
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Civil & Environmental Engineering Theses &
Dissertations Civil & Environmental Engineering

Fall 2016

Efficient Domain Decomposition Algorithms and Applications in Efficient Domain Decomposition Algorithms and Applications in

Transportation and Structural Engineering Transportation and Structural Engineering

Paul W. Johnson III
Old Dominion University, pjohn018@odu.edu

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds

 Part of the Civil Engineering Commons, Structural Engineering Commons, and the Transportation

Engineering Commons

Recommended Citation Recommended Citation
Johnson, Paul W.. "Efficient Domain Decomposition Algorithms and Applications in Transportation and
Structural Engineering" (2016). Doctor of Philosophy (PhD), Dissertation, Civil & Environmental
Engineering, Old Dominion University, DOI: 10.25777/h2zk-9h76
https://digitalcommons.odu.edu/cee_etds/11

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/11?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

 EFFICIENT DOMAIN DECOMPOSITION ALGORITHMS AND

APPLICATIONS IN TRANSPORTATION AND STRUCTURAL ENGINEERING

by

Paul W. Johnson, III

B.S. December 2006, Old Dominion University

M.S. December 2008, Clemson University

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

CIVIL ENGINEERING

OLD DOMINION UNIVERSITY

December 2016

 Approved by:

 Duc Nguyen (Director)

 ManWo Ng (Co-Director)

 Mecit Cetin (Member)

 Gene Hou (Member)

ii

ABSTRACT

EFFICIENT DOMAIN DECOMPOSITION ALGORITHMS AND

APPLICATIONS IN TRANSPORTATION AND STRUCTURAL ENGINEERING

Paul W. Johnson, III

Old Dominion University, 2016

Director: Duc Nguyen, Co-Director: ManWo Ng

Domain decomposition is a divide-and-conquer strategy. In the first part of this

dissertation, a new/simple/efficient domain decomposition partitioning algorithm is

proposed to break a large domain into smaller sub-domains, in such a way as to minimize

the number of system boundary nodes and to balance the work load for each sub-domain.

This new domain decomposition algorithm is based on the network’s shortest path

solution. Numerical results indicate that the new Shortest Distance Decomposition

Algorithm outperformed the most widely used METIS algorithm in 21 out of 27 tested

(transportation) examples. In the second part of this dissertation, another new/simple and

highly efficient shortest path algorithm is described for finding the shortest path from all-

to-all (all source nodes to all destination nodes). This new Domain Decomposition-based

Shortest Path algorithm basically finds the SP from all-to-all for each sub-domain, and

assembles each sub-domains’ shortest path solution to correctly obtain the original (un-

partitioned) network’s shortest path solution. Numerical results for real-life transportation

networks have shown that the algorithm is much faster than the existing Dijkstra’s

shortest path algorithm. Finally, the Shortest Distance Decomposition Algorithm has also

been shown to perform better than METIS when minimizing the non-zero fill-in terms of

structural engineering stiffness matrices used during the finite element simultaneous

linear equation solution process.

iii

Copyright, 2016, by Paul W. Johnson, III, All Rights Reserved.

iv

This manuscript is dedicated to my family. Without their sacrifices and steadfast support,

this would never have been possible.

v

ACKNOWLEDGMENTS

Many people have contributed to the successful completion of this dissertation.

I would be remiss not to extend my heartfelt thanks and gratitude to my committee

members, Drs. Duc Nguyen, ManWo Ng, Mecit Cetin, and Gene Hou, for their patience,

their hours of guidance on my research, and their editing of this manuscript, although the

determined efforts of my committee chair, Dr. Nguyen, deserve special recognition.

Without his guidance, this accomplishment would not have been possible.

Technical assistance with running the Turing Cluster is also appreciated. The

members of the Old Dominion University’s High Performance Computing Center,

specifically Terry Stillwell, John Pratt, and Je’aime Powell were especially helpful. I

would also like to thank the Old Dominion University Research Foundation and the

TranLIVE Tier I University Transportation Center for the partial financial support, via

seed grant #533561.

Finally, I would like to thank my family. To my wife, Christin: thank you for your

unwavering support and your continued encouragement in allowing me to follow my

dreams, spending countless hours listening to my concerns when no one else had an

answer. And to my children, Calista, Harper, Paul, and Emersyn: your numerous

sacrifices which were required during the years leading up to the completion of this

document will not be forgotten, and will forever be appreciated.

vi

NOMENCLATURE

DD Domain Decomposition

DDSP Domain Decomposition Based Shortest Path Algorithm

FEA Finite Element Analysis

inode Represents the source node

jnode Represents the destination node

LCA Label Correcting Algorithm

NP Number of partitions or Number of sub-domains

P-LCA Polynomial Label Correcting Algorithm

SBN System Boundary Node

SDDA Shortest Distance Decomposition Algorithm

SP Shortest Path

ST Shortest Time in the shortest path solution

vii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

INTRODUCTION .. 1

Literature Review.. 2

Method and Procedure .. 4

THE SHORTEST DISTANCE DECOMPOSITION ALGORITHM 6

Introduction ... 6

The Shortest Distance Decomposition Algorithm .. 8

Comparisons with METIS Using Real-World Transportation Networks 20

Conclusions ... 30

THE DOMAIN DECOMPOSITION BASED SHORTEST PATH ALGORITHM 32

Introduction ... 32

Description of a Small-Scale Network to be Analyzed .. 35

Solution of Small-Scale Network Utilizing the DDSP Algorithm 37

Application of the DDSP Algorithm to Large-Scale Networks 47

Conclusions ... 50

USING THE SDDA TO PRODUCE FILL REDUCING ORDERINGS 52

Introduction ... 52

Using the SDDA to Produce Fill Reducing Orderings ... 52

Multi-Level Reordering Using the SDDA as a Preordering Algorithm 54

Conclusions ... 56

CONCLUSIONS AND RECOMMENDATIONS ... 58

REFERENCES ... 61

APPENDICES .. 67

APPENDIX A: SDDA PARTITION GRAPHS ... 68

APPENDIX B: MATLAB Source Code for the SDDA ... 76

APPENDIX C: MATLAB Source Code for the DDSP Algorithm 85

APPENDIX D: Example Input/Output for the SDDA ... 96

APPENDIX E: Example Input/Output for the DDSP Algorithm 103

VITA ... 108

viii

LIST OF TABLES

Table Page

2-1: Shortest Path Information for Source Node 1 ... 12

2-2: Information for Source Nodes 1 and 15 Shortest Path .. 13

2-3: Populated Sub-Domains .. 15

2-4: New Node Numbering Scheme ... 17

2-5: System Boundary Node Comparison between the SDDA and METIS 21

2-6: Partitioning Time Comparison - METIS and The SDDA ... 22

2-7: Size of each sub-domain provided by METIS .. 29

2-8: Size of each sub-domain provided by the SDDA .. 30

3-1: Connectivity Information for Sub-Domains P0, P1, and P2 39

3-2: Shortest Path Solution for Each Sub-Domain - [D] .. 40

3-3: Shortest Path Solution for Each Sub-Domain - [PRED] ... 41

3-4: Shortest Path Solution for each Sub-Domain with SBNs added - [D] 42

3-5: Shortest Path Solution for each Sub-Domain with SBNs added - [PRED] 43

3-6: Fully Assembled Shortest Path Solution for Original Network - [D] 46

3-7: Fully Assembled Shortest Path Solution for Original Problem - [PRED] 47

3-8: Networks Tested with Classical Serial Dijkstra Solution Time 48

3-9: SDDA Partitioning Time for Tested Networks ... 49

3-10: Total Serial Solution Time – SDDA Plus DDSP .. 49

4-1: Fill-In Term Comparison - METIS and the SDDA ... 53

4-2: Total Number of Non-Zeros after LU Factorization ... 55

4-3: Total Number of Non-Zero Terms after LU Factorization - NP = 2 55

4-4: Total Number of Non-Zero Terms after LU Factorization - NP = 3 55

4-5: Total Number of Non-Zero Terms after LU Factorization - NP = 4 56

ix

LIST OF FIGURES

Figure Page

2-1: Network Topology and Connectivity Matrix for 5 Node Network 7

2-2: Network Connectivity with Nodal Ranks.. 10

2-3: Partitioning of the Chicago Network for NP = 4. .. 19

2-4: METIS Partitioning of the 15 Node Network ... 24

2-5: SDDA Partitioning of the 15 Node Network .. 25

2-6: METIS Partitioning of the 11 Node Network ... 26

2-7: SDDA Partitioning of the 11 Node Network .. 27

3-1: Network connectivity and associated sub-domain partitioning................................. 36

1

CHAPTER 1

INTRODUCTION

For numerous large-scale engineering and science problems, domain decomposition

(DD) has been recognized as critical to obtain a solution within a reasonable amount of

time, as has been demonstrated in the fields of computational fluid dynamics, aerospace

engineering, structural engineering, and others. The basic premise of DD is to decompose

a large domain or network into smaller sub-domains or sub-networks which are then

typically addressed in parallel, i.e. each sub-problem is assigned to an independent

computer processor. The solutions to these sub-problems are then integrated in order to

recover the solution to the original problem. One of the key determinants for the success

of DD is the number of so-called system boundary nodes. Roughly, the number of system

boundary nodes determines the degree of interaction between the various sub-domains (a

more precise definition of system boundary nodes will be provided in Step 6 of Section

2.2). As the number of system boundary nodes decreases, the more efficiently these sub-

domains can be processed. For instance, Nguyen (2006) provides an example which

demonstrates that when the number of system boundary nodes increases, the

computational time to solve the problem can increase dramatically (from 0.45% to 97%

of the overall computation time), clearly showing the need to keep the number of such

nodes as small as possible.

In this manuscript, a simple, yet effective, heuristic algorithm is presented. The

objective of the algorithm is to decompose a domain into a predefined number of

interconnected sub-domains. The network must be divided in such a way that, as its first

2

priority, the number of system boundary nodes is small; and as its second priority, the

number of nodes in each sub-network is of similar size. The first priority is critical to

reduce the communication/interaction between the various sub-domains during the

solution process. As shown by Nguyen (2006), this communication time typically

increases at a much faster rate than the decrease in computation time made possible by a

larger number of processors. The second objective is applied such that, in a parallel

computational environment, one sub-domain does not dominate the overall solution time.

Providing sub-domains of approximately equal size balances the workload among

processors. It should be clear that the largest sub-domain will typically determine the

computation time in a parallel processing situation. The algorithm presented is based on

a simplified version of the well-known Label Correcting Algorithm (LCA) used for the

shortest path class of problems, coupled with some simple heuristic rules.

1.1 Literature Review

Given that multiple processors are very common these days (with even simple personal

computers having multiple cores), DD is a very timely and relevant technique. Various

general heuristic algorithms have been developed by researchers in graph theory (e.g. see

Farhat & Lesoinne, 1993; Chen & Taylor, 2002; Simon, 1991; Kernighan & Lin, 1970;

and Karypis & Kumar, 1998) that can be used to partition any graph/network. In addition

to the complex nature of these heuristics, it is by far not clear how efficient or effective

these general graph partitioning algorithms are when applied to common civil

engineering problems such as road networks, since these networks are known to possess

unique characteristics. For instance, the degree of the nodes is typically in the range of 3

3

to 4, which does not necessarily hold for networks arising in other fields. It is to be noted

that recently, Etemadnia et al. (2014) proposed two heuristic algorithms to decompose a

network into multiple domains. Although the authors have presented their work in the

context of transportation, the heuristics have only been tested on hypothetical networks.

In this sense, their heuristics do not differ from the heuristics previously mentioned.

Various researchers in the transportation field have hinted at the use of DD; for

example, it appears in works related to decentralized traffic management (e.g. see Pavlis

& Papageorgiou, 1999; Logi & Ritchie, 2002). However, these studies always make the

assumption that a transportation network can somehow be decomposed into a user-

defined number of sub-networks, i.e. that the partitions are already given. The question

then arises as to how these partitions can be obtained in such a way that the interaction

between sub-domains is minimal (e.g. see Pavlis & Papageorgiou, 1999; Logi & Ritchie,

2002). This manuscript presents a heuristic that can be used to fill exactly this gap in

decentralized traffic management. Other applications in the transportation field exist as

well. Generally, DD can be used in transportation problems in which it is beneficial to

decompose a large problem into smaller problems to determine its solution, ex.

continuum traffic equilibrium problems that are solved via finite element methods (e.g.

see Wong et al., 1998; Nguyen, 2006) and certain classes of shortest path problems that

can be solved via a series of systems of linear equations (e.g. see Ng & Sathasivan,

2014).

4

1.2 Method and Procedure

The Shortest Distance Decomposition Algorithm (SDDA) is a multi-step algorithm which

will be discussed in detail in Chapter 2. This chapter is based on the recently published

Journal of Intelligent Transportation Systems Paper “Large scale network partitioning for

decentralized traffic management and other transportation applications” (Johnson et al.,

2016). The chapter describes an algorithm which will be used to partition several real-

world, large-scale transportation networks. In fact, it will be demonstrated that the current

best general purpose network partitioning algorithm is typically not as good as the one

proposed, which has been developed with civil engineering applications in mind. To

demonstrate this claim, the effectiveness (in terms of minimizing the number of system

boundary nodes) of the SDDA is compared to the popular and well respected METIS

partitioning algorithm (Karypis & Kumar, 1998). METIS is a serial software package

used to partition large irregular graphs and large meshes, and for computing fill-reducing

orderings of sparse matrices. It was developed at the Department of Computer Science

and Engineering at the University of Minnesota and it is freely distributed. “Metis” was

an ancient Greek goddess of wisdom and knowledge in Greek mythology. The goal of

their algorithm is “to partition the vertices of a graph in p roughly equal parts, such that

the number of edges connecting vertices in different parts is minimized” (Karypis &

Kumar, 1998). These two objectives are essentially identical to that of the SDDA. The

version of METIS used in the comparisons is Version 5.10.

The manuscript will then demonstrate, in Chapter 3, other advantages of effective

domain partitions. Built upon the SDDA is a second algorithm called The Domain

Decomposition Based Shortest Path Algorithm, or DDSP. The DDSP algorithm uses

5

partitions created by the SDDA algorithm to solve the shortest path problem. As a

benchmark in this test, the classical Dijkstra method is used to solve the problem and then

the results are compared with that of the DDSP algorithm. It is shown that by breaking up

the original network into smaller sub-networks and using the information about how each

sub-network is connected, one can actually find the correct solution much more

efficiently. The algorithm is further explained and results are presented to support this

claim.

Finally, Chapter 4 is dedicated to another application of the SDDA. As previously

mentioned, one of the uses of METIS is to produce fill reducing orderings. This means

that the algorithm reorders a set of data such that, when the network is factorized, it

reduces the amount of fill-in terms during Gaussian elimination. SDDA offers this

functionality as well, and in fact, again outperforms METIS for the majority of the

networks tested. Although the data used to measure the amount of fill-in is from some of

the same transportation networks used in other tests presented, these orderings can be

exploited in numerous fields of civil engineering where a set of simultaneous linear

equations must be solved.

6

CHAPTER 2

THE SHORTEST DISTANCE DECOMPOSITION ALGORITHM

2.1 Introduction

The solution to the shortest path problem has been well documented in literature, over the

years. Several Label Setting (Dijkstra, 1959) or Label Correcting (Bellman, 1956; Glover

et al., 1985) Algorithms have been developed. This work utilizes a variant of Glover’s

polynomial bounded LCA, also referred to as the Polynomial Label Correcting Algorithm

(P-LCA) (e.g. see Allen, 2013). This particular algorithm will be reviewed, using a sparse

matrix storage scheme to store the network connectivity information. It is to be noted that

the proposed decomposition heuristic can be used with any other shortest path algorithm.

Before beginning the P-LCA computation, the network information must be

stored in an efficient manner. This is done by using the efficient sparse storage scheme

discussed in Lawson et al. (2013) and in Nguyen (2006). By using this method, only the

non-zero values/locations in the connectivity matrix are stored, cutting down on both

computational time and memory requirements. Suppose a five node/14 link network is to

be analyzed. The network contains the following topology and coefficient matrix

describing the network connectivity. However, the actual link cost values are not required

to be stored by the SDDA algorithm. For the purpose of partitioning, the algorithm

assumes that all links have a cost of unity. (Note: Cij in matrix A indicates the cost

associated with traveling from “inode” to “jnode”, where “inode” represents the source

node and “jnode” represents the destination node).

7

[A] =

 C12 C13

C21 C23 C24

C31 C32 C34 C35

 C42 C43 C45

 C53 C54

Figure 2-1: Network Topology and Connectivity Matrix for 5 Node Network

As part of our proposed SDDA, a basic Shortest Path (SP) algorithm needs be

employed. While any existing SP algorithm can be utilized (such as the LCA, polynomial

LCA, Dijkstra, etc.), the polynomial LCA algorithm (Lawson et al., 2013) was selected

for this work, since it has been proven to be more efficient than the classical LCA. For

the readers’ convenience, the main ideas of the Polynomial LCA can be summarized as

follows:

1. Use two arrays, {NOW} and {NEXT}, to track and process nodes as they are

updated rather than cycling through every node in the network (for each iteration).

2. If the answer for “is d(jnode) > d(inode) + c(inode, jnode)” is YES, and there are

more outgoing links from inode, then we must:

a. Update both array {d} and array {predes}

b. Include jnode in the list {NEXT}

3. If the answer for “is d(jnode) > d(inode) + c(inode, jnode)” is YES, and there are

no more outgoing links from inode, then we must:

1

5

4 2

3

8

a. Update both array {d} and array {predes}. These two arrays contain the

updated Shortest Time (ST), and its corresponding Shortest Path (SP),

respectively.

b. Include jnode in the list {NEXT}

c. Remove inode from the list {NOW}

4. If the answer for “is d(jnode) > d(inode) + c(inode, jnode)” is NO, and there are

more outgoing links from inode, then we must:

a. NOT update the arrays {d}, {predes}, {NEXT}, or {NOW}

5. If the answer for “is d(jnode) > d(inode) + c(inode, jnode)” is NO, and there are

no more outgoing links from inode, then we must:

a. NOT update the arrays {d}, {predes}, or {NEXT}

b. Remove inode from the list {NOW}

6. If the array {NOW} is EMPTY, but the array {NEXT} is NOT empty, we must

reset {NOW} = {NEXT} & {NEXT} = {empty}, and repeat the process.

7. If both {NOW} and {NEXT} are EMPTY, then convergence has been achieved

by P-LCA

2.2 The Shortest Distance Decomposition Algorithm

The SDDA consists of seven steps. In these seven steps, the algorithm reads and

manipulates a user provided set (transportation network) of data and efficiently partitions

it into a predefined number of smaller sub-domains, with the goal to minimize the total

number of system boundary nodes (for minimizing communication time among different

processors in a parallel computer environment) and to ensure that the size of each sub-

9

domain is approximately equal. The key to the algorithm’s success in keeping the number

of system boundary nodes small lies in the fact that 1) each sub-domain’s source node is

selected such that it will be as far as possible from the previously selected source nodes

(cf. Step 4), and that 2) nearby nodes are gradually incorporated into each sub-domain

(cf. Step 5). Finally, the algorithm renumbers the nodes so that the resulting sub-domains’

interior nodes are completely uncoupled. The steps of the algorithm are as follows:

Step 1: Initialize the problem

Step 2: Determine the rank of each node

Step 3: Determine the first source node

Step 4: Determine the remaining source nodes

Step 5: Populate sub-domains

Step 6: Identify system boundary nodes

Step 7: Renumber nodes

Steps 1 through 5 are used to partition the provided large domain into smaller sub-

domains. If subsequent work on the network is required, Steps 6 and 7 can then be used

to reorder the nodes of the network into a convenient form in which parallel processing

can be exploited. The algorithm begins with simple input from the user: namely, the

network topology and the number of sub-domains they wish to partition the network into.

From this point, Steps 2, 3, and 4 are used to find the starting source node of each sub-

domain. These (starting) source nodes are then used as the basis for the domain

population process of Step 5 to populate the remaining nodes for each subdomain. Now,

Partitioning Phase

Reordering Phase

10

the partitioning is complete. Steps 6 and 7 are then performed, simply to transform the

original network topology into a new reordered topology to utilize parallel processing in

order to more efficiently perform future operations on the network. A more detailed, step-

by-step discussion is provided as follows, through use of a simple numerical example.

Step 1: Initialize the Problem

To begin, the user must provide the following information:

1.1. Network Connectivity (or topology) Matrix, via text file. The first column of the

text file represents the “head” or “source” node, while the second column

represents the “tail” or “destination” node.

1.2. The number of Sub-Domains or Number of Processors (NP) that the user wishes

to divide the network into. For this example, assume NP = 3. The network to be

partitioned is provided by Figure 2-2.

Figure 2-2: Network Connectivity with Nodal Ranks

11

Step 2: Determine the rank, R, of each Node

In this algorithm, the rank R of each node is defined as the number of links connected to

the node in question. By analyzing the manipulated connectivity information produced by

Step 1, R can be determined by simply summing the number of occurrences that a given

inode occurs in the data set, or by the total number of nodes connected to inode.

Step 3: Determine the First Source Node

Though its calculation is trivial, the first source node is the basis for the remaining steps

in the algorithm. The first source node is simply the lowest ranking node in the system.

Generally speaking, nodes with few connections often lie on the periphery of a domain.

By selecting the lowest ranking node, it is anticipated that a remotely located node along

the network’s periphery has been identified. If there are multiple nodes of the same rank,

the algorithm arbitrarily selects the first lowest ranked node that it encounters. In

examining Figure 2-2, nodes 1, 6, 10, 11, and 15 all share the lowest rank of 2. Node 1 is

then selected as the first source node, as it is the lowest numbered of this group.

Step 4: Determine the Remaining Source Nodes

The remaining source nodes are found by performing the following steps:

4.1. Refer to the network connectivity information stored in Step 1.

4.2. Perform the Modified P-LCA calculation with the node identified in Step 3 as the

source node. In this process, the algorithm computes the distance from this node

to all other nodes in the system. Note: For the Modified P-LCA Method, only

update the arrays {d}, {NOW}, and {NEXT}; the array {predes}, which stores

the SP information, is not needed for the SDDA, and its calculation will

12

unnecessarily use system memory and therefore should be omitted. The results of

this step are provided in the proceeding table, Table 2-1.

Table 2-1: Shortest Path Information for Source Node 1

4.3. The next source node is found by identifying the node which is farthest from the

first source node. Should there be multiple nodes with an identical distance,

select the furthest node with the lowest rank. If there is yet again a tie, simply

select the lowest numbered node with the furthest distance and the lowest rank.

Examining Table 2-1, one can easily see that node 15 should be selected as the

second source node.

4.4. Next, perform the P-LCA calculation for the node identified in Step 4.3. This

process is identical to what is outlined previously, except for two modifications.

Instead of only finding the node with the largest distance from the current source

node, sum the distances for all source nodes to find an average distance from all

Node
Distance

From 1

Total

Distance

1 0 0

2 1 1

3 1 1

4 2 2

5 2 2

6 4 4

7 4 4

8 3 3

9 4 4

10 4 4

11 4 4

12 3 3

13 4 4

14 4 4

15 5 5

13

previous source nodes in an effort to ensure that the next source node to be

selected is not adjacent any previously selected source node. If there is a tie

among distance and rank, select the node which has the smallest range of the

distances from all of the other source nodes. By selecting the node with the

smallest range, it is ensured that the node to be selected is more equidistant from

the previously selected source nodes. This process should continue until NP

source nodes have been identified.

Table 2-2: Information for Source Nodes 1 and 15 Shortest Path

Node
Distance

From 1

Distance

From 15

Total

Distance
Range

1 0 5 5 5

2 1 5 6 4

3 1 4 5 3

4 2 4 6 2

5 2 3 5 1

6 4 4 8 0

7 4 4 8 0

8 3 3 6 0

9 4 4 8 0

10 4 4 8 0

11 4 2 6 2

12 3 2 5 1

13 4 1 5 3

14 4 1 5 3

15 5 0 5 5

Examining Table 2-2, it is easily seen that nodes 6, 7, 9, and 10 each share the

largest total distance of 8 and should be considered for the final source node. The

arithmetic range for each node (the absolute value of the difference between columns 2

and 3) must be considered in order to break the tie. Since each of these nodes also shares

the same value for range, select the first node encountered: namely, node 6.

14

Step 5: Populate Sub-Domains

Each sub-domain begins with its respective source node. Sub-domains 1, 2, and 3 contain

nodes 1, 15, and 6, respectively (as previously found in Steps 3 and 4). Continue by

assigning nodes to each sub-domain until all nodes in the system have been allocated. It

is important to note that when assigning additional nodes to a particular sub-domain, the

algorithm must follow these three rules:

5.1. Each sub-domain must be populated in a simultaneous fashion. However, a given

sub-domain may not be able to add a node because of the rule noted in Step 5.3.

In this instance, simply use a value of “0” as a placeholder for that iteration’s

specific sub-domain.

5.2. The process used to add a node to each sub-domain is nearly identical to that of

Step 4.3, with one modification. Rather than select the node farthest from the

source node, add the node which is closest to the original source node. This

change is made to ensure that each node to be added to a particular sub-domain is

clustered around its source node. The algorithm makes this decision based on the

results of the Modified P-LCA computations. For a first tie breaker, select the

node which has the lowest nodal rank. If there are multiple nodes which share

this value, default to the arithmetic range of nodal distances. However, another

modification is made. Select the node with the largest range, with the assumption

that it will be close to the source node. If this still results in a tie, arbitrarily select

the lower numbered node.

5.3. In order to minimize the number of system boundary nodes generated by the

algorithm, it is important to ensure that the domain being built is a continuous

15

domain. To guarantee this, the algorithm requires the node selected in Step 5 to

be directly connected to at least one of the other nodes already in the sub-domain.

By following this rule, along with the rule established by Step 5.1, it is

guaranteed that each sub-domain will be continuous, which generally results in

fewer system boundary nodes. This is due to the fact that the number of exposed

edges in the network is minimized (refer to Step 6 for a discussion on system

boundary nodes). If there is not a node with a direct connection to the existing

nodes available, the algorithm will not add a node to the sub-domain during this

iteration. Rather, it simply uses a value of “0” as a placeholder (previously

mentioned in Step 5.1). However, a node may be able to be added in subsequent

iterations, as nodes are added to other sub-domains. To continue the illustrative

example, once Steps 5.1 through 5.3 are complete, the algorithm will provide the

partitioned network as given by Table 2-3.

Table 2-3: Populated Sub-Domains

Sub-Domain

1

Sub-Domain

2

Sub-Domain

3

1 15 6

2 14 7

3 13 8

4 11 10

5 12 9

Step 6: Identify System Boundary Nodes

When two nodes belong to different sub-domains, and there is a link connecting them,

they are identified as System Boundary Nodes (or SBN). Once identified, these nodes are

subsequently used in Step 7. SBN are found as follows:

16

6.1. The SDDA compares the inode and jnode of each link. If both belong to the same

sub-domain, they are considered “interior” nodes. If the nodes are found in

different sub-domains, they both must be considered SBN.

6.2. The algorithm records which nodes are found to be boundary nodes and creates a

vector containing a list of system boundary nodes which is sorted in ascending

order for convenience.

As previously mentioned, the primary goal of the SDDA is to minimize the number

of SBN. The authors of the METIS algorithm (Karypis & Kumar, 1998) note they

attempt to minimize the number of edges connecting different sub-domains. Rather than

count these edges, the SDDA counts the number of nodes which are directly connected to

these edges. In short, both (METIS and SDDA) of the algorithms are striving to obtain

the same goals: 1) to have partitions approximately equal in size, and 2) to minimize the

total number of SBN. The first criterion can be trivially satisfied; if a network has N

nodes and is subsequently partitioned into a given number of smaller sub-domains,

simply assign each sub-domain approximately N/NP nodes. Although more difficult to

achieve, the second criterion yields greater computational efficiency. For the

aforementioned reasons, the SDDA puts more emphasis on the second criterion. For the

example shown in Figure 2-2, the SBN can be identified as nodes 5, 8, and 12.

Step 7: Reorder Nodes

This step reorders the nodes in such a manner that, when the system’s reordered

coefficient matrix is plotted, a decoupling of the sub-domains is present. This is a very

desirable property; the system is already in a convenient form such that the problem may

17

be solved via parallel processing techniques through the partitioned sub-domains. This

property is achieved via the following steps:

7.1. Each sub-domain’s nodes is ordered consecutively, starting with the first sub-

domain. This then allows each sub-domain to be completely independent of the

others.

7.2. To achieve this decoupled state, remove the boundary nodes and place them at

the end of the numbering scheme, making them the highest numbered nodes.

It is noted that Steps 6 and 7 are not requirements to partition the network. Rather,

they are used to reorder the network for subsequent operations on the data set. For the

network shown in Figure 2-2, the results from Step 7 are shown in Table 2-4.

Table 2-4: New Node Numbering Scheme

New Node

Number

Old Node Number Sub-Domain

1 1 1

2 2 1

3 3 1

4 4 1

5 15 2

6 14 2

7 13 2

8 11 2

9 6 3

10 7 3

11 10 3

12 9 3

13 5 All (SBN)

14 8 All (SBN)

15 12 All (SBN)

After this renumbering has occurred, the decoupling effect becomes very obvious.

Figure 2-3 shows this graphically for the much larger Chicago network. This Step is

18

critical for allowing each sub-domain to be operated on simultaneously. Each sub-

domain’s interior nodes are completely independent of every other sub-domain’s interior

nodes, as shown, allowing independent, parallel computations. The connectivity between

the sub-domain’s boundary nodes then allows this information to be pulled back together

and assembled into the complete solution. This image also graphically shows that the

number of SBN (lower right diagonal block) is very small when compared to the entire

network, thus reducing the overall assembly time of each sub-domain’s individual

solution back into the total solution for the problem.

19

Figure 2-3: Partitioning of the Chicago Network for NP = 4.

Top: Original Network Connectivity; Bottom: SDDA Partitioned Network

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

Row = 9,184

Row = 12,428

Row = 6,006

Row = 3,150

20

2.3 Comparisons with METIS Using Real-World Transportation Networks

In this section, eight additional networks are added (in addition to the 15 node network,

yielding nine total networks). Of these, seven are actual road networks which were

retrieved from http://www.bgu.ac.il/~bargera/tntp/. These networks were added in order

to assess the performance of the SDDA. To this end, the ensuing number of system

boundary nodes are compared to the results obtained from METIS, opined by many

researchers as the current worldwide standard in network partitioning. Each of the nine

networks has been tested for two, three, and four sub-domains, resulting in 27 different

examples. The results are summarized in Table 2-5. For example, when investigating the

Austin, Texas network (with 7,388 nodes and 18,956 links), when the number of sub-

domains is four, the number of system boundary nodes resulting from the SDDA is only

305. Conversely, METIS yields 1,221 boundary nodes, which represents an increase of

400%. As can be seen, out of these 27 cases, the SDDA outperforms METIS 21 times

(78%). Moreover, it should be noted that, on average, METIS results in approximately

215% more system boundary nodes than the number returned by the SDDA. When only

the hypothetical and smaller networks are considered (limiting the study to only the

Austin, Chicago, and Philadelphia networks), this reduction becomes even more

dramatic: METIS partitions result in 238% more boundary nodes than the SDDA, on

average.

METIS outperformed our algorithm in six of the 27 (22%) test cases. When

METIS provided better results, it yielded nearly half the number of boundary nodes

obtained from SDDA. It should be noted that three of these six occurrences were found

for the Winnipeg network, with the other occurrences resulting in virtually a tie between

21

the SDDA and METIS algorithms. It can be assumed that the disparity between the

SDDA and METIS in the Winnipeg network is purely due to the specific network

topology of that network. Indeed, being a heuristic algorithm, it cannot be guaranteed that

SDDA will outperform METIS for a specific network. The main conclusion here is that

SDDA outperforms METIS more often than not, when applied to some of the most

common networks appearing in the transportation literature. The 21 instances in which

the SDDA outperformed METIS are highlighted in Table 2-5.

Table 2-5: System Boundary Node Comparison between the SDDA and METIS

Number of System Boundary Nodes

Nodes/Links
NP = 2 NP = 3 NP = 4

SDDA METIS SDDA METIS SDDA METIS

11 Node 11/32 6 8 7 8 7 9

15 Node 15/48 3 7 3 3 8 12

Sioux Falls 24/76 10 10 17 13 20 19

Anaheim 416/914 45 81 57 162 66 160

Barcelona 930/2,522 92 206 152 243 189 303

Winnipeg 1,040/2,836 81 51 133 63 156 108

Austin 7,388/18,956 265 878 276 872 305 1,221

Chicago 12,979/39,018 240 626 407 794 551 1,347

Philadelphia 13,389/40,003 370 773 413 393 523 1,080

It would be an incomplete analysis if the computational times of both algorithms

were not compared. To compare computational time, Old Dominion University’s High

Performance Computing Center computer hardware TURING cluster (node #064) was

used to run METIS (FORTRAN shell program which calls METIS, written in C) and the

SDDA (written in the MATLAB environment), with the following characteristics:

22

Number of Cores = 20

RAM = 128 GB

CPU = Intel Xeon E5-2670 v2 @2.50 GHz

Table 2-6 provides a comparison of the computational time required to perform the

partitioning of each network tested.

Table 2-6: Partitioning Time Comparison - METIS and The SDDA

Solution Time (s)

Nodes/Links

NP = 2 NP = 3 NP = 4

SDDA METIS SDDA METIS SDDA METIS

11 Node Network 11/32 0.050 0.002 0.050 0.001 0.050 0.001

15 Node Network 15/48 0.051 0.002 0.050 0.001 0.051 0.001

Sioux Falls Network 24/76 0.051 0.002 0.051 0.001 0.051 0.002

Anaheim Network 416/914 0.076 0.003 0.078 0.003 0.077 0.004

Barcelona Network 930/2,522 0.109 0.002 0.111 0.003 0.117 0.004

Winnipeg Network 1,040/2,836 0.118 0.002 0.119 0.002 0.125 0.003

Austin Network 7,388/18,956 0.846 0.006 0.934 0.009 0.926 0.010

Chicago Network 12,979/39,018 1.864 0.008 1.729 0.012 1.779 0.013

Philadelphia Network 13,389/40,003 2.179 0.080 1.917 0.026 1.933 0.013

From Table 2-6, it can be seen that METIS outperforms the SDDA from a computational

time perspective. However, this small difference is not an issue for the following reasons:

1. The computational requirement for SDDA remains very low, around 2 seconds in

Table 2-6, and

2. Partitioning a network is typically a pre-processing step, after which more serious

computations are carried out that consume much longer computation times (e.g.

see Nguyen, 2006). It should be noted the comparisons in Table 2-6 might be

skewed in METIS’ favor for the following reasons:

23

a. It is generally accepted that MATLAB (in which SDDA has been written

in) is significantly slower than compiled languages, such as FORTRAN or

C, which METIS is written in (e.g. see Kouatchou, 2009).

b. The built-in FORTRAN time measurement function (etime) for collecting

METIS computation time fluctuated very significantly during our tests,

and might therefore not be very reliable (when running the SDDA in the

MATLAB environment no such observation was made).

In light of these observations, it is fair to conclude that SDDA is an efficient algorithm.

In addition to the proceeding information, Figure 2-4 (METIS partitioning results)

and Figure 2-5 (SDDA partitioning results) are provided to afford the reader graphical

partitions of the 15 node network. Similarly, Figure 2-6 and Figure 2-7 show the same

partitioning results for the 11 node network. This helps to graphically depict the

difference between the partitions provided by each of the two algorithms.

24

Original Network

Two Sub-Domains

7 System Boundary Nodes

Three Sub-Domains

3 System Boundary Nodes

Four Sub-Domains

12 System Boundary Nodes

Figure 2-4: METIS Partitioning of the 15 Node Network

25

Original Network

Two Sub-Domains

3 System Boundary Nodes

Three Sub-Domains

3 System Boundary Nodes

Four Sub-Domains

8 System Boundary Nodes

Figure 2-5: SDDA Partitioning of the 15 Node Network

26

Original Network

Two Sub-Domains

8 System Boundary Nodes

Three Sub-Domains

8 System Boundary Nodes

Four Sub-Domains

9 System Boundary Nodes

Figure 2-6: METIS Partitioning of the 11 Node Network

27

Original Network

Two Sub-Domains

6 System Boundary Nodes

Three Sub-Domains

7 System Boundary Nodes

Four Sub-Domains

9 System Boundary Nodes

Figure 2-7: SDDA Partitioning of the 11 Node Network

28

As previously indicated, the secondary objective of the SDDA is to balance the

number of nodes per sub-domain. Results have been prepared to demonstrate the

uniformity of the sub-domain sizes achieved. Clearly, the target percentage of nodes to be

assigned to each sub-domain is 50%, 33%, and 25% when NP = 2, 3 and 4, respectively.

Comparing Table 2-7 and Table 2-8, both METIS and the SDDA result in sub-domains

of approximately equal size, when considering large-scale transportation networks.

29

Table 2-7: Size of each sub-domain provided by METIS

Size of Each Sub-Domain (Number of Nodes) – METIS

Partition

Number

of

Nodes

NP

P1

Nodes/%

of Total

P2

Nodes/%

of Total

P3

Nodes/%

of Total

P4

Nodes/%

of Total

11 Node/32

Link

Example

11

NP = 2 5 / 45 6 / 54 N/A N/A

NP = 3 3 / 27 4 / 36 4 / 36 N/A

NP = 4 2 / 18 3 / 27 3 / 27 3 / 27

15 Node/48

Link

Example

15

NP = 2 7 / 47 8 / 53 N/A N/A

NP = 3 5 / 33 5 / 33 5 / 33 N/A

NP = 4 3 / 20 4 / 27 4 / 27 4 / 27

Sioux Falls

Network
24

NP = 2 12 / 50 12 / 50 N/A N/A

NP = 3 8 / 33 8 / 33 8 / 33 N/A

NP = 4 6 / 25 6 / 25 6 / 25 6 / 25

Anaheim

Network
416

NP = 2 208 / 50 208 / 50 N/A N/A

NP = 3 138 / 33 139 / 33 139 / 33 N/A

NP = 4 104 / 25 104 /25 104 /25 104 /25

Barcelona

Network
930

NP = 2 465 / 50 465 / 50 N/A N/A

NP = 3 310 / 33 311 / 33 309 / 33 N/A

NP = 4 232 / 25 233 / 25 232 / 25 233 / 25

Winnipeg

Network
1,040

NP = 2 520 / 50 520 / 50 N/A N/A

NP = 3 346 / 33 347 / 33 347 / 33 N/A

NP = 4 260 / 25 260 / 25 260 / 25 260 / 25

Austin

Network
7,388

NP = 2 3694 / 50 3694 / 50 N/A N/A

NP = 3 2462 / 33 2463 / 33 2463 / 33 N/A

NP = 4 1847 / 25 1847 / 25 1848 / 25 1846 / 25

Chicago

Network
12,979

NP = 2 6488 / 50 6491 / 50 N/A N/A

NP = 3 4327 / 33 4325 / 33 4327 / 33 N/A

NP = 4 3244 / 25 3246 / 25 3244 / 25 3245 / 25

Philadelphia

Network
13,389

NP = 2 6694 / 50 6695 / 50 N/A N/A

NP = 3 4463 / 33 4463 / 33 4463 / 33 N/A

NP = 4 3348 / 25 3346 / 25 3348 / 25 3347 / 25

30

Table 2-8: Size of each sub-domain provided by the SDDA

Size of Each Sub-Domain (Number of Nodes)

Number

of

Nodes

NP

P1

Nodes/%

of Total

P2

Nodes/%

of Total

P3

Nodes/%

of Total

P4

Nodes/%

of Total

11 Node 11

NP = 2 6 / 55 5 / 45 N/A N/A

NP = 3 3 / 27 4 / 36 4 / 36 N/A

NP = 4 3 / 27 3 / 27 3 / 27 2 / 18

15 Node 15

NP = 2 10 / 67 5 / 33 N/A N/A

NP = 3 5 / 33 5 / 33 5 / 33 N/A

NP = 4 4 / 27 5 / 33 4 / 27 2 / 13

Sioux Falls

Network
24

NP = 2 12 / 50 12 / 50 N/A N/A

NP = 3 8 / 33 8 / 33 8 / 33 N/A

NP = 4 5 / 21 7 / 29 6 / 25 6 / 25

Anaheim

Network
416

NP = 2 212 / 51 204 / 49 N/A N/A

NP = 3 153 / 37 149 / 36 114 / 27 N/A

NP = 4 106 / 25 107 / 26 104 / 25 99 / 24

Barcelona

Network
930

NP = 2 467 / 50 463 / 50 N/A N/A

NP = 3 310 / 33 315 / 34 305 / 33 N/A

NP = 4 249 / 27 235 / 25 240 / 26 206 / 22

Winnipeg

Network
1,040

NP = 2 508 / 49 532 / 51 N/A N/A

NP = 3 351 / 34 358 / 34 331 / 32 N/A

NP = 4 289 / 28 268 / 26 273 / 26 210 / 20

Austin

Network
7,388

NP = 2 3,788 / 51 3,600 / 49 N/A N/A

NP = 3 2,812 / 38 2,651 / 36 1,925 / 26 N/A

NP = 4 1,690 / 23 2,077 / 28 1,602 / 22 2,019 / 27

Chicago

Network
12,979

NP = 2 6,743 / 52 6,236 / 48 N/A N/A

NP = 3 4,312 / 33 4,409 / 34 4,258 / 33 N/A

NP = 4 3,301 / 25 2,954 / 23 3,321 / 26 3,403 / 26

Philadelphia

Network
13,389

NP = 2 7,502 / 56 5,887 / 44 N/A N/A

NP = 3 4,341 / 32 4,796 / 36 4,252 / 32 N/A

NP = 4 3,663 / 27 3,042 / 23 3,171 / 24 3,513 / 26

2.4 Conclusions

Domain decomposition is used frequently for solving numerous large-scale engineering

and science problems in an efficient manner. To make the most out of this process, it has

31

been shown that one should aim to minimize the number of system boundary nodes. By

doing so, one can more efficiently process the sub-domains through the use of parallel

processing. Although various transportation researchers have hinted at the use of DD (for

example, in decentralized traffic management), the assumption is always made that the

partition is given. This manuscript presents a simple, efficient and effective heuristic to

decompose a network into a predefined number of interconnected sub-domains. The

algorithm partitions in such a way that the number of system boundary nodes is

minimized (first priority), and the size of each sub-network is similar (second priority).

The proposed method has been compared with the METIS algorithm, which is believed

by many to be the most widely used algorithm in graph partitioning worldwide. It should

be noted that incorporating METIS into users’ application codes will require the users to

download and install many subroutines/functions. The developed SDDA (written in the

popular MATLAB computer environment), on the other hand, can be easily incorporated

into general users’ application codes, as it is a simple and short MATLAB script. Using

large-scale, real-world transportation test networks, it was found that the proposed

algorithm performed significantly better than METIS. The SDDA outperformed METIS

in 21 of 27 tested examples. On average, the SDDA provided (approximately) 42% of the

total number of system boundary nodes provided by METIS, when considering large-

scale networks.

32

CHAPTER 3

THE DOMAIN DECOMPOSITION BASED SHORTEST PATH ALGORITHM

3.1 Introduction

The shortest path (SP) problem in transportation applications has been the subject of

extensive research, resulting in a large number of scientific publications. Dealing with

real-world, large-scale networks, various parallel procedures (based on label correction,

Dijkstra, bi-direction, A*, etc.) have been proposed (Foster, 2003; Chabini & Ganugapati,

2002; Habbal et al., 1994; Allen, 2013; Nguyen, 2006). In general, most of the existing

parallel procedures for the SP problems were based on either of the following ideas:

1. Destination-based Decomposition: In this strategy, one assigns each processor

to handle blocks of rows (or columns) of the given network’s topology (Foster,

2003; Habbal et al., 1994; Allen, 2013). This parallel implementation is trivial and

has been adopted in earlier works (Foster, 2013; Chabini, 1998; Ziliaskopoulos et

al., 1997). For most (major) transportation applications, one is required to find the

SP (and its corresponding shortest time, ST) from all source nodes to multiple

destination nodes. While reasonably good speed-up can be achieved, this

approach may not be desirable when:

a. many processors are available for just a few destination nodes, and/or

b. computer memory needs to be managed conveniently and efficiently

2. Network-topology-based Decomposition: In this strategy, one breaks the

original problem into a series of smaller sub-domains (Chabini & Ganugapati,

2002; Nguyen, 2006). Each sub-domain is then independently analyzed by its

33

assigned processor, and finally each sub-domains’ results have to be integrated in

order to produce the final solution to the original network.

The idea of breaking up a large problem into smaller sub-problems (or sub-domains)

is not new. This concept of sub-structuring originated, and was subsequently applied, in

the aerospace and structural engineering arenas several decades ago (Przemieniecki,

1985). Since, sub-structuring methods have been studied, refined, and extended to many

other fields of research, such as structural dynamics, generalized Eigen-value problems,

etc. (Nguyen, 2006). In these earlier applications, however, the purpose of sub-structuring

for computer implementation was related to solving systems of simultaneous linear

equations. More recently, the sub-structuring formulation (or domain decomposition

formulation) has been applied to real-world, large-scale transportation networks where

the objective is to find the SP from some number of source nodes to some number of

destination nodes (Chabini, 2002).

In order to design and to implement the proposed Domain Decomposition based

Shortest Path (DDSP) algorithm efficiently on large-scale problems, one needs to first

divide the given network into sub-domains. For this purpose, any partitioning algorithm,

such as the well-known and popular METIS algorithm (Karypis & Kumar, 1998) has

been used by transportation researchers (Chabini & Canguapati, 2002). However, the

recent development of the SDDA (Johnson et al., 2014; Johnson et al., 2016) has been

found to be preferable in terms of its ability to reduce the number of SBN. Regardless of

the algorithm, the network’s topology and the desired number of sub-domains needs to be

specified. After this, decomposition algorithms will automatically divide the topology

into NP sub-domains in such a way that:

34

1. The workload assigned to each processor will be roughly balanced, and more

importantly,

2. The degree of connection between each sub-domain (as measured by the number

of SBN) is minimized.

Remarks:

1. METIS will only provide the assignment of each node to a particular processor,

Pi. Therefore, it is the responsibility of the user to write their own subroutine(s) to

identify:

a. Nodes which are classified as interior node(s) of a particular processor, Pi, and

b. Nodes which are classified as boundary node(s) of a particular processor, Pi,

and

c. Nodes which are classified as SBN for the entire network.

However, use of the SDDA will not require this, as it provides all the above

mentioned information (Johnson et al., 2014; Johnson et al., 2016).

2. There are several reasons to focus on the theoretical development of the DDSP

algorithm:

a. Numerical results indicate that, as the number of nodes increases, the wall-

time to find the SP from all-to-all increases exponentially. When solving all-

to-all for a network of 7,388 nodes, the solution time is 3,047 seconds,

whereas a network of 1,040 nodes has a solution time of only 15.58 seconds

(Allen, 2013 and Lawson et al., 2013). Thus, an increase in network size of

approximately seven times results in an increased solution time of nearly 200

times.

35

b. The DDSP uses computer memory more efficiently since each processor will

essentially store a much smaller data set in its own local memory.

c. Through the flexibility of the DDSP algorithm, any classical SP problem

algorithm can be employed to analyze/solve each sub-domain.

d. The DDSP algorithm is optimal to achieve a two-level parallel computation:

i. At the top level, parallel computation can be realized by assigning a

group of processors to each sub-domain. Then,

ii. At the bottom level, any classical parallel SP algorithm can be applied

to each sub-domain.

Thus, the user will have more flexibility to optimally utilize the available

number of processors.

3. In earlier research works (Chabini & Ganugapati, 2002), at every time interval, a

slave processor will need to send (receive) information about the boundary links

to (from) the other slave processors. Communication is also required between the

master processor and slave processors. Thus, distributed memory implementation

can become slower, even, than serial implementation. In the proposed DDSP

algorithm, only communication between boundary nodes belonging to the sub-

domain in question and that same sub-domain’s interior nodes are required. Thus,

the proposed DDSP is expected to require less communication time.

3.2 Description of a Small-Scale Network to be Analyzed

Figure 3-1 represents the original network and its respective sub-domains after

partitioning.

36

(a) Complete (un-partitioned) Network (b) Sub-Domain P0 (Interior node = 1)

 (c) Sub-Domain P1 (Interior node = 6) (d) Sub-Domain P2 (Interior node = 10)

Figure 3-1: Network connectivity and associated sub-domain partitioning

37

It is noteworthy that, while the example considered in this work is a small-scale

transportation network, there are no size restrictions imposed on a network to be analyzed

by the DDSP algorithm. This figure has been specifically designed, as it has certain

properties which cause unique challenges during the DD solution process. The network

has been partitioned such that nodes 1-4, 5-8, and 9-10 have been assigned to processors

P0, P1, and P2, respectively. Further, any link in the network connected by two nodes

which belong to different sub-domains are defined as SBN. Thus, the SBN for this

example are 2, 3, 4, 5, 7, 8, and 9. This leaves nodes 1, 6, and 10, which belong to

processor P0, P1, and P2, respectively, as each sub-domain’s interior nodes. This network

was not partitioned using METIS or SDDA (due to its small size); however, it was

arbitrarily partitioned by hand to create sub-domains which help explain the algorithm.

By simple observation, the SP from node 2 to node 3 can be found as 2-5-6-7-4-3,

for a total ST = 2+1+1+4+2 = 10 units (based on the complete/un-partitioned network).

This must mean that to find the correct SP, one must travel from one sub-domain to

another through a boundary node. If one were to simply consider sub-domain P0’s

topology, one would arrive at the incorrect solution of either 2-1-3 or 2-7-4-3, both of

which yield a time of 11 units.

3.3 Solution of Small-Scale Network Utilizing the DDSP Algorithm

The DDSP algorithm consists of just a few simple steps. First, the network must be

partitioned, as is shown in Figure 3-1. Once it is partitioned, one can solve the SP

problem for each sub-domain independently from all source nodes to all destination

nodes in the sub-domain. Step 3 requires one to compute the shortest path for each SBN

38

to all other nodes in the network. Finally, in Step 4, the algorithm checks the values

computed by seeing if the correct shortest path actually occurs over multiple sub-

domains. To do so, it simply checks the cost to travel from a source node to an SBN (and

this cost is now known), and then adds this cost to the cost to travel from the same SBN

to the destination node. If the computed cost is determined to be cheaper than what was

previously recorded, both the shortest path cost and predecessor values must be updated.

A detailed explanation of each step for the figure provided follows:

Step 1: Partition the network

This step is assumed to have been completed prior to starting the DDSP algorithm. For a

recommended partitioning algorithm, readers are referred to Chapter 2 and to Johnson et

al. (2014 and 2016).

Step 2: Solve the SP problem for each sub-domain from all-to-all

As mentioned, this network has been partitioned into three sub-domains, resulting in

nodes 1-4, 5-8, and 9-10 belonging to sub-domains P0, P1, and P2 respectively. Each of

these sub-domains can now be treated as its own independent network, with the topology

given by Table 3-1.

39

Table 3-1: Connectivity Information for Sub-Domains P0, P1, and P2

Sub-Domain P0 Sub-Domain P1 Sub-Domain P2

Source Dest Cost Source Dest Cost Source Dest Cost

1 2 2 5 6 1 9 10 8

1 3 9 6 7 1 10 9 8

2 1 2 7 8 3

2 3 12

3 1 9

3 4 3

4 3 2

It is now easily seen that each sub-domain is in fact independent of the others, as

no sub-domain contains any nodes found in any other sub-domain. Using any classical

(serial or parallel) SP algorithm, the first step would be to pre-allocate two matrices: one

matrix will eventually contain the shortest path cost information, while the other will

contain the predecessor information for each node. References to these two matrices will

be made as [D] and [PRED], respectively. Generally, both matrices would be initiated as

square matrices with dimensions M by N, which are both equal to the number of nodes in

the network. Matrix [D] would be fully populated with the value of infinity for each

distance, while [PRED] would be fully populated as a zero matrix. With this known, the

following tables are provided, with the values of infinity and zero intentionally left out to

make the solution steps appear clearer to the reader, thus leaving empty cells which

simply indicate a value for that cell has yet to be computed. Continuing by computing the

40

all-to-all solution for each independent sub-domain (as shown in Table 1), the values

shown in Table 3-2 and Table 3-3 for [D] and [PRED], respectively, are obtained. Note

that, in Table 2, the shortest time (ST) to travel from node 6 to node 5 is INF (infinity),

because no such path exists. Similar logic is applied to other source-to-destination pairs

where no path exists (7-5, 7-6, 8-5, 8-6, and 8-7).

Table 3-2: Shortest Path Solution for Each Sub-Domain - [D]

 Source Nodes (From)

 1 2 3 4 5 6 7 8 9 10

D
es

ti
n

a
ti

o
n

 N
o
d

es
 (

T
o
)

1 0 2 9 11

2 2 0 11 13

3 9 11 0 2

4 12 9 3 0

5 0 INF INF INF

6 1 0 INF INF

7 2 1 0 INF

8 5 4 3 0

9 0 8

10 8 0

41

Table 3-3: Shortest Path Solution for Each Sub-Domain - [PRED]

 Source Nodes (From)

 1 2 3 4 5 6 7 8 9 10
D

es
ti

n
a
ti

o
n

 N
o
d

es
 (

T
o
)

1 0 2 3 3

2 1 0 1 1

3 1 1 0 4

4 3 3 3 0

5 0 0 0 0

6 5 0 0 0

7 6 6 0 0

8 7 7 7 0

9 0 10

10 9 0

Step 3: Solve the SP problem for each SBN to all other nodes

From Figure 3-1, the nodes defined as SBN are easily identified. For example, Sub-

Domain P0 is made up of nodes 1 through 4. Figure 3-1 shows these four nodes along

with their connections to the other sub-domains (via nodes 5, 7, 8, and 9). By definition,

any node which connects two sub-domains is an SBN. All other nodes are defined as

interior nodes belonging to each independent sub-domain. For this example, as

previously stated, the SBNs are found to be 2, 3, 4, 5, 7, 8, and 9. Treating each SBN as a

source node, one can complete the SP problem to all other nodes in the network.

42

At this point, it is worth noting the benefit of minimizing the number of SBN

during the partitioning process. The fewer SBN there are in a given network, the faster

this step may be computed, as it requires fewer nodes to be cycled through the SP

algorithm. Completing the one-to-all solution for each SBN allows the previously

computed Table 3-2 and Table 3-3 to be updated. The updated results are provided in

Table 3-4 and Table 3-5. Any value which changed during the update process is shown in

boldface text.

Table 3-4: Shortest Path Solution for each Sub-Domain with SBNs added - [D]

 Source Nodes (From)

 1 2 3 4 5 6 7 8 9 10

D
es

ti
n

a
ti

o
n

 N
o
d

es
 (

T
o
)

1 0 2 9 11 5 15 13 19

2 2 0 11 13 3 17 15 21

3 9 10<11 0 2 8 6 4 10

4 12 8<14 3 0 6 4 2 8

5 2 13 15 0 INF 19<INF 17<INF 23

6 3 14 16 1 0 20<INF 18<INF 24

7 4 15 17 2 1 0 19<INF 25

8 7 10 12 5 4 3 0 6

9 14 4 6 12 10 8 0 8

10 22 12 14 20 18 16 8 0

43

Table 3-5: Shortest Path Solution for each Sub-Domain with SBNs added - [PRED]

 Source Nodes (From)

 1 2 3 4 5 6 7 8 9 10

D
es

ti
n

a
ti

o
n

 N
o
d

es
 (

T
o
)

1 0 2 3 3 2 3 3 3

2 1 0 1 1 5 1 1 1

3 1 4 0 4 4 4 4 4

4 3 7 3 0 7 7 8 8

5 2 2 2 0 0 2 2 2

6 5 5 5 5 0 5 5 5

7 6 6 6 6 6 0 6 6

8 7 9 9 7 7 7 0 9

9 3 3 3 3 3 3 0 10

10 9 9 9 9 9 9 9 0

In actual computer implementation, it is clearly more efficient to perform Step 3

before Step 2, so that redundant work can be avoided. For example, the cost from node 2

to nodes 1, 2, 3, and 4 was computed in Step 2. Step 3 subsequently computed this

information again by virtue of node 2 being an SBN. Because Step 2 is performed on the

partitioned network and Step 3 is then performed on the un-partitioned network, the

results of Step 3 are guaranteed to be correct. However, the information has been

presented in this order to provide the reader a clear understanding of each step. Step 3

should be performed before Step 2, and in Step 2, any SBN in the sub-domain may be

44

ignored to ensure that unnecessary computations are not being carried out. Note that

several values may have been updated in Table 3-4 and Table 3-5 from the original

values presented in Table 3-2 and Table 3-3. With this, Table 3-4 and Table 3-5 represent

all of the information required to compute the correct solutions for both matrices [D] and

[PRED], which will be assembled in Step 4.

Step 4: Assemble the Matrices [D] and [PRED] for the Original Problem

Utilizing Table 3-4 and Table 3-5, the correct solution for both matrices [D] and [PRED]

can be assembled. There are only two possible paths when considering the solution to the

shortest path problem based on decomposed networks. First, the correct path lies entirely

within a sub-domain. In this instance, the path never travels through a SBN. The second

possibility exists when the path crosses a SBN, and the correct path includes nodes from

multiple sub-domains. Because the all-to-all solution for each sub-domain has already

been computed, all possible answers for the first scenario have also been computed. Now,

the information from each SBN is used to check the values previously recorded and to

finish filling in any blanks in the tables.

To verify that the values obtained are correct, simply travel from a single source

node to an SBN, then from the same SBN to a single destination node, and record the

aggregate distance. For example, check the solution for the shortest path from 1 to 4.

Referring to Table 3-4, this path has a distance of 12 units. Table 3-5 shows the

predecessor node for node 4 as being node 3. By Figure 3-1, node 1 belongs in sub-

domain P0, which has boundary nodes of 2, 3, and 4. So, if the correct path crosses into

45

another sub-domain, its path is guaranteed to travel through one of these nodes. This is

checked as follows:

Path 1: 1 – 2 – 4; looking at Table 3-4, the path from 1 to 2 costs 2 units. The path from

2 to 4 costs 8 units, resulting in a total of 2 units + 8 units = 10 units. Because 10 units is

less than the previously computed 12 units, update the table to reflect a cost of 10 units.

Because matrix [D] is updated, the corresponding location in the matrix [PRED] must

also be updated. The predecessor node of 2-4 is 7. Therefore, update the predecessor

node of 1-4 to also be 7.

Path 2: 1 – 3 – 4; looking at Table 3-4, the path from 1 to 3 costs 9 units. The path from

3 to 4 costs 3 units, resulting in a total of 9 units + 3 units = 12 units. Because 12 units is

greater than the cost of 10 units computed in Path 1, do not update either matrix [D] or

[PRED].

Path 3: 1 – 4 – 4; looking at Table 3-4, the path from 1 to 4 costs 12 units. The path from

4 to 4 costs 0 units, resulting in a total of 12 units + 0 units = 12 units. Because 12 units is

greater than the cost of 10 units computed in Path 1, do not update either matrix [D] or

[PRED].

Using this methodology and checking every node through each of its respective

sub-domains’ boundary nodes, the two matrices can be fully updated. The final results

are shown in Table 3-6 and in Table 3-7. It should be noted that, when compared to

46

classical solutions to the SP problem, these updated tables do, in fact, result in the correct

solution when compared to the original un-partitioned network. To perform this check,

one can simply compare the fully assembled matrices from the partitioned solution to the

original un-partitioned network.

Table 3-6: Fully Assembled Shortest Path Solution for Original Network - [D]

 Source Nodes (From)

 1 2 3 4 5 6 7 8 9 10

D
es

ti
n

a
ti

o
n

 N
o
d

es
 (

T
o
)

1 0 2 9 11 5 16 15 13 19 27

2 2 0 11 13 3 18 17 15 21 29

3 9 10 0 2 8 7 6 4 10 18

4 10 8 3 0 6 5 4 2 8 16

5 4 2 13 15 0 20 19 17 23 31

6 5 3 14 16 1 0 20 18 24 32

7 6 4 15 17 2 1 0 19 25 33

8 9 7 10 12 5 4 3 0 6 14

9 13 14 4 6 12 11 10 8 0 8

10 21 22 12 14 20 19 18 16 8 0

47

Table 3-7: Fully Assembled Shortest Path Solution for Original Problem - [PRED]

 Source Nodes (From)

 1 2 3 4 5 6 7 8 9 10
D

es
ti

n
a
ti

o
n

 N
o
d

es
 (

T
o
)

1 0 2 3 3 2 3 3 3 3 3

2 1 0 1 1 5 1 1 1 1 1

3 1 4 0 4 4 4 4 4 4 4

4 7 7 3 0 7 7 7 8 8 8

5 2 2 2 2 0 2 2 2 2 2

6 5 5 5 5 5 0 5 5 5 5

7 6 6 6 6 6 6 0 6 6 6

8 7 7 9 9 7 7 7 0 9 9

9 3 3 3 3 3 3 3 3 0 10

10 9 9 9 9 9 9 9 9 9 0

3.4 Application of the DDSP Algorithm to Large-Scale Networks

To test the correctness and overall performance of the DDSP algorithm described in the

previous section, this algorithm was employed to solve the SP problem on two small-

scale test networks and four real-world transportation networks. (The actual road network

connectivity information was retrieved from http://www.bgu.ac.il/˜bargera/tntp). The size

of the four road networks varied from 24 nodes to 1,040 nodes in an effort to determine

how size effects the performance of the algorithm. To provide a metric as to how

efficiently the DDSP algorithm performed, some of the same networks used in Chapter 2

48

were referenced to solve the shortest path problem using the classical Dijkstra method.

The networks tested, and the results of the all-to-all classical SP solution, are given by

Table 3-8.

Table 3-8: Networks Tested with Classical Serial Dijkstra Solution Time

Network

Name

Number

of Nodes

Number

of Links

Dijkstra All-to-All

Calculation Time (s)

10 Node 10 19 0.004

15 Node 15 48 0.006

Sioux Falls 24 76 0.029

Anaheim 416 914 472.4

Barcelona 930 2,522 10,615

Winnipeg 1,040 2,836 16,435

All six networks were partitioned into two, three, and four sub-domains. The

partitions were obtained using the SDDA algorithm. The DDSP algorithm was then

employed to solve the SP problem. To provide a meaningful comparison, the algorithm

utilized the same Dijkstra algorithm that had been used in the generation of the data

shown in Table 3-8 (in a serial computational environment). For all networks tested, the

DDSP algorithm obtained the same shortest distance, as compared to the classical

Dijkstra algorithm for all origin-to-destination pairs. To show a complete solution, the

partitioning times are provided in Table 3-9. To this table, the computational time of the

DDSP was added to arrive at the values in Table 3-10. Several values are highlighted in

this table, which show the most efficient partition size for the given network. For

49

example, consider the Anaheim network. It can be seen the most efficient partition occurs

when the network is partitioned into four sub-domains.

Table 3-9: SDDA Partitioning Time for Tested Networks

Network

Name

SDDA Partition Time (s)

NP = 2 NP = 3 NP = 4 NP = 5 NP = 6

10 Node 0.001 0.001 0.001 0.002 0.002

15 Node 0.001 0.001 0.002 0.002 0.002

Sioux Falls 0.002 0.002 0.002 0.003 0.003

Anaheim 0.022 0.023 0.021 0.034 0.041

Barcelona 0.067 0.068 0.073 0.099 0.099

Winnipeg 0.080 0.082 0.090 0.112 0.121

Table 3-10: Total Serial Solution Time – SDDA Plus DDSP

DDSP Shortest Path and Total (Partition Included) Serial Calculation Time (s)

Network

Name

NP = 2 NP = 3 NP = 4 NP = 5 NP = 6

DDSP Total DDSP Total DDSP Total DDSP Total DDSP Total

10 Node 0.002 0.003 0.002 0.003 0.002 0.003 0.002 0.004 0.002 0.004

15 Node 0.004 0.005 0.003 0.004 0.004 0.006 0.006 0.008 0.006 0.008

Sioux Falls 0.018 0.020 0.021 0.023 0.022 0.024 0.021 0.024 0.022 0.025

Anaheim 216.7 216.7 129.0 129.0 109.6 109.6 132.3 132.3 146.0 146.0

Barcelona 4,801 4,801 3,657 3,657 3,347 3,347 3,403 3,403 3,809 3,809

Winnipeg 7,581 7,581 5,533 5,533 4,536 4,536 3,807 3,807 4,001 4,001

50

As can be seen, the DDSP algorithm efficiently completed the SP problem for the

large-scale transportation networks. For example, for the Winnipeg network, when using

four partitions, the total time to find the all-to-all shortest paths was only 4,536 seconds,

as compared to 16,435 seconds when no decomposition was used (cf. Table 3-8). With

the partitioning time considered in the total computational time, a speedup factor of

several times is obtained. As mentioned, one can further enhance the performance of the

DDSP algorithm if parallel processing is exploited. In fact, the DDSP algorithm offers

the opportunity for a two level parallel computation. The top level of parallel

computation is realized by assigning a group of processors to each sub-domain. The

bottom level of parallel computation is then achieved by conventional parallel strategies,

such as assigning each processor to handle a group of source nodes.

Examining the larger networks, as the number of sub-domains increase, the

computational time required by the DDSP algorithm is decreased. There will, however,

exist a point of diminishing return when the number of sub-domains is too large. This is

due to an increased solution time for a fixed problem size, as more partitions generally

result in an increased number of SBNs and an increased amount of communication time.

3.5 Conclusions

In this work, a new and general DDSP algorithm is presented. The algorithm uses DD to

solve the SP problem in an efficient manner. As the computational effort for the SP

problem increases exponentially with the number of nodes in the network, the proposed

DDSP algorithm is proven to be effective in reducing the computational time, even in the

51

serial computer environment. It is expected that additional computational efficiencies

may be observed in parallel environments, since each sub-domain can be processed

simultaneously. To the best of the author’s knowledge, the proposed algorithm is not only

novel, but also represents the first attempt to clearly explain the detailed steps for

coupling domain decomposition concepts with existing SP algorithms, while including

numerical comparisons between the DDSP algorithm and an existing SP algorithm.

52

CHAPTER 4

USING THE SDDA TO PRODUCE FILL REDUCING ORDERINGS

4.1 Introduction

When using direct methods (such as Gaussian elimination, Cholesky factorization, LU

decomposition, LDLT decomposition, etc.) to solve systems of linear equations, fill-in

terms occur where the coefficient matrix factor changes from what is initially zero to a

non-zero value. Reducing the number of fill-in terms reduces memory requirements, as

there are fewer terms to store. It also reduces the number of operations required to solve

the system of equations, which results in a reduced computational time. The method of

reordering used in the SDDA algorithm was thought to exhibit properties beneficial to

reducing fill. To compare the performance of the SDDA, it was once again compared

with the popular METIS algorithm. The authors of METIS (Karypis & Kumar, 1998)

claim, “The fill-reducing orderings produced by METIS are significantly better than

those produced by other widely used algorithms including multiple minimum degree. For

many classes of problems arising in scientific computations and linear programming,

METIS is able to reduce the storage and computational requirements of sparse matrix

factorization, by up to an order of magnitude.” As such, it was determined METIS would

provide an adequate benchmark to compare results to.

4.2 Using the SDDA to Produce Fill Reducing Orderings

The same seven networks used in Chapter 2 are used in this chapter to compute the

number of fill-in terms which occur after LU factorization of the coefficient matrix.

53

Because these networks are transportation networks, the value on the diagonal of the

coefficient matrix is zero, as the cost to travel to a given node from that same node is

zero. To represent a more realistic application of a set of simultaneous linear equations

which may be seen in other fields (structural engineering, aerospace engineering,

computational fluid dynamics, and engineering mechanics, to name a few), an artificial

diagonal was added to each coefficient matrix. In these types of applications, the diagonal

term is nearly always positive. As such, the artificial diagonal was set equal to the

absolute value of the sum of the off-diagonal term for each row, and was multiplied by

10.

Each system, with its modified diagonal, was sub-structured using METIS and the

SDDA. The total number of non-zero terms (original non-zeros plus the amount of fill-in

terms) were recorded after LU factorization for partition sizes of 2, 3, and 4 sub-domains,

respectively. The results can be found in Table 4-1.

Table 4-1: Fill-In Term Comparison - METIS and the SDDA

Total Number of Non-Zero Terms After LU Factorization

Network
METIS

NP = 2

METIS

NP = 3

METIS

NP = 4

SDDA

NP = 2

SDDA

NP = 3

SDDA

NP = 4

Sioux Falls 240 202 236 208 202 210

Anaheim 11,456 11,960 10,342 9,339 7,667 7,190

Barcelona 63,447 55,512 56,742 54,578 49,717 49,973

Winnipeg 46,744 34,700 40,281 65,253 53,094 44,074

Austin 1,603,263 1,310,687 1,378,730 1,144,094 834,397 741,683

Chicago 5,388,605 3,741,665 3,821,323 2,599,459 2,145,965 2,024,711

Philadelphia 4,442,922 3,002,843 3,390,924 2,183,169 1,674,688 1,470,988

As can be seen by the highlighted values in the table, the SDDA outperformed

METIS in every test, except for the Winnipeg network (or in 18 of the 21 tests = 86%). It

is noteworthy to point out that the SDDA also performed poorly in partitioning the

54

Winnipeg network, in terms of minimizing the number of SBN, when compared to

METIS (refer to Chapter 2). Since the SDDA performed so well, could a multi-level

reordering be possible, to improve other existing reordering algorithms currently used?

4.3 Multi-Level Reordering Using the SDDA as a Preordering Algorithm

There are several popular reordering algorithms available in a number of commercial

software programs as built-in code. For example, MATLAB offers the following

reordering algorithms:

AMD Approximate minimum degree permutation

COLAMD Column approximate minimum degree permutation

COLPERM Sparse column permutation based on nonzero count

DMPERM Dulmage-Mendelsohn decomposition

RANDPERM Random permutation

SYMAMD Symmetric approximate minimum degree permutation

SYMRCM Sparse reverse Cuthill-McKee ordering

Many of these algorithms perform very efficiently, and outright outperformed

METIS and the SDDA in the networks tested, however, could a preordering phase be

beneficial prior to reordering using one of these schemes? To answer this question, the

same networks were tested, again with 2, 3, and 4 partitions, with the SDDA as a

preordering function to several of these built in functions. The functions tested were

AMD, COLAMD, SYMRCM, and COLPERM. First, the built-in functions were tested

alone, and yielded the following results:

55

Table 4-2: Total Number of Non-Zeros after LU Factorization

Network AMD COLAMD SYMRCM COLPERM

Sioux Falls 170 194 202 180

Anaheim 3,309 3,727 6,433 10,813

Barcelona 12,436 16,907 34,464 39,619

Winnipeg 10,093 13,391 40,726 44,973

Austin 82,818 122,659 756,600 1,353,678

Chicago 229,727 396,563 1,676,781 6,357,352

Philadelphia 128,415 212,808 1,302,577 1,234,380

With a baseline now established, the networks were preordered using the SDDA

ordering and then were reordered, to see if a difference was realized. The following tables

show these results for NP = 2, 3, and 4 respectively. After analyzing, it can be seen that

preordering produces better results 50% of the time (54%, 46%, and 50% for NP = 2, 3,

and 4 respectively).

Table 4-3: Total Number of Non-Zero Terms after LU Factorization - NP = 2

Network AMD COLAMD SYMRCM COLPERM

Sioux Falls 170 194 200 180

Anaheim 3,360 3,807 6,596 8,925

Barcelona 13,091 17,940 38,168 36,341

Winnipeg 10,153 13,218 40,806 42,977

Austin 83,451 119,910 761,356 1,429,554

Chicago 225,886 393,025 1,670,110 3,650,755

Philadelphia 128,380 215,224 1,385,784 898,912

Table 4-4: Total Number of Non-Zero Terms after LU Factorization - NP = 3

Network AMD COLAMD SYMRCM COLPERM

Sioux Falls 170 194 202 180

Anaheim 3,382 3,820 6,535 8,829

Barcelona 12,700 17,216 38,147 40,179

Winnipeg 10,408 13,565 40,507 43,654

Austin 82,394 122,710 763,509 1,674,602

Chicago 232,422 392,233 1,671,790 3,828,680

Philadelphia 128,450 207,257 1,376,980 812,430

56

Table 4-5: Total Number of Non-Zero Terms after LU Factorization - NP = 4

Network AMD COLAMD SYMRCM COLPERM

Sioux Falls 170 194 216 180

Anaheim 3,339 3,938 6,519 8,958

Barcelona 12,653 17,211 38,279 38,353

Winnipeg 10,377 13,379 40,633 42,326

Austin 81,603 123,700 761,455 1,599,720

Chicago 230,715 386,719 1,672,509 3,973,383

Philadelphia 129,106 209,462 1,386,747 812,552

4.4 Conclusions

Examining the results presented in Table 4-1 through Table 4-5, several conclusions can

be drawn. First, the SDDA outperforms METIS as a reordering algorithm when

minimizing the number of fill-in terms is the desired goal. Second, if the SDDA is used

as a preordering algorithm, it only produces better results 50% of the time. Based on this,

it cannot be said that preordering with the SDDA will always offer better orderings,

however, it can be said that:

1. Preordering with SDDA may be beneficial

a. SDDA provided same or better results in 50% of tested cases

b. 81% of tests were better than Sparse Column Permutation

c. 52% of tests were better than Column Approximate Minimum Degree

Permutation

d. 33% of tests were better than Sparse Reverse Cuthill-McKee Ordering

e. 33% of tests were better than Approximate Minimum Degree

2. As network size increased, results appear better

57

So, if the COLPERM or COLAMD algorithms are to be used, SDDA preordering

improves the results more often than not. However, preordering with SDDA prior to

using SYMRCM or AMD often produces less favorable results.

58

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

This manuscript has presented a new and novel heuristic algorithm with the

purpose of partitioning a set of data into a predefined number of sub-domains. From here,

two applications of the algorithm are presented with results and conclusions are drawn.

The SDDA was compared to what is believed by many to be the standard in general

graph partitioning, METIS. When comparing general road networks, the SDDA showed a

reduction in system boundary nodes of up to 400% (refer to the Austin network with its

three partitions). Nguyen (2006) made it very clear in an example which demonstrates

that when the number of system boundary nodes increases, the computational time to

solve the domain decomposition problem can increase dramatically (from 0.45% to 97%

of the overall computation time). Therefore, in domain decomposition applications, it is

of paramount importance to reduce the communication time required by each sub-domain

(by minimizing the number of system boundary nodes), since communication time

increases exponentially as the degree of connection is increased. While this time may be

offset by introducing multiple processors and by solving the problem via parallel

computation techniques, the exponential increase in communication time outweighs the

benefit realized by multiple processors (Nguyen, 2006).

The first major application of the SDDA was the so-called DDSP. The DDSP

algorithm utilizes the SDDA to provide efficient partitions when computing the solution

to the shortest path problem. As previously mentioned, as the network size increases, the

computational effort for the SP problem increases exponentially. Providing an algorithm

59

which allows the original network to be solved by solving smaller pieces at a time offers

significant computational efficiencies, as can be seen by simply comparing Table 3-8 and

Table 3-10. This comparison is made in the serial computing environment. A potential

major improvement to the DDSP algorithm would be to solve the individual sub-domains

in parallel, which would significantly increase computational efficiency.

Finally, the SDDA algorithm has been used to produce fill-reducing orderings. In

the reordering process of the algorithm (reference Steps 6 and 7), the nodes are situated in

such a way that the non-zero terms are clustered tightly around the diagonal. By doing

this, opportunity for fill-in terms is reduced because there are significantly fewer zeros

between the diagonal and the non-zero term furthest from the diagonal in any given row

or column. Again, comparing the SDDA to METIS, one can see that the SDDA

outperforms METIS in 86% of the tests conducted. Reducing the number of fill-in terms

is beneficial to many engineering and computational science fields: computational fluid

dynamics, aerospace engineering, structural engineering, and general finite element

analysis models used to solve a set of simultaneous linear equations are a few examples.

The utility is beneficial, since when fill occurs during the factorization process, the

problem size increases. Providing an efficient preordering or reordering of the network

reduces the amount of fill, which reduces the problem size, which increases

computational efficiency.

There are potentially several other applications which can be exploited in future

work. For example, utilizing domain decomposition can prove useful for the class of

continuum traffic equilibrium problems (e.g. see Wong et al., 1998), network wide

incident management planning (Ng et al., 2013), and certain classes of shortest path

60

problems (Ng & Sathasivan, 2014). Other applications might include transportation

problems that are known to be computationally challenging, including dynamic traffic

assignment, stochastic and dynamic routing problems, and problems currently addressed

using metaheuristic approaches (Chen et al., 2014; Flötteröd & Liu, 2014; Kurauchi &

Yoshii, 2014, Szeto, 2014; Tian and Chiu, 2014; Ghanim & Abu-Lebdeh, 2015). In fact,

for this last application, it was found that significant speed-ups can be made possible by

SDDA. For example, for the Austin road network, speed-ups of 2.7 times were found

within one iteration of the policy iteration algorithm, when decomposing the network in

four sub-domains. Recall, from Table 2-5, that SDDA gives 305 system boundary nodes,

whereas METIS gives 1221 boundary nodes in this case. One last future research effort

might be trying to further reduce (e.g. with other data structures) the computational time

of SDDA, despite its being very minimal already.

61

REFERENCES

Allen, Shawn. Parallel Domain Decomposition Polynomial LCA (Label Correction

Algorithm) Solution For DUE (Deterministic User Equilibrium) Problems. M.S. thesis.

Old Dominion University. Department of Civil and Environmental Engineering, 2013

Bellman, R. (1956). On a routing problem (No. RAND-P-1000). RAND CORP SANTA

MONICA CA.

Chabini, I., & Ganugapati, S. (2002). Parallel algorithms for dynamic shortest path

problems. International Transactions in Operational Research, 9(3), 279-302.

Chabini, I. (1998). Discrete dynamic shortest path problems in transportation

applications: Complexity and algorithms with optimal run time. Transportation Research

Record: Journal of the Transportation Research Board, (1645), 170-175.

Chen, B. Y., Lam, W. H., Sumalee, A., Li, Q., & Tam, M. L. (2014). Reliable shortest

path problems in stochastic time-dependent networks. Journal of Intelligent

Transportation Systems, 18(2), 177-189.

Chen, J., & Taylor, V. E. (2002). Mesh partitioning for efficient use of distributed

systems. Parallel and Distributed Systems, IEEE Transactions on, 13(1), 67-79.

62

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

mathematik, 1(1), 269-271.

Etemadnia, H., Abdelghany, K., & Hassan, A. (2014). A network partitioning

methodology for distributed traffic management applications. Transportmetrica A:

Transport Science, 10(6), 518-532.

Farhat, C., & Lesoinne, M. (1993). Automatic partitioning of unstructured meshes for the

parallel solution of problems in computational mechanics. International Journal for

Numerical Methods in Engineering, 36(5), 745-764.

Foster, Ian. Designing and Building Parallel Programs. 3.9.1 Parallel row-wise Domain

Decomposition. http://www-unix.mcs.anl.gov/dbpp/text/book.html. November 2003.

Flötteröd, G., & Liu, R. (2014). Disaggregate path flow estimation in an iterated dynamic

traffic assignment microsimulation. Journal of Intelligent Transportation Systems, 18(2),

204-214.

Ghanim, M. S., & Abu-Lebdeh, G. (2015). Real-Time Dynamic Transit Signal Priority

Optimization for Coordinated Traffic Networks Using Genetic Algorithms and Artificial

Neural Networks. Journal of Intelligent Transportation Systems, 19(4), 327-338.

63

Glover, F., Klingman, D., & Phillips, N. (1985). A new polynomially bounded shortest

path algorithm. Operations Research, 33(1), 65-73.

Habbal, M. B., Koutsopoulos, H. N., & Lerman, S. R. (1994). A decomposition algorithm

for the all-pairs shortest path problem on massively parallel computer architectures.

Transportation Science, 28(4), 292-308.

Johnson III, P. W., Nguyen, D., & Ng, M. (2014). An Efficient Shortest Distance

Decomposition Algorithm for Large-Scale Transportation Network Problems. In

Transportation Research Board 93rd Annual Meeting (No. 14-2921).

Johnson, P., Nguyen, D., & Ng, M. (2016). Large-scale network partitioning for

decentralized traffic management and other transportation applications. Journal of

Intelligent Transportation Systems, 20(5), 461-473.

Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for

partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1), 359-392.

Karypis, G., & Kumar, V. (1998). A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices.

University of Minnesota, Department of Computer Science and Engineering, Army HPC

Research Center, Minneapolis, MN.

64

Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning

graphs. Bell system technical journal, 49(2), 291-307.

Kouatchou, J. (2009, November 2). Comparing Python, NumPy, Matlab, Fortran, etc.

Retrieved August 8, 2014, from https://modelingguru.nasa.gov/docs/DOC-1762.

Kurauchi, F., & Yoshii, T. (2014). Special Section on Dynamic traffic assignment: A tool

for evaluating and assessing dynamic traffic management schemes. Journal of Intelligent

Transportation Systems, 18(2), 175-176.

Lawson, G., Allen, S., Rose, G., Nguyen, D., & Ng, M. (2013). Parallel label correcting

algorithms for large-scale static and dynamic transportation networks on laptop personal

computers. TRB 92nd Annual Meeting Compendium of Papers, (13-2103).

Logi, F., & Ritchie, S. G. (2002). A multi-agent architecture for cooperative inter-

jurisdictional traffic congestion management. Transportation Research Part C: Emerging

Technologies, 10(5), 507-527.

Ng, M., Khattak, A., & Talley, W. K. (2013). Modeling the time to the next primary and

secondary incident: A semi-Markov stochastic process approach. Transportation

Research Part B: Methodological, 58, 44-57.

65

Ng, M., & Sathasivan, K. (2014). Probabilistic Modeling of Erroneous Human Response

to In-Vehicle Route Guidance Systems: A First Look. Journal of Intelligent

Transportation Systems, 18(2), 131-137.

Nguyen, D. T. (2006). Finite Element Methods: Parallel-Sparse Statics and Eigen-

Solutions. Springer Science & Business Media.

Pavlis, Y., & Papageorgiou, M. (1999). Simple decentralized feedback strategies for

route guidance in traffic networks. Transportation science, 33(3), 264-278.

Przemieniecki, Janusz S. Theory of matrix structural analysis. Courier Corporation,

1985.

Simon, H. D. (1991). Partitioning of unstructured problems for parallel processing.

Computing Systems in Engineering, 2(2), 135-148.

Szeto, W. Y. (2014). Dynamic Modeling for Intelligent Transportation System

Applications. Journal of Intelligent Transportation Systems, 18(4), 323-326.

Tian, Y., & Chiu, Y. C. (2014). A variable time-discretization strategies-based, time-

dependent shortest path algorithm for dynamic traffic assignment. Journal of Intelligent

Transportation Systems, 18(4), 339-351.

66

Wong, S. C., Lee, C. K., & Tong, C. O. (1998). Finite element solution for the continuum

traffic equilibrium problems. International Journal for Numerical Methods in

Engineering, 43(7), 1253-1273.

Ziliaskopoulos, A., Kotzinos, D., & Mahmassani, H. S. (1997). Design and

implementation of parallel time-dependent least time path algorithms for intelligent

transportation systems applications. Transportation Research Part C: Emerging

Technologies, 5(2), 95-107.

67

APPENDICES

68

APPENDIX A: SDDA PARTITION GRAPHS

69

(A) Original Network (B) NP = 2, 10 SBN

 (C) NP = 3, 17 SBN (D) NP = 4, 20 SBN

Figure A-1: Partitioning of the Sioux Falls Network

0 5 10 15 20 25

0

5

10

15

20

25
0 5 10 15 20 25

0

5

10

15

20

25

Row = 7

Row = 14

0 5 10 15 20 25

0

5

10

15

20

25

Row = 4

Row = 6

Row = 7

0 5 10 15 20 25

0

5

10

15

20

25

Row = 1

Row = 3

Row = 2

Row = 4

70

(A) Original Network (B) NP = 2, 45 SBN

 (C) NP = 3, 57 SBN (D) NP = 4, 66 SBN

Figure A2: Partitioning of the Anaheim Network

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Row = 191

Row = 371

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Row = 134

Row = 265

Row = 404

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

Row = 91

Row = 178

Row = 267

Row = 350

71

(A) Original Network (B) NP = 2, 92 SBN

 (C) NP = 3, 152 SBN (D) NP = 4, 189 SBN

Figure A3: Partitioning of the Barcelona Network

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

Row = 419

Row = 838

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

Row = 253

Row = 533

Row = 778

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

Row = 194

Row = 391

Row = 578

Row = 741

72

(A) Original Network (B) NP = 2, 81 SBN

 (C) NP = 3, 133 SBN (D) NP = 4, 156 SBN

Figure A4: Partitioning of the Winnipeg Network

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Row = 465

Row = 959

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Row = 303

Row = 617

Row = 907

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

800

900

1000

Row = 237

Row = 467

Row = 706

Row = 884

73

(A) Original Network (B) NP = 2, 265 SBN

 (C) NP = 3, 276 SBN (D) NP = 4, 305 SBN

Figure A5: Partitioning of the Austin Network

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

Row = 3,650

Row = 7,123

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

Row = 2,707

Row = 5,265

Row = 7,112

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

Row = 3,595

Row = 1,590

Row = 5,146

Row = 7,083

74

(A) Original Network (B) NP = 2, 240 SBN

 (C) NP = 3, 407 SBN (D) NP = 4, 551 SBN

Figure A6: Partitioning of the Chicago Network

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

Row = 6,625

Row = 12,739

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

Row = 4,168

Row = 8,482

Row = 12,572

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

Row = 9,184

Row = 12,428

Row = 6,006

Row = 3,150

75

(A) Original Network (B) NP = 2, 370 SBN

 (C) NP = 3, 413 SBN (D) NP = 4, 523 SBN

Figure A7: Partitioning of the Philadelphia Network

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

Row = 7,314

Row = 13,019

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

Row = 4,178

Row = 8,848

Row = 12,976

0 2000 4000 6000 8000 10000 12000

0

2000

4000

6000

8000

10000

12000

Row = 3,528

Row = 6,464

Row = 9,507

Row = 12,866

76

APPENDIX B: MATLAB Source Code for the SDDA

77

%%%
%File name = SDDA.m
%Written by Paul W. Johnson
%Old Dominion University
%Code Date 2016/10/31

%The SDDA is a seven step algorithm. In these seven steps, the
%algorithm reads and manipulates a user provided set of data and
%efficiently sub-structures the data set into a user defined number
%(NP) of sub-domains It is the goal of the algorithm that the resulting
%number of system boundary nodes is small, and each sub-domain is of
%similar size. Ultimately the algorithm re-numbers the nodes in such a
%manner that the interior nodes of each sub-domain are completely
%independent from every other sub-domain.

%Some command definitions are per MathWorks.com

%Refer to Johnson, P., Nguyen, D., & Ng, M. (2016). "Large-scale
%network partitioning for decentralized traffic management and other
%transportation applications." Journal of Intelligent Transportation
%Systems, 1-13. for further definition of the SDDA algorithm
%%%

clear %Removes all variables from the current workspace,
 %releasing them from system memory.

NP = input('Please input number of sub-domains.'); %Defines number of
 %partitions desired

%%%
%STEP 1: INPUT PROBLEM TOPOLOGY
%%%

tic %Starts a stopwatch timer to measure performance. The function

%records the internal time at execution of the tic command.
%This instance begins recording the time required for STEP 1.

 %Below represents the network connectivity information for the
 %netwokrs tested when developing the SDDA and DDSP algorithms.
 %Simply save any .txt file to the same directory as this .m

%file and define it below, and the program will read the
%appropriate (uncommented) file.

Element_Connectivity = load('15_Node.txt');
%Element_Connectivity = load('Sioux_Falls.txt');
%Element_Connectivity = load('Anaheim.txt');
%Element_Connectivity = load('Barcelona.txt');
%Element_Connectivity = load('Winnipeg.txt');
%Element_Connectivity = load('Austin.txt');
%Element_Connectivity = load('Chicago.txt');
%Element_Connectivity = load('Philadelphia.txt');

78

A = Element_Connectivity; %Stores network information as a variable
A = sortrows(A); %Sorts rows of network connectivity for convenience
An = A(:,3); %Extracts the cost information and stores as a variable
A = A(:,[1 2]); %Delets the cost information, leaving source/dest info

%Because the SDDA algorithm assumes each link is bi-directional the
%algorithm must ensure each origin/destination (O-D) pair has a reverse
%direction defined solely for partitioning purposes

B=flipdim(A,2); %Creates a reverse link for every pair defined in 'A'
C = [A;B]; %Vertically concatenates the two variables 'A' and 'B'
C = unique(C,'rows'); %Deletes any redudant links created by 'C'
clear B; %Deletes variable 'B' as it is no longer required to be stored

nelements = length(C); %Computes the number of links in modified data
 %set
nnodes = length(unique(C)); %Computes the number of nodes in network

Step_1 = toc; %reads the elapsed time from the stopwatch timer

%started by the tic function. The function reads the
%internal time at the execution of the toc command, and
%displays the elapsed time since the most recent call
%to the tic function that had no output, in seconds. At
%this point, the time for STEP 1 is recorded.

%NP = input('Please input number of sub-domains.');

%%%
%STEP 2: DETERMINE THE RANK, R, OF EACH NODE
%%%

tic %Resets and starts the stopwatch for STEP 2

R = accumarray(C(:,1),1); %Calculates the Rank, R, of each node and
 %stores in variable form

Step_2 = toc; %Stops the stopwatch and records the time for STEP 2

%%%
%STEP 3: DETERMINE THE FIRST SOURCE NODE
%%%

tic %Resets and starts the stopwatch for STEP 3
first_node = find(R==min(R),1); %Determines first source node
Step_3 = toc; %Stops the stopwatch and records the time for STEP 3

%%%
%STEP 4: DETERMINE OTHER SOURCE NODES USING THE MODIFIED PLCA METHOD
%%%

tic %Resets and starts the stopwatch for STEP 4

IA = zeros(nnodes + 1,1); %Computes IA vector for sparse storage scheme
IA(1)=1;

79

for i = 2:nnodes+1
 IA(i) = IA(i-1) + R(i-1);
end

JA = C(:,2); %Computes JA vector for sparse storage scheme. NOTE:

%both IA and JA are based on the modified link
%connectivity created in Step 1 for bi-directional
%links. These vectors do not represent the original
%link connectivity

%The following lines of code use the PLCA shortest path solution to
%identify which nodes should be used as source nodes for the SDDA
solution
%process

NOW=first_node;
NEXT=[];
N = zeros(nnodes,1);
source_nodes=[];
D = zeros(nnodes,NP);
INARRAY=zeros(1,nnodes);

%Begin the shortest path solution. Loop NP times to determine correct
%number of source nodes.

for i = 1:NP
 d=inf(nnodes,1);
 d(NOW)=0;
 source_nodes(:,i) = NOW;
 while (~isempty(NOW) || ~isempty(NEXT))
 cnode=NOW(numel(NOW));
 istart=IA(cnode);
 iend=IA(cnode+1)-1;
 for location=istart:iend
 jnode=JA(location);
 if (d(jnode) > d(cnode)+1)
 d(jnode)=d(cnode)+1;
 if (INARRAY(jnode)==0)
 NEXT(end+1)=jnode;
 INARRAY(jnode)=1;
 end
 end
 end
 NOW(end)=[];
 INARRAY(cnode)=0;
 if isempty(NOW)
 NOW=NEXT;
 NEXT=[];
 end
 end
 D(:,i)=d;
 distance_with_rank = [sum(D,2) R];
 for j=1:size(source_nodes,2)
 distance_with_rank(source_nodes(j),:)=0;
 end

80

 range_D = range(D,2);
 sort_row = sortrows([transpose(1:nnodes)...
 distance_with_rank range_D], [3, -2, 4]);

 NOW = sort_row(find(sort_row(:,2)==max...
(distance_with_rank(:,1)),1),1);
end

Step_4 = toc; %Stops the stopwatch and records the time for STEP 4

%%%
%STEP 5: POPULATE SUB-DOMAINS
%%%

tic %Resets and starts the stopwatch for STEP 5

sub_domains = source_nodes; %Defines the varialble to store the sub-
domain
 %information. It is intitated with the
source
 %node values

available_nodes = transpose(1:nnodes); %Defines an array of nodes
which
 %are available to be added to a
 %sub-domain

R_Orig = R; %Saves the original rank information as there will be
 %modifications made to the variable R in this step

D_Orig = D; %Similar to R, the original D values are preserved

%The following for loop removes the source nodes from the list of
available
%nodes which can be selected as well as the arrays [R] and [D]
for i = 1:size(source_nodes,2)
 j = source_nodes(1,i);
 k = find(available_nodes(:,1) == j);
 available_nodes(k,:) = [];
 D(k,:) = [];
 R(k,:) = [];
 range_D(k,:) = [];
end

%The algorithm now generates a serach matrix which allows the algorithm
%to determine the most attractive node to be added to a sub-domain

search = [available_nodes D R range_D];

next_node = zeros(nnodes-NP,NP+1); %This variable represents the next
node
next_node(:,1) = available_nodes; %to be added to a given sub-domain.
At
 %this point the variable is simply

81

 %pre-allocated

for i = 1:NP
 search = sortrows(search,[i+1,NP+2,-(NP+3)]);
 next_node(:,i+1)=search(:,1);
end

found = zeros(nnodes-NP,NP+1);
found(:,1)=available_nodes;

for i = 1:NP
[number,idx] = sort(next_node(:,i+1));
found(:,i+1) = idx;
end

processor_assignment = zeros(nnodes, 2); %This variable assigns the
 %node to a sub-domain

processor_assignment(:,1) = 1:nnodes;

for i = 1:NP
 processor_assignment(source_nodes(i),2) = i;
end

j=2;

%The following while loop searches through all of the nodes and
%continues adding nodes to sub-domains until all nodes have been
%assigned.
while any(found(:,1)) == 1
 for i=1:NP
 if any(found(:,1)) == 0
 break
 else
 [val,row] = min(found(:,i+1));
 next_possible_node = found(row,1);
 connected_nodes = C(IA(next_possible_node)...
 :IA(next_possible_node +1)-1,2);
 for k = 1:length(connected_nodes)
 if any(sub_domains(:,i)==connected_nodes(k)) == 1
 found(row,:) = nan;
 break
 end
 end
 if isnan(found(row,:)) == 0
 next_possible_node = 0;
 end
 sub_domains(j,i) = next_possible_node;
 if next_possible_node ~= 0
 processor_assignment(next_possible_node,2) = i;
 end
 end
 end

82

%The next two loops are the portion of the code which assigns a value
%of 0 to a given sub-domain if a node cannot be added during a
%particular iteration.

 if sum(sub_domains(end,:)) == 0
 for i=1:NP
 if any(found(:,1)) == 0
 break
 else
 temp = sortrows(found,i+1);
 next_possible_node = temp(2,1);
 connected_nodes = C(IA(next_possible_node)...
 :IA(next_possible_node +1)-1,2);
 for k = 1:length(connected_nodes)
 if any(sub_domains(:,i)==connected_nodes(k)) == 1
 idx = find(found(:,1)==next_possible_node);
 found(idx,:) = nan;
 temp(2,:) = nan;
 break
 else
 next_possible_node = 0;
 end
 end
 if isnan(found(idx,:)) == 0
 next_possible_node = 0;
 end
 sub_domains(j,i) = next_possible_node;
 if next_possible_node ~= 0
 processor_assignment(next_possible_node,2) = i;
 end
 end
 end
 end

%A second loop was added in the event there was another iteration which
%still could not add a node.

 if sum(sub_domains(end-1:end,:)) == 0
 for i=1:NP
 if any(found(:,1)) == 0
 break
 else
 temp = sortrows(found,i+1);
 next_possible_node = temp(3,1);
 connected_nodes = C(IA(next_possible_node)...
 :IA(next_possible_node +1)-1,2);
 for k = 1:length(connected_nodes)
 if any(sub_domains(:,i)==connected_nodes(k)) == 1
 idx = find(found(:,1)==next_possible_node);
 found(idx,:) = nan;
 temp(3,:) = nan;
 break
 else
 next_possible_node = 0;
 end
 end

83

 if isnan(found(idx,:)) == 0
 next_possible_node = 0;
 end
 sub_domains(j,i) = next_possible_node;
 if next_possible_node ~= 0
 processor_assignment(next_possible_node,2) = i;
 end
 end
 end
 end
j = j+1;
end

Step_5 = toc; %Stops the stopwatch and records the time for STEP 5

%%%
%STEP 6: DETERMINE WHICH NODES ARE SYSTEM BOUNDARY NODES/INTERIOR NODES
%%%

tic %Resets and starts the stopwatch for STEP 6

boundary_nodes=[]; %Pre-allocates the variable as a matrix
processor_comparison = zeros(size(A,1),2); %Pre-allocation

%The following loop determines which sub-domain each node is assigned
%to. This comparison is the basis for determining which nodes are SBN.
for i = 1:size(A,1)
 processor_comparison(i,1) = processor_assignment(A(i,1),2);
 processor_comparison(i,2) = processor_assignment(A(i,2),2);
end

%The following variable, comparison_delta, makes the final
%determination if two nodes connected by a common link fall in separate
%sub-domains
comparison_delta = processor_comparison(:,1)-processor_comparison(:,2);

boundary_rows = find(comparison_delta); %Identifies which rows the
 %boundary nodes occur in

%The following for loop searches the rows indentified in the previous
%line and extracts the corresponding boundary node.
for i = 1:size(boundary_rows,1)
 boundary_nodes = [boundary_nodes A(boundary_rows(i),:)];
end

boundary_edges = nnz(find(comparison_delta)); %Determines the number
 %of boundary edges for
 %a direct comparison
 %with METIS

boundary_nodes = unique(boundary_nodes); %Stores the SBN
Number_Boundary_Nodes = size(boundary_nodes,2); %Stores the number of
 %SBN

84

%Now that the boundary nodes have been determined. The code determines
%which nodes are defined as interior nodes. This is needed for the
%reordering to be performed in Step 7.

interior_nodes = setdiff(sub_domains,boundary_nodes,'stable');

ind = find(interior_nodes == 0, 1);
interior_nodes(ind) = [];

Step_6 = toc; %Stops the stopwatch and records the time for STEP 6

%%%
%STEP 7: RE-NUMBER THE NODES
%%%

tic %Resets and starts the stopwatch for STEP 7

node_numbering = interior_nodes(:);
node_numbering = vertcat(node_numbering, transpose(boundary_nodes));
node_numbering = [transpose(1:nnodes) node_numbering];

Step_7 = toc; %Stops the stopwatch and records the time for STEP 7

%%%
%OUTPUT
%%%

Number_Boundary_Nodes %Outputs the number of SBN

Boundary_Nodes = boundary_nodes %Outputs a list of SBN

Boundary_Edges = boundary_edges %Outputs the number of boundary edges

sub_domains %Outputs the sub-domain partitioning results

node_numbering %Outputs the new node numbering scheme. Note the first
 %column represents the NEW node number while the second
 %column represents the OLD node number.

Step_1 %Outputs the time required to perform STEP 1
Step_2 %Outputs the time required to perform STEP 2
Step_3 %Outputs the time required to perform STEP 3
Step_4 %Outputs the time required to perform STEP 4
Step_5 %Outputs the time required to perform STEP 5
Step_6 %Outputs the time required to perform STEP 6
Step_7 %Outputs the time required to perform STEP 7

TOTAL = Step_1+Step_2+Step_3+Step_4+Step_5+Step_6+Step_7; %Total time

85

APPENDIX C: MATLAB Source Code for the DDSP Algorithm

86

%%%
%Next, we will build on the SDDA to Solve the Shortest Path Problem.
This portion of the code represents the Domain Decomposition Based
%Shortest Path Algorithm

%This algorithm is a 4 Step algorithm which uses a domain partitioning
%approach to solve the shortest path problem. This code uses the
%classical Dijkstra method to solve the problem, however it should be
%noted any shotest path solution algorithm can be substituted for
%Dijkstra's algorithm to solve the problem.

%The code will continue the step numbering assuming Step 1 of the DDSP
%algorithm is Step 8 of this code.
%%%

%%%
%STEP 8: Partition the Network.
%%%

%This step is trivial as it has already been done by Steps 1-7 above.

%%%
%STEP 9: Solve the SP Promblem from All-to-All for Each sub-domain
%%%

tic %Resets and starts the stopwatch for STEP 9

R = accumarray(A(:,1),1); %Determine Rank for IA computation

if numel(R)<nnodes
 R(nnodes) = 0;
end

IA = zeros(nnodes + 1,1); %Recalculate IA based on original network
IA(1)=1;

for i = 2:nnodes+1
 IA(i) = IA(i-1) + R(i-1);
end

JA = sortrows(A); %Recalculate JA based on original network
JA = JA(:,2);

clear R;

D = inf(nnodes,nnodes); %Pre-allocate shortest time matrix [D]
PRED = zeros(nnodes,nnodes); %Pre-allocate shortest path matrix [PRED]

for i = 1:NP

 temp = sub_domains(:,i); %Determine sub-domain connectivity
 temp = temp(temp~=0);

87

 for j = 1:numel(temp)

 d = inf(nnodes,1); %pre-allocate loop variable d
 pred = zeros(nnodes,1); %pre-allocate loop variable pred

 for k = 1:numel(temp)

 source = temp(j);
 destination = temp(k);
 d(source) = 0;
 Sf = source;
 Search = [d transpose(1:nnodes)];
 Search(source,:) = nan;

 %Begin the shortest path solution based on Dijkstra
 %Solve each sub-domain independent of one another

 while (Sf(end)~= destination)
 istart = IA(Sf(end));
 iend = IA(Sf(end)+1)-1;
 for location=istart:iend
 jnode=JA(location);
 if (d(jnode) > d(Sf(end))+An(location))
 d(jnode)=d(Sf(end))+An(location);
 pred(jnode)=Sf(end);
 Search(jnode,1) = d(Sf(end))+An(location);
 end
 end
 [val, next] = min(Search(:,1));
 Search(next,:) = nan;
 Sf(end + 1,:) = next;
 end
 D(destination,source) = d(destination);
 PRED(destination,source) = pred(destination);
 end
 end
end

Step_9 = toc; %Stops the stopwatch and records the time for STEP 9

%%%
%STEP 10: Solve the SP Problem from One-to-All for Each SBN to all
nodes
%%%

tic %Resets and starts the stopwatch for STEP 10

for i = 1:size(boundary_nodes,2)

 d = inf(nnodes,1); %pre-allocate loop variable d
 pred = zeros(nnodes,1); %pre-allocate loop variable pred

 for j = 1:nnodes

88

 source = boundary_nodes(i);
 destination = j;

 d(source) = 0;
 Sf = source;

 Search = [d transpose(1:nnodes)];
 Search(source,:) = nan;

 %Begin the shortest path solution based on Dijkstra
 %Solve from each SBN to ALL other nodes in network.

 while (Sf(end)~= destination)
 istart = IA(Sf(end));
 iend = IA(Sf(end)+1)-1;
 for location=istart:iend
 jnode=JA(location);
 if (d(jnode) > d(Sf(end))+An(location))
 d(jnode)=d(Sf(end))+An(location);
 pred(jnode)=Sf(end);
 Search(jnode,1) = d(Sf(end))+An(location);
 end
 end
 [val, next] = min(Search(:,1));
 Search(next,:) = nan;
 Sf(end + 1,:) = next;
 end
 D(destination, source) = d(destination);
 PRED(destination, source) = pred(destination);
 end
end

Step_10 = toc; %Stops the stopwatch and records the time for STEP 10

%%%
%STEP 11: Check Previously Computed Values and Compute Remaining Values
%%%

tic %Resets and starts the stopwatch for STEP 11

%The algorithm now checks each value to make sure the shortest path
%does not cross sub-domain boundaries. To do so, it compares the
%distance from the source node to each SBN plus the distance from
%the same SBN to the destination node. If the calculated distance
%is shorter than what was previously computed, the algorithm updates
%both arrays [D] and [PRED]

boundary_nodes = [boundary_nodes; zeros(1,size(boundary_nodes,2))];

for i = 1:size(boundary_nodes,2)
 [row col] = find(sub_domains==boundary_nodes(1,i));
 boundary_nodes(2,i) = col;
end

boundary_nodes = transpose(boundary_nodes);

89

boundary_nodes = sortrows(boundary_nodes,2);

for i = 1:NP %Loop over each sub-domain
 temp_sub_domains = sub_domains(:,i);
 temp_sub_domains = temp_sub_domains(temp_sub_domains~=0);

 temp_boundary_nodes = boundary_nodes;
 temp_boundary_nodes = find(boundary_nodes(:,2)==i);
 temp_boundary_nodes = boundary_nodes(temp_boundary_nodes(1)...
 :temp_boundary_nodes(end),1);

 for j = 1:numel(temp_sub_domains) %Loop over each SBN in sub-domain
 for k = 1:nnodes
 for l = 1:numel(temp_boundary_nodes)
 if D(temp_boundary_nodes(l),temp_sub_domains(j))+...
 D(k,temp_boundary_nodes(l))<...
 D(k,temp_sub_domains(j));

 D(k,temp_sub_domains(j)) = ...
D(temp_boundary_nodes(l),temp_sub_domains(j))...

 +D(k,temp_boundary_nodes(l));

 PRED(k,temp_sub_domains(j)) = ...
 PRED(k,temp_boundary_nodes(l));
 end
 end
 end
 end
end

Step_11 = toc; %Stops the stopwatch and records the time for STEP 11

%%%
%Allow user to determine if they would like to output certain O-D
%pairs. Input 1 to verify path and distance for 5 pairs. Input 0 to end
%script.
%%%

strvcat({'Do you wish to output the calculated shortest path and', ...
'distance for 5 source to destination pairs? Enter a value of 1 to',
...
'verify. Any other value will terminate the code.'})

VERIFY = input('Please input the value of 1 to print output.');
verify_array = zeros(5,2); %pre-allocate storage array
CHECK_RANGE = zeros(numel(verify_array),1);

if VERIFY == 1 %Allows user to input 5 node pairs for verification

 while ismember(0,CHECK_RANGE) == 1

 verify_array = zeros(5,2); %pre-allocate storage array

 SOURCE1 = input ('Please enter the source node for pair 1. ')

90

 DEST1 = input ('Please enter the destination node for pair 1. ')

 verify_array(1,1) = SOURCE1;
 verify_array(1,2) = DEST1;

 SOURCE2 = input ('Please enter the source node for pair 2. ')
 DEST2 = input ('Please enter the destination node for pair 2. ')

 verify_array(2,1) = SOURCE2;
 verify_array(2,2) = DEST2;

 SOURCE3 = input ('Please enter the source node for pair 3. ')
 DEST3 = input ('Please enter the destination node for pair 3. ')

 verify_array(3,1) = SOURCE3;
 verify_array(3,2) = DEST3;

 SOURCE4 = input ('Please enter the source node for pair 4. ')
 DEST4 = input ('Please enter the destination node for pair 4. ')

 verify_array(4,1) = SOURCE4;
 verify_array(4,2) = DEST4;

 SOURCE5 = input ('Please enter the source node for pair 5. ')
 DEST5 = input ('Please enter the destination node for pair 5. ')

 verify_array(5,1) = SOURCE5;
 verify_array(5,2) = DEST5;

 clc

 for i = 1:numel(verify_array)
 value = ismember(verify_array(i), 1:nnodes);
 CHECK_RANGE(i) = value;
 if CHECK_RANGE(i) == 0
 strvcat({'A value entered is not a valide node number!'...
 'Please re-enter source/dest nodes to verify.'})
 end
 end

 end

 disp('The pairs you have entered are:')
 verify_array
 temp = 0;

%%%
%Compute path and distance for 1st O-D Pair
%%%

 %Return the shortest time by looking in the matrix [D]
 disp('The shortest distance for pair 1 is: ')
 D1 = D(DEST1,SOURCE1)

91

 %Return the shortest path by traversing the matrix [PRED]
 disp('The shortest path for pair 1 is: ')
 PATH1 = [DEST1];
 k = DEST1;
 for i = 1:nnodes
 temp = PRED(k, SOURCE1);
 if temp == 0;
 PATH1 = 'No path exists from this source to destination.'
 break
 else
 PATH1 = [PATH1 temp];
 k = temp;
 end
 if temp == SOURCE1
 break
 end
 end

 %Usting this method, the path is returned in the reverse order.
 %The next line loop returns the transpose of the computed path.

 if temp ~= 0
 PATH1 = flipdim(transpose(PATH1),1)
 end

 d_path = 0;
 dd = 0;

 for i = 1:numel(PATH1)-1 %Generate shortest path
 dd = D(PATH1(i+1),PATH1(i));
 d_path = d_path+dd;
 end

 %Verify the correct shortest time was achieved by summing the
 %value for each step along the shortest path. Due to numerical
 %accuracy of MATLAB it has been determined that if the two
 %paths are within 0.1% the correct solution has been found.

 if abs(d_path-D1)/d_path < 0.001
 disp('Path yields correct shortest time. ')
 else
 disp('Path does not yield correct shortest time. ')
 end

%%%
%Compute path and distance for 2nd O-D Pair
%%%

 %Return the shortest time by looking in the matrix [D]
 disp('The shortest distance for pair 2 is: ')
 D2 = D(DEST2,SOURCE2)

 %Return the shortest path by traversing the matrix [PRED]
 disp('The shortest path for pair 2 is: ')
 PATH2 = [DEST2];

92

 k = DEST2;
 for i = 1:nnodes
 temp = PRED(k, SOURCE2);
 if temp == 0;
 PATH2 = 'No path exists from this source to destination.'
 break
 else
 PATH2 = [PATH2 temp];
 k = temp;
 end
 if temp == SOURCE2
 break
 end
 end

 %Usting this method, the path is returned in the reverse order.
 %The next line loop returns the transpose of the computed path.

 if temp ~= 0
 PATH2 = flipdim(transpose(PATH2),1)
 end

 d_path = 0;
 dd = 0;

 for i = 1:numel(PATH2)-1
 dd = D(PATH2(i+1),PATH2(i));
 d_path = d_path+dd;
 end

 %Verify the correct shortest time was achieved by summing the
 %value for each step along the shortest path. Due to numerical
 %accuracy of MATLAB it has been determined that if the two
 %paths are within 0.1% the correct solution has been found.

 if abs(d_path-D2)/d_path < 0.001
 disp('Path yields correct shortest time. ')
 else
 disp('Path does not yield correct shortest time. ')
 end

%%%
%Compute path and distance for 3rd O-D Pair
%%%

 %Return the shortest time by looking in the matrix [D]
 disp('The shortest distance for pair 3 is: ')
 D3 = D(DEST3,SOURCE3)

 %Return the shortest path by traversing the matrix [PRED]
 disp('The shortest path for pair 3 is: ')
 PATH3 = [DEST3];
 k = DEST3;
 for i = 1:nnodes
 temp = PRED(k, SOURCE3);

93

 if temp == 0;
 PATH3 = 'No path exists from this source to destination.'
 break
 else
 PATH3 = [PATH3 temp];
 k = temp;
 end
 if temp == SOURCE3
 break
 end
 end

 %Usting this method, the path is returned in the reverse order.
 %The next line loop returns the transpose of the computed path.

 if temp ~= 0
 PATH3 = flipdim(transpose(PATH3),1)
 end

 d_path = 0;
 dd = 0;

 for i = 1:numel(PATH3)-1
 dd = D(PATH3(i+1),PATH3(i));
 d_path = d_path+dd;
 end

 %Verify the correct shortest time was achieved by summing the
 %value for each step along the shortest path. Due to numerical
 %accuracy of MATLAB it has been determined that if the two
 %paths are within 0.1% the correct solution has been found.

 if abs(d_path-D3)/d_path < 0.001
 disp('Path yields correct shortest time. ')
 else
 disp('Path does not yield correct shortest time. ')
 end

%%%
%Compute path and distance for 4th O-D Pair
%%%

 %Return the shortest time by looking in the matrix [D]
 disp('The shortest distance for pair 4 is: ')
 D4 = D(DEST4,SOURCE4)

 %Return the shortest path by traversing the matrix [PRED]
 disp('The shortest path for pair 4 is: ')
 PATH4 = [DEST4];
 k = DEST4;
 for i = 1:nnodes
 temp = PRED(k, SOURCE4);
 if temp == 0;
 PATH4 = 'No path exists from this source to destination.'

94

 break
 else
 PATH4 = [PATH4 temp];
 k = temp;
 end
 if temp == SOURCE4
 break
 end
 end

 %Usting this method, the path is returned in the reverse order.
 %The next line loop returns the transpose of the computed path.

 if temp ~= 0
 PATH4 = flipdim(transpose(PATH4),1)
 end

 d_path = 0;
 dd = 0;

 for i = 1:numel(PATH4)-1
 dd = D(PATH4(i+1),PATH4(i));
 d_path = d_path+dd;
 end

 %Verify the correct shortest time was achieved by summing the
 %value for each step along the shortest path. Due to numerical
 %accuracy of MATLAB it has been determined that if the two
 %paths are within 0.1% the correct solution has been found.

 if abs(d_path-D4)/d_path < 0.001
 disp('Path yields correct shortest time. ')
 else
 disp('Path does not yield correct shortest time. ')
 end

%%%
%Compute path and distance for 5th O-D Pair
%%%

 %Return the shortest time by looking in the matrix [D]
 disp('The shortest distance for pair 5 is: ')
 D5 = D(DEST5,SOURCE5)

 %Return the shortest path by traversing the matrix [PRED]
 disp('The shortest path for pair 5 is: ')
 PATH5 = [DEST5];
 k = DEST5;
 for i = 1:nnodes
 temp = PRED(k, SOURCE5);
 if temp == 0;
 PATH5 = 'No path exists from this source to destination.'
 break
 else
 PATH5 = [PATH5 temp];

95

 k = temp;
 end
 if temp == SOURCE5
 break
 end
 end

 %Usting this method, the path is returned in the reverse order.
 %The next line loop returns the transpose of the computed path.

 if temp ~= 0
 PATH5 = flipdim(transpose(PATH5),1)
 end

 d_path = 0;
 dd = 0;

 for i = 1:numel(PATH5)-1
 dd = D(PATH5(i+1),PATH5(i));
 d_path = d_path+dd;
 end

 %Verify the correct shortest time was achieved by summing the
 %value for each step along the shortest path. Due to numerical
 %accuracy of MATLAB it has been determined that if the two
 %paths are within 0.1% the correct solution has been found.

 if abs(d_path-D5)/d_path < 0.001
 disp('Path yields correct shortest time. ')
 else
 disp('Path does not yield correct shortest time. ')
 end
end

96

APPENDIX D: Example Input/Output for the SDDA

97

This appendix will demonstrate an example input and associated output for the SDDA

utilizing the 15 Node example shown in Chapter 2 of this manuscript, which is given by

the following figure:

Figure D1: Example Network

As can be seen by the source code provided by Appendix B above, simply input the

number of sub-domains (given by variable NP) when prompted. For this example, the

following input data was provided to the program (via .txt file). The first column

represents the source node, the second represents the destination node, and the final

column is the cost to travel from the source to the destination:

1 2 1

1 3 1

3 2 1

2 4 1

3 4 1

3 5 1

5 4 1

5 12 1

5 8 1

12 8 1

6 8 1

6 7 1

7 8 1

7 9 1

98

8 9 1

8 10 1

9 10 1

11 12 1

11 13 1

12 13 1

12 14 1

13 14 1

13 15 1

14 15 1

2 1 1

3 1 1

2 3 1

4 2 1

4 3 1

5 3 1

4 5 1

12 5 1

8 5 1

8 12 1

8 6 1

7 6 1

8 7 1

9 7 1

9 8 1

10 8 1

10 9 1

12 11 1

13 11 1

13 12 1

14 12 1

14 13 1

15 13 1

15 14 1

Once the algorithm reads the text file, a number of output functions are available. Again

referring to Appendix B, one can see the output variables available directly after Step 7.

These variables are:

Number_Boundary_Nodes

Boundary_Nodes

Boundary_Edges

sub_domains

99

node_numbering

Step_1

Step_2

Step_3

Step_4

Step_5

Step_6

Step_7

TOTAL

The output provided by each of these variables is presented below. If one is to call the

function Number_Boundary_Nodes, the algorithm simply outputs the number of SBN the

given partition provides. In this example with NP = 3, the result of this call is:

Number_Boundary_Nodes =

 3

The next output argument is Boundary_Nodes. This call provides the actual boundary

nodes returned by the algorithm. The result of this call is:

Boundary_Nodes =

 5 8 12

The next output argument is Boundary_Edges. This is similar to the first output;

however, instead of reporting the number of nodes, this actually returns the number of

edges or links connecting the boundary nodes. For this example, when this function is

called, the algorithm returns:

100

Boundary_Edges =

 6

It is important to note that the boundary edges for this partition are represented by the

three links connecting nodes 5, 8, and 12. Since the links are bi-directional, a value of 6 is

returned, instead of 3. The next available output variable is sub_domains. This returns the

actual partitions provided by the algorithm in terms of which nodes have been assigned to

a given sub-domain. The output is structured in a column-wise format, where each

column represents a sub-domain. The input for this problem requires the network to be

sub-structured into three sub-networks. The user should expect three columns of data,

similar to the following:

sub_domains =

 1 15 6

 2 14 7

 3 13 8

 4 11 10

 5 12 9

The last step of the SDDA algorithm is to renumber the nodes. The revised node

numbering can be realized by the output variable named node_numbering. This variable

returns two columns of data where the first column represents the new node number and

the second column represents the original node number as follows:

101

node_numbering =

 1 1

 2 2

 3 3

 4 4

 5 15

 6 14

 7 13

 8 11

 9 6

 10 7

 11 10

 12 9

 13 5

 14 8

 15 12

While performing these steps, the algorithm records the time for each step, as well as a

total aggregate time. When calling these functions, the following results are returned:

102

Step_1 =

 0.0039

Step_2 =

 0.0033

Step_3 =

 0.0011

Step_4 =

 0.0090

Step_5 =

 0.0238

Step 6 =

 0.0029

Step_7 =

 9.2229e-04

TOTAL =

 0.0449

103

APPENDIX E: Example Input/Output for the DDSP Algorithm

104

Utilizing the same example shown in Figure D1, the DDSP algorithm returns the shortest

distance and path for a given problem. There is no input required, since all input

parameters have previously been provided as part of the SDDA. At the end of the

SDDA, the program transitions directly into the DDSP algorithm, based on the partitions

and output returned by the SDDA. The main output of the DDSP algorithm is simple. It

returns two arrays: namely, the array [D] which stores all the shortest time information

for each O-D pair, and the array [PRED] which stores the predecessor information for

every possible O-D pair. If one wanted to know the shortest time and predecessor for a

single source to single destination, the input would be as follows (assuming a source node

of 1 to a destination node of 5):

EDU>> D(5,1)

ans =

 2

EDU>> PRED(5,1)

ans =

 3

If the entire matrix is desired, simply omit the indices shown above and the full matrix

for each variable will be returned. As another way to return a set of O-D pairs, the

algorithm has been written with an option to return solutions for five pairs of data.

Suppose one wants to find the solutions to the pairs 1-5, 5-1, 1-15, 5-10, 8-4. Once the

algorithm has completed its running, it will prompt the user with the following question:

105

ans =

Do you wish to output the calculated shortest path and

distance for 5 source to destination pairs? Enter a value of 1 to

verify. Any other value will terminate the code.

By entering a value of 1 when prompted, the program will then prompt the user to enter

five separate source and destination nodes. After inputting the pairs indicated above, the

output appears as follows:

The pairs you have entered are:

verify_array =

 1 5

 5 1

 1 15

 5 10

 8 4

The shortest distance for pair 1 is:

D1 =

 2

The shortest path for pair 1 is:

PATH1 =

 1

106

 3

 5

Path yields correct shortest time.

The shortest distance for pair 2 is:

D2 =

 2

The shortest path for pair 2 is:

PATH2 =

 5

 3

 1

Path yields correct shortest time.

The shortest distance for pair 3 is:

D3 =

 5

The shortest path for pair 3 is:

PATH3 =

 1

 3

 5

 12

107

 13

 15

Path yields correct shortest time.

The shortest distance for pair 4 is:

D4 =

 2

The shortest path for pair 4 is:

PATH4 =

 5

 8

 10

Path yields correct shortest time.

The shortest distance for pair 5 is:

D5 =

 2

The shortest path for pair 5 is:

PATH5 =

 8

 5

 4

Path yields correct shortest time.

108

VITA

Paul W. Johnson, III

Education

Ph.D. in Civil Engineering Old Dominion University Norfolk, VA Dec. 2016

M.S. in Civil Engineering Clemson University Clemson, SC Dec. 2008

B.S. in Civil Engineering Old Dominion University Norfolk, VA Dec. 2006

Professional Experience

05/2014 – Present Ecospan Engineer Nucor – Vulcraft/Verco Group

07/2009 – 05/2014 Design Manager Naval Facilities Engineering Command

06/2007 – 07/2009 Engineer I O’Neal, Inc.

10/2005 – 05/2007 Staff Engineer The LandMark Design Group

Publications and Presentations

Johnson III, P. W. (2016). Efficient Domain Decomposition Algorithms and

Applications in Transportation and Structural Engineering. (Unpublished Doctoral

Dissertation). Old Dominion University, Norfolk, VA.

Johnson, P., Nguyen, D., & Ng, M. (2016). “Domain Decomposition Based

Shortest Path Algorithm.” Submitted for Publication. In Transportation Research Board

96th Annual Meeting.

Johnson, P., Nguyen, D., & Ng, M. (2016). Large-scale network partitioning for

decentralized traffic management and other transportation applications. Journal of

Intelligent Transportation Systems, 1-13.

Johnson III, P. W., Nguyen, D., & Ng, M. (2014). An Efficient Shortest

Distance Decomposition Algorithm for Large-Scale Transportation Network Problems.

In Transportation Research Board 93rd Annual Meeting (No. 14-2921).

Allen, S., Johnson, P., Nguyen, D., & Ng, M. (2013). "Use of LCA for

Developing the Automated Domain Decomposition Partitioning Algorithm." 2013 SIAM

Conference, Old Dominion University. Webb Center, Norfolk, VA. 13. Conference

Presentation.

Rassati, G. A., Fortney, P. J., Shahrooz, B. M., & Johnson, P. W. (2011).

Performance Evaluation of Innovative Hybrid Coupled Core Wall Systems. In Composite

Construction in Steel and Concrete VI (pp. 479-492). ASCE Publications.

Johnson, P. W. (2008). PM Characteristics of Reinforced Concrete Sections

(Master’s Thesis). Clemson University. Clemson, SC.

Licenses

Licensed Professional Engineer in the Commonwealth of Virginia (License # 47148)

	Efficient Domain Decomposition Algorithms and Applications in Transportation and Structural Engineering
	Recommended Citation

	/var/tmp/StampPDF/eQznRU5vO5/tmp.1485530851.pdf.Q7hF1

