending moment achieved, and 

an enhancement factor showing increase in bending capacity with respect to the control section. 

The capacity is increased over three times with the application of a single high strength CFRP 

strip as shown in Table 8. The capacity can be increased over nine times with the application of 

nine CFRP strips applied at appropriate locations as shown in Table 10.  

 

 

Table 8. Maximum bending capacity for a given number of CFRP strips 

Control Section Retrofitting Scheme 1 

  

Mux (k-in) 17.30 Mux (k-in) 62.16 

Enhancement Factor, ߟ - Enhancement Factor, 3.59 ߟ 
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Table 9. Maximum bending capacity for a given number of CFRP strips 

Retrofitting Scheme 2 Retrofitting Scheme 3 

  

Mux (k-in) 84.24 Mux (k-in) 98.00 

Enhancement Factor, 4.87 ߟ Enhancement Factor, 5.66 ߟ 

Retrofitting Scheme 4 Retrofitting Scheme 5 

  

Mux (k-in) 106.80 Mux (k-in) 118.80 

Enhancement Factor, 6.17 ߟ Enhancement Factor, 6.87 ߟ 
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Table 10. Maximum bending capacity for a given number of CFRP strips 

Retrofitting Scheme 6 Retrofitting Scheme 7 

  

Mux (k-in) 129.20 Mux (k-in) 135.00 

Enhancement Factor, 7.47 ߟ Enhancement Factor, 7.80 ߟ 

Retrofitting Scheme 8 Retrofitting Scheme 9 

  

Mux (k-in) 147.00 Mux (k-in) 158.20 

Enhancement Factor, 8.49 ߟ Enhancement Factor, 9.14 ߟ 
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The increase in bending capacity follows a straight line with increase in the area of CFRP strips 

provided, as shown in Figure 135. 

 

 

 

Figure 135. Ultimate bending moment with given CFRP area for SM05 

 

 

3.5 Member Analysis under Unsymmetrical Bending 

The member load-deflection relations under unsymmetrical bending are obtained using a 

piecewise linear finite difference algorithm (PLFD method). The deflected shape and bending 

moment diagram due to an applied bending moment at the top end is shown in Figure 136.  
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Figure 136. Bending moment about x-axis and corresponding deflections 

 

 

The curvature at each section can be determined from the moment-curvature relation developed 

through tangent stiffness method. Using central finite difference approach, these curvatures are 

related to the deflections of the member at various sections as: 








 
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


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uuu

dz

ud iii

i

i  (44) 

in which ߮௜ and iu  represent curvature and deflection at a given section of the member, 

respectively. Substituting i = 0 to 8 in Equation 44 and writing the equations obtained in a matrix 

form gives:   

Uo

U1

U2

U3

U4

U5

U6

U7

U8

U9

BMD, Mx

Mo
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 (45) 

The moment-curvature relation is thus utilized in piecewise linear finite difference algorithm to 

obtain deflections at various locations along the length of the member. The step by step 

procedure for this technique is summarized below with reference to Figure 136. 

1. The member is divided into n sections, each having a height of h.  

2. Find the bending moment Mi at each section corresponding to the applied moment at the 

end of the member. 

3. For the moments computed at each section, calculate the corresponding curvatures i  

using  tangent stiffness procedure outlined in section 3.3.  

4. Substitute the values of curvatures at various sections in Equation 45 to obtain 

corresponding deflections.  

5. Repeat the process to obtain moment-deflection relation at any required location along 

the length of the member. 

A MATLAB program was written in accordance to the above procedure to predict the deflection 

at the center of the isolated members and is included in Appendix D. The moment-deflection 

relations obtained are given in Figure 145 and Figure 156 along with the corresponding 

experimental relations. 

3.6 Cracking Torsional Strength 

The cracking torque of members was determined using elastic theory and transformed area 

principal. The results are obtained using actual factors of St. Venant theory rather than the 

approximated factors for thin walled section. The L-shaped sections are considered as a 
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combination of two rectangles and the transformed areas of steel reinforcement and CFRP strips 

are added to the faces of the section where they are located. 

3.6.1 Cracking	Torque	under	Pure	Torsion	

The applied torque causing a maximum shear stress,	߬௠௔௫, in the middle of the wider side of a 

rectangular section is given by [33].  

ܶ ൌ
߬௠௔௫	݇ଵ
݇ଶ	ݔ

 
(46) 

where ݔ is the smaller side of the rectangle. The coefficients ݇ଵ	and ݇ଶ in Equation 46 depends 

on the cross-sectional dimensions and are given by:  

݇ଵ ൌ ଶ݂
ݕଷݔ
3

 
(47) 

݇ଶ ൌ 1 െ
8
ଶߨ

෍
1

ሺ2݊ ൅ 1ሻଶ
1

݄ݏ݋ܿ ଵ݂
												݊ ൌ 0,1,2… 

(48) 

where ݕ is the longer side of the rectangle. The coefficients ଵ݂	and ଶ݂ depends on the cross-

sectional dimensions and are given by: 

ଵ݂ ൌ
2݊ ൅ 1
2

ߨ ቀ
ݕ
ݔ
ቁ 												݊ ൌ 0,1,2… 

(49) 

ଶ݂ ൌ 1 െ
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ହߨ

൬
ݔ
ݕ
൰෍

1
ሺ2݊ ൅ 1ሻହ

݄݊ܽݐ ଵ݂ 												݊ ൌ 0,1,2… 
(50) 

In members under pure torsion, maximum shear stress is equal to the principal tensile stress. 

Therefore, cracking torque of a member is determined if the maximum shear stress is equated to 

the tensile strength of concrete in Equation 46 resulting in: 

௖ܶ௥ ൌ ෍ ௖݂௧ ݇ଵ
݇ଶ ݔ

 (51) 
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The results obtained using Equation 51 are given in Table 11 along with the values obtained 

from laboratory tests.  

3.6.2 Cracking	Torque	under	combined	Bending	and	Torsion	

The principal normal stress under plane stresses is given by [3]:  

ଵ,ଶߪ ൌ
௫ߪ ൅ 	௬ߪ

2
േ ඨቀ

௫ߪ െ ௬ߪ
2

ቁ
ଶ
൅ ߬௫௬ଶ  

(52) 

The normal stress due to a bending moment about x axis in Figure 120 is given by Equation 7 as 

mentioned in Section 3.2. Similarly, the maximum shear stress due to torsion is given by:  

்߬,௠௔௫ ൌ෍
T		݇ଶx
݇ଵ

 
(53) 

Substituting Equations 7 and 53 in Equation 52 and rearranging the terms results in:  

௖ܶ௥ ൌ ඨቆ ௖݂௧ െ ቈ
ݔ௫௬ܫ െ ݕ௬ܫ
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ݔ௫௬ܫ െ ݕ௬ܫ

2൫ܫ௫ܫ௬ െ ௫௬ଶܫ ൯
቉ܯቇ

ଶ

෍
݇ଵ
݇ଶ	ݔ

 
(54) 

This equation gives the value of the cracking torque under the action of combined unsymmetrical 

bending and torsion. The results obtained for cracking torque for the specimens tested under 

combined bending and torsion are given in Table 12. The experimental values of cracking torque 

are also given in this table for comparison.  

3.7 Ultimate Torsional Strength 

The torsional strength of a reinforced concrete section can be calculated by Equation 55 derived 

by Elfren et al. [34] based on principals of skew bending theory.  

௡ܶ ൌ
௧ܣ௢ܣ2 ௬݂௧

ݏ
ݐ݋ܿ  ߠ

(55) 
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In this equation, ܣ௢ is the concrete area enclosed by the transverse stirrups, ܣ௧ is the area of one 

leg of the stirrup, ௬݂௧ is the yield strength of stirrup reinforcement, s is the spacing of the stirrups, 

and ߠ is the angle of the concrete compression diagonal with the axis of the member. In order to 

account for steel and CFRP reinforcement outside the stirrups, the term ܣ௢ is modified to include 

the transformed area of these elements. The new term denoted as ܣ௢௠ results in:  

௡ܶ ൌ
௧ܣ௢௠ܣ2 ௬݂௧

ݏ
ݐ݋ܿ  ߠ

(56) 

The comparison of the results obtained from Equations 55 and 56 with the test values is given in 

Table 13. 

3.8 Flexural-Torsional Interaction Relations 

The flexural-torsional interaction for reinforced concrete sections has been modelled as linear, 

trilinear, circular, and parabolic in the past. The ACI interaction relations are based on skew 

bending theory as proposed by Elfren et al. [34]. However, to account for unsymmetrical 

arrangement of longitudinal reinforcement, a new parameter r is defined in the code which is the 

ratio of the force in the top reinforcement rebars at yielding to the force in the bottom rebars at 

yielding. As a result, the interaction surface is enclosed by 

ݎ ൮
ܶ

௧ܣ௢ܣ2 ௬݂௧
ݏ ݐ݋ܿ ߠ

൲

ଶ

൅
ܯ

௦ܣ ௬݂ ൬݀ െ 0.59
௦ܣ
ܾ

௬݂

௖݂
ᇱ൰
ൌ 1 (57) 
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െ
1
ݎ

ܯ

௦ܣ ௬݂ ൬݀ െ 0.59
௦ܣ
ܾ

௬݂

௖݂
ᇱ൰
ൌ 1 (58) 

where ܾ is the width of the web of the section and ݀ is the distance of tension reinforcement 

from the compression face. The interaction Equations 57 and 58 are modified to account for the 

CFRP retrofitting and the effect of L-shaped cross section on the neutral axis. Therefore, using 

Equations 12 and 56 for the maximum bending and torsion capacity of the section gives the 

modified interaction equations as follows: 
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The interaction relations are given in Figure 157 and Figure 166 along with the results obtained 

from the laboratory experiments. A summary of the results is given in Table 14. 

3.9 Torque versus Angle of Twist Relations 

Mitchell and Collins [35] proposed the Compression Field Theory (CFT) for torsion of 

reinforced concrete members by combining the equilibrium, compatibility, and constitutive 

relationships. Figure 137 shows a prismatic reinforced concrete member subjected to an applied 

torque T. The applied torque is resisted by diagonal compression in concrete elements which 

spiral around member at an angle	ߙ௥. The tangential component of these compressive stresses 

form the circulatory shear flow q which occupies the shear flow zone having thickness td. This 

thickness is a variable determined from equilibrium and compatibility conditions.  
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Figure 137. Equilibrium of cracked model [36] 

 

 

An element in the shear flow zone is shown in Figure 138. Considering the in-plane equilibrium 

of this elements, Nielsen [38], Lampert and Thurlimann [39] and Mitchell and Collins [35] 

derived three equilibrium equations. Equations 61 through 63 are the general form of these 

equations [37].  

௟ߪ ൌ ௥ߙଶݏ݋ௗܿߪ ൅ ௥ߙଶ݊݅ݏ௥ߪ ൅ ௟ߩ ௟݂ (61) 

௧ߪ ൌ ௥ߙଶ݊݅ݏௗߪ ൅ ௥ߙଶݏ݋௥ܿߪ ൅ ௧ߩ ௧݂ (62) 

߬௟௧ ൌ ሺെߪௗ ൅  ௥ (63)ߙݏ݋௥ܿߙ݊݅ݏ௥ሻߪ

where the reinforcement ratios ߩ௟ and ߩ௧ should be taken with respect to the shear flow zone 

thickness td.  
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Figure 138. An element in the shear flow zone [37] 

 

 

Apart from equilibrium of small elements, the overall equilibrium of the cross section must also 

be satisfied. Bredt [40] derived this fourth equilibrium equation given as: 

߬௟௧ ൌ
ܶ

ௗݐ௢ܣ2
 

(64) 

The compatibility equations were originally derived by Baumann [41] and Mitchell and Collins 

[35]. The in-plane deformation of Element A in Figure 138 should satisfy the following three 

compatibility equations:   

߳௟ ൌ ߳ௗ݊݅ݏଶߙ௥ ൅ ߳௥ܿݏ݋ଶߙ௥ (65) 

௧ߝ ൌ ߳ௗܿݏ݋ଶߙ௥ ൅  ௥ (66)ߙଶ݊݅ݏ௥ߝ

௟௧ߛ
2
ൌ ሺെ߳ௗ ൅ ߳௥ሻߙ݊݅ݏ௥ܿߙݏ݋௥ (67) 
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A fourth compatibility equation was derived by Bredt [42] relating member angle of twist and 

shear strain in the shear flow zone.  

ߠ ൌ
௢݌
௢ܣ2

 ௟௧ߛ
(68) 

The curvature of concrete struts is related to the angle of twist: 

ߖ ൌ  ௥ (69)ߙ2݊݅ݏߠ

 

 

Figure 139. Section subjected to torsion [37] 
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Figure 140. Deformation of top wall [37] 

 

The curvature of concrete struts produces a non-uniform strain distribution in concrete struts as 

shown in Figure 140. From the geometry of Figure 141, we can derive:  

ௗݐ ൌ
ௗ௦ߝ
ߖ

 (70) 

ௗߝ ൌ
ௗ௦ߝ
2

 (71) 

 

 

Figure 141. Strain and stress distribution in concrete struts 
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Using the relations given above, the equation required for the solution algorithm given as a 

flowchart in Figure 142 are derived and given below. 

ܽ ൌ
௟ܣ ௟݂

ᇱߙ ௖݂ᇱ݌௢
൅
௛ܣ ௛݂

ᇱߙ ௖݂ᇱݏ
	 (72) 

௟ߝ ൌ
ௗ௦ߝ
2
ߚᇱߙ ௖݂

ᇱܣ௢
௟ܣ ௟݂

െ ௗ௦ߝ ൬1 െ
ߚ
2
൰ (73) 

௧ߝ ൌ
ௗ௦ߝ
2
ߚᇱߙ ௖݂

ᇱܣ௢ݏ
௛ܣ ௛݂݌௛

െ ௗ௦ߝ ൬1 െ
ߚ
2
൰
௢݌
௛݌

 (74) 

ܶ ൌ  (75) ݍ௢ܣ2

ݍ ൌ ඨ൬
௟ܣ ௟݂

௢݌
൰ ൬
௛ܣ ௛݂

ݏ
൰ (76) 

ߠ ൌ
ௗ௦ߝ
2
ߚᇱߙ ௖݂

ᇱ

ݍ
 (77) 

These equations are utilized in an iterative algorithm to predict the complete torque versus angle 

of twist relations for the specimens tested. The solution algorithm is presented in the form of a 

flowchart in Figure 142. 
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Figure 142. Solution algorithm flowchart for torsional analysis using CFT 

 

The relations obtained using MCFT are shown in Figure 167 through Figure 172 along with the 

experimentally obtained relations.  
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3.10 Ultimate Load of Slab-beam Systems 

The ultimate load(s) capacity of the slab-beam system depends on governing failure pattern 

which in turn depends on the location(s) of the applied load(s). If the load(s) are applied closer to 

the midspan of the slab, the slab cracks before the spandrel members experience any cracking. 

However, if the load(s) are applied closer to the spandrel members, the cracking starts in the 

spandrel members first. Therefore, the ultimate load capacity of the slab-beam system is the 

minimum of the yield line load(s) of the slab and the load(s) determined based on the interaction 

relation for the spandrel members.   

The yield line patter of a rectangular slab subjected to a concentrated load at midspan is shown in 

Figure 143. If the slab is isotropically reinforced with only positive rebars, the ultimate load 

supported by the slab is given by [38].  

௨ܲ ൌ ௦ܣ8 ௬݂ ቆ݀ െ ௦ܣ0.59
௬݂

௖݂
ᇱቇ 

(78) 

where ܣ௦ is the steel area per unit width, ௬݂ is the yield strength of rebars, and d is the distance 

from the center of steel rebars to the top of the slab. This equation can be used to calculate the 

ultimate load for the slab-beam specimen SL01.  
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Figure 143. Yield line pattern for rectangular slab with one point load [38] 

 

 

A rectangular slab subjected to two point loads develops the yield line pattern shown in Figure 

144. If the slab has only isotropic positive steel reinforcement, Equation 79 can be used to 

calculate the ultimate load resisted by the slab [38].  

௨ܲ ൌ ݉௨ ቆ
݈௬
݈ଵ
൅ 2

݈௫
݈௬
ቇ 

(79) 

where the geometrical terms are defined as shown in Figure 144. The ultimate positive moment 

capacity per unit width denoted by ݉௨ is given by:  

݉௨ ൌ ௦ܣ ௬݂ ቆ݀ െ ௦ܣ0.59
௬݂

௖݂
ᇱቇ 

(80) 
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Figure 144. Yield line pattern for rectangular slab with two point loads [38] 

 

 

The results of yield line analysis are given in Table 15 along with the values calculated in the 

laboratory tests.  

The spandrel members in slab-beam systems are subjected to combined bending and torsional 

moments transferred from the slab. Substituting the values of torsional moment and bending 

moment of a point load in the interaction equation results in Equation 81.  

൬
݈ܲଵ
2 ௢ܶ

൰
ଶ

െ
1
ݎ
݈ܲ
௢ܯ4

ൌ 1	
(81) 

 

where ݈ଵ is the distance of the point load from the center of the spandrel member as shown in 

Figure 144 and ݈ is the length of the slab. Equation 81 is used to determine the ultimate load 

resisted by SL03 where the spandrel members experienced major cracking before failure of the 

slab. The results are given in Table 15.  
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4. EXPERIMENTS VERSUS THEORY 

4.1 Introduction  

This chapter presents the comparison of experimental versus theoretical results. The procedures 

outlined in Chapter 3 are used for theoretical prediction. The moment-deflection relations are 

developed using nonlinear piecewise finite difference procedures. A comparison of cracking and 

ultimate torsional strengths found in the laboratory is given with those predicted by theory. 

Finally, ultimate strength bending-torsion interaction relations are given along with laboratory 

results.     

4.2 Moment-deflection Relations 

Figure 145 through Figure 156 presents the comparison of experimental and theoretical moment-

deflection relations. The theoretical relations are obtained using the process outlined in Section 

3.5. All the specimens were subjected to a fraction of the cracking bending moment capacity 

before applying torsional moment to ultimate capacity except for SM13 and SM18. Therefore, 

the moment-deflection relations are straight lines for these specimens and represent an elastic 

behavior. However, SM13 was subjected to torsional moment first before applying a bending 

moment to failure whereas SM18 was subjected to only a bending moment until local cracking 

occurred at the top end. 
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Figure 145. Moment-deflection relation of SS01 

 

 

 

Figure 146. Moment-deflection relation of SS02 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.0 20.0 40.0 60.0 80.0 100.0 120.0

B
e
n
d
in
g 
M
o
m
e
n
t 
(k
‐i
n
)

Midheight deflection (0.001 in)

Test Theory

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.0 20.0 40.0 60.0 80.0

B
e
n
d
in
g 
M
o
m
e
n
t 
(k
‐i
n
)

Midheight deflection (0.001 in)

Test Theory



147 

 

 

 

Figure 147. Moment-deflection relation of SS03 

 

 

 

Figure 148. Moment-deflection relation of SM07 
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Figure 149. Moment-deflection relation of SM09 

 

 

 

Figure 150. Moment-deflection relation of SM10 
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Figure 151. Moment-deflection relation of SM12 

 

 

 

Figure 152. Moment-deflection relation of SM13  
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Figure 153. Moment-deflection relation of SM15 

 

 

 

Figure 154. Moment-deflection relation of SM16 
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Figure 155. Moment-deflection relation of SM18 

 

 

 

Figure 156. Moment-deflection relation of SM19 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 50 100 150 200 250

B
e
n
d
in
g 
M
o
m
e
n
t 
(k
‐i
n
)

Midheight deflection (0.001 in)

Test Theory

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 10 20 30 40 50 60

B
e
n
d
in
g 
M
o
m
e
n
t 
(k
‐i
n
)

Midheight deflection (0.001 in)

Test Theory



152 

 

 

4.3 Cracking Torsional Strength 

The experimental and theoretical values of cracking torque for specimens tested under torsional 

moment only are shown in Table 11. The theoretical values are calculated using the procedure 

outlined in Section 3.7. The maximum difference between theoretical and experimental values 

was found to be 18 percent in the case of SM17 whereas the minimum is 3 percent in the case of 

SM05. The average of the differences is 4 percent, which is indication that the theory and 

experiments are in reasonable agreement.  

 

 

Table 11. Torque at cracking under pure torsion 

Specimen 
Tcr,test 

(k-in) 

 Tcr,calc 

(k-in) 
Tcr,test  / Tcr,calc 

SM04 3.32 3.71 0.89 

SM05 4.04 4.16 0.97 

SM08 4.44 4.25 1.04 

SM11 4.08 4.45 0.92 

SM14 4.95 4.47 1.11 

SM17 3.60 4.38 0.82 
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Table 12 shows the results of cracking torque for the specimens subjected to combined bending 

and torsional moments. The maximum difference between theoretical and experimental values 

was found to be 22 percent in the case of SM19 whereas the minimum is 3 percent in the case of 

SM10. The average of the differences is 12 percent. The agreement of theory and experiments is 

reasonably good.  

 

 

Table 12. Cracking torsional strength under combined bending and torsion 

Specimen 
Mapplied 

(k-in) 

Tcr,test 

(k-in) 

Tcr,calc 

(k-in) 
Tcr,test  / Tcr,calc 

SM01 1.44 9.11 10.38 0.88 

SM02 1.44 9.90 11.06 0.89 

SM03 6.00 13.82 13.97 1.03 

SM07 3.84 5.15 6.13 0.84 

SM10 2.40 5.43 5.59 0.97 

SM12 2.64 5.12 5.94 0.86 

SM15 3.60 6.02 6.64 0.91 

SM16 3.60 5.76 7.17 0.80 

SM19 3.60 4.83 6.23 0.78 

 

	

 	



154 

 

 

4.4 Ultimate Torsional Strength 

Table 13 gives a comparison of the ultimate torsional strength for the spandrel members tested 

under torsional moment only. The theory and experiments are in very good agreement except for 

specimen SM17.  This specimen showed signs of poor construction so the experimental strength 

was less than anticipated. For the rest of specimens, the theory and experiments are in excellent 

agreement where the average difference between the two is only 2%.   

 

 

Table 13. Peak torque under pure torsion 

Specimen 
Tn,test 

(k-in) 

Tn,test  / Tn,calc 

Original Skew 

Bending 

Modified Skew 

Bending 

SM04 3.32 1.03 - 

SM05 4.99 1.09 - 

SM08 5.15 1.08 1.01 

SM11 4.83 1.01 0.96 

SM14 5.23 1.10 0.99 

SM17 4.32 0.91 0.75 
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4.5 M-T Interaction for ultimate torque 

Figure 157 through Figure 166 show the interaction of bending and torsional moment strengths 

for isolated members. The figures also have the data point obtained from tests results.  

 

 

 

Figure 157. M-T interaction for SS01 
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Figure 158. M-T interaction for SS02 

 

 

 

Figure 159. M-T interaction for SS03 
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Figure 160. M-T interaction for SM07 

 

 

 

Figure 161. M-T interaction for SM10 
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Figure 162. M-T interaction for SM12 

 

 

 

Figure 163. M-T interaction for SM13 
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Figure 164. M-T interaction for SM15 

 

 

 

Figure 165. M-T interaction for SM16 
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Figure 166. M-T interaction for SM17 

 

 

Table 14 shows the summary of theoretical and experimental results for tests under combined 

bending and torsion. The maximum difference between theoretical and experimental values was 

found to be 19 percent in the case of SM19 whereas the minimum is 1 percent in case of SM10. 

The average of the differences is zero. The agreement of theory and experiments is good. 
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Table 14. Ultimate torsional strength under combined bending and torsion 

Specimen 
Mapplied 

(k-in) 

Tn,test  

(k-in) 
Tn,calc 

Tn,test  / Tn,calc 

SM01 4.08 9.11 9.89 0.92 

SM02 3.12 9.90 1083 0.91 

SM03 6.00 13.82 0.96 1.07 

SM07 3.84 5.15 4.76 1.08 

SM10 2.40 5.43 5.11 1.06 

SM12 2.64 5.12 5.06 1.01 

SM13 7.20 4.40 4.30 1.02 

SM15 3.60 6.61 6.02 1.06 

SM16 3.60 7.89 6.98 1.13 

SM19 3.60 4.67 5.75 0.81 
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4.6 Torque versus Angle of Twist Relations 

The theoretical and experimental torque versus angle of twist relations are shown in Figure 167 

through Figure 173. The predicted and tested strength values are in excellent agreement. 

However, the angle of twist values are slightly more in the experiments as compared to the 

calculated values for some specimens.  

 

 

 

Figure 167. Torque versus angle of twist for SS03 
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Figure 168. Torque versus angle of twist for SM05 

 

 

 

Figure 169. Torque versus angle of twist for SM07 
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Figure 170. Torque versus angle of twist for SM08 

 

 

 

Figure 171. Torque versus angle of twist for SM11 
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Figure 172. Torque versus angle of twist for SM14 

 

 

 

Figure 173. Torque versus angle of twist for SM16 
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4.7 Ultimate Load of Slab-beam Specimen 

The ultimate load calculated for a slab-beam system along with test values is given in Table 15. 

The first two slab-beam systems failed due to cracking of the slabs so the ultimate load is 

calculated based on yield line theory. However, the final slab-beam system failed due to major 

cracking in the spandrel members so the bending-torsion interaction equation was used to find 

the ultimate load.  

 

 

Table 15. Peak load of SL specimens 

Specimen ࢚࢙ࢋ࢚,࢔ࡼ	ሺ࢙࢖࢏࢑ሻ  ࢉ࢒ࢇࢉ,࢔ࡼ ሺ࢙࢖࢏࢑ሻ	 	ࢉ࢒ࢇࢉ,࢔ࡼ/࢚࢙ࢋ࢚,࢔ࡼ Failure	mode	

SL01 27.24 29.03 0.94 Slab failure 

SL02 17.80 19.24 0.93 Slab failure 

SL03 17.77 16.16 1.10 SM failure 
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5. CONCLUSIONS AND FUTURE RESEARCH 

5.1 Conclusions 

Based on the study presented in this dissertation, the following main conclusions are drawn: 

1. The materially nonlinear analysis, formulated and programmed, predicts the behavior and 

strength of both square and L-shaped members with reasonable degree of accuracy.  

2. The bending capacity of L-shaped members is increased from 1.8 to 7 times by the 

application of an increased number of CFRP retrofitting strips at appropriate locations.  

3. The location of CFRP strips for retrofitting plays an important role as exemplified 

through the use of six CFRP strips (SM15) which resulted in practically the same bending 

capacity as that obtained by using nine CFRP strips (SM16). 

4. The modified ultimate strength torque-bending interaction expressions formulated to 

account for CFRP retrofitting predict the load-carrying capacities of the tested isolated 

members fairly accurately.  

5. A comparison of the modified strength torque-bending interaction curves for CFRP 

retrofitted members to those based on ACI code for non-retrofitted members show a 

significant increase in the member load-carrying capacity.  

6. The use of a rebar in the flange of an L-shaped section does not contribute significantly to 

the bending capacity due to its proximity to the neutral axis.	

7. Two of the isolated spandrel members tested exhibited a localized failure at the location 

of the maximum applied bending moment owing to stress concentration effects near the 

top end gimbal.   

8. In plain concrete members subjected to torsion, the cracks in the concrete penetrate 

across the member cross sections and divide the members into two pieces. 	

9. The failure under torsion in isolated spandrel members tested was observed to be sudden 

and brittle even for the members having steel reinforcement both with and without CFRP 

retrofitting.	

10. For members with an L-shaped section, cracking starts at the flange-web junction near 

the bottom end of the member but failure is caused by an inclined crack near the top end 

passing through the flange width.  
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11. An addition of four longitudinal rebars in a member with L-shaped section resulted in a 

50 percent increase in the ultimate torque capacity as compared with the plain concrete 

member. 

12. The ultimate torque in combined bending and torsion tests was increased by 28 percent 

and 53 percent by the application of six and nine CFRP strips, respectively. 

13. No de-bonding of CFRP strips from concrete members was observed during tests. 

14. The slab with four spandrel members subjected to a single central concentrated load 

experienced major cracking in the slab without driving the spandrel members to their 

ultimate capacity. 

15. When the slab with four spandrel members was subjected to a symmetrically-placed pair 

of concentrated loads applied at third-points, the dominant cracking occurred in the slab 

itself.  

16. The spandrel members developed significant cracking only when a pair of concentrated 

loads was applied near the inner edge of the slab spandrel members.  

17. The ultimate load-carrying capacity of the slab-beam systems under a single concentrated 

load as well as under a pair of third-point loads agreed well with those predicted using 

yield line theory.  

18. The ultimate load-carrying capacity of the spandrel members in the slab-beam system 

was in good agreement with that predicted using flexural-torsional interaction expression 

when the concentrated loads were closer to the spandrel members.     

5.2 Future Research 

Future studies of reinforced concrete spandrel members can include the effect of an applied axial 

load along with bending and torsion. The behavior of RC members under cyclic torsion needs to 

be studied for application in earthquake-resistant structures.   
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APPENDICES	

A. ACI	CODE	PROVISIONS	FOR	TORSION	

Introduction 

The ACI [30] provisions for torsion are based on thin-walled tube, space truss analogy. The core 

concrete in a solid section is neglected. The torsional resistance is assumed to be provided by an 

outer tube roughly centered on closed stirrups. After cracking of concrete, the torsional 

resistance is provided primarily by closed stirrups and longitudinal rebars near the surface.  

According to the thin-walled theory, the shear stress due to torsion T at any point along the 

perimeter of the tube having thickness t is given as: 

tA

T

o2
  

(A-1) 

where Ao is the area enclosed by the path of the shear flow. 

Cracking Torque 

Cracking is assumed to occur when the maximum tensile stress reaches the value 4 cf  . In a 

pure torsion problem, the maximum tensile stress is equal to the shear stress produced by torsion. 

The wall thickness and area enclosed by the wall of the tube are assumed to be 0.75Acp/pcp and 

2Acp/3 respectively. Substituting these values in Eq. (A-1) the cracking torsional moment is 

given as: 
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Threshold Torsion 

Torsion effects are neglected if the factored torsional moment Tu is less than the following 

threshold value: 
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Torques less than approximately one-quarter of the cracking torque do not cause a significant 

reduction in flexural and shear strengths of a member and can therefore be ignored. For instance, 

based on the interaction (approximately circular or elliptical) between a cracking torque and an 

inclined cracking shear of solid sections, a torque of 0.25Tcr corresponds to only a 3% reduction 

in the inclined cracking shear, therefore it is assumed to be negligible. 

Reduction of Factored Torsional Moment 

The factored torsional moment in case of compatibility torsion in a statically indeterminate 

structure can be reduced to the cracking torsion of the member as given below. 
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Requirement for Cross-Sectional Dimensions 

The crushing of surface concrete due to inclined compressive stresses caused by shear and 

torsion is prevented by enforcing cross-sectional dimensions such that the following equation 

holds: 
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Transverse Torsional Reinforcement 

The transverse reinforcement to resist torsion is calculated based on the equation for nominal 

torsional strength given below: 

cot
2
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n   
(A-6) 

Rearranging this equation, the area of one leg of a closed stirrup to resist torsion is given as: 
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In these equations, Ao is the gross area enclosed by shear flow path. It shall be determined by 

analysis or taken as 0.85Aoh where Aoh is the area enclosed by centerline of the outermost closed 

transverse torsional reinforcement. The angle  is between concrete compression diagonals and 

tension chord of the member. Its value varies from 30o to 60o and can be assumed as 45o.  The 

nominal torsion strength provided by concrete is taken as zero. 

Longitudinal Torsional Reinforcement  

The area of the additional longitudinal reinforcement to resist torsion shall not be less than:  
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Here At/s is based on Eq. (A-7), irrespective of any modifications due to spacing requirements. 

Minimum Torsion Reinforcement 

When the factored torsion exceeds threshold value, a minimum area of closed stirrups shall be 

provided in all regions as computed by the following equation. 
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Similarly a minimum area of longitudinal rebars shall also be provided as computed by the 

equation given below. 
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where At/s shall not be taken less than 25bw/fyt. 
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Maximum Spacing for Torsion Reinforcement 

The maximum spacing for transverse torsion reinforcement is the smaller of ph/8 and 12 in.  The 

longitudinal bars shall be distributed around the inside perimeter of the stirrups with a maximum 

spacing of 12 in. There shall be at least one longitudinal bar in each corner of the stirrups. The 

diameter of the longitudinal bars shall be at least 0.042 times the stirrup spacing, but not less 

than 3/8 in.  

Additional Requirements for Torsion 

1. The yield strength of the rebars used as torsion reinforcement shall not exceed 60,000 psi. 

2. The axial tension due to torsion is partly offset by compression in the flexural 

compression zone. Therefore it is permitted to reduce the area of longitudinal torsion 

reinforcement in this zone by Mu / (0.9dfy ).  

3. Transverse torsional reinforcement shall be anchored by a 135 degree hook. A 90 degree 

hook is allowed if concrete surrounding the anchorage is restrained against spalling by 

another member. 

4. Torsion reinforcement shall be provided for a distance of at least (bt + d) beyond the 

point required by the analysis. 
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B. ULTIMATE	BENDING	STRENGTH	PROGRAM	USING	PATTERNS	

%Program: Ultimate bending strength of L-shaped cross sections.  
%Specimens: SM05, SM06, SM07 
%Authors: Muhammad Fahim and Zia Razzaq 
tic 
clear; clc; 
%------------------------------------ 
% Concrete Geometric Data 
b=5;%total flange width 
h=4;%total depth 
bw=3;%widht of web part 
hf=2;%depth of flange/slab  
bf=b-bw;%widht of flange part 
hw=h-hf;%depth of web part 
n=1;%factor for calculating width of projected part of flange 
beta=0.80; 
%------------------------------------ 
% Concrete material Data 
fc=5.765;%ksi 
ecu=0.00398;%strain in concrete cylinder at failure 
%------------------------------------ 
% Steel material Data 
Es=29200;%ksi 
fy=52.3;%ksi 
ey=fy/Es; 
%------------------------------------ 
% CFRP: data 
a=0.63;%width 
b_f=0.079;%thickness 
Acf=a*b_f;%Area 
fcfu=255.6;%Tensile strength. 
Ecfu=20000;%Modulus of elasticity 
ecfu=fcfu/Ecfu;%ultimate strain 
%------------------------------------ 
% Iteration Data 
p_un=0.01;%unbalanced axial force. 
My_un=0.1;%unbalaced My 
%------------------------------------ 
% Calculated Data 
kxmax=(1+ ( (hf*n*hf)/((h-hf)*(n*hf+bw))))/beta; 
kymax=(1+(((h-hf)*bw)/(n*hf*h)))/beta; 
%------------------------------------ 
% Start main program 
num=0; 
while~0 
    num=num+1; 
for ky=0.001:0.001:kymax%Assume ky 
    for teta=89.90:-0.01:0.01%Assume theta for each kx 
        kx=ky*tan(teta*(pi/180));%Calculate kx. 
%------------------------------------ 
% Limits to find Neutral Axis 
x=(kx*(n*hf+bw))/ky; y=(ky*h)/kx; 
x1=(hf*kx*(n*hf+bw))/(ky*h); 
x2=(beta*kx*(n*hf+bw))-x1-bw; 
x3=(beta*kx*(n*hf+bw))-x; 
y1=(bw*ky*h)/(kx*(n*hf+bw)); 
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y2=(beta*ky*h)-y1-hf; 
y3=(beta*ky*h)-y; 
y4=(y1*x3)/bw; 
x4=(x1*y3)/hf; 
%------------------------------------ 
% check for no tension region 
if y2>=h-hf && y3>=hf && x2>=n*hf && x3>=bw 
    disp('something is wrong') 
    return 
end 
%------------------------------------ 
% Concrete: pattern 1 
if beta*kx<=1 && beta*ky<=1 && x2<=0 && y2<=0 
xbar=(beta*kx*((n*hf)+bw))/3; 
ybar=(beta*ky*h)/3; 
Pc=0.85*fc*0.5*(beta*kx*((n*hf)+bw))*(beta*ky*h); 
Myc=Pc*xbar; 
Mxc=Pc*ybar; 
pattern=1; 
end 
%------------------------------------ 
%pattern 2  
if beta*kx>1 && beta*ky<1 && y3>0 && y3<hf && x2<0 && y2<0 
A11=(n*hf+bw)*y3; 
A22=0.5*(n*hf+bw)*y; 
x11=((n*hf)+bw)/2; 
x22=((n*hf)+bw)/3; 
y11=y3/2; 
y22=y3+(y/3); 
xbar=((A11*x11)+(A22*x22))/(A11+A22); 
ybar=((A11*y11)+(A22*y22))/(A11+A22); 
Pc=0.85*fc*((y3*((n*hf)+bw))+(0.5*((n*hf)+bw)*y)); 
Myc=Pc*xbar; 
Mxc=Pc*ybar; 
pattern=2; 
end 
%------------------------------------ 
% Upper rebars 
nu=2;%No. of upper bars. 
su=1.75;%spacing of upper bars 
Abu=.05;%bar area of top beam rebars 
cxu=0.625;%Concrete side cover  
cyu=0.625;%Concrete bottom cover  
Psu=0;%total axial force in upper rebars 
Myu=0;%total My caused by upper bars 
Mxu=0;%total Mx caused by upper bars 
esU=zeros(1,nu);%Strain in the upper bars 
fsU=zeros(1,nu);%Stress in the upper bar 
for i=1:nu 
eu=ecu*(1- ( cyu/(ky*h) ) -(  (((i-1)*su)+cxu)/((n*hf+bw)*kx) )  ); 
if eu>=ey 
fsu=fy;  
elseif ey>eu && eu>-ey 
fsu=eu*Es;   
elseif eu<=-ey 
fsu=-fy;     
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end 
Fu=fsu*Abu;%force in each rebar 
Psu=Psu+Fu; 
Myu=Myu+Fu*( ((i-1)*su) + cxu); 
Mxu=Mxu+Fu*cyu; 
esU(i)=eu; 
fsU(i)=fsu; 
end 
%------------------------------------ 
% Lower rebars 
nL=2;%No. of lower bars. 
sL=1.75;%spacing of lower bars 
AbL=.05;%bar area of lower rebars 
cxL=0.625;%Concrete side cover  
cyL=0.625;%Concrete bottom cover  
PsL=0;%total axial force in lower rebars 
MyL=0;%total My caused by lower bars 
MxL=0;%total Mx caused by lower bars 
esl=zeros(1,nL);%Strain in the lower bars 
fsl=zeros(1,nL);%Stress in the lower bar 
for i=1:nL 
eL=ecu*(1- ( (h-cyL)/(ky*h) )-  ((i-1)*sL+cxL)  / (kx*(n*hf+bw))     ); 
if eL>=ey 
fsL=fy;  
elseif ey>eL && eL>-ey 
fsL=eL*Es;   
elseif eL<=-ey 
fsL=-fy;     
end 
FL=fsL*AbL;%force in each rebar 
PsL=PsL+FL; 
MyL=MyL+FL*( ((i-1)*sL) + cxL); 
MxL=MxL+FL*(h-cyL); 
esl(i)=eL; 
fsl(i)=fsL; 
end 
%------------------------------------ 
% Rebars in flange part 
%------------------------------------ 
ns=0;%No. of lower bars. 
ss=0;%spacing of lower bars 
Abs=.05;%bar area of lower rebars 
cxs=1;%Concrete side cover  
cys=0.75;%Concrete bottom cover  
Pss=0;%total axial force in lower rebars 
Mys=0;%total My caused by lower bars 
Mxs=0;%total Mx caused by lower bars 
esS=zeros(1,nL);%Strain in the lower bars 
fsS=zeros(1,nL);%Stress in the lower bar 
for i=1:ns 
es=ecu*(1-((((i-1)*ss)+(bw+cxs))/(kx*((n*hf)+bw)))-((hf-cys)/(ky*h))); 
if es>=ey 
fss=fy;  
elseif ey>es && es>-ey 
fss=es*Es;   
elseif es<=-ey 
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fss=-fy;     
end 
Fs=fss*Abs;%force in each rebar 
Pss=Pss+Fs; 
Mys=Mys+Fs*( bw +( (i-1)*ss +cxs)  ); 
Mxs=Mxs+Fs*(hf-cys); 
esS(i)=es; 
fsS(i)=fss; 
end 
%------------------------------------ 
% CFRP: bw face 
nbw=0;%No of strips 
sbw=bw-a;%Spacing between strips 
xbw=a/2;%x coordinate of first strip 
ybw=h;%y coordinate of first strip 
Pbw=0;%total axial force due to CFRP on bw 
Mybw=0;%total My due to CFRP on bw 
Mxbw=0;%total Mx due to CFRP on bw 
efbw=zeros(1,2); 
ffbw=zeros(1,2); 
for i=1:nbw 
ebw=ecu*(1- ( (ybw)/(ky*h) )-  ((i-1)*sbw+xbw)  / (kx*(n*hf+bw))     ); 
if ebw>=ecfu 
fbw=0;   
elseif ecfu>ebw && ebw>-ecfu 
fbw=ebw*Ecfu;    
elseif ebw<=-ecfu 
fbw=0;   
end 
Fbw=fbw*Acf;%force in each strip 
Pbw=Pbw+Fbw; 
Mybw=Mybw+Fbw*( (i-1)*sbw + xbw ); 
Mxbw=Mxbw+Fbw*ybw; 
efbw(i)=ebw; 
ffbw(i)=fbw; 
end 
%------------------------------------ 
% CFRP: hw face 
nhw=0;%No of strips 
shw=hw-a;%Spacing between strips 
xhw=bw;%x coordinate of first strip 
yhw=hf+a/2;%y coordinate of first strip 
Phw=0;%total axial force due to CFRP on bw 
Myhw=0;%total My due to CFRP on bw 
Mxhw=0;%total Mx due to CFRP on bw 
efhw=zeros(1,nhw); 
ffhw=zeros(1,nhw); 
for i=1:nhw 
ehw=ecu*(1- ( ( (i-1)*shw+yhw)/(ky*h) ) -  (xhw)/(kx*(n*hf+bw))  ); 
if ehw>=ecfu 
fhw=0;   
elseif ecfu>ehw && ehw>-ecfu 
fhw=ehw*Ecfu;    
elseif ehw<=-ecfu 
fhw=0;   
end 
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Fhw=fhw*Acf;%force in each strip 
Phw=Phw+Fhw; 
Myhw=Myhw+Fhw*xhw; 
Mxhw=Mxhw+Fhw*( (i-1)*shw+yhw); 
efhw(i)=ehw; 
ffhw(i)=fhw; 
end 
%------------------------------------ 
% CFRP: bf face 
nbf=0;%No of strips 
sbf=bf-a;%Spacing between strips 
xbf=bw+a/2;%x coordinate of first strip 
ybf=hf;%y coordinate of first strip 
Pbf=0;%total axial force due to CFRP on bw 
Mybf=0;%total My due to CFRP on bw 
Mxbf=0;%total Mx due to CFRP on bw 
efbf=zeros(1,nbf); 
ffbf=zeros(1,nbf); 
for i=1:nbf 
ebf=ecu*(1- ( (ybf)/(ky*h) )-  ((i-1)*sbf+xbf)  / (kx*(n*hf+bw))     ); 
if ebf>=ecfu 
fbf=0;   
elseif ecfu>ebf && ebf>-ecfu 
fbf=ebf*Ecfu;    
elseif ebf<=-ecfu 
fbf=0;   
end 
Fbf=fbf*Acf;%force in each strip 
Pbf=Pbf+Fbf; 
Mybf=Mybf+Fbf*( (i-1)*sbf + xbf ); 
Mxbf=Mxbf+Fbf*ybf; 
efbf(i)=ebf; 
ffbf(i)=fbf; 
end 
%------------------------------------ 
% CFRP: hf face 
%None installed in any specimen 
%------------------------------------ 
% CFRP: b face 
nbb=0;%No of strips 
sbb=b-a;%Spacing between strips 
xbb=a/2;%x coordinate of first strip 
ybb=0;%y coordinate of first strip 
Pbb=0;%total axial force due to CFRP on bw 
Mybb=0;%total My due to CFRP on bw 
Mxbb=0;%total Mx due to CFRP on bw 
efbb=zeros(1,nbb); 
ffbb=zeros(1,nbb); 
for i=1:nbb 
ebb=ecu*(1- ( (ybb)/(ky*h) )-((i-1)*sbb+xbb)/(kx*(n*hf+bw))); 
if ebb>=ecfu 
fbb=0;   
elseif ecfu>ebb && ebb>-ecfu 
fbb=ebb*Ecfu;    
elseif ebb<=-ecfu 
fbb=0;   
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end 
Fbb=fbb*Acf;%force in each strip 
Pbb=Pbb+Fbb; 
Mybb=Mybb+Fbb*( (i-1)*sbb + xbb ); 
Mxbb=Mxbb+Fbb*ybb; 
efbb(i)=ebb; 
ffbb(i)=fbb; 
end 
%------------------------------------ 
% CFRP: h face 
nhh=0;%No of strips 
shh=0;%Spacing between strips 
xhh=0;%x coordinate of first strip 
yhh=h/2;%y coordinate of first strip 
Phh=0;%total axial force due to CFRP on bw 
Myhh=0;%total My due to CFRP on bw 
Mxhh=0;%total Mx due to CFRP on bw 
efhh=zeros(1,nhh); 
ffhh=zeros(1,nhh); 
for i=1:nhh 
ehh=ecu*(1- ( ( (i-1)*shh+yhh)/(ky*h) ) -  (xhh)/(kx*(n*hf+bw))  ); 
if ehh>=ecfu 
fhh=0;   
elseif ecfu>ehh && ehh>-ecfu 
fhh=ehh*Ecfu;    
elseif ehh<=-ecfu 
fhh=0;   
end 
Fhh=fhh*Acf;%force in each strip 
Phh=Phh+Fhh; 
Myhh=Myhh+Fhh*xhh; 
Mxhh=Mxhh+Fhh*( (i-1)*shh+ yhh ); 
efhh(i)=ehh; 
ffhh(i)=fhh; 
end 
%------------------------------------ 
% Calculate actions 
Pt=Pc+Psu+PsL+Pss+Pbw+Phw+Pbf+Pbb+Phh; 
Myt=Myc+Myu+MyL+Mys+Mybw+Myhw+Mybf+Mybb+Myhh ; 
%------------------------------------ 
% Equilibrium check 
if abs(Pt) < p_un && abs(Myt) < My_un 
    Mxt=Mxc+Mxu+MxL+Mxs+Mxbw+Mxhw+Mxbf+Mxbb+Mxhh; 
    break 
end 
    end%------------end of for loop for teta 
if abs(Pt) < p_un && abs(Myt) < My_un,break,end 
end%----------------end of for loop for kx.  
if abs(Pt) < p_un && abs(Myt) < My_un,break,end 
end%end of while loop 
%------------------------------------ 
% Output 
Beta=90-(180/pi)*atan((kx*b)/(ky*h)); 
phiy=(ecu/(ky*h*sin(teta*pi/180)))*sin((Beta)*pi/180); 
phix=(ecu/(ky*h*sin(teta*pi/180)))*cos((Beta)*pi/180); 
if kx*b > b 
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    y2=(kx*b-b)*tan((Beta)*(pi/180)); 
else 
    y2=0; 
end 
disp('Axial force = ') 
disp(Pt) 
disp('My = ') 
disp(Myt) 
disp('Mux = ') 
disp(-Mxt) 
disp('Curvature about x-axis (rad/in) = ') 
disp(phix) 
disp('pattern = ') 
disp(pattern) 
disp('Beta = ') 
disp(Beta) 
disp('Y1 = ') 
disp(ky*h) 
disp('Y2 = ') 
disp(y2) 
disp('Width of NA = ') 
disp(kx*b) 
toc 

 

  



183 

 

 

C. MOMENT‐CURVATURE	PROGRAM	USING	TANGENT	STIFFNESS	METHOD	

%Program: Moment-curvature plots  
%Specimens: SM16 
%Authors: Muhammad Fahim and Zia Razzaq 
tic 
clear;  
clc; 
%------------------------------------ 
% Concrete Geometric Data 
bf=5;%flange width in inches 
hf=2;%flange depth in inches 
hw=4;%Web depth in inches 
bw=3;%Web Width in inches 
cr=0.625;%cover to main rebar center. 
cc=0.25;%clear cover 
%------------------------------------ 
% Concrete material Data 
k1=0.85;%Constant as in Whitney block.  
fcP=5.765;%Concrete compressive strength. 
ecP=0.00362;%Concrete strain corresponding to ultimate strength. 
ecu=0.00398;%Ultimate strain of concrete. 
%------------------------------------ 
% Steel Geometric Data 
Ns=4;%Number of reinforcement rebars. 
Ab=0.05;%Area of one rebar. 
%------------------------------------ 
% Steel material Data 
fy=52.3; 
Es=29200; 
%------------------------------------ 
% CFRP Data 
a=0.63;%width 
b=0.079;%thickness 
Acf=a*b;%Area 
fcfu=255.6;%Tensile strength. 
Ecfu=20000;%Modulus of elasticity 
ecfu=fcfu/Ecfu;%ultimate strain 
%------------------------------------ 
% CFRP Coordinates:9 strips  
xcf1=a/2;ycf1=hw; 
xcf2=bw-a/2;ycf2=hw;  
xcf3=bw;ycf3=hw-a/2; 
xcf4=bw;ycf4=hf+a/2; 
xcf5=bw+a/2;ycf5=hf; 
xcf6=bf-a/2;ycf6=hf; 
xcf7=bf-a/2;ycf7=0; 
xcf8=a/2;ycf8=0; 
xcf9=0;ycf9=hw/2; 
xcf10=0;ycf10=0; 
xcf=[xcf1 xcf2 xcf3 xcf4 xcf5 xcf6 xcf7 xcf8 xcf9 xcf10]; 
ycf=[ycf1 ycf2 ycf3 ycf4 ycf5 ycf6 ycf7 ycf8 ycf9 ycf10]; 
%------------------------------------ 
% Iteration Data 
Nh=400;%Number of layers along depth,along y. 
Nb=500;%Number of layers along width, along x. 
Nhs=2;%for rebars 
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Nbs=2;%for rebars 
del_Mx=0.24; %Interval for external Mx 
iter=100;%Max. No. of iterations of while loop. 
%------------------------------------ 
% Calculated data 
Ag=bf*hf+bw*(hw-hf);%Gross cross sectional area of concrete. 
Nc=Nh*Nb;%Number of small area elements. 
delAc=(hw/Nh)*(bf/Nb);%Elemental concrete area 
k1fcP=k1*fcP;%Concrete ultimate strength. 
Ec=(57600/1000)*sqrt(fcP*1000);  %Modulus of elasticity of conrete. 
fr=(1/1000)*7.5*sqrt(fcP*1000);%Modulus of rupture/Tensile strength of 
concrete. 
er1=0.5*(2*ecP+2*sqrt( ((ecP^2)) -((ecP^2)*fr/fcP)  )); 
er2=0.5*(2*ecP-2*sqrt( ((ecP^2)) -((ecP^2)*fr/fcP)  )); 
er=min(er1,er2); 
ey=fy/Es; 
Ast=(Ns/2)*Ab;%Top reinforcement area 
Asb=(Ns/2)*Ab;%bottom reinforcement area. 
As=Ns*Ab;%Total rebars area 
%------------------------------------ 
% Normalizing factors 
Ixo=(bw*hw^3)/12;%MOI of a rectangle without the flange. 
yo=hw/2; 
Mo=(fr*Ixo)/yo; 
phio=0.5*hw*er; 
%------------------------------------ 
% Centroids of elemental areas: Origin is assumed at the upper left corner. 
xi=zeros(Nh,Nb);%Centroid of elemental area along x axis. 
yj=zeros(Nh,Nb);%Centroid of elemental area along y axis. 
for i=1:Nh;  
for j=1:Nb;  
xi(i,j)=(bf/(2*Nb))+(j-1)*(bf/Nb);     
yj(i,j)=(hw/(2*Nh))+((i-1)*(hw/Nh)); 
if xi(i,j)> bw && yj(i,j)>(hw-hf) 
    xi(i,j)=0; 
    yj(i,j)=0; 
else 
    xi(i,j)=xi(i,j); 
    yj(i,j)=yj(i,j); 
end 
end 
end 
%------------------------------------ 
% Distances of rebars from origin 
xr=zeros(Nhs,Nbs);%Distance of steel bars along x. 
yr=zeros(Nhs,Nbs);%Distance of steel bars along y. 
nb=(Ns/4)+1;%Number of bars along each side of the cross section. 
row=round(linspace(1,Nhs,nb));%Bars location in the matrix along y axis. 
col=round(linspace(1,Nbs,nb));%Bars location in the matrix along x axis. 
s1=zeros(length(row),1);%Position of the bars without cover along the depth. 
s2=zeros(length(col),1);%Position of the bars without cover along the width. 
for i = 1:length(row) 
    s1(i) = (((hw-2*cr)*(i-1))/(nb-1)); 
 end 
for i = 1:length(col) 
    s2(i) = (((bw-2*cr)*(i-1))/(nb-1)); 
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end 
xr(1,col)=cr+s2;%First row of bars along x axis. 
xr(Nhs,col)=cr+s2;%Last row of bars along x axis. 
xr(col(2:length(col)-1),1)=cr;%First Column of bars along x axis. 
xr(col(2:length(col)-1),Nbs)=bw-cr;%Last Column of bars alog x axis. 
yr(row,1)= cr + s1;%First Column of bars along y axis. 
yr(row,Nbs)= cr + s1;%Last Column of bars along y axis. 
yr(1, row(2:length(row)-1)) = hw-cr;%First Row of bars along y axis. 
yr(Nhs,row(2:length(row)-1)) = cr;%Last Row of bars along y axis. 
%------------------------------------ 
% TS Matrix assuming zero stress/strains on the cross section. 
eci=zeros(Nh,Nb);%strains in each concrete element. 
Eci=zeros(Nh,Nb);%MOE of each concrete element. 
fci=zeros(Nh,Nb);%stress in each concrete element. 
esr=zeros(Nhs,Nbs);%strains in each rebar. 
Esr=zeros(Nhs,Nbs);%stress in each rebar. 
fsr=zeros(Nhs,Nbs);%MOE of reach rebar. 
ecri=zeros(Nhs,Nbs); 
fcri=zeros(Nhs,Nbs); 
Ecri=zeros(Nhs,Nbs); 
ecf=zeros(1,length(xcf)); 
fcf=zeros(1,length(xcf)); 
Ecf=zeros(1,length(xcf)); 
for i = 1:Nh 
    for j = 1:Nb 
      if xi(i,j)~=0 
            Eci(i,j)=fcP*((2/ecP)-((2*eci(i,j))/(ecP^2))); 
      else 
            Eci(i,j)=0; 
      end 
    end 
end 
for i = 1:Nhs 
    for j = 1:Nbs 
            Esr(i,j)=Es; 
            Ecri(i,j)=fcP*((2/ecP)-((2*esr(i,j))/(ecP^2))); 
    end 
end 
  
for i = 1:length(xcf) 
            Ecf(i)=Ecfu; 
end 
k11=sum(sum(Eci))*delAc+sum(sum(Esr))*Ab +sum(Ecf)*Acf -sum(sum(Ecri))*Ab; 
k12=-(sum(sum(xi.*Eci)))*delAc-(sum(sum(xr.*Esr)))*Ab-sum(xcf.*Ecf)*Acf + 
sum(sum(xr.*Ecri))*Ab; 
k13=-(sum(sum(yj.*Eci)))*delAc-(sum(sum(yr.*Esr)))*Ab-sum(ycf.*Ecf)*Acf + 
sum(sum(yr.*Ecri))*Ab; 
k21=k12; 
k22=sum(sum((xi.^2).*Eci))*delAc+sum(sum((xr.^2).*Esr))*Ab 
+sum((xcf.^2).*Ecf)*Acf-sum(sum((xr.^2).*Ecri))*Ab; 
k23=sum(sum((xi.*yj).*Eci))*delAc+sum(sum((xr.*yr).*Esr))*Ab+sum((xcf.*ycf).*
Ecf)*Acf -sum(sum((xr.*yr).*Ecri))*Ab; 
k31=k13; 
k32=k23; 
k33=sum(sum((yj.^2).*Eci))*delAc+sum(sum((yr.^2).*Esr))*Ab+sum((ycf.^2).*Ecf)
*Acf -sum(sum((yr.^2).*Ecri))*Ab; 



186 

 

 

K=[k11,k12,k13;k21,k22,k23;k31,k32,k33]; 
%------------------------------------ 
% Main prgoram 
Mx(1)=0; 
phix(1)=0;%Total curvature about x axis. 
Vd=[0;0;0];%Initial displacement vector. 
Vf=[0;0;0];%Initial force vector. 
Deto=det(K); 
Det(1)=det(K); 
N = 2;%Counter 
while ~0 
DMxe=del_Mx;%D for delta. increment in external Mx. 
DVf=[0;0;DMxe];%Change in force vector. 
DVd=K\DVf;%Change in displacement vector.  
Vf=Vf + DVf; 
Vd=Vd + DVd; 
m = 0;     
while m < iter 
m=m+1;%Counter for number of iterations. 
%---------------------------------------- 
% Strains in concrete elements 
for i = 1:Nh 
for j = 1: Nb 
    eci(i,j)= -xi(i,j)*Vd(2,1) - yj(i,j)*Vd(3,1); 
     
if eci(i,j) ~= 0 
    eci(i,j)=eci(i,j)+Vd(1,1); 
else 
    eci(i,j)=0; 
end 
%1.Element cracked in Tension 
if eci(i,j) < 0 && eci(i,j) < -er        
    fci(i,j)=0; 
    Eci(i,j)=0; 
%2.Element uncracked in Tension 
elseif eci(i,j) < 0 && eci(i,j) >= -er 
    fci(i,j)=fcP*((2*eci(i,j)/ecP)-((eci(i,j)/ecP)^2));%stress in each 
concrete element. 
    Eci(i,j)=fcP*((2/ecP)-((2*eci(i,j))/(ecP^2)));%MOE of each concrete 
element. 
%3.Element in compression     
elseif eci(i,j)>0 && eci(i,j) <= ecu 
    fci(i,j)=fcP*((2*eci(i,j)/ecP)-((eci(i,j)/ecP)^2));%stress in each 
concrete element. 
    Eci(i,j)=fcP*((2/ecP)-((2*eci(i,j))/(ecP^2)));%MOE of each concrete 
element. 
%4.Element has crushed in compression 
else 
    Eci(i,j)=0; 
    fci(i,j)=0; 
end 
end%end of i for loop. 
end%end of j for loop.  
%---------------------------------------- 
% Strains in steel elements 
for i = 1:Nhs 
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for j = 1: Nbs 
esr(i,j)=Vd(1,1)-xr(i,j)*Vd(2,1)-yr(i,j)*Vd(3,1); 
%1.Element yielded in Tension 
if esr(i,j)< 0 && esr(i,j) < -ey 
    fsr(i,j)=-fy; 
    Esr(i,j)=0; 
%2.Element elastic in Tension 
elseif esr(i,j) < 0 && esr(i,j) >= -ey 
    Esr(i,j)=Es; 
    fsr(i,j)=Esr(i,j)*esr(i,j); 
%3.Zero araa elements 
elseif esr(i,j)==0 
    fsr(i,j)=0; 
    Esr(i,j)=0; 
%4.Element elastic in compression 
elseif esr(i,j) > 0 && esr(i,j) <= ey 
    Esr(i,j)=Es; 
    fsr(i,j)=Esr(i,j)*esr(i,j); 
%5.Element plastic in compression 
else 
    fsr(i,j)=fy; 
    Esr(i,j)=0; 
end 
end%end of i for loop. 
end%end of j for loop. 
%---------------------------------------- 
% Concrete elements at location of rebars 
for i = 1:Nhs 
for j = 1: Nbs 
%1.Element cracked in Tension 
if esr(i,j) < 0 && esr(i,j) < -er        
    fcri(i,j)=0; 
    Ecri(i,j)=0; 
%2.Element uncracked in Tension 
elseif esr(i,j) < 0 && esr(i,j) >= -er 
    fcri(i,j)=fcP*((2*esr(i,j)/ecP)-((esr(i,j)/ecP)^2));%stress in each 
concrete element. 
    Ecri(i,j)=fcP*((2/ecP)-((2*esr(i,j))/(ecP^2)));%MOE of each concrete 
element. 
%3.Element in compression     
elseif esr(i,j)>0 && esr(i,j) <= ecu 
    fcri(i,j)=fcP*((2*esr(i,j)/ecP)-((esr(i,j)/ecP)^2));%stress in each 
concrete element. 
    Ecri(i,j)=fcP*((2/ecP)-((2*esr(i,j))/(ecP^2)));%MOE of each concrete 
element. 
%4.Element has crushed in compression 
else 
    Ecri(i,j)=0; 
    fcri(i,j)=0; 
end 
end%end of i for loop. 
end%end of j for loop. 
%---------------------------------------- 
%Find Strains and stress in CFRP Strips. 
for i = 1:length(xcf) 
    if xcf(i) ~=0 || ycf(i) ~=0 
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            ecf(i)=Vd(1,1)- xcf(i)*Vd(2,1)-ycf(i)*Vd(3,1); 
        if  ecf(i)>= -ecfu && ecf(i) <=ecfu  
            Ecf(i)=Ecfu; 
            fcf(i)=Ecfu*ecf(i); 
        else 
            fcf(i)=0; 
            Ecf(i)=0; 
        end 
    else 
            ecf(i)=0; 
            fcf(i)=0; 
            Ecf(i)=0; 
   end 
  
end 
%if min(min(eci))< -er || m >= iter, break,end %To find cracking moment 
if max(max(eci))> ecu,break,end 
%---------------------------------------- 
% Stiffness matrix  
k11=sum(sum(Eci))*delAc+sum(sum(Esr))*Ab +sum(Ecf)*Acf -sum(sum(Ecri))*Ab; 
k12=-(sum(sum(xi.*Eci)))*delAc-(sum(sum(xr.*Esr)))*Ab-sum(xcf.*Ecf)*Acf + 
sum(sum(xr.*Ecri))*Ab; 
k13=-(sum(sum(yj.*Eci)))*delAc-(sum(sum(yr.*Esr)))*Ab-sum(ycf.*Ecf)*Acf + 
sum(sum(yr.*Ecri))*Ab; 
k21=k12; 
k22=sum(sum((xi.^2).*Eci))*delAc+sum(sum((xr.^2).*Esr))*Ab 
+sum((xcf.^2).*Ecf)*Acf - sum(sum((xr.^2).*Ecri))*Ab; 
k23=sum(sum((xi.*yj).*Eci))*delAc+sum(sum((xr.*yr).*Esr))*Ab+sum((xcf.*ycf).*
Ecf)*Acf -sum(sum((xr.*yr).*Ecri))*Ab; 
k31=k13; 
k32=k23; 
k33=sum(sum((yj.^2).*Eci))*delAc+sum(sum((yr.^2).*Esr))*Ab+sum((ycf.^2).*Ecf)
*Acf -sum(sum((yr.^2).*Ecri))*Ab; 
K=[k11,k12,k13;k21,k22,k23;k31,k32,k33]; 
%---------------------------------------- 
% Find actions 
Mxe=Vf(3,1); 
Pn=((sum(sum(fci)))*delAc)+((sum(sum(fsr)))*Ab)+sum(fcf)*Acf- 
sum(sum(fcri))*Ab; 
Myn=-((sum(sum(xi.*fci)))*delAc)-((sum(sum(xr.*fsr)))*Ab)-sum(xcf.*fcf)*Acf 
+sum(sum(fcri))*Ab; 
Mxn=-((sum(sum(yj.*fci)))*delAc)-((sum(sum(yr.*fsr)))*Ab)-sum(ycf.*fcf)*Acf 
+((sum(sum(yr.*fcri)))*Ab); 
%---------------------------------------- 
% Equilibrium Check 
if abs(Pn) <= 0.001 && abs(Myn)<=0.1 && abs(Mxe-Mxn) <= 
0.1%max(0.1,0.002*Mxe)   
phix(N)=Vd(3,1);%/phio;                       
Mx(N)=Mxn;%/Mo; 
Det(N)=det(K); 
N=N+1; 
ecif=eci; 
fcif=fci; 
esrf=esr; 
fsrf=fsr; 
fecf=ecf; 
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ffcf=fcf; 
break%end while loop. 
else 
%---------------------------------------- 
% Unbalanced actions 
UVf= [-Pn;-Myn;Mxe-Mxn];   
UVd=K\UVf; 
Vd=Vd+UVd; 
end%end of Equilibrium check. 
end%end of while loop. 
%---------------------------------------- 
% Stopping criteria:Concrete compressive strain reaches limiting value. 
%---------------------------------------- 
if max(max(eci))> ecu || m >= iter, break,end 
end%end of for loop for Mx. 
%---------------------------------------- 
% Output 
[I,J]=find(ecif>0); 
y1=(hw/Nh)*(max(I)); 
y2=(hw/Nh)*I(end); 
Beta=(180/pi)*atan((y1-y2)/bf); 
plot(phix,Mx) 
disp('max concrete compressive strain = ') 
disp(max(max(ecif))) 
disp('Beta = ') 
disp(Beta) 
disp('Y1 = ') 
disp(y1) 
disp('Y2 = ') 
disp(y2) 
disp('Max Mx (k-in) =  ') 
disp(max(Mx)) 
disp('Max curvautre about x-axis(rad/in) =  ') 
disp(max(phix)) 
toc 
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D. MOMENT‐DEFLECTION	PROGRAM	USING	PLFD	

%Program: Moment-deflection using PLFD 
%Author: Muhammad Fahim and Zia Razzaq 
clc; 
clear; 
%------------------------------------ 
% Data 
L=24;%clear length of specimen 
Lo=6;%distance from specimen end to center of gimbal. 
Lt=L+2*Lo;%distance between centerlines of gimbals. 
np=12; %No of segments 
hi=Lt/(np);%height of each segment.  
Mt=[0 0.48 0.72 1.20 1.44 1.68 2.16 2.40];%Applied moment at the top. 
% Main program 
Mz=zeros(1,length(np+1)); 
phi=zeros(1,length(np+1)); 
del_Mid=zeros(1,length(Mt)); 
for k=1:numel(Mt) 
    z=0; 
for i=1:np+1 
%------------------------------------ 
% momnet and curvature at sections of specimen 
Mz(i)=Mt(k)*((Lt-z*hi)/(Lt));%moment at each section 
phi(i)=0.1438*Mz(i); 
z=i; 
end 
%Coefficient matrix, made for 12 segments and 13 stations 
%    1  2  3  4  5  6  7  8  9  10  11  12  13 
C = [1  1  0  0  0  0  0  0  0   0  0   0   0;... %1 
     0 -2  1  0  0  0  0  0  0   0  0   0   0;... %2 
     0  1 -2  1  0  0  0  0  0   0  0   0   0;... %3 
     0  0  1 -2  1  0  0  0  0   0  0   0   0;... %4 
     0  0  0  1 -2  1  0  0  0   0  0   0   0;... %5 
     0  0  0  0  1 -2  1  0  0   0  0   0   0;... %6 
     0  0  0  0  0  1 -2  1  0   0  0   0   0;... %7 
     0  0  0  0  0  0  1 -2  1   0  0   0   0;... %8 
     0  0  0  0  0  0  0  1 -2   1  0   0   0;... %9 
     0  0  0  0  0  0  0  0  1  -2  1   0   0;... %10 
     0  0  0  0  0  0  0  0  0   1 -2   1   0;... %11 
     0  0  0  0  0  0  0  0  0   0  1  -2   0;...%12 
     0  0  0  0  0  0  0  0  0   0  0   1   1];...%13 
%------------------------------------ 
ui = C\((-hi^2)*(phi')); %ui=deflection at each joints 
del_Mid(k) = ui(7);%u(7) corresponds to the deflection at mid height. 
% Output 
disp('=========================') 
disp('Applied moment (k-in) = ') 
disp(Mt(k)) 
disp('Deflection at midheigh (in) = ') 
disp(del_Mid(k)) 
end %end of for loop 
%disp(ui) 
plot(del_Mid,Mt) 
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