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ABSTRACT 

METHODOLOGIES FOR ESTIMATING TRAFFIC FLOW ON FREEWAYS 
USING PROBE VEHICLE TRAJECTORY DATA 

Khairul Azfi Anuar 
Old Dominion University, 2016 

Director: Dr. Mecit Cetin 

 

Probe vehicle data are increasingly becoming the primary source of traffic data. As probe 

vehicle data become more widespread, it is imperative that methods are developed so that traffic 

state estimators such as flow, density, and speed can be derived from such data. In this 

dissertation three different methodologies are proposed for predicting traffic flow or volume on a 

freeway. All of the proposed methodologies exploit several different traffic flow theories in 

conjunction with probe vehicle data to predict traffic flow. The first methodology takes 

advantage of the fundamental diagram or speed-flow relationship. The relationship states that 

flow can be estimated when speed is known. In this case, flow is traffic volume and speed comes 

from probe vehicles. Flow is predicted for four different models of fundamental diagrams and is 

analyzed at different time aggregation intervals. Results show that of the four fundamental 

diagrams, Van Aerde’s Model is the best performing model with the lowest average percent 

error. It is also observed that flow prediction is more accurate during low speed (congestion) 

compared to high speed (free-flow) conditions. The second methodology exploits the shockwave 

theory, which pertains to the propagation of a change (discontinuity) in traffic flow. From probe 

vehicle trajectories, shockwave is estimated as the boundary between free-flow and congested 

regimes of traffic flow. After clustering the traffic regimes into free-flow and congested periods, 

the traffic flow during congestion is estimated using the Northwestern congested-regime 

fundamental diagram. From this estimation, the flow during free-flow is then predicted. Analyses 



 
 

show that the percent error of the predicted flow during free-flow ranges from -9 to 1%. The 

third methodology is the car-following approach which relies on the spacing or distance between 

a leader and follower which can be directly measured from the trajectories. Based on a set of 

known probability distributions, the position of the follower vehicle with respect to the lead 

vehicle is estimated given that the spacing between the two random probe vehicles is known. A 

framework is developed to automatically process probe trajectories to extract relevant probe data 

under stop-and-go traffic conditions. The model is tested based on NGSIM datasets. The results 

show that when vehicle spacing is small the prediction of follower position is very accurate. As 

spacing increases the error in predicted follower position also increases. Though there exists 

some estimation error, all three approaches can reasonably predict flow for freeways using probe 

vehicle data.
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NOMENCLATURE 

푞 Flow, vehicle per hour per lane 

푞  Flow during congestion, vehicle per hour per lane 

푞  Estimated flow during congestion, vehicle per hour per lane 

푞  Flow during free-flow, vehicle per hour per lane 

푞  Estimated flow during free-flow, vehicle per hour per lane 

푞  Flow at capacity, vehicle per hour per lane 

푢 Speed, miles per hour 

푢  Breakpoint speed, miles per hour 

푢  Probe vehicle speed, miles per hour 

푢  Free-flow speed, miles per hour 

푢  Speed during congestion, miles per hour 

푢  Speed at capacity, miles per hour 

푘 Density, vehicle per miles per lane 

푘  Jam density, vehicle per miles per lane 

푘  Optimum density, vehicle per miles per lane 

 Follower number 

 Predicted follower number 

푋  Vehicle stop position, feet 

푋  Vehicle go position, feet 

푋  Front bumper to front bumper spacing between two vehicles at stop position, feet 

푋  Front bumper to front bumper spacing between two vehicles at go position, feet 

푔 Back bumper to front bumper spacing between two vehicles at go position, feet 

퐿 Vehicle length, feet 
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퐿 Average vehicle length, feet 

푤,휔 Shockwave speed, mile per hour or foot per second 

푤,휔 Estimated shockwave speed, mile per hour or foot per second 

퐹 Estimated value 

푂 Observed value 

푛,푁 Number of samples 

푝  Market penetration rate of probe vehicles  
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CHAPTER 1 

1 INTRODUCTION 

Traffic state estimators such as speed and flow are important for a number of applications in 

traffic management and planning, such as signal timing, determining the number of lanes in 

highway design, etc. Traditionally, traffic data are collected from loop detectors. In recent years, 

another type of traffic data which are collected by probe vehicles (PV) are becoming increasingly 

popular. 

PV are vehicles equipped with GPS-enabled devices such as cell phones or navigation 

systems. They typically record the location and speed of the vehicles themselves as they travel 

through the network. Since PV are mobile, they can collect traffic data all around the network. 

Due to their mobility, PV is increasingly becoming the source of traffic data. In comparison, loop 

detectors are installed at specific locations and can only provide information at fix points. To 

collect data for the network, multiple loop detectors must be installed. This then create a 

coverage and cost (installation and maintenance) issues for the transportation agencies who are 

responsible for the operations of the loop detectors. To tackle this issue, several studies have 

considered optimizing the locations of the loop detector within a transportation network (Bartin, 

Ozbay, & Iyigun, 2007; Fujito, Margiotta, Huang, & Perez, 2006; Kianfar & Edara, 2010). 

In the current state, PV data are collected by third party organizations. The data come from 

fleet vehicles, taxis, vehicles with GPS-tracking smartphones, etc. These organizations collect 

the data and provide them to transportation agencies at a fee which is normally lower than the 

cost of installing and maintaining loop detectors. This makes PV data a cost efficient source of 

traffic data. 
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However, even with its associated cost, loop detectors provide data that are crucial to 

transportation agencies. Measuring all of the vehicles, loop detectors provide volume, speed and 

to an extent the density of traffic. These three traffic state estimators are commonly used to 

describe traffic conditions. PV on the other hand represent a fraction of the overall traffic as they 

collect speed when they travel through the network. It is common practice to assume that PV 

speed (sample) represents the speed of all vehicles (population). In general terms, PV is similar 

to loop detector in terms of recording traffic speed. Though they are slightly different speeds 

which are space mean speed (PV) and time mean speed (loop detector). But that’s where the 

similarity ends because PV cannot directly measure flow or density. 

As PV technology becomes popular, it has emerged as the potential primary source of traffic 

data. A study was performed (Kim & Coifman, 2014) to look into the feasibility of replacing 

loop detector with PV as traffic data for a state transportation agency. Therefore, as PV 

increasingly becoming popular, it is imperative that traffic state estimators other than speed and 

travel time can be measured or predicted from PV data. This leads to the main goal of this 

dissertation which is to predict traffic volume from PV data. In this dissertation, the term traffic 

volume will interchangeably refer to as flow or flow rate. In the end, they all point to the 

direction which is the number of vehicles. 

Traffic flow is just one of the many traffic state estimators. Some other traffic state 

estimators that have been predicted from PV data are queue length (Anderson, Ran, Jin, Qin, & 

Cheng, 2011; Ban, Hao, & Sun, 2011; Cetin, 2012; Comert & Cetin, 2011) and trip origin-

destination (Antoniou, Ben-Akiva, & Koutsopoulos, 2004; Barceló, Montero, Marqués, & 

Carmona, 2010; Caceres, Wideberg, & Benitez, 2007; Calabrese, Di Lorenzo, Liu, & Ratti, 

2011) 
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PV data have also been used for density prediction (Juan C Herrera & Bayen, 2010; 

Hiribarren & Herrera, 2014; Roncoli, Bekiaris-Liberis, & Papageorgiou, 2015; Work et al., 

2008) along with travel time prediction (Bar-Gera, 2007; Barceló et al., 2010; Chen & Chien, 

2001). 

While there have been several studies utilizing PV data, the main challenge when working 

with PV data is the penetration rate, which is the percentage of PV compared to the overall 

vehicles. Several studies have considered the challenges of penetration rate (Bucknell & Herrera, 

2014; Chen & Chien, 2000; Cohen, Bosseboeuf, & Schwab, 2002; Patire, Wright, Prodhomme, 

& Bayen, 2015; Srinivasan & Jovanis, 1996). In the end most studies concluded that even at 5% 

penetration rate PV data are still reliable for making predictions on traffic states estimators. In 

the future, as the technology becomes more accessible it is expected that the penetration rate to 

increase. 

The objective of this dissertation is to estimate volume of traffic from PV data specifically 

for freeways. Three different methods or approaches are proposed in this dissertation. All three 

methods exploit several different traffic flow theories in combination with PV data. Different 

types of datasets are applied to evaluate each method. 

The first approach is called the fundamental diagram (FD) approach. A FD provides a 

relationship among the macroscopic traffic parameters, namely: speed (푢), flow (푞) and density 

(푘). This approach relies mostly on the 푢 − 푞 relationship. Given a robust and well-calibrated FD 

corresponding to the freeway of interest, one can estimate 푞 corresponding to the 푢 obtained 

from PV. This approach heavily depends on the goodness of fit of FD to the traffic data and the 

aggregation interval of the PV data. 
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The FD approach focuses on comparing the estimates of 푞 obtained from a variety of single-

regime FDs and aggregation intervals of the PV data. The FDs considered in this study are: 

Greenshields (1935), Underwood (1961), Northwestern (1967) and M. Van Aerde (1995). The 

aggregation intervals of the PV data considered are 5 minutes, 10 minutes, and 15 minutes. 

The second method is called the shockwave (SW) approach. Shockwave 푤 is the propagation 

of a change (discontinuity) in traffic flow. It was first proposed by the Lighthill-Whitham-

Richards (LWR) model (Lighthill & Whitham, 1955; Richards, 1956). 푤 refers to the boundary 

between free-flowing and congested traffic flow. 

In the SW approach, k-means clustering is applied to differentiate the free-flow and 

congested regions. The resulting boundary between the two regions is 푤. From PV data 

congested speed 푢  and free-flow speed 푢  can be determined. The Northwestern congested 

regime FD is utilized to estimate flow during congestion 푞 . After completing the steps above, 

푤, 푢 , 푢  and 푞  are now known values. Using these four values, the flow during free-flow 푞  

can be estimated. 

The third and final method is called the car-following (CF) approach. The main concept of 

this approach is exploiting the space headway between lead and follower vehicles. From vehicle 

trajectories, a specific pattern which is called a “ladder” can be observed. When a vehicle is in 

stop and go traffic, the stop motion is represented as a horizontal line within a vehicle trajectory. 

When these horizontal lines are combined for the different trajectories formed by multiple 

vehicles, they create a “ladder” shape within the trajectory. The steps within the “ladder” are the 

space headway between each vehicle. 
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In the CF approach, the term follower number  is commonly used.  is referred to the 

position of the follower behind a leader. As an example, if there are two vehicles and the first 

vehicle is in front of the second vehicle, then the second vehicle is  = 1. Now a third vehicle 

joins the group. This vehicle is  = 2 with respect to the first vehicle and  = 1 to the second 

vehicle. 

From these “ladders” the distributions of the space headway are developed for each . Given 

a space headway, the model would estimate  from the known distributions.  is predicted based 

on the distribution with the highest value utilizing the arguments of maxima. 

Traffic state can be estimated by different variables. The most common and widely used 

traffic estimation from PV data is speed. For this application, it is inferred that PV speed 

(sample) represents the speed of general traffic (population). Travel time which is the inverse of 

speed can also be estimated from PV data using the same inference. 

Other traffic state estimations such as density cannot be directly inferred from PV data since 

not all vehicles in the traffic stream serve as probes. Density is the number of vehicles occupying 

a space. In current practice, density is not an actual measurement but instead an estimation based 

on the ratio of flow over speed collected at a specific point. On the other hand, flow and speed is 

a direct measurement of the traffic. 

Flow along with other variables such as density and travel time are important traffic state 

estimators. There are several applications where volume is a critical input. In transportation 

management and planning, volume is required to determine the number of lanes in freeway 

design. In traffic control, signal timing is dependent upon the flow at the intersection. In travel 

demand models, calibration of the model is dependent upon flow. If PV data ever to replace loop 
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detector data, it becomes imperative that methods are developed to estimate flow from PV data. 

Due to these practical aspects, flow is taken as the main parameter to be estimated. However, the 

methods presented here are equally applicable to density estimation. 

All the approaches proposed in this dissertation predict the volume of traffic. In the FD 

approach, flow is predicted for any given PV speed, regardless of traffic condition. The SW 

approach identifies the traffic flow into free-flow and congested regimes. It then estimates 

volume for each regime. The CF approach predicts flow during congestion only where stop and 

go condition exists. The FD, SW and CF models are tested on Mobile Century (Juan C. Herrera 

et al., 2010), simulation and NGSIM data, respectively. 

The contributions of this dissertation are: 

 Improve methodology in predicting flow from PV and fundamental diagram by 

investigating four different FD models and different aggregation intervals. 

 Implementation of k-mean clustering to classify free-flow and congested traffic flow 

from PV data. The resulting boundary between the free-flow and congestion is the 

shockwave. 

 Predicting traffic flow for a congested region using Northwestern congested regime 

fundamental diagram. The prediction is based solely on PV speed. 

 Propose a new methodology to predict flow by exploiting the shockwave which is 

observable from PV trajectory. 

 Develop an algorithm to identify the stop and go movements of vehicles from their time-

space coordinates. 
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 Predicting the number of vehicles between two PV by utilizing the stop and go 

movements of the PV. 

 Creating links between the PV as the stop and go movements are located in multiple 

ladders. The links would reduce the overall time-space region to make a prediction on the 

number of vehicles. 

This dissertation is proposing novel approaches to estimating flow from PV data in 

combination with several different traffic flow theories. Each approach is targeting different 

traffic flow conditions. While there have been studies on predicting traffic conditions from PV, 

the methodologies proposed in this dissertation are new and have never been investigated by 

other literatures. 

The remainder of the study is organized as follows. Following this introductory section, 

review of literature is presented. This is followed by discussion on the methodological 

approaches and the data used for the analyses. Finally, the results are discussed, conclusions are 

drawn, and insights on future works are presented. 
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CHAPTER 2 

2 BACKGROUND 

Predicting traffic state estimators such as travel time, flow, shockwave and queue length have 

always been an important research topic in the field of transportation. This is because traffic 

estimators are used by traffic operation and management agencies to understand current traffic 

conditions and/or to forecast future conditions. As an example, the formation and dissipation of a 

shockwave provides clues on the build up, the length and the dissipation of a queue. Knowledge 

of the traffic state estimators can then be used for real time actions (e.g. intelligent transportation 

system) or long term solutions (e.g. transportation planning). 

Regardless of the time periods (short or long term), accurate and reliable predictions of the 

traffic state estimators are crucial. These predictions are one of the several factors considered 

when key decisions are being made. Predictions of traffic state estimators are based on data 

collected from the roadways. 

Traffic data are often collected by loop detector or similar devices (e.g. radar, microwave). 

They are called static sensors because they are installed at specific locations which then collect 

data for that specific location only. To collect data for the whole network, a vast amount of static 

sensors must be deployed throughout the network. They are normally deployed at specific 

intervals (e.g. every 0.5 or 1 mile) which may not be cost effective. 

For a more scientific approach to the deployment of static sensors, Bartin et al. (2007) 

proposed a clustering method to determine the location of deployment of the sensors with a goal 

of obtaining travel time estimations with the fewest errors. In their approach, a sample roadway 
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is divided into cells. When vehicles travel through the roadway, the travel time error for each cell 

is calculated. Then the cells with the least error will be selected as the deployment locations of 

the static sensor. Instead of travel time, Kianfar and Edara (2010) utilized traffic speed to 

determine the location of a static sensor. Hierarchical and k-means clustering techniques were 

used to determine the location which were based on traffic speed collected from probe vehicles. 

In the city of Cincinnati and Atlanta, statics sensors are deployed by 0.5 mile (average) and 0.3 

mile (actual), respectively. To determine the proper location of static sensors for both cities, 

Fujito et al. (2006) would systematically remove the sensors and compute the travel time index 

as a measure of performance. The configuration that resulted in the best performance measure 

was selected as the optimal locations for the sensors. 

In addition to static sensors, traffic data are also being collected by PV (also referred to as 

floating car). PV are vehicles that are equipped with GPS tracking devices such as cell phone or 

GPS navigation. They collect data as they travel through the network. Because of their mobility 

to move freely around the network, PV are known as mobile sensors. Having one PV within a 

network would not provide sufficient data to predict traffic state estimators. It takes several PV 

(if not hundreds) to provide traffic data representing the entire system. 

To help understand the difference between mobile and static sensors, a definition of both 

sensors is explained in terms of fluid motion. Mobile sensor or PV can be visualized as water 

traveling down a river. This is called the Lagrangian measurement. Meanwhile static sensors can 

be visualized as sitting on the river bank watching the water passing by which is called the 

Eulerian measurement. 
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Static sensors have been around longer than mobile sensors. Not surprisingly, transportation 

research utilizing mobile sensor data are enormous. But as mobile sensors becoming increasingly 

popular, research utilizing data from mobile sensors are also growing. Static sensors are 

commonly used to validate a traffic flow theory or to predict traffic state estimators. As mobile 

sensors become popular, the data that they collect are increasingly being applied to different 

aspects of transportation research. In areas where both datasets overlap, studies have also been 

performed by fusing them together. 

In terms of traffic flow theory, Gordon F Newell (1993a) proposed a cumulative curve 

method for plotting cumulative number of vehicles to pass some location 푥 by time 푡. By shifting 

the cumulative curve by the free-flow travel time between 푥  (arrival) and 푥  (departure), the 

horizontal displacement between 푥  and 푥  cumulative curves are the delay while the vertical 

displacement is the number of vehicles. Over the years, the name of this methodology evolved to 

what is known as the N-curve. 

To validate the N-curve method, M. J. Cassidy and Bertini (1999) analyzed static sensor data 

collected near Toronto, Canada. In their study, they first used the data to plot the N-curve. From 

the plot they found that the predictions from the N-curve are comparable to nearby static sensor 

data. Using data collected from I-5 near San Diego, California, Kurada, Öğüt, and Banks (2007) 

performed similar studies on the N-curve. They’ve acknowledged that the N-curve is capable of 

explaining traffic flow phenomena while pointing out potentials for error due to bias in the data. 

Other studies have since follow suit using data collected from static sensors at different locations 

(Bertini & Cassidy, 2002; M. Cassidy & Mauch, 2001). 
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Navarro and Herrera (2014) proposed a new method to plot the N-curve from mobile sensor 

data. To validate their proposal, the R78 – Autopista del Sol which connects Santiago, Chile to 

the Pacific coast was selected as the study site. The departure location (bottleneck) is a toll plaza 

and the arrival location is 15 km upstream. The departure curve or the capacity is a line with a 

constant slope of 2,230 vehicle per hour (vph). The capacity was determined from static sensor 

located at the toll plaza. Arrival curve was then plotted using mobile sensor data. The arrival 

curve was shifted based on free-flow travel time between the arrival and departure locations. 

After plotting both arrival and departure curves, the study concluded that the predictions from 

these curves are comparable to the data collected at the toll booth. 

Greenshields (1935) proposed the first fundamental diagram which assumed a linear 푢 − 푘. 

Since then, several other models have been proposed by different researchers (Drake et al., 1967; 

Edie, 1961; Greenberg, 1959; Gordon Frank Newell, 1961; Underwood, 1961; M. Van Aerde, 

1995; Wang, Li, Chen, & Ni, 2011). While the models differ from each other, the common 

denominator is that all of these models were developed based on static sensor data.  In a new 

study,  Li, Jian, and Monteil (2016) proposed a method to develop the FD from mobile sensor 

data. In their proposal, flow, speed and density were determined from mobile sensor data which 

were then translated into variables for the FD. Since their research was presented as a poster at 

the Transportation Research Board conference, no additional details can be found.  Nonetheless, 

their research is mentioned in this study to highlight the growing field of research utilizing 

mobile sensor data to be applied to traffic flow theories. 

Static sensors typically record the speed, flow and occupancy of traffic aggregated at specific 

time intervals for specific locations. While speed, flow and occupancy are important traffic 

estimators and are useful to transportation agencies, there are other estimators that are as 
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important but could not be collected by static sensors, such as travel time. From the road user 

standpoint, travel time is more important than traffic flow or speed. 

Mobile sensors record their positon and speed as they travel along the roadways and therefor 

collect travel time data, which is the inverse of speed. While travel time is not explicitly 

broadcast, several providers are already providing traffic speed to the public, as illustrated in 

Figure 1. The public would then predict the impact of the speed to their expected travel time. 

 

 

Figure 1  Traffic speed for the Hampton Roads region 
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In figure above, the traffic speed is for the Hampton Roads region of Virginia accessed 

through Google Maps on July 15, 2016 at 3:00 pm. Green indicates free-flow conditions and red 

indicates congestion. Incidents are highlighted with red circles. 

It can be noted that static and mobile sensors complement each other instead of overriding 

one another. They each have different aspects of traffic data that they can collect. Due to the 

limitations as to what type of traffic estimators can directly be processed from the data, research 

have been on going into expanding the applicability of the static and mobile sensor data. 

Static sensors record flow and speed of traffic at fix locations and therefore could not 

measure travel time. One approach to predicting travel time from static sensor data is the vehicle 

re-identification problem. The goal of this problem is to match a vehicle detected at one location 

with the same vehicle at another location. Travel time is then the difference between the times 

where the vehicles are detected at the different locations. As vehicles pass through static sensors, 

they would leave behind magnetic signatures. The task is then to match these match magnetic 

signatures as proposed by C. Sun, Ritchie, Tsai, and Jayakrishnan (1999) and Kwong, Kavaler, 

Rajagopal, and Varaiya (2009). During the vehicle matching process, errors occur where 

vehicles are mis-identified, identified more than once or not identified at all. To improve the 

vehicle matching prediction, Cetin and Nichols (2009) developed a two stage algorithm. The first 

step is to match similar vehicles using Bayesian method followed by solving an assignment 

problem. Coifman (2002)  proposed another approach to predicting travel time from static sensor 

data by combining them with the LWR model (Lighthill & Whitham, 1955; Richards, 1956) and 

Gordon F Newell (1993b) fundamental diagram. 
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Similarly, mobile sensor data have been investigated for their applicability in predicting the 

speed, flow and density of traffic. Nanthawichit, Nakatsuji, and Suzuki (2003) used such 

approach by combining mobile and static sensor data and applying them to Payne (1971) 

macroscopic model and the Kalman filter technique. In their two study, Work et al. (2008) 

developed a partial differential equation (PDE) which was derived from the LWR model. The 

PDE was then applied to the cell transmission model (Daganzo, 1994) for the prediction of 

traffic flow and speed using PV data. Their work was extended by Juan C Herrera and Bayen 

(2010) to include a Newtonian relaxation and Kalman filtering to estimate traffic flow, density 

and speed. 

Neumann, Touko Tcheumadjeu, Bohnke, Brockfield, and Bei (2013) proposed a 

methodology to estimate traffic flow from FD. Though their study may sound similar compared 

to the first approach of this dissertation, there are differences between them. First, they used a 

single FD for the same road type, e.g. same FD for all freeways. This fails to capture the spatial 

variations of traffic, e.g. difference in proportion of trucks and presence or absence of on-ramps. 

Moreover, they considered fitting only one type of FD with an aggregation interval of one hour. 

They extended their work by replacing the FD with Bayesian probability approach (Neumann, 

Touko Tcheumadjeu, & Bohnke, 2013). In this approach, flow is estimated from PV speed with 

the prediction relying upon Bayesian probability of historical data. 

When video camera is mounted to a PV, the spacing between that vehicle and the vehicle in 

front of it can be calculated. From this information Seo, Kusakabe, and Asakura (2015a) 

proposed a methodology to estimate traffic flow, density and speed. Based on this idea, Seo, 

Kusakabe, and Asakura (2015b) incorporated additional data that are collected by PV such as 

speed and location to make predictions on traffic density. 
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All of the methods mentioned previously is a macroscopic approach in estimating volume. 

This means that the studies would predict volume for specific time-space regions. A microscopic 

approach would look into individual PV trajectory and make predictions from them. Considering 

a signalized intersection (Hao, Sun, Ban, Guo, & Ji, 2013) would predict the index of the PV. 

The indexing would consider both PV and non-PV. Their model was developed by using 

Bayesian network. After applying to NGSIM data, the results show the mean absolute error 

ranging from 0 to about 7.5% when the penetration rate is at 5%. The prediction improved as the 

penetration rate increased. By implementing variational formulation (Daganzo, 2005a, 2005b), 

the study by Z. Sun and Ban (2013) reconstructed the trajectory of non-PV at signalized 

intersection, given that PV trajectory are known. The results were measured in terms of error of 

number of vehicles within a queue. The error ranged from 1.2 to 2.5 vehicles with penetration 

rate varying from 20 to 100%. 

PV data have also been used in queue length estimation (Anderson et al., 2011; Ban et al., 

2011; Cetin, 2012; Comert & Cetin, 2009). For these studies the estimation of queue length are 

based on the propagation of the shockwave as PV approaches an intersection. Cai, Wang, Zheng, 

Wu, and Wang (2014) relied on loop detector data in addition to PV data to estimate queue 

length. Other studies have applied PV data on different topics such as transportation resiliency 

(Donovan & Work, 2015) and incident detection (Sethi, Bhandari, Koppelman, & Schofer, 

1995). 

Just like other types of data, there are challenges with PV data. When PV technology was 

first introduced, the penetration rate of PV is relatively low. Even at low penetration rates, 

studies were being performed in applying PV data to predicting traffic state estimators. As a 

result, several studies have been done to determine the acceptable PV penetration rate (Chen & 
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Chien, 2000; Cohen et al., 2002; Comert & Cetin, 2009; Patire et al., 2015; Srinivasan & 

Jovanis, 1996). Majority of the studies concluded that 5% penetration rate is acceptable for 

traffic analyses. As PV technology improves and becomes widespread, it is now being 

considered as the main source of traffic data replacing loop detector data (Kim & Coifman, 

2014). 

One of the methods proposed in this dissertation utilizes the knowledge of space headway 

between vehicles. The proposed method is formulated such that it requires the summation of 

distribution of the space headway. If the distribution is normal, then the sum of two or more 

normal distributions is also normal. Not so for lognormal distribution.  Currently, there is no 

closed form for the sum of lognormal distributions. Several approximation methods have been 

proposed in the literature (Beaulieu & Rajwani, 2004; Beaulieu & Xie, 2004; Cobb, Rumi, & 

Salmerón, 2012; Lam & Le-Ngoc, 2006; Mehta, Wu, Molisch, & Zhang, 2007; Romeo, Da 

Costa, & Bardou, 2003; Schwartz & Yeh, 1982; Slimane, 2001; Zhao & Ding, 2007). All of 

them are complex and requires calculations of additional parameters to get the sum of the 

lognormal distribution. One of the oldest and simplest approximation is called the Fenton-

Wilkinson (F-W) method (1960). It is commonly referred to by the other approximation methods 

(see references above). Due to its simplicity the F-W approximation is being investigated in one 

of the proposed methodology. 

In this dissertation, three different methodologies to estimate traffic volume is presented. 

These methodologies take advantage of several traffic flow theories combined with PV data to 

predicting traffic volume. The following chapter is a discussion on the Methodology. 
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CHAPTER 3 

3 METHODOLOGY 

Three different approaches are proposed to estimate traffic flow on a freeway using PV data. 

Each approach will utilize PV data in combination with a traffic flow theory. The first approach 

will estimate traffic flow using PV combine with the FD. The second approach utilizes the 

shockwave 푤 which is the boundary between free-flow and congested regions. The third 

approach utilizes the car following concept to estimate flow. The following subsections explain 

all of the proposed approaches beginning with the FD approach, followed by the shockwave 

approach concluding with the car following approach. 

3.1 FUNDAMENTAL DIAGRAM APPROACH 

Traffic stream is often described in terms of speed 푢, flow 푞 and density 푘 The relationship 

of these three variables can be represented in three different diagrams better known as the 

fundamental diagram (FD). The three diagrams that make up the FD describe the 푞 − 푢, 푞 − 푘 

and 푢 − 푘 relationship. The proposed methodology utilizes the 푞 − 푢 relationship, where 푞 can 

be estimated when 푢 is known. Assuming a linear 푢 − 푘 relationship, Figure 2 illustrates the FD 

푢 − 푞 − 푘 relationships. In Figure 2b when 푢 is known (i.e., 푢 is the PV speed), 푞 can be 

estimated. 
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Figure 2  Fundamental diagram 푢-	푞-	푘 relationship 

 

Four different FDs are considered: Greenshields (1935), Underwood (1961), Northwestern 

(1967) and M. Van Aerde (1995). While there are several other FDs (Greenberg, 1959; Gordon 

Frank Newell, 1961; Wang et al., 2011), they are not considered in this study. 

The first FD developed by Greenshields (1935) assumed a linear 푢 − 푘 relationship that can 

be formulated by the equation: 

푘 = 푘 1 −
푢
푢  

1 

 

where: 푘 is density 
푘  is jam density 
푢 is speed 
푢  is free-flow speed 

 

In this relationship, as 푢 approaches 푢  then 푘 approaches zero. As 푘 approaches its 

maximum value 푘  then 푢 approaches zero. In real world, 푢  is relatively easy to determine. This 
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is not the case with 푘  where a typical value is between 185 and 250 vehicles per mile per lane 

based on vehicle length of 21 to 28 feet (May, 1990). 

The second FD used in this dissertation was developed by Underwood (1961). This FD takes 

the form of a non-linear 푢 − 푘 relationship that can be expressed as: 

푘 = 푘 ln
푢
푢  2 

 

where: 푘 is density 
  푘  is optimum density 
  푢 is speed 
  푢  is free-flow speed 

 

For this FD, other than 푢 , the other required known parameter is 푘  which is the optimum 

density which occurs when 푞 is maximum. 푘  is difficult to observe and varies from one location 

to another (May, 1990). 

A group of Northwestern University researchers  (Drake et al., 1967) came up with an S-

shaped curve to describe the 푢 − 푘 relationship. Their proposed model was very similar to 

Underwood’s model but with the introduction of a multiplier and a quadratic term. It can be 

formulated as: 

푘 = 푘 2 ln
푢
푢  

3 

 

where: 푘 is density 
  푘  is optimum density 
  푢 is speed 
  푢  is free-flow speed 
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The final FD considered in this dissertation was developed by M. Van Aerde (1995)  where 푘 

is formulated as the inverse of vehicle headway. To calculate the headway, four variables are 

introduced to the equation which can be formulated as: 

푘 =
1

푐 + 푐
푢 − 푢 + 푐 푢

 4 

 

푛 =
2푢 − 푢

푢 − 푢
 

5 

 

푐 =
1

푘 푛 + 1 푢
 6 

 

푐 = 푛푐  7 

 

푐 =
−푐 + 푢

푞 − 푐
푢 − 푢

푢  
8 

 

where: 푘 is density 
  푘  is jam density 
  푢 is speed 
  푢  is free-flow speed 
  푢 	is speed at capacity 
  푞 	is flow at capacity 
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Van Aerde FD works by performing a regression that would minimize the sum of squared 

errors (SSE) between the observed and predicted 푢 − 푞 − 푘 values in the orthogonal direction. A 

typical regression would calculate SSE by taking the difference either vertically (y direction) or 

horizontally (x direction) instead of orthogonally. To start the process, an initial starting point for 

푢 , 푢 , 푞 	 and 푘  is selected. An iterative search is then performed until SSE is minimized. At 

the end of the search the values 푢 , 푢 , 푞 	 and 푘  are determined that would ultimately be used 

to calculate k. 

Regardless of the different FD models, by utilizing the 푞 − 푢 relationship, flow 푞 can be 

estimated given a known 푢  which is the PV speed. As the FD models vary from one another, 

for a given 푢 , it is expected that 푞 will also vary. This approach is then applied to data collected 

from the Mobile Century experiment (2010). The framework of the FD approach is illustrated in 

Figure 3. 

 

 

Figure 3  Framework for the fundamental diagram approach 
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The following subsection is a discussion on the shockwave approach, which is the second 

approach in estimating traffic flow. 

3.2 SHOCKWAVE APPROACH 

This methodology estimates traffic flow using PV data in combination with the shockwave 

theory as proposed by Lighthill-Whitham-Richards (LWR) model (Lighthill & Whitham, 1955; 

Richards, 1956). The LWR model is used to analyze traffic flow dynamics, in particular 

estimating the shockwave boundary and speed. Derived from an FD and the conservation law 

(Equation 9), the LWR model, also known as the kinematic wave model, describes the evolution 

of system state in terms of density, flow, or speed over time and space. The conservation 

equation can be formulated as: 

휕푘
휕푡 +

휕푞
휕푥 = 0 

9 

 

 is the partial derivative of density 푘 over time 푡 and  is the partial derivative of flow 푞 

over location 푥.  

Shockwave 푤 is the propagation of a change (discontinuity) in traffic flow. 푤 refers to the 

boundary between free-flowing and congested traffic flow. It is considered backward (forward) 

moving as traffic transitions from free-flow (congested) to congested (free-flow). 푤 can be 

formulated as: 
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푤 = 푞 − 푞
푘 − 푘  

10 

 

Density 푘 is the number of vehicles for a given length of a roadway at a specific time period. 

This is similar to taking an aerial photography of a roadway and counting the number of vehicles 

in that roadway section. In traffic flow theory, there is the fundamental relation of 푞 as product 

of 푘 and 푢. Rewriting this relation, 푘 can be represented as: 

푘 = 푞
푢 11 

 

Substituting 11 into 10: 

푤 =
푞 − 푞
푞
푢 	−	

푞
푢

 12 

 

Solving for 푞 : 

푞 =
푞 − 푤

푞
푢

1 − 푤
푢

 

13 

 

where: 푤 is shockwave speed 
  푞  is flow during congestion 
  푞  is flow during free-flow 
  푘  is jam density 
  푘  is density during free-flow 
  푢  is speed during congestion 
  푢  is speed during free-flow 
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Relying solely on PV data, three variables - 푤, 푢  and 푢  - can be determined, leaving 푞  and 

푞  as the two unknown variables. Figure 4 illustrates the relationship between vehicle trajectory 

and 푤 along with the free-flow and congested regions. In this figure solid lines show the PV 

trajectory, dashed lines are non-PV trajectory and dotted line is 푤. 

From PV data 푤 is calculated by fitting a linear regression line at the boundary between free-

flow and congested regions. From the regression 푤 is the slope of the line. 푢  and 푢  are 

determined by the speed of PV in congested and free-flow regions. In this approach clustering is 

used to classify the two regions. The centers of the clusters or centroids are 푢  and 푢 . The 

clustering method is explained later in the chapter. 

To solve the shockwave equation, one of the two unknown variables (푞  or 푞 ) must be 

estimated. During free-flow period, traffic flow is considered erratic where there is fluctuation of 

vehicle flow and varying spacing between vehicles. In contrast, during congestion traffic flow is 

considered stable where vehicle flow and spacing between vehicles are relatively constant. 

Because of this characteristic, it is expected that by estimating 푞  there would be less variation in 

푞  when solving the shockwave equation. Hence the decision to first solve 푞  instead of 푞 . 
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Figure 4  Example of vehicle trajectory with shockwave 

 

To calculate 푞  the Northwestern FD is re-visited. In the earlier section, the FDs are called 

single regime FD because they provide a single relationship for the entire traffic states (free-flow 

and congested). While a single regime FD would be applicable to all states of traffic, it has been 

determined that 푞 has smaller errors during congestion compared to free-flow (Anuar, 

Habtemichael, & Cetin, 2015; Neumann, Touko Tcheumadjeu, Bohnke, et al., 2013). In other 

words 푞 can be estimated by FD more precisely during congestion rather than free-flow period. 

Instead of using the single regime FD a 푢 − 푘 relationship specifically for the congested 

region proposed by the Northwestern group is implemented to calculate 푞 . The relationship can 

be formulated as: 
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푢 = 푢 − 0.265푘 14 

 

where: u is speed 
푢  is breakpoint speed (= 40) 
k is density 

 

To calculate 푞 , 

푞 = 푘푢 15 

Substituting 15 into 14: 

푞 =
푢 − 푢

0.265 푢  16 

 

where: 푞  is estimated flow during congestion 
  푢  is breakpoint speed (= 40) 
  푢  is PV speed during congestion 

 

After calculating 푞  using Northwestern congested region FD and known 푤, 푢  and 푢  values 

from PV trajectory, 푞  can now be solved. To calculate 푞 , plug in the known values into 

Equation 13. From simulated data, the resulting 푞  and 푞  are then compared to the observed 푞  

and 푞  using several performance measures. 

In summary, the framework of shockwave approach can be represented as a flow chart, 

shown in Figure 5. 
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Figure 5  Framework for the shockwave approach 

 

From the flow chart, there are several topics that have not been discussed. The clustering and 

the Northwestern congested FD are discussed immediately after this. While the optimization of 

푢  and the calculation of 푞  will be discussed in the Results chapter. 

3.2.1 Clustering 

As mentioned earlier, clustering is applied to the data to identify free-flow and congested 

regions. Clustering is a technique where a set of data is partition into groups or clusters. It 

provides an understanding of how the data are naturally group.  Clustering is normally performed 

on un-labeled data and is categorized as unsupervised learning. Using this technique members of 

a cluster are similar between them and are dissimilar with members from other clusters. It can be 

applied as a stand alone tool to provide intrinsic grouping of a set of un-labeled data or to be 
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applied as a step for other algorithms. A good clustering will produce clusters in which the 

similarity within the cluster (intra) is high while similarity between the clusters (inter) is low. 

Clustering has been applied by practitioners and researchers alike. In real world applications, 

clustering has been applied to land use analysis to identify areas of similar land use. In 

marketing, it partitions the customers into groups which can be used to develop target marketing 

programs. It has also been used in pattern recognition, images processing and many other 

applications. 

In the field of transportation research, clustering technique has been applied to determine the 

optimal location of loop detectors for improved travel time estimation (Bartin et al., 2007). 

Blasch, Banas, Paul, Bussjager, and Seetharaman (2012) used clustering technique to model a 

person’s behavior (e.g. route choice). Clustering has also been used as a comparison against 

other techniques to group similar traffic patterns as demonstrated by Habtemichael, Cetin, and 

Anuar (2015). 

Several clustering algorithms have been developed, each of which is based on its own unique 

principles. Due to the variations in the algorithm, the clustering technique can be divided into 

different methods. One proposal is to divide the clustering methods into two main groups: 

hierarchical and relocation (partitioning) methods (Fraley & Raftery, 1998). ). Another proposal 

by Han, Pei, and Kamber (2011) divides the methods into four groups: hierarchical, partitioning, 

density-based and grid-based methods. 

This study focuses on the partitioning method that works by moving objects from one cluster 

to another. To be specific, this study utilizes the k-means clustering. This is one of the most 

popular and simple clustering algorithm (Jain, 2010). It works by partitioning n number of 
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objects into k clusters in which each object belongs to the cluster with the nearest mean. The 

objective of k-means clustering is to minimize the total intra-cluster variance. The function to 

achieve this objective is formulated as: 

푀푖푛	푍 = 푥 − 푐  
17 

 

where: 푥  is observations 
푐  is centroid 
n is number of observations 
k is number of clusters 
푥 − 푐  is the Euclidean distance 

 

Euclidean distance is the straight line distance between two points. While there are other 

distance measures such as Manhattan and Minkowski distances, the Euclidean distance are often 

used due to its simplicity. The steps for k-means algorithm is listed as: 

1. Clusters the data into a pre-defined k groups 

2. Select random centroids for each k  

3. Assign objects to their closest centroids according to the Euclidean distance 

4. Recalculate the new centroids 

5. Recalculate the Euclidean distance between each object and new centroid 

6. Repeat step 3 until no objects move between clusters 

The attractiveness of k-means clustering includes: efficient and easy to understand and 

implement. The disadvantages are: results dependent upon initial centroid assignment, pre-
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defined value of k and different distance error will give different results. In this study, the k-

means clustering is implemented by using the built in function developed within the statistical 

software R. 

3.2.2 Northwestern Congested Regime Fundamental Diagram 

The Northwestern congested regime FD is used to estimate 푞 , which is the estimated hourly 

flow during congestion. It is then compared to 푞  which is the observed hourly flow. The concept 

of Northwestern congested FD is shown in Figure 6. The solid line is the Northwestern 

congested FD and for reference purpose the dotted line is the linear single regime FD. As the 

name implies, the Northwestern congested FD is fitted to congestion data only. In comparison a 

single regime FD is fitted to both free-flow and congested data. By fitting to different types of 

data, it results in different slopes and intersect values for the different FDs. 

In the Northwestern congested FD, the term 푢 = 40 which is the breakpoint speed is 

introduced.  This is the speed at which traffic flow transitions from free-flow to congestion and 

vice versa. When this transition points are connected together, they form 휔. Note the difference 

between 푤 and 휔. While they both stands for shockwave, in this dissertation the term 푤	is used 

for flow estimation while 휔 is used to determine 푢 . 
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Figure 6  Northwestern congested regime fundamental diagram 

 

By adjusting 푢  it changes the transition points which in turns affects 휔. For a given 푢 , 휔 is 

estimated by fitting a linear regression line through a group of transition points. As the time-

space coordinates of these transition points changes, they also affect 휔. In addition to the 

coordinate, another factor that affects 휔 is the number of transition points. 

In this approach, rather than calculating 휔 for a large number of transition points, the 

transition points themselves are divided into groups. This would capture the different 휔 as the 

vehicle demand changes. Each group is assigned a specific number 푛 of PV. Too small of an 푛 

per group may cause severe fluctuation of 휔 while too large of an 푛 may result in averaging the 

휔 over too large of time period. As a result, from the total number of PV, they are divided into 푝 

groups containing 푛 PV. 

To determine the proper 푢  the 휔 for each group is compared against a known 휔. The 

objective is to adjust 푢  so that the difference between 휔 and 휔 is minimized. The objective 

function can be formulated as: 
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푀푖푛	푍 =
|휔 −휔|

푝  
18 

 

where: 휔  is estimated shockwave for each group   
  휔  is known shockwave for each group   
  푝 is total number of groups 

 

After selecting 푢  the variables -	푤, 푢  and 푢  - can be calculated. They are then plugged 

into Equation 13 to calculate 푞 . To measure the accuracy of the results, the difference between 

푞  and 푞  are calculated. The following section is a discussion on the car-following approach. 

3.3 CAR FOLLOWING APPROACH 

Car following describes the behavior of a vehicle (follower) with respect to the vehicle in 

front of it (leader). In a traffic stream, the follower will adjust its behavior (such as speed and 

spacing) to safely trail the lead vehicle. As the leader decreases its speed, the follower will do the 

same while maintaining a safe spacing. During congestion, vehicles stop and go as a result of 

following the vehicles in front of them. As the lead vehicles stops or slows down, the followers 

adjust their vehicle speed. The car-following (CF) approach exploits the stop and go movements 

of vehicles. When the trajectories of these vehicles are plotted, the stop and go movements are 

represented as horizontal or near horizontal lines. When these lines are combined, they form a 

“ladder” shape, as shown in Figure 7. 

In Figure 7, the lines are trajectories for vehicles 1, 2 and 3. In this example, vehicle 1 is 

travelling at a specific speed when it slows down and then speeds up again. This slow down 

movement can be observed by the change of slope of the vehicle trajectory. As a result of this 
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slow down, vehicle 2 and 3 encountered stop and go conditions as indicated by the horizontal 

lines of their trajectories. Together, the slow down of vehicle 1 combined with stop and go of 

vehicles 2 and 3 create a ladder shape trajectory. The CF approach presented here exploits the 

regular patterns in this ladder to predict the number of (unobserved) vehicles in between two 

probe vehicle trajectories. 

 

 

Figure 7  Hypothetical vehicle trajectory 

 

After identifying the ladder the spacing between each leader and follower pair is calculated. 

In Figure 7 the leader and follower pairs are vehicles 1-2, 1-3 and 2-3. In this example vehicle 

pairs 1-2 and 2-3 are for follower number one ( = 1) where vehicle 2 is follower one compared 

to vehicle 1 and vehicle 3 is follower one compared to vehicle 2. Vehicle pair 1-3 is for follower 

two ( = 2) where vehicle 3 is the second follower with respect to vehicle 1. The pairs continue 

with additional vehicles 4, 5 so on and so forth. 
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For each follower number, there are multiple observations of spacing. Referring to Figure 7, 

there are two (1-2 and 2-3) and one (1-3) observations for  = 1 and  = 2, respectively. From 

these observations, the distribution of the spacing can be observed. To predict the follower 

number  for a given vehicle pair the spacing between the two vehicles is used. To predict  the 

naive Bayes model is implemented. 

The Naive Bayes algorithm is based on conditional probabilities. It uses Bayes’ theorem, a 

formula that calculates a probability by counting the frequency of values and combinations of 

values in the historical data. For a given spacing between two vehicles, the distribution with the 

highest probability will be chosen as the predicted . 

To find the ladder and the spacing from the PV trajectory, an algorithm is developed. The 

spacing which is an output of the algorithm is then analyzed for its distribution. This learning 

process or training would create a set of known distributions of the spacing for each . Given a 

spacing also known as the testing stage, the model would then predict . Performance measures 

are used to evaluate the accuracy of the prediction. The algorithm, training, testing and the 

performance measures are discussed next. 

3.3.1 Algorithm 

The algorithm for this approach is more complex compared to FD and shockwave 

approaches. Multiple steps with different calculations and assumptions are implemented as part 

of the algorithm. Figure 8 shows the framework of the algorithm. 
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Figure 8  Framework for the algorithm of the car-following approach 

 

Prior to discussions on the algorithm, the assumptions are: 

a. T = 5 seconds 

b. 푤 = -18 fps (similar to Lu and Skabardonis (2007) findings) 

c. Minimum length of stop (푙 ) = 3 seconds 

d. Speed threshold (푢 ) = 0.1 fps 

e. Maximum number of stop (푠 ) = 5 (unit less) 
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The steps for the algorithm are listed as: 

Step 1: Determine the vehicles sequence based on the times the vehicles exit the study 

area. The first vehicle exiting the area (based on time) is vehicle number one. 

Followed by vehicles two, three, etc. This vehicle sequence will be used as 

ground truth measurements. 

Step 2: Calculate the angle between two consecutive points for all points for all vehicles, 

with exception of the last points. The angles are calculated by using the arc 

tangent trigonometry function, as shown in Figure 9. 

 

 

Figure 9  Angle between two points 

 

The arc tangent is selected due to the structure of input data and the output is 

always positive. While other trigonometric functions are available to calculate the 

angle, the output could be negative values which make creates unnecessary 

conversions or calculations. 

Step 3: Determine the points for each vehicle when their movements are stopped. In this 

algorithm, a stop is defined when the vehicle speed is less than or equal to 푢 . 
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Each stop for every vehicle is identified and label as stopID. The minimum 

number of observations N in each stopID is one, but there’s no maximum limit. 

Step 4: Find the stopID with the maximum N provided that N is greater than or equal to 

푙 . This stopID is identified as the longest stop sequence. Then determine the start 

and end points from this longest stop sequence. Extract data between the start and 

end points by imposing two lines with a slope of 푤 extending out from the start 

and end points by T. This extraction method is shown in Figure 10. 

 

 

Figure 10  Extraction window 

 

Remove the extracted data from the original dataset. Identify the extracted data as 

extractedID. Repeat this step until all observations are exhausted. 

Step 5: For each extractedID find the arrival and departure points. The arrival point 푋  is 

where the angle is at maximum while the departure point 푋  is where the angle is 



38 
 

at minimum (see Step 2). The maximum number of extractedID allowed is less 

than or equal to 푠 . 

Step 6: Calculate the 푋  and 푋  difference between the leaders and all of their followers. 

Perform calculation until all leaders are exhausted. Figure 11 is an illustration on 

how to calculate the 푋  differences, which are labeled as ∆푋 . Though not shown, 

the ∆푋  calculation is the same as ∆푋 . 

 

 

Figure 11  Locations of 푋 , 푋  and ∆푋  

 

In figure above, vehicle 1 is the leader for vehicles 2, 3 and 4. Vehicle 2 is then 

the leader for vehicles 3 and 4. From the viewpoint of vehicle 2, vehicle 3 is  = 1 

while vehicle 4 is  = 2. Vehicle 3 is the leader for vehicle 4, which makes 

vehicle 4  = 1 to vehicle 3. So on and so forth if there are additional vehicles. 



39 
 

∆푋  and ∆푋  are calculated for each vehicle pair (e.g. 1-2, 2-3, 3-4, etc). Recall 

earlier that  is the follower number or position of the follower behind a leader. 

3.3.2 Model training 

To validate a model, different sets of data are applied. Typically, a training data is applied to 

train the model followed by test data to test the model. This type training and testing has been 

performed by a handful of studies (Hou, Edara, & Sun, 2012; Khodayari, Ghaffari, Kazemi, & 

Braunstingl, 2012; Wei & Liu, 2013).  

To train the model, a set of training data is applied to the algorithm. In the training data, the 

information for all vehicles are known, including but not limited to positions, timestamps and 

vehicle lengths. The first step of the training is to identify the vehicle positions in terms of leader 

and follower. Then ∆푋  and ∆푋  are calculated for every pair of leaders and followers. Each 

leader-follower pair represents an . Using Figure 11 as an example, vehicles 2-3 and 3-4 are the 

vehicle pairings for  = 1. Vehicles 2-4 is the vehicle pair for  = 2. If vehicle 5 exists and 

located behind vehicle 4, then vehicle 3-5 is the pair for  = 2 while vehicle 2-5 is the pair for  

= 3. So on and so forth until all vehicle pairs are identified. 

Regardless of the vehicle movement (stop or go), ∆푋 is the spacing between the front bumper 

of a vehicle to front bumper of another vehicle. ∆푋 can be expressed as the length of the vehicle 

퐿 plus the gap 푔 between back and front bumper. If there are more than two vehicles, then 퐿 is 

the sum of all the vehicle lengths and 푔 is the sum of the vehicle gaps. This relationship can be 

formulated as: 
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∆푋 = 푔 + 퐿  
19 

 

Figure 12 is an example of the relationship between ∆푋, 퐿 and 푔. Their relationship can be 

formulated as: 

∆푋 = (푔 + 푔 + 푔 + 푔 ) + (퐿 + 퐿 + 퐿 + 퐿 ) 20 

 

 

Figure 12  Example of vehicle spacing, gap and length 

 

The purpose of defining ∆푋 is to differentiate the random and constant variables. If ∆푋 is 

used as the key variable, it should be noted that ∆푋 is combination of random variable 푔 and 

constant 퐿. For analyses, it is imperative that the variable to be random. Hence the decision to 

used random variable 푔 as the primary variable to predict. Since information for all vehicles are 

available in the training data, 푔 can easily be calculated. To calculate 푔, simply deduct 퐿 from 

∆푋. After determining 푔, the pdf is calculated for every . The crucial pdf parameters are the 

mean  and variation 휎 . Figure 13 is an example of the pdf of 푔 for  = 1 to 4. In the training 
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model, the pdf of 푔 is calculated for every . In addition to the variable 푔, the pdf of variable ∆푋 

is also calculated for every . 

 

 

Figure 13  Hypothetical example pdfs of 푔 

 

Random variable 푔 is assumed to have either normal (21) or lognormal (22) distribution with 

mean 휇 and variance 휎  if its pdf are: 

푓(푔) = 	
1

휎√2휋
푒푥푝 −

(푔 − 휇)
2휎  

21 

 

푓(푔) = 	
1

푔휎√2휋
푒푥푝 −

(푙푛[푔]− 휇)
2휎  

22 

 

It is imperative to point out that the prediction of  is highly dependent upon the pdf of 푔. 

The type of distribution and the variable used to determine the pdf impact the prediction of . It 

is important that the data used to estimate the pdf come from a random sample. The pdf of 푔 is 
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tested for types of distribution by using Cullen and Frey (1999) technique. This technique is a 

plot of skewness and kurtosis which provides some insight as to the type of distribution to fit the 

data. On this plot several common distributions are displayed. For normal, uniform, logistic and 

exponential distributions, there is only one possible value for skewness and kurtosis. They are 

represented as single points on the plot. For gamma and lognormal distributions, the possible 

values are represented as lines.  

As stated earlier, the pdfs are calculated for the variable 푔. To ensure that 푔 is random, the 

conditions of overlap and duplicate are removed from the training data. Overlap is a case where 

the vehicle pairings to calculate 푔 intersect with one another. This would result in some 

correlation between the vehicle pairings. As an example, from Figure 12, when  = 2, the 

pairings are vehicles 1-3 (with vehicle 2 between), 2-4 (with vehicle 3 in between) and 3-5 (with 

vehicle 4 in between). The overlap occurs for vehicles 1-3 and 2-4 where vehicle 2 is used twice 

to calculate 푔. The overlap also occurs for vehicles 2-4 and 3-5 where vehicle 3 is used twice. To 

eliminate the overlap, only consecutive vehicle pairs are considered. Using the same figure as an 

example, for  = 2 the consecutive vehicle pairs would be 1-3 (with vehicle 2 in between) and 3-

5 (with vheicle 4 in between). By selecting consecutive vehicle pairs, the issue of overlap is 

eliminated. 

Another issue for calculating 푔 is duplicate. This condition exists when vehicle pairings are 

located in multiple ladders. Using Figure 11 as an example, imagine two additional sets of 

ladders created from the continuation of the same trajectory, one to the left (upstream) and one to 

the right (downstream) of the existing ladder. All three sets of ladders have the same vehicle 

pairs. Even though the ladders are located at different time-space coordinates, the vehicle 
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pairings are still the same. To eliminate the duplicates, vehicle pairs can only be located in a 

single ladder. 

3.3.3 Model testing 

The model is then applied to test data, which is different than training data. The variables for 

the test are the same as training data. The only difference is that the actual  are hidden from the 

model. While the variable is there, it is not being used to estimate . It is used only as a 

comparison against a prediction. 

Although the test data consist of data for all vehicles, only specific vehicles are randomly 

selected to be assigned as PV. Testing would be performed on the PV data while the original test 

data consisting of all vehicles will be used as ground truth comparison. From the trajectory, ∆푋  

and ∆푋  of the PV can be determined. In this method, only ∆푋  is considered. In real world ∆푋  

is more stable compared to ∆푋 . When a vehicle is in a stop motion and is ready to move, it will 

do so immediately. ∆푋  is the point where the vehicle starts moving. However, when a vehicle is 

in motion and encounters a stop condition, the point where the vehicle stop ∆푋  is difficult to 

define. A vehicle might pull up to the stop location and brakes (instantaneous stop) or a vehicle 

might do a slow roll as it approaches the stop location. With this slow roll motion, it is difficult 

to identify ∆푋  because the vehicle is still moving albeit slowly. As it approaches the stop 

vehicle in front of it, it may not even stop completely if the front vehicle starts moving again. 

Because of this, it is more desirable to use ∆푋  for analyses. From here on ∆푋  will be referred 

to as ∆푋. 

To predict  the observed ∆푋 needs to be transformed to 푔 so it could be applied to the pdf 

obtained from the training data. From PV data, the only variable that can be measured is ∆푋. 푔 
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and 퐿 are unknown values. To solve for 푔, given that ∆푋 is known, 퐿 needs to be estimated. 

Where 퐿 is the product of number of vehicles 푆 and the average length of vehicles 퐿 in front of 

the last follower. To estimate 퐿, the pdf of ∆푋 from the training data is utilized. 

The additional step of estimating 퐿 is required because the random variable 푔 is not 

observable from PV data. Recall that ∆푋 = 푔 + 푆퐿. The term 푆퐿 varies as 푆 increases (퐿 is 

constant). To estimate 푆, find the argument of the maxima from 푓(∆푋) which can be formulated 

as: 

푆 = argmax푓(∆푋|) 23 

 

Figure 14 illustrates the process of finding the argmax 푓(∆푋|). The first step is to calculate 

퐿 for 푆  = 1, …, N. For each 퐿 find the 푓(∆푋|). Then find the maximum of 푓(∆푋|) and 

assign  to 푆. In this figure, when 푆  = 2, the resulting argmax is 푆 = 3. 

Though it may look cumbersome, 푆 needs to be determined so that ∆푋 can be transformed 

into 푔. The purpose of using 푔 is to ensure that the variable is random. However, 푆 introduces a 

new a variable and therefore a new uncertainty to predicting . 
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Figure 14  Example of argmax 푓(∆푋|) 

 

After predicting 푆 for a given ∆푋, the variable 푔 can be calculated. To predict , the same 

approach of argument of maxima is utilized. The formula can be written as: 

 = argmax


푓(푔|) 24 

 

Figure 15 illustrates the process of finding the argmax 푓(푔|). Given a value 푔 , the argmax 

will find the maximum value from each pdf of 푔 for every . The  with the maximum value 

will then be selected as the predicted . 
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Figure 15  Example of argmax 푓(푔|) 

 

As with any model, there are errors in prediction. As indicated earlier the higher the vehicle 

spacing, the greater the variations of 푔, resulting in increased prediction error. To reduce error, 

instead of making a direct prediction from leader to the last follower, the prediction will take a 

path utilizing intermediary vehicles in between the two vehicles, if they exist. Each path consists 

of links that connect the PV. Each link has an error cost 휀 associated with it. To predict  is to 

follow the path with the least amount of 휀. Since the intermediary vehicles are actual PV, their 

푔’s are also known. Hence  can be predicted for these intermediary PV. As an example, refer to 

Figure 12. Let’s assume that vehicles 1, 3 and 5 are PV1, 2 and 3, respectively. In this figure the 

intermediary PV is vehicle 3. To predict  from vehicle 1 (PV1) to vehicle 5 (PV3), a direct 

prediction can be made from PV1 to PV3 or a multiple links prediction can be made from PV1 to 

PV2 to PV3. The decision on which path to take is dependent upon the 휀 for each link. As stated 

earlier, the path with the least 휀 will be chosen. This is similar to solving the shortest problem. 
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3.3.4 Sum of distribution 

Let random variables X and Y to be normally distributed, with 푋	~	푁(휇 , 휎 ) and 

푌	~	푁(휇 , 휎 ). The sum of both random variables Z = X + Y will result in 푍	~	푁(휇 = 휇 + 휇 ,

휎 = 휎 + 휎 ). This is true for the sum of any normal distribution. 

Currently, there is no closed form for the sums of lognormal distribution. While there have 

been several approximation methods, the simpler F-W  method (1960) is investigated. Consider 

the sum of M lognormal random variable X where each 푋 	~	퐿푁(휇 ,휎 ), the expected value 

and variance of X are 퐸(푋) = 푀 ∗ 퐸(푋 ) and 푉푎푟(푋) = 푀 ∗ 푉푎푟(푋 ). The F-W approximate 

such that: 

푒푥푝  + 0.5휎 = 푀 ∗ 퐸(푋 ) 25 

 

[푒푥푝(휎 ) − 1] ∗ 푒푥푝(2휇 + 휎 ) = 푀 ∗ 푉푎푟(푋 ) 26 

 

Solving for the expected mean 휇  and variance 휎 : 

휎 = ln	 1 +
푒푥푝 휎 − 1

푀  
27 

 

휇 = ln 푀∗ exp 휇 + 0.5(휎 − 휎 ) 28 

 

By solving for 휇  and 휎   the 휀 for any  can now be approximated, assuming that the 

distributions are lognormal. This is a useful tool considering that number of samples reduces as 
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vehicle spacing increases which affects the variance of 푔. Since 푔 is used as the link cost 휀 this 

would affect the prediction of . 

3.3.5 Optimal path 

In order to improve the accuracy of the estimated , the prediction of the first and last PV 

will rely on intermediary PV that are located in between the two vehicles. While an estimation 

can be made directly from the first to the last PV, it is expected that 휀 will be high. To minimize 

the 휀, the problem is formulated as a shortest path (SP) problem. 

SP is about finding the path between two nodes such that the sum of the weight of the links 

or 휀 in this case is minimized. When applied to the CF approach, SP is finding the path between 

a leader and the last follower such that the sum of 휀 is minimized. The leader and follower are 

the origin and destination nodes and the cost of a links is 휀. The links connect the origin and 

destination nodes with other nodes, which are the intermediary PV. This can be visualized in 

Figure 16. 
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Figure 16  Probe vehicle shortest path problem 

 

In Figure 16a, the square boxes are vehicles 1 through 10. From the training model, the 휀 for 

vehicle 1-2 is identified as 휀 |  which is the error for  = 1. Followed by 휀 | , 휀 | , 휀 |  

continuing to 휀 |  which are the errors for  = 2, 3, 4 and 9, respectively. It can also be 

observed that vehicle 2 is the leader for vehicles 3 through 10, vehicle 3 is the leader for vehicles 

4 through 10, so on and so forth. To emphasize this point, in this figure vehicle 5 is the leader for 

vehicles 6 and 7 with 휀 |  and 휀 | , respectively. 

Let’s assume that there are four PV in the data as shown in Figure 16b. The objective is to 

predict  for PV4 with respect to PV1. During testing, the only data available are from these four 

PV. One option to estimate  is to calculate 푔 between trajectories of PV1 and PV4. Then find 
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the highest probability of fitting a pdf from the training model, in this case with 휀 . Let’s call this 

path A with 휀 . 

Another option is to use the intermediary PV that are in between PV1 and PV4. It is expected 

that 휀 , 휀 , 휀  and 휀  to be smaller than 휀 . For this option, path B is PV1 – PV2 – PV4 with 

휀 = 	 휀 + 휀  and path C is PV1 – PV2 – PV3 – PV4 with 휀 = 	 휀 + 휀 + 휀 . The shortest path 

problem will then pick the path with the smallest 휀 from a selection of 휀 , 휀  or 휀 . 

To solve the SP problem, the well known Dijkstra’s algorithm is implemented (Dijkstra, 

1959). This algorithm is regularly implemented in route choice problems (e.g. transportation and 

computer networking). Today it is one of the most popular algorithms in computer science and is 

often applied in operations research and artificial intelligence. The steps in Dijkstra’s algorithm 

are: 

Step 1: Given a set of nodes and links, all nodes have infinite cost except for the origin, 

which has zero cost. Mark origin node as solved S. 

Step 2: Determine candidate nodes that are connected to the origin node. From the weight 

of the link, calculate the cost between candidate nodes and solved node. Select the 

node with the minimum 휀. Mark this node as solved and add to S.   

Step 3: Update cost of solved node by weight of the link 휀. 

Step 4: Find unsolved nodes that are connected to V. The cost between unsolved nodes 

and S is the sum of the node cost and the link weight 휀. Select node with the 

lowest cost. Update S. 

Step 5: Update cost of solved node by weight of the link 휀. 
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Step 6: Repeat step 4 and 5 until arrive at destination node. 

To help understand Dijkstra’s algorithm, the example shown in Figure 16b will be solved. 

First, the PV relationships are illustrated in terms of nodes and links. In this example, it is 

assumed that 휀 = 1, 휀 = 2, 휀 = 3, 휀 = 4 and 휀 = 8. The initialization, node selections and 

final solution is illustrated in Figure 17. 

In step 1 of Figure 17, the origin and destination nodes are identified. In this example, the 

origin is node 1 ending at node 4. In step 2, the candidates for node 1 are node 2 and 8 with 휀 of 

3 and 8, respectively. The candidates are identified by the dashed lines. Node 2 is selected since 

it has the lowest 휀. The cost for node 2 is updated and node 2 is added to S. In step 4, the 

candidate nodes are 3 and 4. The 휀 between node 4 – 2 is 4 and node 4 – 1 is 8. While the 휀 

between 3 – 2 is 1. In step 5, node 3 is selected and it’s node cost is updated. Step 6 is a repeat of 

the algorithm. The final solution of the shortest path problem is shown in step 7. 

As seen from Figure 17, estimating  between the leader and the last follower can be viewed 

in terms of shortest path problem. By solving the shortest path problem, the model is able to 

predict . 

A heuristic approach called nearest node is introduced in finding the optimal path. This is an 

alternative to the SP method and is used as comparison. Typically, the node number in a graph 

network represent some arbitrary identification of a node. In this method, the node number 

represents the sequence of PV. The smaller the node difference, the nodes are closer to each 

other. In the nearest node approach, the optimal path is the path taken by utilizing the nearest 

node. Regardless of 휀, the nearest node will always select the path to the nearest node until the 

target node is reached. 
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Figure 17  Solve shortest path using Dijkstra's algorithm 
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3.3.6 Link connection 

In order to find the shortest path, there needs to be a complete link connecting the first and 

last PV. However, there are cases where the links are disjoint or intersect. This would make the 

prediction of  to be incomplete. 

Disjoint is a case where the links are separated into groups. There are no links that connect 

the groups together. As a result, the predicted  using the SP would be for each group. To 

complete the process,  needs to be predicted for between the groups. Intersect is a condition 

where the links are overlapping each other. This results in duplication of  for the intersecting 

links. For a true prediction of , the predicted  for the intersecting links needs to be removed. 

Figure 18 is an illustration of the complete, disjoint and intersect conditions. 

 

 

Figure 18  Probe vehicle link connection 
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Figure 18a illustrates a complete PV connection. In this figure, to go from PV1 (source) to 

PV8 (target), there exist a full connection. Link 1 connects PV1 and PV3, link 2 connects PV3 

and PV 5 while link 3 connects PV3 and P8. With these three links, there is path from the source 

to target PV. Figure 18b is an illustration of a disjoint condition where link 1 connects PV1 and 

PV3 while link 2 connects PV3 and PV4. Link 3 connects PV5 and PV8. Even though there are 

links that connect the PV, there is no path that connects the source and target PV. The intersect 

condition is shown in Figure 18c. Link 1 connects PV1 and PV3, link 2 connects PV2 and PV6 

and link 3 connects PV5 and PV8. In this figure, the links overlap each other without providing a 

path from the source to target PV.     

To predict  for the disjoint condition, the last PV from the first group and the first PV from 

the subsequence group need to be identified. After identifying the PV, the time headway 푇 

between the two vehicles are calculated. 푇 is then fitted to pdf of 푇 for each , which is 

developed from the training model. To estimate , find the argument of the maxima from 푓(푇) 

which can be formulated as: 

 = argmax


푓(푇|) 29 

 

This method is similar to the method discussed earlier. The difference is that, instead of 푔, 

the variable 푇 is utilized. The same for intersect condition, where the PV where the links overlap 

are identified. For disjoint, the  is added to the prediction for the groups. For intersect,  is 

deducted from the prediction of the groups. 

From the training model, 푇 is the difference in time where each vehicle in a pair is located at 

the same space. Obviously the vehicles cannot be in the same space at the same time or else there 
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would be a collision. Since data are collected every 1 second, the time increment would be the 

same for all vehicles, but not the space location. To find 푇, find the space where it is equal for 

both vehicles in a pair and calculate the time difference. In some instances, both vehicles do not 

have the same space and are therefore omitted from calculation. In other cases, there are more 

than one occurrences of both vehicles with the same space. When this occur the minimum of all 

푇 is designated as 푇. The pdf of 푇 is then developed for each .  

From the test model, 푇 is calculated by taking the last known time-space coordinate of the 

source PV. At this space, find the time for the target PV. Interpolation is performed if no direct 

value is available. 푇 is the time difference between the source and target PV. 

In summary, the framework of the CF approach can be represented as a flow chart, as shown 

in Figure 19. 
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Figure 19  Framework for the car-following approach 

 

3.4 PERFORMANCE MEASURES 

Several different performance measures are used to evaluate the results of the proposed 

methodologies. The three indicators used are percent error (PE), mean absolute percentage error 

(MAPE) and root mean square error (RMSE). These three indicators measure the deviation of 

the estimated 푞 or  and the observed 푞 or . They can be formulated as: 
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푃퐸 =
퐹 − 푂
푂 × 100% 

30 

 

푀퐴푃퐸 =
1
푛

퐹 − 푂
푂 × 100% 

31 

 

푅푀푆퐸 =
1
푛 푛 (퐹 − 푂 )  

32 

 

where: 퐹  is the ith estimate value 
푂  is the ith observe value 
n is the number of samples 

 

These performance measures are selected because of their ability to capture deviations from 

different perspectives. PE measures the deviations between each observation which allows for 

further analysis of the data for identification of any trend, outliers, or similarities. MAPE and 

RMSE will each produce a single number that reflects the overall deviation of the data. These 

performance measures are commonly used and have been applied to other studies (Bucknell & 

Herrera, 2014; Kindzerske & Ni, 2007). 

To evaluate the car-following approach, cross validation technique is implemented. Cross 

validation works by splitting the original data into a training set which is used to train the model 

and a test set to evaluate it. There are three different cross validation methods: random 

subsampling, k-fold and leave one out. 
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In random subsampling, the original data are randomly divided into groups: training and 

testing. Figure 20 is an illustration of this method.  

 

 

Test 1          
 
Test 2          
      ⋮ 
Test K          
 
  Test data        

Figure 20  Random subsampling cross validation 

 

In k-fold cross validation, the original data are divided into k groups. Of the k groups, a single 

group is used as test data while the remaining k -1 groups are used as training data. The cross 

validation is then repeated k time (or folds) with a single group used as a test data only once 

during the process. Figure 21 is an illustration of this method. 

The final cross validation method is called leave one out (LOO). This method is the extreme 

approach to the k-fold method. Instead of folding for every group, LOO would fold for every 

observation from the original data, as shown in Figure 22. 

 

 

 

Original data 
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 Fold 1 Fold 2 Fold 3 … Fold K 
Test 1 Test data    

 
Test 2  Test data   

 
Test 3   Test data  

       ⋮ 
Test K    Test data 

Figure 21  k-fold cross validation 

 

Test 1   
 
Test 2    
 
Test 3    
       ⋮ 
Test K   

Figure 22  Leave one out cross validation 

 

For the car-following approach, the k-fold cross validation method will be utilized. The 

implementation of the k-fold cross validation will be discussed under the Results chapter. This 

concludes the Methodology chapter. The following chapter is a discussion on the data used for 

analyses. 

  



60 
 

CHAPTER 4 

4 DATA 

Different sets of data are either acquired or generated for this dissertation. For the FD 

approach, data from a case study named Mobile Century is used. The shockwave approach 

utilizes simulated data of a hypothetical network while the car-following approach is developed 

based on the well known NGSIM data. This chapter explains all three types of data sets. 

4.1 MOBILE CENTURY 

For the FD approach, data from field observations are implemented. The study site is a 

corridor along I-880 located near Union City between Stevenson Boulevard and Winton Avenue 

ramps in the San Francisco bay area. Data were collected on Friday February 8th 2008 between 

10:00am to 6:00pm. This data collection effort was a part of the Mobile Century project (Juan C. 

Herrera et al., 2010). 

In this experiment, 165 drivers were recruited to travel specific routes along the study site. 

The drivers were equipped with GPS-enabled cell phones which, on average, transmitted data 

every three seconds. Data collected were latitude, longitude and timestamp. Post processing by 

the Mobile Century team added speed and postmile to the PV data. The penetration rate of PV is 

in the range of 2-5% depending on time of the day. 

The Mobile Century project covered a corridor of approximately eleven miles in length in 

each southbound and northbound direction. The corridor is a four lane facility in each direction 

occasionally expanding to five lanes for merging lane near ramps. Upon closer inspection of the 
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data, it was noticed that at specific postmiles the penetration rate of PV was considerably low in 

the afternoon hours. The data from this time space region are excluded from analyses. 

The Mobile Century team reported a mid-morning crash in the northbound direction between 

postmile 26 and 27. The team mentioned that recurring congestion occurs in the northbound 

direction. Considering the factors above a smaller segment around postmile 25 in the northbound 

direction was selected for this study. Figure 23 shows the entire study site and the PV trajectory 

between postmile 21 and 27 with an inset of the PV trajectory during the mid-morning crash. 

 

 

Figure 23  Study site (left), vehicle trajectory (right) and trajectory during incident (insert) 

 

In addition to PV data, the experiment also collected loop detector data along the study site. 

The data collected were 푞 and occupancy for each lane aggregated every 30 seconds for a 

duration of eight hours. As a supplement, additional data were retrieved from the California 

Department of Transportation PeMS website for the same study area. The downloaded data 

included 푞 and 푢 for each lane aggregated every five minutes for 34 days starting from January 
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6th to February 9th, 2008. For eight hours on February 8, 2008 there is an overlap of loop data 

from Mobile Century (in 30 second increments) and PeMS (in 5 minute increments). Analysis 

shows that there was a match of traffic flow between both datasets during this eight hour time 

period. Due to limited amount of loop detector data from the Mobile Century, only PeMS data 

are used for this approach. 

To calibrate the FD to the PeMS data, 푘 must be known. For this approach 푘 was calculated 

using Equation 11. With the exception of Van Aerde, the fitting of the FD to the PeMS data was 

performed by regression using statistical software R. To determine the parameters for the Van 

Aerde FD, a software was developed to perform such calculation (Michel Van Aerde & Rakha, 

1995). A user inputs the values of 푞, 푢 and 푘 and the software will calculate 푢 , 푢 , 푞  and 푘 . 

The regression formulas are shown in Table 1. 

After calculating all of the parameters, 푘 can be calculated for any 푢. In this dissertation, 푢 

started from zero and was incrementally increased by one until a maximum value of ninety. 푘 

was then calculated for every 푢. Due to the different formulation of 푢 − 푘 relationship for any 

given 푢, the value of 푘 will vary for each FD, resulting in a unique 푢 − 푘 shape for each FD. 푞 is 

then calculated by multiplying 푢 and 푘. By knowing all three values, the 푢 − 푞 − 푘 relationship 

for each FD can be established. 

Figure 24 plots the observed 푞, 푢 and the calculated 푘 from PeMS data along with the fitted 

FDs. In this figures the grey points represent the observed values.  The four different FDs are 

plotted using different colors and line types. The R2 values for the fitted FDs from the 푢 − 푘 

relationship are 87%, 85% and 94% for Greenshields, Underwood and Northwestern, 
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respectively. The Van Aerde FD was fitted to the 푢 − 푞 relationship and no R2 value was 

available. 

 

Table 1  Fundamental diagram relationships 

Model Speed-Density Relationship Regression 

Greenshield 
푘 = 푘 1−

푢
푢  푘 = 푘 −

푘
푢 푢 

Underwood 푘 = 푘 ln
푢
푢  푘 = 푘 ln푢 − 푘 ln푢 

Northwestern 
푘 = 푘 2 ln

푢
푢  

푘 = 2푘 ln푢 − 2푘 ln푢 

Van Aerde 푘 =
1

푐 + 푐
푢 − 푢 + 푐 푢

 

 

푛 =  , 

푐 =  , 

푐 = 푛푐 , 

푐 =
−푐 + 푢

푞 − 푐
푢 − 푢

푢  

 

 



64 
 

 

Figure 24  Different models of fundamental diagrams 

 

In Figure 24a and c, the FDs, with the exception of Greenshield, show high values of 푘 as 푢 

and 푞 approaches zero. This is due to lack of observed points at low speed which affects the 

regression results. In Figure 24b, Underwood shows an unrealistic 푢  consistent with findings 

from May (1990). Even though the focus of this dissertation is on the 푞 − 푢 relationship, it is 

important to understand the 푢 − 푘 regression results because 푞 is derived after 푢 and 푘. Overall 

the FDs fit the observed values with different FDs taking on different shapes. 

To compare 푞 from the FD to observed 푞, data standardization between PV and PeMS speed 

is required. Since loop detector location is fixed while PV move in space, the first step is spatial 

standardization. To standardize the data a loop detector must first be selected. After identifying a 

loop detector, a 0.05 mile area upstream and another 0.05 mile area downstream of the loop are 

designated as a target area. Any PV data within this area are used for analyses. A 0.1 mile target 

area was selected because this would guarantee at least two PV points within this area, which is 

the minimum number of observations required for further analyses, e.g., regression. This was 

under the assumption of PV free-flow speed of 75 mph and data collection of every three second. 
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Expanding the area even more could infringe upon upstream or downstream traffic flow 

characteristics, e.g., on/off ramps. 

Temporal standardization is the second step of the process. PeMS data are in 5-minute 

aggregation while PV data are updated every three to four seconds. To standardize the PV data, 

all of the PV speed in the target area are aggregated according to the PeMS time interval. Figure 

25 illustrates a sample of spatial and temporal standardization for a thirty-minute period from 

10:30am to 11:00am. 

 

 

Figure 25  Probe vehicle speed (5-min aggregation) 
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Figure 25a shows the spatial standardization where the horizontal dotted line is the loop 

detector location and the colored circles are PV readings. Different color circles indicate 

different PV. The solid lines connecting the circles are linear regression lines. At the beginning 

of 10:30am, most of the PV have on average two readings as they travel through this area. This 

indicates that PV are travelling at free-flow speed. As time progress more points for each PV can 

be observed in this area, which indicates slower speed. 

Figure 25b plots the PV speed against time for the target area. Colored circles indicate the 

PV speed for each observation with different color circles signifying different PV. The square 

x’s are the aggregated speed recorded from the loop detector at 5-minute intervals. The diamonds 

are the aggregated 5-minute PV speed. From this figure the PV and loop speed are almost the 

same at the beginning (free-flow) and at the end (congestion). As traffic transitions from free-

flow to congestion around 10:40am, there is almost a 20 mph difference between PV and loop 

detector speed. Several possible reasons for the difference in speed are: (1) lane to lane traffic 

flow variation with majority of the PV travelling at the slow moving lane, and (2) PV represent a 

small sample of the flow while the loop is collecting data for all vehicles. As traffic flow 

becomes uniform, in this case towards congestion, the difference between PV and loop detector 

speed is reduced. 
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Figure 26  Probe vehicle and loop detector speed comparison 

 

Due to the limited time period of thirty minutes, a longer time period is beneficial to 

understand the relationship between PV and loop detector speed. Figure 26 compares the PV and 

loop speed in 5-minute aggregation for the entire eight-hour period. While there are differences 

between the two readings, overall, both PV and loop detector speed follow the same trend. 

Detail analyses of the Mobile Century data suggest that, overall, the PV and loop detector 

data can be utilized for estimating 푞. In the following section, data generated from simulation 

will be discussed. 

4.2 SIMULATION 

Simulation data are applied to the shockwave approach. To generate data, a road segment is 

simulated in Vissim as shown in Figure 27. The segment is a three lane freeway facility reducing 

to a two lane segment at the end of the roadway. The segment length is over three miles. No 
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ramps exist between the start and end points of the segment. This segment is not intended to 

simulate any actual road segment. It is a hypothetical segment with the aim of producing 

synthetic data to be applied to the shockwave approach. 

 

 

Figure 27  Vissim simulated network 

 

To create congestion a bottleneck from three to two lanes is intentionally introduce with a 

high demand in the beginning and slowly decreasing towards the end. Table 2 lists the simulated 

demand. From visual observation the queue from the bottleneck never reaches the starting point 

of the segment. Simulation time was two hours with a total of 6,669 vehicles. All other 

simulation parameters (e.g., car following, free-flow speed) are based on Vissim default values. 

 

Table 2  Simulated demand 

Simulation time (sec) 0-900 900-
1800 

1800-
2700 

2700-
3600 

3600-
4500 

4500-
5400 

5400-
6300 

6300-
7200 

Demand (vehicle) 4000 4600 4400 4200 3500 3000 3000 2500 

 

Figure 28 is a randomly selected trajectory of five percent of the overall vehicles. Each line is 

the trajectory for a single vehicle. Lines that are near vertical indicate free-flowing condition. 
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Angled lines indicate congestion. From visual observation a backward moving shockwave can be 

observe between time zero to about 4000 second. As demand decreases, the shockwave changes 

to forward moving starting around 4000 second and finally disappearing around 6500 second. 

 

Figure 28  Simulated probe vehicle trajectory 

 

From the simulated data of all vehicles, congested flow 푞  and jam density 푘  can be 

determined. To calculate 푞  the number of vehicles is counted at location 16000 feet between 

1800 and 5400 second time period (equivalent to 1 hour). 푘  is estimated by counting the number 

of vehicles at time 3600 second between 10000 and 15280 feet (equivalent to 1 mile). From 

calculation of all vehicle at the specified time-space, 푞  and 푘  were determined to be 1,159 veh 

per hour per lane (vphpl) and 128 veh per mile per lane (vpmpl), respectively. These values are 

the ground truth and will be used in other calculations. 

To classify the free-flow and congested periods k-means clustering is applied to the 

simulated data. Three different variables, which are PV time, location and speed, can be used to 
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perform the cluster analysis. Time and location are independent variables while speed is the 

distance traveled over a period of time. Since speed is dependent upon location and time, it is 

chosen as the variable used for clustering. For this analysis the number of clusters k is set to two. 

Assuming a five percent PV penetration rate, Figure 29 illustrates the results from k-means 

clustering along with free-flow speed 푢  and congested speed 푢 .  The free-flow period is 

colored green while congested period is blue. 

 

 

Figure 29  Results of k-means clustering 

 

In general, k-means clustering is able to classify the free-flow and congested regions. It is 

noticeable that small clusters of congested regions are observed within free-flow region. From 

Figure 29 shockwave can be observed between free-flow and congested regions. Closer 

inspection reveals that the shockwave is not a constant value throughout the simulation but 
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instead changes over time. This is due to different demand or arrival rates during different times 

of the simulation. 

As stated earlier in this section, demand is increased at the beginning of the simulation before 

decreasing towards the end. In the simulation the demand is modified every 900 seconds or 15 

minutes. Throughout the simulation the demand is modified eight times that can be identified as 

time segment 푖. To calculate 휔  for each time segment, the shockwave equation is used where: 

휔 = 푞 − 푞
푘 − 푘  

33 

 
where: 휔  is shockwave for time segment 푖 

    푞  is flow for time segment 푖 
    푘  is density for time segment 푖 
    푞  is flow during congestion (calculated to be 1159 vphpl) 
    푘  is jam density (calculated to be 128 vpmpl) 

 

푞  is the number of all vehicles entering the network at each time segment 푖. 푘  is the density 

of vehicle each time segment. 푘  is calculated at middle of each time segment for a one half mile 

during free-flow period. Multiply by two to convert 푘  to vehicle per mile. After calculating 푞  

and 푘  combined with the calculated 푞  and 푘 , 휔  can now be calculated. The resulting 휔  and 

푞  are shown in Table 3. 
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Table 3  Simulated flow and shockwave 

Time Segment 1 2 3 4 5 6 7 8 

Time (sec) 0 900 1800 2700 3600 4500 5400 6300 

Demand (vph) 4000 4600 4400 4200 3500 3000 3000 2500 

푞  (vph) 4071 4401 4323 4179 3477 2133 1980 2103 

휔  (mph) -1.90 -2.80 -2.71 -2.17 0 3.80 4.38 3.95 
 

From Table 3, 휔  is backward moving (negative) in time segments 1 through 4. In time 

segment 5, 휔  is transitioning from backward to forward resulting in a zero value. As the 

simulation concludes 휔  is forward moving (positive). 휔  shown in Table 3 will be used as 

ground truth to determine 푢 , which is the breakpoint speed as proposed by Northwestern 

congested regime FD. 

4.3 NEXT GENERATION SIMULATION (NGSIM) 

NGSIM is a data collection effort championed by the Federal Highway Administration 

(FHWA) of the US Department of Transportation. The data consist of vehicle trajectory, detector 

and other supporting data (e.g. weather, road sign) for several different roadways. Vehicle 

trajectories are recorded from video cameras which are mounted on top of tall structures along 

the roadways. From the video images, vehicle positions are identified for every tenth of a second. 

There have been countless number of studies based on NGSIM data. Lu and Skabardonis 

(2007) developed a four-step algorithm to predict 푤 based on vehicle trajectory. From the 

NGSIM I-80 and US 101 datasets, they’ve determined 푤 to be 11.4 mph (16.8 foot per second). 

Izadpanah, Hellinga, and Fu (2009) proposed an alternative algorithm to predict 푤. When 
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applied to US 101 dataset 푤 was calculated to be 13.8 foot per second. That’s a difference of 

17.5% compared to the estimated value from Lu and Skabardonis (2007). 

Treiber, Kesting, and Thiemann (2008) applied the NGSIM vehicle trajectory data to the fuel 

consumption model that they’ve developed. The model can then be implemented to a simulation 

software to calculate fuel consumption and emission. Just like any data, the NGSIM vehicle 

trajectory data is not immune to error. Punzo, Borzacchiello, and Ciuffo (2011) proposed a 

method to assess the accuracy of vehicle trajectory involving jerk, consistency and spectral 

analysis. 

The NGSIM data collection took place at several locations accounting for different types of 

facility (e.g. freeway, arterial) and characteristics (e.g. merge/diverge). In this dissertation, data 

collected from I-80 and US 101 are used. The I-80 study site is located in Emeryville, California 

for northbound traffic. The study area is approximately 500 meters (1,650 feet) in length. It 

consists of five mainline lanes with an additional 6th lane dedicated to the Powell Street and 

Ashby Avenue on/off ramps. The left most lane is the high occupancy vehicle HOV lane. Data 

were collected on April 13 2005, divided into three 15-minute periods: 4:00 pm to 4:15 pm, 5:00 

pm to 5:15 pm and 5:15 pm to 5:30 pm. Seven synchronized video cameras were used to record 

the vehicles. Figure 30 illustrates the I-80 study area. 
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Figure 30  NGSIM I-80 study site 

The other study site is the US 101 located in Los Angeles, CA for southbound traffic. Data 

were collected on June 15 2005, divided into three 15-minute periods: 7:50 am to 8:05 am, 8:05 

am to 8:20 am and 8:20 am to 8:35 am. This study site is 640 meters in length consisting of five 

mainline lanes and an additional 6th lane serving the Ventura Boulevard and Cahuenga 

Boulevard on/off ramps. Eight synchronized video cameras were used to record the vehicles. 

Figure 31 is an illustration of the US 101 study area. 
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Figure 31  NGSIM US101 study site 

 

Format of data for both study sites are the same. The vehicle trajectory data had 18 variables, 

listed as: 

1. Vehicle identification number 

2. Frame identification number 

3. Total number of frames in which the vehicle appears in the data set 

4. Elapsed time since January 1 1970 (millisecond) 

5. Lateral coordinate of the front center of the vehicle with respect to the left-most edge of 

the section in the direction of travel (feet) 

6. Longitudinal coordinate of the front center of the vehicle with respect to the entry edge of 

the section in the direction of travel (feet) 
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7. X Coordinate of the front center of the vehicle based on CA State Plane III in NAD83 

(feet) 

8. Y Coordinate of the front center of the vehicle based on CA State Plane III in NAD83 

(feet) 

9. Vehicle length (feet) 

10. Vehicle width (feet) 

11. Vehicle class (1-motorcycle, 2-auto, 3-truck) 

12. Vehicle speed (feet per second) 

13. Vehicle acceleration (feet per second square) 

14. Lane position of vehicle 

15. Vehicle identification of the lead vehicle 

16. Vehicle identification of the follower vehicle 

17. Space headway 

18. Time headway 

 

The strength of NGSIM data is the completeness of data collection from lane assignment of 

the vehicles, to the vehicle’s follower and leader recorded at a high frequency. Such complete 

data allows for a detail analysis of the vehicle trajectory. On the other hand, the weaknesses of 

this dataset are the limited time period (45 minutes) and relatively short segment lengths. Even 

with the weaknesses, NGSIM is still an attractive dataset for analyses. 

As shown from the aerial views, there are on and off ramps within the study areas. With the 

presence of the ramps, significant lane changes occurred. This is bound to happen as vehicles 
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exit or enter the mainlines. Which would then affect the vehicles on the mainlines as they change 

lanes in reaction to the exiting/entering vehicles from the ramps. To show the lane changing 

behavior, Figure 32 is the lane assignments of the vehicles as they travel through I-80 (a) and US 

101 (b). The data for I-80 are from 5:00 pm to 5:30 pm and data for US 101 are from 7:50 am to 

8:35 am. 

In Figure 32, the lines are trajectories of the vehicles going through the study areas. The 

purpose of these figures is to show the lane changing behavior of the vehicles, not to identify 

which vehicles are making the lane change and which vehicles are not. In these figures lines that 

are crisscrossing between the lanes indicate lane changing. It can be observed that lane changing 

is heaviest near the ramps. Less lane changing occurs further away from the ramps. However, if 

the starting points of the study area were to move back upstream, it is possible that lane changing 

is heaviest further away from the ramps. This could occur as vehicles prepare to move from the 

mainlines and head towards the exit lane. 
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Figure 32  NGSIM vehicle lane assignment (a) I-80 and (b) US101 

 

In addition to lane changing behavior, Figure 32 also shows some anomaly with the data. For 

example, there are several vehicle trajectories located to the right of lane 6 on I-80. These 

trajectories are located on the upper right hand corner of Figure 32a. The anomaly of these 

vehicle trajectories could be due to error in data processing or vehicles traveling on emergency 

lane. 

To understand the dynamics of speed of traffic, a speed heatmap for each lane for both sites 

are developed. Figure 33 and Figure 34 are the speed heatmaps for I-80 and US 101, 
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respectively. The I-80 heatmap is from 5:00 pm to 5:30pm while the US 101 heatmap is from 

7:50 am to 8:30 am. In the heatmaps, black color indicates a speed of zero and green indicates a 

speed of 70 mph. The color palette changes from red to orange to yellow as speed changes from 

0 to 70 mph. 

 

 

Figure 33  I-80 speed heatmap 
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For I-80, lane 1 which is the HOV lane exhibits the least amount of speed fluctuation. This is 

expected due to the restrictions put in place for this lane. As the name indicates, HOV lane 

requires that a vehicle must have more than one person travelling in it. To make car pooling 

attractive, it is imperative that HOV lane has an advantage over non-HOV lanes. From the 

heatmap, it can be observed that the speed for lane 1 is higher than the other lanes. 

As for the remaining lanes 2 through 6, there is considerable amount of stop and go traffic as 

the heatmap color alternates between black and red, never reaching yellow or green. While the 

pattern between each lane is different, overall lanes 2 through 6 show similar speed pattern. 

There is no HOV lane for US 101. As a result, the speed patterns for all lanes on US 101 are 

almost the same, as shown in Figure 34. While there are stop and go traffic as indicated by the 

black color, majority of the traffic speed is in the 30 mph range as indicated by the reddish 

orange color. Interestingly enough, the black color on the heatmaps could also indicate the 

shockwave of the stop and go traffic. 

When comparing the speed heatmaps between I-80 non-HOV lanes and US 101 lanes, it is 

observed that congestion on I-80 is more severe than US 101. This is based on the observation 

that the speed heatmaps for I-80 are primarily reddish black compared to reddish orange for US 

101. 

Due to vehicle merging and diverging, a smaller set of data are extracted from the original 

NGSIM data. The lane changing of the vehicles presents a challenge for analyzing the data. To 

mitigate this issue, a smaller set of data are extracted at which no lane change occurred. To 

extract this data, an area near the end of the segment is selected. In this area, the lane that is 

connected to the on-ramp at the start of the segment is leading into an off-ramp. It is expected 
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that vehicles are in their desired travel lanes within this area. More vehicles in this area would 

remain in their lanes because the merge/diverge had already occurred upstream from this 

location. 

 

 

Figure 34  US101 speed heatmaps 
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After narrowing down the search area, data are scoured during different time periods. Lane 

changing vehicles are excluded from the search. As a result, there is a small window where no 

lane change occurred. For US 101, that window is from 900 to 2100 feet and approximately 

between 8:14 am and 8:16am. For I-80, the window is from 1200 to 1600 feet and approximately 

between 5:10 pm and 5:13 pm. The vehicle trajectory for the search area are shown in Figure 35. 

Had any of the vehicles change lane, the trajectory of the vehicle would cross each other. 

However, since no trajectory crosses one another, it can be concluded that vehicles did not 

change lane in this time-space region. Another way of confirming the lane change is by 

analyzing the variable “lane position of vehicle” which is a part of the data collection. To check 

for lane changes, simply ensure that the values for lane position do not change. 

In addition to lane changing movements, the data are also filtered for the vehicle class. For 

analyses, only vehicles classified as passenger cars are considered. Other vehicles such as trucks 

or motorcycles would make analyses complicated and are therefore omitted from analyses. The 

trajectory shown in Figure 35 are for passenger cars only. 

Figure 35a through c are the vehicle trajectory for US101 and figures d through f are for I-80. 

In Figure 35c, the vehicle trajectories are truncated due to lane changing towards the end of the 

study period. If these lane changing vehicles are removed completely from the data, it would 

severely reduce the number of vehicles or sample size. Therefore, the decision is to truncate the 

data rather than complete removal. Lane 4 and 5 of US101 and lane 3 and 6 of I-80 are omitted 

from analyses due to lane changing or presence of trucks. Lane 1 of I-80 is an HOV lane and also 

omitted. 
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Figure 35  NGSIM vehicle trajectory 

 

The algorithm is then applied to the data to find 푋  and 푋 . Prior to determining 푋  and 푋  

the trajectories are extracted by their ladders or shockwaves, as shown in Figure 36. The 

resulting 푋  and 푋  are illustrated in Figure 37.  
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Figure 36  Extracted trajectory by ladder (a-c) US101 lane 1, 2, 5 and (d-f) I-80 lane 2, 4, 5 
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these extracted points, 푋  and 푋  are then determined, as illustrated in Figure 37. In this figure, 

the red circles are 푋  and green triangles are 푋 . It can be observed that even though the points 

are extracted for each ladder, it doesn’t ensure that 푋  and 푋  exist for that particular trajectory. 

The ladder is useful identifying the grouping and the possible links of the PV.  From these 

points, ∆푋  are calculated for each . From here on ∆푋  will be referred to as ∆푋. 

As stated in the Methodology chapter, after calculating ∆푋 there exist the overlap and 

duplicate conditions. These conditions contribute to the correlation of ∆푋 between . Figure 38 

and Figure 39 illustrate the overlap and duplicate conditions, respectively. In the overlap 

condition, vehicle sequences are used more than once. To solve this issue, only consecutive 

vehicle sequences are considered. In duplicate condition, the vehicle sequences are located in 

multiple ladders. The solution is to simply remove the duplicates. 
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Figure 37  Xs and Xg (a-c) US101 lane 1, 2, 5 and (d-f) I-80 lane 2, 4, 5 
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Figure 38  Overlap condition 

 

 

Figure 39  Duplicate condition 

 

Let’s assume for a moment that the overlap and duplicate conditions were not removed from 

the data set. It is expected that both conditions would contribute to the correlation of ∆푋 for 

each. To show this correlation ∆푋 is plotted for each , as shown in Figure 40. In this figure, it 
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can be observed that the correlation of ∆푋 becomes stronger as  increases. It can be observed 

that, as  increases the points become less scatter and start to form a 45 degree line. This would 

then affect the pdf and 휀 which are used to predict . It is also noticed that the number of 

samples decreases as  increases. This can be confirmed by the number of observations for each 

. In this figure, the maximum  is set to be at ten. 

 

 

Figure 40  ∆푋 with overlap and duplicate 

 

After removing the overlaps and duplicates, ∆푋 is then transformed to 푔. Figure 41 is a plot 

of 푔 for each . It can be observed that 푔 remains independent even as  increases as the points 

remain scattered. However, by removing the overlap and duplicate, the number of samples is 

drastically reduced. While removing overlaps and duplicates helps with the characteristic of 

being independent, it comes at a cost of reduced sample size. 
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Figure 41  Consecutive and no duplicate of 푔 

 

Table 4 lists the mean, variance and number of samples of ∆푋 and 푔 for every . The 

numbers in this table are free from overlap and duplicate conditions. As mentioned earlier, as  

increases, the number of samples decreases, which makes the training model to be less reliable as 

 increases. To counter the number of samples issue, a linear regression line is fitted through the 

data for  from 1 to 15. The results from the regression are listed on the right most column of 

Table 4.  
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only for  from to 1 to 15. The mean for both ∆푋 and 푔 increases as  increases. It also shows 

that the mean is linear with respect to . In general the variance for both ∆푋 and 푔 also increases 

as  increases 

20 30 40

20
30

40

g (ft)

g 
(ft

)
=1

(a)

40 60 80

40
50

60

g (ft)
g 

(ft
)

=2
(b)

60 75

60
80

10
0

g (ft)

g 
(ft

)

=3
(c)

90 110

80
10

0

g (ft)

g 
(ft

)

=4
(d)

110 130

11
0

13
0

g (ft)

g 
(ft

)

=5
(e)

135 150 16513
0

15
0

17
0

g (ft)

g 
(ft

)

=6
(f)

150 170 190

16
0

17
5

g (ft)

g 
(ft

)
=7

(g)

190 210
18

0
20

0
g (ft)

g 
(ft

)

=8
(h)

200 230

21
0

22
5

24
0

g (ft)

g 
(ft

)

=9
(i)

230 26022
0

24
0

26
0

g (ft)

g 
(ft

)

=10
(j)



90 
 

Table 4  Mean, variance and number of samples of ∆푋 and 푔 

 휇  (ft) 휎  (ft2) 휇  (ft) 휎  (ft2) Num. Samples Linear fit 휎  (ft2) 
1 25 28 11 25 133 16 
2 50 47 21 49 87 41 
3 75 71 31 67 67 65 
4 99 125 41 125 56 90 
5 124 118 51 126 43 115 
6 149 96 61 122 34 140 
7 172 133 70 145 26 165 
8 199 151 81 177 25 190 
9 225 127 94 149 22 214 

10 249 206 102 229 17 239 
11 274 180 114 278 14 264 
12 298 177 123 294 15 289 
13 323 220 136 306 12 314 
14 348 291 144 388 14 339 
15 371 193 154 468 7 363 
16 403 444 178 686 4 388 
17 437 105 200 175 3 413 
18 460 149 210 171 3 438 
19 481 629 214 410 3 463 
20 503 620 222 422 3 487 
21 535 493 241 406 3 512 
22 558 2178 251 1770 2 537 
23 580 2364 260 1907 2 562 
24 615 1642 281 1026 2 587 
25 638 1345 291 856 2 612 
26 659 1356 299 864 2 636 
27 682 1081 304 703 2 661 
28 701 1320 309 736 2 686 
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Figure 42  (Left) Mean and (Right) variance of ∆푋 and 푔 

 

Figure 43 and Figure 44 are the histogram and empirical pdf of ∆푋 and 푔, respectively. They 

are plotted for each . When  = 1 the pdf appears to follow a lognormal distribution. For  

greater than 2 the pdf is less obvious. To determine the pdf for each , the Cullen and Frey 

(1999) method is employed, as shown in Figure 45. This method relies on the kutosis and 

skewness of the data. Kutosis is a measure of symmetry and skewness measures the weight of 

the tail. 
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Figure 43  Empirical pdf of ∆푋 
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Figure 44  Empirical pdf of 푔 

 

In Figure 45, which is for 푔 , the circle is the observed value. The triangle, star and plus 

are the designations for uniform, normal and logistic distributions, respectively. The small and 

large dashed lines are the lognormal and gamma distributions, respectively. Beta distribution is 

the shaded area. This method is an approximation to the type of distribution that 푔 could follow. 

It does not mean that 푔 will exactly follow a specific distribution. It is a simple test on the 

possible distributions of the observation. 
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Figure 45  Types of distribution for pdf of 푔 for  = 1 

 

For  = 1, it is observed that the pdf of 푔 is located on top of the line signifying a gamma 

distribution. The pdf of 푔 is also located near the lognormal distribution line. Regardless of the 

actual distribution, this method shows that the pdf of 푔  is heavy on the tail area. With this 

characteristic, the pdf of 푔 could follow gamma, lognormal or Weibull distribution. Analyses for 

possible distributions for  = 2 through 10 is shown in Figure 46. 
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Figure 46  Types of distribution for pdf of 푔 for   = 2, 3, … , 10  

 

In Figure 46, the observed values shifted to the left of the plots. The observed values are 

located near the points identified as normal and uniform distributions. After analyzing the results 

for all , it is decided that pdf of 푔  follows lognormal distribution. When  is greater than 1, 

pdf of 푔 follows normal distribution. 

This concludes the chapter on data. The next chapter is a discussion on the results of the 

proposed methodologies.  
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CHAPTER 5 

5 RESULTS 

This dissertation relies on several different methodologies for estimating traffic flow.  The 

results of each methodology will be discussed separately, beginning with the FD followed by the 

shockwave then the car-following approach. 

5.1 FUNDAMENTAL DIAGRAM APPROACH 

The basics of the FD approach is that 푞 can be calculated given any 푢, which is PV speed. In 

this approach, 푢 is aggregated for every 5 minutes. 푞 are then aggregated every 5, 10 and 15 

minutes. Figure 47 illustrates 푞 for the different FDs at different aggregation intervals. In this 

figure, the grey, red, black, green and blue lines represent 푞 and 푞 from loop detector, 

Greenshield, Van Aerde, Underwood and Northwestern, respectively. 

It is noticed that the deviations of 푞 from 푞 are lower when flow is at capacity or close to 

capacity while it is higher when traffic is mild. Moreover, it is observed that the Greenshields, 

Underwood and Northwestern tend to underestimate 푞 when flow is near capacity. Overall, Van 

Aerde provides a reasonable 푞 during periods of high flow with slight under estimation during 

medium flow. It is observed that there is less fluctuation as the aggregation increases from 5 to 

15 minutes. 

Estimation errors for each set of time aggregation and FD are examined using different 

performance indicators:  PE, MAPE and RMSE. Figure 48 shows a summary of the magnitude 

of the deviations of 푞 from q in terms of PE for each FD and aggregation interval.  The figure 
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reveals that the magnitudes of the errors from Greenshields, Underwood and Northwestern are 

high and contain a significant amount of outliers. Moreover, the errors from Greenshields and 

Underwood show no significant improvements with the increase in aggregation interval while 

Northwestern and Van Aerde show reductions in estimation errors with an increase in 

aggregation intervals. On the other hand, the size of boxes and whiskers of PE for Van Aerde are 

smaller than the other three FD models which suggest that the variability in the errors of 푞 is 

smaller. 

Table 5 lists the MAPE, RMSE, average PE and standard deviation of PE for each FD and 

aggregation interval. Overall, Van Aerde performs the best in terms of having the smallest 

magnitude and variation of errors in terms of MAPE, RMSE and average and standard deviation 

of PE. 
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Figure 47  Flow estimation from different fundamental diagrams and aggregation intervals 
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Figure 48  Distribution of percentage error for different fundamental diagrams and aggregation 
intervals 

 

Table 5  Summary of errors for different fundamental diagrams and aggregation intervals 

FD models 
Aggregation 

interval 
MAPE (abs %) RMSE (vphpl) PE Avg. Error PE Std. Dev. 

Greenshields 
5-min 12.5 189 -2.1 17.1 

10-min 11.1 169 -2.2 15.2 
15-min 11.1 168 -2.2 14.7 

Underwood 
5-min 11.7 178 -8.9 14.6 

10-min 11.3 174 -9.0 13.5 
15-min 10.9 167 -9.0 12.9 

Northwestern 
5-min 8.7 130 -5.4 10.4 

10-min 7.1 107 -5.5 8.2 
15-min 6.8 103 -5.5 7.7 

Van Aerde 
5-min 6.4 98 -2.9 8.1 

10-min 5.3 83 -3.0 6.2 
15-min 5.2 79 -3.0 6.2 
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5.2 SHOCKWAVE APPROACH 

To estimate 푞  using the shockwave approach, the values of 푤, 푢 , 푢  and 푞  are needed. 

From PV trajectory and k-means clustering, values of 푤, 푢  and 푢  can be determined. The 

fourth variable which is 푞  requires additional computation since it is a function of 푢  which is 

the breakpoint speed. 

Prior to estimating 푞  a proper 푢  value must be selected. In this dissertation 휔 is calculated 

for every twentieth PV with 푢  search values ranges from thirty to fifty mph. 푢  is selected 

when Z is minimum. The results of 푢  and Z are shown in Table 6. From this table 푢 = 35 

resulted in the lowest Z at 0.442. Using Northwestern congested regime FD, when 푢 = 35 mph, 

푞 = 912 vphpl. The resulting 푞  will in turn be used to calculate 푞 . 

Figure 49 illustrates the grouping for every 20th PV. In this figure the circles are the transition 

points (excluding the outliers), dashed lines are trajectories of the first, every 20th and last PV 

and solid lines are the shockwaves. Note that the number of PV for the last group is less than 

twenty. The selection of every 20th PV is based upon the vehicles entry time into the network. 
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Table 6  Results of 푢  and Z 

푢  Z 
30 0.470 
31 0.478 
32 0.476 
33 0.462 
34 0.479 
35 0.442 
36 0.466 
37 0.475 
38 0.517 
39 0.515 
40 0.502 
41 0.503 
42 0.487 
43 0.501 
44 0.533 
45 0.536 
46 0.549 
47 0.628 
48 0.588 
49 0.572 
50 0.577 

 

 

Figure 49  Probe vehicle trajectory for every 20th vehicle, transition points and shockwave 
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Table 7 summarizes the results of 푞  and 푞  when 푢  is equal to 35. For comparison purpose, 

the same table summarizes 푞  and 푞  when 푢  is equal to 40 and 45. 푞  and 푞  are compared to 

푞  and 푞  with the difference calculated in terms of percent error. The formula for percent error 

is written in the table. Note that 푢 =40 is the value proposed by the Northwestern congested 

regime FD. 

 

Table 7  Summary of results for 푞  and 푞  

  
푞 = 912 
(푢 = 35) 
푃퐸  = -21% 

푞 = 1105 
(푢 = 40) 
푃퐸  = 0% 

푞 = 1303 
(푢 = 45) 
푃퐸  = 12% 

PV Group 
Actual flow 
 푞  (vphpl) 

푞  
(vphpl) 

푃퐸  
푞  

(vphpl) 
푃퐸  

푞  
(vphpl) 

푃퐸  

1 1385 1074 -22 1298 -6 1526 10 
2 1337 1066 -20 1288 -4 1515 13 
3 1337 1030 -23 1246 -7 1466 10 
4 1382 1094 -21 1322 -4 1554 12 
5 1550 1176 -24 1419 -8 1667 8 
6 1451 1106 -24 1335 -8 1569 8 
7 1453 1145 -21 1382 -5 1624 12 
8 1353 1039 -23 1256 -7 1478 9 
9 1328 1023 -23 1236 -7 1455 10 

10 1438 1123 -22 1356 -6 1593 11 
11 1149 918 -20 1112 -3 1311 14 
12 1203 966 -20 1169 -3 1377 14 
13 873 652 -25 797 -9 947 8 
14 687 546 -21 670 -2 800 16 
15 647 530 -18 651 1 779 20 
16 702 577 -18 708 1 844 20 

 

Even though the objective function Z indicates that 푢 = 35 is the optimum solution, the 

resulting percent error in flow estimation for both free-flow and congestion is too high. During 
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free-flow, the smallest percent error 푃퐸  is -18%. In comparison, when 푢 =40 and 푢 =45, the 

lowest 푃퐸  is 1% and 8% respectively. The average of the percent error is calculated to be -22% 

(푢 =35), -5% (푢 =40) and 12% (푢 =45). 

In the congested period when 푢 =35, 푞  is calculated to be 912 vphpl. Comparing that to 푞  

which is 1159 vphpl, the 푃퐸  is calculated to be -21%. When 푢 =40 and 푢 =45, the PEj is 0% 

and 12%, respectively. The results indicate that the 푢 value of 40 which was proposed by the 

Northwestern congested regime FD gave the best flow estimation. 

5.3 CAR-FOLLOWING APPROACH 

In this approach, an algorithm is developed to determine ∆푋 for each leader and follower 

pairs, which is then transformed into 푔. To predict  is to take the shortest path between the lead 

and last vehicles with 휀 being the cost function. 

To begin the prediction of  a set of PV data are process through the algorithm. The results 

are the 푋  and 푋 of the PV. An example is shown in Figure 50. In this figure, there are six PV, 

labeled 1 through 6. The algorithm identified 푋  and 푋  for PV1 through PV5. The sixth PV did 

not have any 푋  and 푋  points, therefore a prediction cannot be made to this PV. The prediction 

of  will be PV5 with respect to PV1. The leader and last follower are PV1 and PV5, 

respectively. PV2, PV3 and PV4 are intermediary PV. In reality, there are other trajectories from 

non-PV located in between the observed trajectories. 

There are three different ladders for this group of PV. The first ladder is a one step ladder 

located to the left of the plot. The step is created from PV1 only. The second ladder is a four 
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steps ladder located in the middle with the steps developed from PV1, PV2, PV3 and PV4. The 

last ladder is to the right with the steps developed from PV3, PV4 and PV5. 

The link connection is complete for this group. PV1 provides the link between the left and 

middle ladder. PV3 and PV4 provide the links between the middle and right ladder. This can be 

observed by the presence of 푋  and 푋  by each vehicle in the different ladders. PV2 is not 

connected to the right ladder because its 푋  and 푋  are located only in the middle ladder. 

 

 

Figure 50  Probe vehicle trajectory, Xs and Xg 
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then transformed into 푔. Based on the pdf parameters developed from the training data and by 

taking the shortest path,  is predicted from PV5 with respect to PV1 based on 푔 value. 

An example of an output from the algorithm is listed in Table 8. This output is not related to 

the PV in Figure 50. This table lists the pairings of lead and follower PV, actual and predicted  

and the . In the first line, the pairs are PV1 and PV2. The actual and predicted  are 1 and 2, 

respectively. The last column on this line is the associated  with making the prediction. The 

remainder of the lines is the results for different PV pair. In this example, the prediction of  is 

from PV1 to PV10. One possible prediction is the path of PV 1-6-10 which resulted in predicted 

 of 20 (9 + 11). This path is shaded. Another prediction is the path of PV 1-5-6-10 with 

predicted  of 21. This path has the asterisk next to the PV lead. The actual  fpr PV 1-10 is 19. 

To determine the optimal path, the shortest path problem is utilized. Utilizing Dijkstra’s 

algorithm, the path with minimum  will be selected. In the nearest node approach, the links to 

the nearest PV will be selected, regardless of . Resulting in a path of PV 1-2-3-4-5-6-10 with 

predicted  of 22. 
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Table 8  Sample of PV pair , actual and predicted  

PV lead PV follow Actual  Predicted   
1* 2 1 2 40 
1 3 2 3 67 
1 4 4 4 119 
1 5 5 5 125 
1 6 10 9 150 
2 3 1 1 21 
2 4 3 2 40 
2 5 4 3 67 
2 6 9 9 150 
3 4 2 2 40 
3 5 3 3 67 
3 6 8 9 150 
4 5 1 1 21 
4 6 6 6 120 

5* 6 5 5 125 
6 7 3 3 67 
6 8 4 5 125 
6 9 8 10 230 

6* 10 9 11 279 
 

In the prior examples, the link connection is complete between the source and target PV. 

There are two other conditions named disjoint and intersect connections. Figure 51 illustrates a 

disjoint condition. The goal is to predict  for PV 1 and 13. Note that PV14 does not have any 푋  

and 푋  therefore it is excluded from analyses. In this example, the disjoint occurs between PV 9 

and 10. This is happening due to 푋  and 푋  for PV 9 and 10 being located in different ladders. 

Thus dividing the PV into two groups of PV 1 through 9 and PV 10 through 13.  Due to the 

missing link, no prediction can be made between these two groups. The groups can be connected 

if 푋  and 푋  for PV 7, 8 or 9 are located in the same ladder as PV 10, 11, 12 or 13. Another 
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possibility is that 푋  and 푋  for PV 10 is located in the same ladder as PV 5, 6, 7, 8 or 9. Due to 

the missing link,  will be predicted from 푇 for PV 9 and 10. 

 

 

Figure 51  Probe vehicle trajectory, Xs and Xg for disjoint condition 
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Figure 52  Probe vehicle trajectory, Xs and Xg for intersect condition 

 

If the connection is complete,  is predicted based solely on the variable 푔. However when 
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Table 9  Example results for complete, disjoint and intersect conditions 

Condition From PV To PV Predicted  Actual  Variable 
Complete 1 5 13 13 푔 
Disjoint 1 7 17 16 푔 
 8 9 1 1 푔 
 7 8 7 7 푇 

sum   25 24  
Intersect 1 6 12 12 푔 
 4 9 9 9 푔 
 4 6 -5 -6 푇 

sum   16 15  
 

 

 

Figure 53  Actual and predicted  using variables (a) 푔 and (b) 푇 
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vehicles when the prediction is based on 푇. The data for this figure were generated from a 

specific location. The results would vary as the location changes. 

To evaluate the results for the different locations, k-fold cross validation is implemented. The 

configuration of the k-fold cross validation is listed in Table 10. There is a total of six different 

datasets. For each fold, five datasets are selected to be as training data and the remaining dataset 

will be used as testing. Repeat the process by alternating the test data until all data have been 

tested. 

 

Table 10  k-fold cross validation 

Fold 
US101 
Lane 1 

US101 
Lane 2 

US101 
Lane 5 

I-80 
Lane 2 

I-80 
Lane 4 

I-80 
Lane 5 

1 Train Train Train Train Train Test 
2 Train Train Train Train Test Train 
3 Train Train Train Test Train Train 
4 Train Train Test Train Train Train 
5 Train Test Train Train Train Train 
6 Test Train Train Train Train Train 

 

The variance of 푔 for each fold is listed on Table 11. In this table, the results are only for  

from 1 through 10.  In general, for each fold, the variance increases as  increases. The variances 

looks similar with the exception of fold 5. For this fold, when  is greater than 5, the rate of 

increase is smaller when compared to the other folds. 
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Table 11  Variance of 푔 for each fold 

 1 2 3 4 5 6 7 8 9 10 
Fold 1 27 52 62 111 120 132 161 197 164 252 
Fold 2 26 52 66 144 133 147 171 191 159 220 
Fold 3 21 40 67 119 125 120 148 180 150 230 
Fold 4 24 48 70 127 121 119 118 166 137 258 
Fold 5 26 49 68 120 128 107 116 137 129 168 
Fold 6 27 51 68 130 130 106 158 189 156 245 

 

During testing, PV penetration rate 푝 is varied from 0.05 (5%) to 1 (100%). 푝 is the 

percentage of PV with respect to the overall vehicle. The PV are randomly selected from a pool 

of vehicles. When 푝 =1, it means that all vehicles are PV. 

It was mentioned earlier that 푔 	~	퐿푁(휇,휎 ) and 푔 	~	푁(휇,휎 ). As comparison, testing 

will be performed assuming that distribution of ∆푋 follows normal distribution for all , 

∆푋	~	푁(휇, 휎 ). 

In essence, the testing will be performed for multiple scenarios which are: 

 k-fold cross validation (see Table 10) 

 Shortest path vs Nearest Node 

 Varying 푝 

 Lognormal distribution of 푔 when  = 1 and normal distribution of ∆푋 for all  

Each test is then repeated 30 times. When the 푝 is low, it is expected that results would vary 

due to differences in randomly selecting PV. As the 푝 increases, the results will become similar 

as the PV are the same for each test. 
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Figure 54 and Figure 55 is the PE of the predicted against actual  for varying 푝 for 

푔 	~	퐿푁(휇, 휎 ) utilizing shortest path and nearest node methods, respectively. The results in 

Figure 54 is the PE when solved with shortest path under the assumption of 푔 	~	퐿푁(휇, 휎 ). 

In this figure, PE decreases as 푝 increases. This can be observed by the reduction of the boxplot 

size. At 푝 = 1, all vehicles are considered PV. Since the positions of all vehicles are known, it is 

expected that the PE to be zero or near zero when 푝 = 1. This is true for Figure 54b, d, e and f. In 

these plots, the PE converges to zero as 푝 increases. Such is not the case for Figure 54a and c 

where the predicted  is higher than the actual value. This can be explained by the predicted  

being higher than actual . For example, actual  = 1 is predicted as  = 2. Since it is predicted 

as  = 2 than the  would be lower compared to  = 1. As a result the shortest path will choose 

the link with lowest  resulting in the over estimation of . The reason that actual  = 1 is 

predicted as  = 2 is due to vehicle spacing being greater than the historical value. As an 

example, for  = 1 and  = 2 the mean vehicle spacing is 11 and 21 feet, respectively. However, 

due to error in data or misidentification of ∆푋, it is possible that the vehicle spacing for  = 1 is 

recognized as  = 2. This error could happen to any , not just for  = 1 and  = 2. 

The nearest node is then applied to predicting  with the results shown in Figure 55. Similar 

trend can be observed where the PE decreases as 푝 increases. Overall it can be observed that the 

nearest node is over-estimating . When the nearest vehicle (or node) is directly behind the lead, 

the predicted  can be 1 or larger, it cannot be smaller than 1. In this instance when the predicted 

 is greater than 1, then this value will continue to be used until  is predicted for the last 

follower. Resulting in over-estimation of . 
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Figure 54  Percent error of  for 푔 	~	퐿푁(휇,휎 ) solve with shortest path 

 

0.05 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4
0

-2
0

0
20

40

penetration rate

%
 e

rr
or

Test: I80_lane2(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4
0

-2
0

0
20

40

penetration rate

%
 e

rr
or

Test: I80_lane4(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4
0

-2
0

0
20

40

penetration rate

%
 e

rr
or

Test: I80_lane5(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4
0

-2
0

0
20

40

penetration rate

%
 e

rr
or

Test: US101_lane1(d)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4
0

-2
0

0
20

40

penetration rate

%
 e

rr
or

Test: US101_lane2(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4
0

-2
0

0
20

40

penetration rate

%
 e

rr
or

Test: US101_lane5(f)



114 
 

 

Figure 55  Percent error of  for 푔 	~	퐿푁(휇,휎 ) solve with nearest node 
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to Figure 54 and Figure 55. This indicates that there is less error at low 푝. The reasons for over-

estimation of  for shortest path and nearest node are the same reasons as described earlier.  

 

 

Figure 56  Percent error of  for ∆푋	~	푁(휇, 휎 ) solve with shortest path 
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Figure 57  Percent error of  for ∆푋	~	푁(휇, 휎 ) solve with nearest node 
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exception of US101 lane 2. Using the nearest node method, the MAPE tends to remain the same 

with exception of US101 lane 2. The average of all six datasets is labeled in yellow color. On 

average the MAPE for shortest path decreases as 푝 increases while the MAPE for nearest node 

remains the same as 푝 increases. 

 

 

Figure 58  MAPE of  for 푔 	~	퐿푁(휇, 휎 ) (a) shortest path and (b) nearest node 
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Figure 59  MAPE of  for ∆푋	~	푁(휇, 휎 ) (a) shortest path and (b) nearest node 
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observations with high number of samples. The results shown previously are based on  from 

linear regression. 

 

 

Figure 60  Variance and linear regression 
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Figure 61  Fenton-Wilkinson approximation 
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CHAPTER 6 

6 DISCUSSION 

In this dissertation, three different methodologies are proposed for estimating traffic flow on 

freeways by combining PV data and different traffic flow theories namely fundamental diagram, 

shockwave and car-following. This chapter will summarize each of the methodology and points 

out their applicability and limitations. 

For the FD approach, using the 푞 − 푢 relationship, traffic volume can be estimated given a 

PV speed. For this method to work, a properly calibrated FD is required for the area of interest. 

PV speed at this area is then aggregated for a predefined time-space region. 푞 is then estimated 

based on the PV speed. 

푞  is estimated at different time intervals (5-, 10- and 15-minutes) for four different FDs each 

of which has its own unique 푞 − 푢 relationship. Of the four FD, the Van Aerde model performed 

the best with the least prediction error. The reason is because the Van Aerde FD is fitted to the 

푞 − 푢 data instead of 푢 − 푘 data as proposed by the other three FDs. Another finding is that as 

the aggregation interval increases from 5 to 15 minutes, the error decreases. By increasing the 

time interval, it’s basically acting as a smoothing tool by reducing the fluctuation in the results. 

Finally, prediction error is low when traffic speed is high (free-flow) and error is high when 

speed is low (congestion). This is intuitive from observations of traffic flow where during free-

flow traffic volume can fluctuate significantly while during congestion traffic flow has less 

fluctuation. 
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The FD approach is ready to be implemented by any transportation agency given the 

widespread availability of loop detector and PV data. One simply selects an area, fit a 

fundamental diagram from loop detector data and predict traffic volume from PV speed 

However, the area of interest is limited to loop detector availability. Without loop detector 

data, a FD cannot be developed. If an area does not have a loop detector nearby, a FD from a 

similar roadway from a different area can be applied. With the assumption that the FD for both 

locations are similar. The prediction of traffic volume is dependent upon the fit of the FD. A 

properly calibrated FD is expected to give better prediction than a poorly fit FD or a one FD fits 

all approach. 

While there have been studies on the PV-FD combination, the approach proposed in this 

dissertation is unique in terms of (1) Calibrated FD for the study area, (2) Investigation of four 

different models of FD and (3) Analyses for different aggregation intervals. 

In the SW approach, traffic flow is divided into free-flow and congested regimes by 

performing k-means clustering to the PV data. SW is the ratio of difference in volume and 

difference in speed. From this relationship, there are five variables. Three of which (푤, 푢  and 

푢 ) can be determined from PV data. The two remaining variables (푞  and 푞 ) are unknown. To 

solve the equation, 푞  is estimated by using Northwestern congested regime FD. After 

performing this step 푞  can now be calculated. 

In this approach, with PV penetration rate of 5%, 푤 is calculated for every 20th PV with the 

parameter 푢 , which is introduced in the Northwestern congested regime FD. From the 

optimization process, 푢 was found to be 35 mph. When plugged into the shockwave equation, 
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the results are unacceptable. As it turns out the Northwestern proposed value of 푢 = 40 mph 

gave the best results. 

This approach shows that traffic flow can be estimated when the traffic flow are divided into 

free-flow and congested regime. With the grouping of the traffic regime achieved by utilizing k-

means clustering and predictions are made from the 푤 formula. 

There are limitations to this approach. First, without a shockwave or free-flow and congested 

regimes, this method is rendered useless. Different clustering technique will group the data 

differently affecting the 푤 and the overall results. In this study 푤 is calculated for every 20th PV. 

As penetration rate changes, this also affects the overall results. Too long of a period between PV 

(low penetration rate) might result in over smoothing the data while too short of period (high 

penetration rate) may show severe fluctuations. All of which affects the overall results. 

The final methodology is the car-following approach which exploits the spacing between two 

vehicles identified as a leader and follower. In stop and go traffic flow, the state where a vehicle 

is stop is represented as flat line within its trajectory. When the stop motion of all vehicles are 

combined, they create a ladder shape within the trajectory. The distance between the horizontal 

lines inside the ladder are the vehicle spacing. During the training of the model, for each leader 

and follower pair, the distribution of vehicle spacing is determined. Using this distribution, 

predictions are made to the test data as to the number of vehicles between any two PV. During 

the testing, if intermediary PV exist between any two PV the prediction will take steps between 

the lead, intermediary and follower PV. The problem is solved in terms of finding the shortest 

path problem. The cost of the links that connect the vehicles are the variance of the spacing 

distribution as calculated from the training model. 
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From cross validation using NGSIM data it is shown that the error in predicting the follower 

number is reduced as the penetration rate increases. This is expected because the number of PV 

increases as penetration rate increases. With more PV the shortest path will have more links to 

choose from. The solution to the shortest path is dependent upon the link cost which is the 

variance of the gap. The nearest node method tends to overestimates the prediction of follower 

number due to the carryover of the estimated value from the lead to the follower. 

In addition to the path selection method, another factor that contributes to prediction error is 

the transformation of spacing (front bumper to front bumper) to gap (back bumper to front 

bumper). Since vehicle length and the number of vehicles between two vehicles are not known, 

assumptions had to be made, which affects the predicted follower number. 

When the follower is exactly behind the leader, the vehicle spacing has a lognormal 

distribution. However, the distribution becomes less definite if the follower is the second or third 

vehicle behind the leader. In fact the higher the follower position, the more difficult to identify 

its distribution. This happens due to variation in vehicle spacing and limited number of samples. 

For improve prediction, the distribution of the vehicle spacing needs to be determined properly. 

In the end, the number of samples plays a crucial role in predicting the follower number. It 

affects the variance which used as the link cost and the distribution of vehicle gap. To improve 

prediction a higher number of samples are required. 

The main limitations to this approach are that the lane assignment of the vehicles are known 

and lane changing do not occur. This information is typically not available for PV data. 

Additional steps are needed to determine the lane assignment from which one can determine if 
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lane changing occurs. In addition this approach only looks at passenger cars. Trucks are screened 

out prior to analyses. 

For future studies, the shockwave and car-following approaches can be combined to estimate 

volume on a freeway. In the proposed shockwave approach, the volume in the congested region 

is estimated from the Northwestern fundamental diagram. For future study, this flow can be 

estimated from the car-following approach instead. Which will then be used to predict volume 

during free-flow by way of shockwave approach. 

The car-following approach can be enhanced by investigating the proper distributions of the 

gap.  An alternative to shortest path and nearest node can also be investigated. 
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