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ABSTRACT 

 

3D BIOPRINTING SYSTEMS FOR THE STUDY OF MAMMARY DEVELOPMENT AND 

TUMORIGENESIS 

 

John Anderson Reid 

Old Dominion University, 2018 

Co-Directors: Dr. Patrick C. Sachs 

Dr. Dean J. Krusienski 

Understanding the microenvironmental factors that control cell function, differentiation, 

and stem cell renewal represent the forefront of developmental and cancer biology1. To accurately 

recreate and model these dynamic interactions in vitro requires both precision-controlled 

deposition of multiple cell types and well-defined three-dimensional (3D) extracellular matrix 

(ECM). To achieve this goal, we hypothesized that accessible bioprinting technology would 

eliminate the experimental inconsistency and random cell-organoid formation associated with 

manual cell-matrix embedding techniques commonly used for 3D, in vitro cell cultures. The first 

objective of this study was to adapt a commercially-available, 3D printer into a 3D bioprinter. 

Goal-based computer simulations were used to identify, evaluate, and optimize the performance 

of a 3D bioprinting system. Implementing these findings yielded a bioprinting system with reduced 

needle clogging and single cell print resolution. The minimal disruption of cell function was 

confirmed by the retention of pluripotency marker TRA-1-81 in bioprinted human induced 

pluripotent stem cells (hiPSCs) 7-days post-printing. This system was then used to investigate cell 

behavior during the initial stages of organoid-structure formation by generating 3D bioprinted 

arrays of individual, mammary epithelial cell (MEC) organoid-structures. This quantifiable, 3D 

bioprinting approach, was able to direct the ‘self-assembly’ of large MEC structures through 

organoid ‘fusion’ events among individual, bioprinted organoids along the printing template. 

Bioprinting maintained experimental consistency among multiple 3D scaffolds and experimental 

conditions, and presents the capability to generate high-fidelity, 3D arrays with multiple cell types. 

Compared to manual matrix embedding, bioprinted, co-culture experiments, containing normal 

MECs and breast cancer cell lines, significantly increased the ability to generate chimeric 

(tumor/normal) MEC structures. Thus, bioprinting stands highly qualified to investigate the role 

of microenvironmental processes related to cell fate determination and tissue formation. 
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NOMENCLATURE 

 

 

BM  Basement Membrane 

CAD  Computer-Aided-Design 
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EB Embryoid Body 

ECM Extracellular Matrix 

FEM Finite Element Modeling 

GFP Green Fluorescent Protein 
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hiPSC Human Induced Pluripotent Stem Cell 

MEC Mammary Epithelial Cell 

RFP Red Fluorescent Protein 

TEB Terminal End Bud 
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The cell is a wonderfully complex and precise little mechanism; 

          disease is but disorder of this mechanism. 

The aim of medicine is to prevent or repair such disorders. 

The aim of biology is to understand the cellular machinery. 

 A. Szent-Gyӧrgyi 

 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The focus of most tissue engineering research tries to identify the unique processes that 

enable cells to make tissues with a different form and function. It turns out that a substantial amount 

of gene expression in cells originates from signals in the micro-environment. However, as with 

most things, our ability to study this has been limited due to a lack of available technology. For 

example, because the iconic, flat-surface of a plastic petri-dish fails to mimic real-world 

conditions, cells grown in two-dimensional (2D) environments do not carry out their tissue-

specific functions. As a result, we now understand that the structure of a tissue or organ is 

indispensable for its function. This is important because most of the information about cell biology 

we have today originated from 2D cultures. Thus, many treatment options currently available to 

clinicians were derived from flat-plastic, 2D, monolayer cultures. So, while numerous genomic 

and gene expression arrays can provide evidence of a cell’s status or identity, these results mean 

little unless we can provide the cells with a 3D environment that recapitulates the ‘context’ 

presented in the real-world structure. While animal models have provided a large amount of 

evidence of the importance of tissue microenvironments in regulating cellular behavior, they limit 

our ability to identify the specific features involved in this process. Thus, a huge challenge for 

breast cancer research comes from the need to incorporate ‘context’ into in vitro research models.  

From computational fluid dynamics (CFD) to additive manufacturing, the main goal of this 

work attempts to implement engineering technology and techniques to design 3D, in vitro models 
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which better recapitulate the in vivo situation. To achieve this, we hypothesized that accessible 

bioprinting technology would eliminate the experimental inconsistency and random cell-organoid 

formation associated with manual cell-matrix embedding techniques commonly used for 3D, in 

vitro cell cultures. Specifically, to improve upon our current understanding of the cell-cell 

interactions associated with human tissue micro-environments, this work attempted to use 

accessible 3D bioprinting techniques to increase our ability to create ‘contextual’ information by 

reliably patterning multiple cell types inside 3D, in vitro models using human based ‘bio-inks’. 

We began this study by designing an accessible, 3D bioprinter to deposit small cell quantities 

inside 3D environments. Next, we used this system to determine the necessary parameters to 

reliably generate MEC organoid-structures in a 3D environment. Last, we investigated the ability 

to reliably generate ‘chimeric’ organoids composed of ‘normal’ MECs and tumorigenic cell lines. 

Chapter 1 begins with a summary of MEC biology. This sets fourth information about the 

growth and development of the mammary gland. This information provides a general 

understanding of the dynamic relationships among the unique cell populations, physical 

environment, and cyclical nature of mammary gland growth and regulation. Using these criteria 

as a guide, the next portion presents the current ability of 3D cell culture methods to generate in 

vitro models of mammary gland biology. This includes a general overview of a typical 3D cell 

culture experiment. Chapter 1 concludes with a description of how limitations of current 3D cell 

culture methods negatively impact the ability to standardize 3D cell culture research.  

Chapter 2 provides the first contribution of the dissertation, which is the design and 

optimization of an extrusion device to reliably print small quantities of cells. This includes detailed 

information about the hardware components of the system, an overview of a typical 3D bioprinting 

printing experiment, and additional variables related to tailoring the instrument for the specific 

needs of a given experiment. 

Chapter 3 details the use of the bioprinting system to identify the necessary printing 

parameters to reliably control MEC organoid formation. This chapter provides the second 

contribution of this dissertation, which is the identification of the unique printing parameters 

related to MEC organoid formation. By standardizing the cell quantity and proximity among 

individual cell-deposits, a uniform rate of organoid formation was achieved in bioprinted arrays of 

MECs. Identifying these printing parameters enabled the development of a more reliable and 

practical 3D culture model for studying MEC morphogenesis and epithelial biology. 
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Chapter 4 presents the utilization of a bioprinting apparatus to reliably generate chimeric, 

luminal-structures of normal MCF-12A cells and tumorigenic cells. The characterization of these 

interactions represents the third main contribution of this dissertation. The comparative analysis 

of subcellular proteins of normal, tumorigenic, and chimeric (tumor/normal) organoids contributed 

to a better understanding of the aberrant signaling associated with the neoplastic state. Overall, 

Chapters 2, 3, and 4 illustrate the common features of bioprinter operation and important variables 

for designing experimental protocols using bioprinters. 

Chapter 5 presents the conclusion of these studies, along with a discussion and summary 

of the main results of the dissertation, as well as proposing future extensions of this research. Using 

bioprinting techniques to reliably deposit user-specified cell quantities in defined spatial-

coordinates, our results indicated MEC organoid formation rates are dependent on the quantity of 

local cell numbers. Furthermore, bioprinting experiments designed to sequentially vary inter-

organoid spacing indicated a time sensitive window of developmental plasticity; the resulting 

organoid geometry can be manipulated to match any desired geometry and size when initial cell-

deposits were maintained within this spacing window. Lastly, we show accessible bioprinting 

techniques provide a reliable method to pattern multiple cell types inside 3D, in vitro cultures. This 

enabled a significant increase in the ability to reliably generate ‘chimeric’ cell organoids. Thus, 

bioprinting technology appears well suited to recreate the ‘contextual’ cues to further current 

research.   

Here we show 3D bioprinting devices contain the capacity to reliably harness the 

remarkable affinity of living cells to spontaneously ‘self-organize’ into structures large enough for 

transplantation. As the power of any given scientific technology is rooted in the ability to reliably 

recreate experimental results, 3D bioprinting stands as an optimal technology to address the ‘big-

data’ questions of many biological systems. Beginning with deciphering the microenvironmental 

variables present in the in vivo condition, bioprinting will illuminate the regulatory information for 

proper differentiation of cells, stem cell renewal, and eventually the development of complete 

tissues and organs. 
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1.2 Mammary Gland Formation 

From the bumblebee bat to the blue whale, the mammary gland distinguishes mammals 

from all other animals. Beyond protocols of modern taxonomy, the tissue structure and function 

of the mammary gland are also unique because of the cyclical nature of the cell-cell and cell-

extracellular matrix (ECM) interactions which also depend on the developmental stage and 

reproductive history of the mammal. For this reason, the mammary gland presents an optimal 

model system to study developmental biology. Studies of mammary gland development have 

presented valuable insights into the mechanisms regulating cell and tissue polarity, cell fate 

specification, branching morphogenesis, and the involution of a functional organ. Investigating 

these developmental programs are of interest to cancer biologists; many of the dysregulated 

pathways and processes observed throughout breast cancer progression mimic those observed 

during normal mammary gland development and tissue remodeling. However, the study of this 

system also stimulates a compelling desire to comprehend and solve the problem of breast cancer. 

Breast cancer affects 1 in 8 women in the United States. Thus, at one time or another, almost every 

family will have to deal with its consequences. We begin this overview by highlighting the 

different cell types that make up the mammary gland, with a specific focus on mammary gland 

‘stem/progenitor cells’. We also discuss the external factors within the mammary gland 

microenvironment, which influence cell fate and function.  

While rodent and human mammary glands have important structural variances, the mouse 

is a tractable, model organism, with well-researched methods and established protocols that have 

provided many insightful studies2. It is not surprising that much of our knowledge of mammary 

gland development, function, and tumorigenesis has emerged from investigations in the mouse. 

Both the human and rodent mammary gland are comprised of two types of epithelial cells: apically 

oriented luminal epithelial cells that line the ducts, and basally oriented myoepithelial cells. 

Luminal cells predominantly express keratins 8 and 18 (Ck8, Ck18), and are responsible for 

producing casein and other milk proteins. Myoepithelial cells predominantly express keratins 5 

and 14 (Ck5, Ck14), as well as alpha smooth muscle actin which mediates their contractile 

function3. For this reason, myoepithelial cells are viewed as a hybrid of smooth muscle cells and 

epithelial cells because their contraction functions to cause secretion of milk during lactation4. 
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During embryogenesis, initial mammary development begins with the emergence of 

epithelial buds from ectoderm into mammary mesenchyme to form a rudimentary system of ducts, 

which continue a moderate rate of elongation after birth and with increases in body weight. 

Specifically, the first visible evidence of the mouse mammary gland is a subtle enlargement of the 

epidermis in the embryo on the E10 to E11. This single layered ectoderm enlarges to form the 

mammary lines, which extend from the anterior limb bud in the hindlimb to the posterior limb bud 

on the forelimb on both sides3. The individual mammary buds are formed as the epidermal cells in 

this band migrate to separate “centers of concentration” on the E12. The lens-shaped, multilayered, 

ectodermal structures called placodes then rise slightly above the surrounding ectoderm. The 

placodes then become bulbs of epithelial cells distinct from the surrounding epidermis. This 

separation event defines the future locations of the nipples and the accompanying mammary ducts. 

Mesenchymal cells around the bud condense and become the mammary mesenchyme. Between 

E12-16, the mammary rudiment maintains a slow growth. However, androgen receptor activation 

in the mesenchyme of male embryos between E13.5 and E15.5 signals for the degradation of the 

mammary buds3. On the other hand, female mammary gland development continues at E15.5, 

wherein the mammary rudiment starts to elongate by rapid cellular proliferation in the bud, leading 

to the formation of a sprout that invades the fat pad precursor3. Up until the last days of gestation, 

the mammary epithelium penetrates the prospective fat pad to create the branching trees of the 

early gland5. In fact, the mammary gland of the 19-day fetus contains the fundamental structures 

present in the adult virgin mammary gland6. 

In rodents, the prepubertal mammary gland consists of long, infrequently branched ducts 

terminated by highly proliferative structures, called terminal end buds (TEBs)5,7. The TEB 

structures in the mammary gland are characterized by their strategic location at the tips of ducts. 

TEBs are comprised of two main compartments, a single, basally-positioned layer of cap-cells, 

which stays in contact with the thin layer of basal lamina and differentiate into myoepithelial cells 

as the duct elongates, and the inner compartment, consisting of a multi-cellular layer around 4-6 

cells in thickness which form the bulk of the TEB known as the body-cell layer8. It is believed that 

the processes of ductal elongation and complex branching of the mammary gland originate in 

mammary stem cells located in the TEB9.  

Considered the ‘engine’ of ductal elongation, TEBs penetrate and expand into the 

mammary fat pad and undergo regular bifurcation events to give rise to the tree-like pattern of the 
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primary mammary ductal tree10. This period of ductal expansion is the result of intensive mitotic 

activity in mammary TEBs11. Secondary and tertiary ducts sprout from primary ducts to form the 

characteristic ductal arborization observed in mature virgins. The bulbous, epithelial structures at 

the advancing edge of the TEB appear to be specialized to permit rapid penetration of the 

surrounding fatty stroma. The posterior regions of TEBs provide a supply of differentiating ductal 

and myoepithelial cells for elongation of subtending ducts12. Branching morphogenesis results 

from the collective advancement of luminal epithelial cells, whereas myoepithelial cells appear to 

restrain elongating ducts. Duct initiation requires proliferation, Rac, and myosin light-chain kinase, 

whereas repolarization to a bilayer depends on Rho kinase13. In addition to linear growth, 

mammary TEBs branch dichotomously at regular intervals, thereby generating the rudimentary 

patterning of the gland8,14. By turning to avoid competing tissue, they generate regular spacing 

between ductal elements. Once the TEBs near the edge of the fat pad, or when scarce gland-free 

stroma is available for continued growth, TEBs regress into blunt-ended, ductal termini, and their 

subtending ducts become mitotically inactive15. Importantly, these structures do not exhibit the 

high-degree of proliferation or the histological structures of active TEBs16. 

Breast tissue morphogenesis in the adult organism is coupled to the periodicity of the 

mammalian reproductive cycle7,17,18. Throughout puberty and pregnancy, unique cell types are 

responsible for the mammary functions at each developmental phase19,20. However, branching 

morphogenetic processes dominate over those promoting differentiation or apoptosis during the 

estrous cycle, pregnancy and after parturition21. In contrast to the linear growth of ductal 

elongation, branching morphogenesis in pregnancy is followed by a radial growth and 

differentiation of ductal cells into lobular alveolar epithelium that produces milk after parturition. 

It should be noted that luminal cells of the duct also produce milk. After weaning, extensive ECM 

remodeling occurs concomitantly with tissue involution through the regulated apoptosis of lobular 

alveolar breast epithelium, and in the proliferation of adipocytes. This pattern of morphogenetic 

differentiation/involution is repeated throughout the reproductive life span of female mammals, 

and defines the cyclically regenerative capacity of normal adult breast tissue21. This process is 

currently thought to result from hierarchies of stem/progenitor cells within the luminal epithelial 

cell population and myoepithelial cells lining the ducts22. The regenerative ability of these cell 

types has been confirmed experimentally23. For example, when transplanted into cleared mammary 
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fat pads, these cell types can give rise to entire ‘clonally-derived’ mammary trees2,24,25. Thus the 

mammary gland epithelial compartment contains a mammary epithelial stem cell population24. 

1.2.1 Dynamic Relationship Between Mammary Tissue Structure and Function 

The continuum of secreted factors that make up the acellular fraction of the 3D 

microenvironment is known as the ECM. The ECM is composed of diverse substances, from 

macromolecules like collagens, fibronectin, laminins, to polysaccharides such as hyaluronan, and 

glycosaminoglycan. BM, a form of specialized ECM, surrounds all epithelia. Aside from structural 

support, the BM forms a mechanical connection between epithelial layers and nearby connective 

tissue. The BM also prevents epithelial cells from invading the connective tissue, while also 

preventing the invasion of surrounding stromal cells into the BM compartment. Laminin, a trimeric 

protein, interacts with itself, other components of the ECM, and proteins on epithelial cells. As 

such, it is considered the primary organizer of the BM. Type IV collagen provides the tensile 

strength of the BM through a network of fibers. Nidogen and perlecan link the collagen network 

to laminin. 

While numerous genomic and gene expression arrays can provide evidence of a cell’s 

status or identity, it is a fallacy to argue that genes alone determine and regulate the pattern of gene 

expression. It has been postulated that tissue-specific form and function are achieved by the 

dynamic interactions between the cell and its surrounding ECM. For example, normal organ 

architecture can act to suppress tumor growth, and prevent malignant phenotypes, despite gross 

genomic abnormalities26. As a result, we now understand that the microenvironmental structure of 

a tissue or organ is indispensable for its function.  

Outside the cell, the ECM functions to maintain the appropriate integrity and strength of 

the cell network, and the type and amount of cellular connection to the ECM. Inside the cell, cell 

adhesions serve as anchoring points between cells, and between the cell cytoskeleton and the ECM. 

Important to our current understanding of ECM in cellular processes is the crosstalk among the 

individual ‘inside’ and ‘outside’ components within these systems27. For example, in response to 

the presence of laminin, MECs upregulate expression of several connexin gap junction (GJ) 

proteins, which leads to an enhancement of gap junctional intercellular communications (GJIC)28. 

Thus, components of the ECM can alter aspects of the cell-interior through ‘outside-in’ processes. 
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Conversely, the cell can secrete and remodel the ECM through ‘inside-out’ processes29. 

Specifically, the nuclear compartment of the cell interacts with the cytoskeletal compartment, 

which interacts with the membrane compartment, which interacts with the extracellular world.  

Importantly, instead of a two-way street, where each component is an isolated, one-way traffic 

flow, the influence of ‘outside-in’ and ‘inside-out’ processes on gene expression are better 

represented as a traffic circle where both components converge and intersect to influence global 

traffic flow. The overall process is a dynamic, cross-talk which connects ECM-ECM receptor 

interactions to the cytoskeleton, to the nuclear matrix, chromatin and back again1. This phenomena 

is commonly dubbed ‘dynamic reciprocity’30. Thus, instead of a simple scaffold to host cell 

growth, the ECM is now viewed as an integral determinant of tissue specificity itself.  

1.2.2 Cell and Tissue Polarity 

Cells in all tissues and organs are asymmetrically organized. Likewise, the importance of 

proper maintenance of cell polarity in MECs is essential for their communication with the 

extracellular world, and the ability to produce and secrete milk proteins. Without correct polarity, 

fluids would not be transported to the appropriate compartments. Three different intercellular 

junction complexes function to create a polarized tissue: tight junctions, adherens junctions, and 

desmosomes31. These complexes hold epithelial cells together and attach cells to the BM. Tight 

junctions regulate the paracellular transport of ions and small molecules and serve to inhibit the 

mixing of proteins in the apical and basal compartments. Tight junctions are a network of strands 

that encircle the cell and interact with similar strands on neighboring cells, creating a seal around 

the cells. Intercellular tight junctions are stabilized by linkage to actin filaments. The two domains 

of MEC structures, the apical layer of luminal cells, and the basal myoepithelial cells, differ in 

protein and lipid composition, which is regulated by intercellular junctions and cytoskeletal 

organization. Even without myoepithelial cells, establishing apicobasal polarity and cell junctions 

can be achieved if cells are cultivated in the presence of exogeneous BM components, such as 

Matrigel (Geltrex), or on a flexible collagen I gel. In the latter case, as cell-cell contact is increased, 

the cells generate and deposit endogenous BM and become functionally differentiated32. 
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1.2.3 Summary 

The concept that cells are modulated by signals from their surrounding microenvironment 

is not new. How else can 10 trillion cells with the same genetic information make the numerous 

types of tissues, each with a different form and function? In tissues, multiple cell types serve 

distinct functions. The information presented here attempts to illustrate the fact that these functions 

are more dependent on the highly ordered, 3D geometrical context, than their individual genome. 

Also, as early as the 1960s, chimeric models using the stroma from one type of tissue co-cultured 

with epithelial cells from a different tissue have indicated the structure of an organ presents 

signaling information which is distinct from the genomic blueprint of the cell. Thus, a huge 

challenge for breast cancer research comes from the need to incorporate ‘context’ into research 

models. 

 1.3 The Use of 3D Culture Systems to Study Epithelial Biology  

1.3.1 History of 3D Culture Systems 

3D culture systems for generating organoid cultures of MECs inside collagen matrices 

were first introduced over four decades ago33-35. Standard 3D culture procedures involve either 

mixing dispersed MECs with ECM substrates prior to gelling (as described in Protocol 1), or by 

culturing cells on top of a pre-formed ECM gel. The encapsulated cells will then spontaneously 

‘self-assemble’ into organoids. The initial stage of this process is characterized by the ability of 

the epithelial cells to detect and sense points of contact with ECM surfaces through integrins and 

dystroglycans, and points of contact with neighboring cells through cadherins and desmosomes36. 

The presence of these initial contacts spontaneously activates a series of cell remodeling events, 

which results in the polarization of cells, i.e. the formation of basolateral and apical surfaces with 

an asymmetric distribution of membrane proteins37. For the purposes of this and other 3D MEC 

investigations, the term ‘MEC organoid’ was operationally defined as cell growth and proliferation 

which resulted in the formation of semi-organized multicellular structures with polarized cells 

facing an open lumen31,34,36,38,39. 
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1.3.2 Effect of Parameters on Cell Behavior in 3D Culture 

In 3D culture, multiple parameters operate together to affect both experimental outcomes 

and interpretation of experimental results. These parameters include cell type, cell-cell 

interactions, ECM composition, culture media, and an assortment of mechanical properties such 

as matrix stiffness and cell confinement (porosity)40-51. 3D culture models have highlighted the 

importance of matrix compliance for tissue-specific differentiation36. Matrix compliance differs 

dramatically between 2D and 3D cultures, and normal versus tumor tissues in vivo. The normal 

mammary gland has an elastic modulus of 167 ± 31 (Pa), the average tumor 4049 ± 938 (Pa), and 

2D tissue culture plastic (polystyrene) 2.78x109 (Pa)52. Therefore, it is not surprising that 

successful recapitulation of normal tissue morphogenesis is favored by matrix conditions with an 

elastic modulus that corresponds to normal tissues in vivo52. Indeed, cells invariably lose their 

differentiated phenotypes when grown on 2D tissue culture plastic33. However, these cells can 

regain their differentiated phenotypes if the microenvironment of the culture vessel is designed to 

mimic the cell’s normal, in vivo microenvironment1. Also, it is widely acknowledged that sources 

of ECM for 3D cell culture, such as collagen isolated from animal tissues and/or laminin rich 

extracellular matrix such as Matrigel, are subject to lot-to-lot variability, which has the potential 

to introduce experimental irregularities in the mechanical properties of 3D cell culture systems53. 

However, Matrigel or collagen can be modified by adjusting the gel thickness, gelling temperature, 

and concentration. 

Recent investigations of mammary ductal morphogenesis indicate collagen fiber density, 

diameter, and alignment play a key role in determining the shape of in vitro cultures of mammary 

epithelium54,55. Upon encapsulation, mammary cells cultured in collagen gels extend processes to 

‘sense’ and reorganize the surrounding meshwork for considerable distances (10-100µm) before 

pseudopod stabilization and mechanical interaction54. Following stable adhesion formation to 

ECM components, the mechanical interaction between individual cells and ECM results in the 

transmission of strain patterns which can extend through hundreds of microns of gel56-58. This 

applied mechanical strain leads collagen fibers to orient along the direction of the strain, which 

results in increased contact guidance59. This may explain why early studies found a preference for 

breast epithelial organoids to develop along tension lines between adjacent organoids within 

collagen gels60. Through what appears to be a positive feedback loop, a small alignment of fibers, 
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cells, tension, or the resistance to tension can be amplified into a robust, parallel orientation of 

cells and fibers54. Together, these findings suggest the developmental cues that define tissue form 

and function are derived from physical properties within the surrounding microenvironment and 

are rarely cell intrinsic. Delineating the role of these organizational features in tissue 

morphogenesis will lead to a better understanding of the coordinated cellular behaviors responsible 

for normal tissue formation across local and global spatial scales. 

Numerous examples have reported the considerable influence of physical parameters on 

tissue morphology in 3D cultures. Early work using primary mammary epithelial cells showed that 

cells plated on plastic or embedded in collagen gels that remain attached to the culture plate, lose 

the fully differentiated phenotype, along with the ability to produce the milk protein β-casein. 

However, cells could be induced to make β-casein if the collagen gel was initially detached from 

the culture dish, known as a ‘floating’ collagen gel32,33. Additionally, β-casein production could 

be rescued in cells embedded in attached gels, if the gels were detached (floated) from the culture 

surface33. Epithelial cell differentiation is not limited to floating gels; differentiated alveolar and 

ductal structures were found in collagen gels cast in thin-plastic inserts with a porous, flexible 

membrane bottom61. However, the MEC organoid phenotypes from this method were reported to 

be associated with distinct locations of the collagen gel, which may be related to minute variances 

in collagen matrix elasticity between the center and periphery of the gel59,61. The ability of physical 

parameters of 3D cultures to influence cellular differentiation has also been supported by 

experimental evidence linking attached collagen gels to a significant increase in Ki67, a marker of 

proliferation, when compared to cells in a floating gel of the same density62. Thus, the control of 

epithelial structures cannot be attributed to matrix composition alone. 

The ability of MECs to successfully differentiate appears to depend on their ability to 

contract the collagen gel. ROCK-mediated contractility diminished RHO activity in a floating 3D 

collagen gel and corresponded to a loss of FAK phosphorylated at Y397 localized to 3D matrix 

adhesions62. Further, when cells are cultured in high-concentration, floating collagen gels, Rho 

activity remains high, FAK phosphorylation is promoted, and differentiation/organoid formation 

is disrupted. These data suggest that increased ECM rigidity increases Rho activity which 

promotes epithelial proliferation, motility, and alters focal adhesion formation, all of which lead 

to a loss of the functional, differentiated organization required for proper organoid formation62. 

Together, these data suggest that the physical forces, such as the fibrillar organization of collagen 
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fiber reorganization, and the external influences of cell culture conditions can influence the 

development and maintenance of structural and functional differentiation of normal mammary 

epithelia.  

1.3.3 Summary 

The development and remodeling of the mammary gland is dependent on dynamic 

molecular, and mechanical pathways. Importantly, tissue architecture itself is a key component of 

the regulatory mechanisms that dictate cell growth and function35,63. To accurately recreate the in 

vivo environment, every individual component of in vitro models must be tuned for the system 

under study. The development of cancer is characterized by a loss of tissue architecture, loss of 

differentiation, and dysregulation of growth control, all of which result in the invasive and 

proliferative phenotype. Similarly, when the spatiotemporal coordination between extracellular 

cues and intracellular processes is disturbed, normal cellular behavior becomes deregulated, which 

often leads to malignant transformations. Therefore, in vitro, 3D models must accurately reflect 

the local microenvironment and cellular behaviors in normal tissues. 

1.4 Bioprinting Platforms in Biological Research 

1.4.1 3D Bioprinting 

3D bioprinting has gained recent attention as an investigative tool to alleviate some of the 

experimental inconsistencies and limitations frequently associated with manual methods of 3D cell 

culture64. The use of CAD technology to fabricate complex organs and materials of biological 

origin defines the core goal behind bioprinting technology. Current bio dispensing processes in 3D 

biofabrication utilize inkjet, microextrusion and laser-assisted printing65. However, commercially 

available bioprinting devices are not readily optimized for the unique research demands of 

individual labs, which have limited their widespread adoption into routine assays and procedures. 
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The greatest features when considering different bioprinting technologies are the print 

resolution, materials used during the printing process, the cell signaling pathways affected by the 

printing process, and the culture methods used. While inkjet and laser-based transfer are well 

suited to manipulate picoliter to nanoliter droplets at microscale resolution, they are not simple to 

use or maintain. For example, inkjet deposition techniques typically employ thermal or 

piezoelectric actuators. The nozzles in these actuators are cylindrically shaped with diameters 

around 50µm. It is also the case that traditional inkjet printers are only capable of printing liquids. 

That is to say, to form solid 3D structures, the printed liquid must be crosslinked after deposition. 

Crosslinking adds additional environmental stresses to the conditions that the cells must endure 

(pH changes, temperature changes etc.)66. Numerous variables must be controlled to maintain the 

high resolution of laser-based printers. These factors include the surface tension and wettability of 

the substrate, in addition to the air gap between the prepared solution and the collector substrate67. 

Additionally, each donor transport support or ‘ribbon’ must be prepared for each printed cell or 

hydrogel type. This equates to a time-consuming, preparatory sequence that is not ideal for routine 

experimentation in most research labs. 

1.4.2 Adapting Bioprinters to Meet Specific Research Demands 

Tissue engineering research requires custom materials and tailor-made fabrication 

methods, which are not easily addressed in closed-source systems. The bioprinting device and 

associated protocols described here were designed, manufactured, and tested to investigate our 

unique requirements to generate controlled-arrays of cells in 3D environments. This process 

involved investigating the potential use of ‘off-the-shelf’ 3D manufacturing systems for routine 

3D cell culture. First, the need to extrude microscopic sized particles through a small orifice is not 

just a problem for biologists using 3D bioprinters, but also for all living cells in cell-based printing. 

For this reason, the duration and amount of mechanical forces experienced by cells should be 

minimized during flow. 

Second, if the specified tolerance among the parts is appropriately maintained within a set 

standard, extrusion-based printing technologies can achieve resolutions way beyond that of 

routine, handheld pipetting. Ensuring the intended amount gets to the intended spatial region of 

the construct is paramount. For obvious reasons, these are intimately related to advances in 
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manufacturing technologies used in 3D printing devices. However, they are also related to 

matching the machine parameters to the desired experimental scale. That is to say, if a 50 ml 

syringe and a 1 ml syringe were placed on identical extrusion-based bioprinters, and both given an 

identical travel distance in the linear actuator located on the extrusion head, a greater amount of 

material will be extruded from the 50 ml syringe. Thus, the performance of extrusion-based 

systems is intimately related to the size and volume of material inside the syringe. 

Third, common 3D bioprinting operations fabricate tissue constructs using a layer-by-layer 

process. Yet, because they are mostly water, when gel components come out of a printer nozzle 

they do not always stay in their specified location. This severely limits the spatial resolution of 

cell-deposits in 3D constructs due to the inability to accurately control the location of cells during 

gel polymerization.  Furthermore, the rheological properties of any given substrate can affect 

printing operation. For example, shearing effects during the deposition process can impart 

destructive forces on the structural integrity of gel components. 

The physical properties of a substrate can also affect printability. For example, many 3D 

MEC cultures employ collagen or other mesh-forming materials as a primary scaffold. Yet, fibrous 

materials spontaneously ‘self-assemble’ to form aggregates, including those which function in vivo 

to form a plug, like the role of fibronectin and fibrin to prevent further blood loss during wound 

healing. Thus, it would only take a few collagen aggregates to occlude the narrow tip of a 10µm 

nozzle. Additionally, reliably patterning cells suspended inside highly-viscous ‘ink’ would require 

more extrusion force than extruding cells suspended in liquid cell-culture ‘media’. 

Some of the limitations of layer-by-layer manufacturing could be overcome if bioprinting 

operation were able to insert cells into a pre-formed, bio-scaffold that contained some self-healing 

properties. Using this method, one could easily see how layer-by-layer bioprinting operations 

could be complemented with a high-resolution injection device68,69.  
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1.4.3 Importance of the Tissue Microenvironment  

Despite significant increases and improvements in cancer research, nearly 95% of 

oncology drugs in clinical trials fail to receive Food and Drug Administration approval70. 

Additionally, despite the availability of potent chemotherapeutics against a wide variety of cancer 

types, some patients never achieve a long-lasting cure. The complete therapeutic elimination of 

tumor cells remains complicated due to the phenomena of tumor heterogeneity71,72. Part of this 

issue stems from the inability of preclinical models to accurately recapitulate the complexity of 

the disease state. These complexities originate from cancer cell-intrinsic signaling/cross talk, 

extrinsic interactions with other cell types, and multiple components of the tumor 

microenvironment73. In addition, the dynamic regulatory networks generated within these diverse 

cell populations are also influenced by unique zones within the tumor environment, each with 

various physical and chemical parameters71,74-76. 

Thus, in addition to matching matrix stiffness to comply with in vivo conditions, the 

maintenance and differentiation of the numerous mammary gland cell types is also dependent on 

the properties and features of the local tissue microenvironment. Biological phenomena observed 

during development require interactions among different components of a tissue; and the clear 

majority of these are seldom explained without addressing the contextual cues from the tissue-

level to the cell-level of organization77,78. Therefore, while they are generally informative, in vivo 

xenotransplantation assays of human cancers, and monoculture models of 3D tumor biology, such 

as tumor spheroids and tumor organoids, are incapable of incorporating the microenvironmental 

cues associated with the human cancer ecosystem. 
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Ohne musik wäre das Leben ein Irrtum. 

Friedrich Nietzsche 

 

CHAPTER 2 

DESIGN RATIONALE, DEVELOPMENT, AND UTILIZATION OF A 3D 

BIOPRINTING DEVICE 

2.1 Overview 

The precision and repeatability offered by computer-aided design and computer-

numerically controlled techniques in biofabrication processes is quickly becoming an industry 

standard. However, many hurdles still exist before these techniques can be used in research 

laboratories for cellular and molecular biology applications. To circumvent the high-price barrier 

to entry of conventional bioprinters, 3D printed components were created for the adaptation of an 

'off-the-shelf' 3D printer. Extrusion-based bioprinting systems have been characterized by high 

development costs, injector clogging, difficulty achieving small cell number deposits, decreased 

cell viability, and altered cell function post-printing. To address these performance limitations, 

several microneedle geometries were developed to optimize ‘bio-ink’ flow. Goal-based, computer 

simulations indicated the needle geometries of conventional, commercially standardized, 'luer-

lock' syringe-needle systems cause many of the resolution issues plaguing conventional 

bioprinters. Among these, a short-tapered injector design with minimal cylindrical needle length 

was ideal to minimize cell strain and accretion. These geometries were experimentally quantified 

using pulled glass microcapillary pipettes and the modified, low-cost 3D printer. 

This systems performance validated computer-simulation models exhibiting: reduced 

clogging, single cell print resolution, and maintenance of cell viability without the use of a 

sacrificial vehicle. This system maintained the pluripotency of human induced pluripotent stem 

cells (hiPSCs) 7 days post-printing in Geltrex. We also show embryoid body differentiation of 

hiPSC by injection into differentiation-conducive environments, wherein we observed continuous 
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growth, emergence of various evaginations, and post-printing gene expression indicative of the 

presence of all three germ layers. These data demonstrate the benefits of using accessible, open-

sourced, 3D bioprinters to serve the individual needs of any laboratory interested in 3D cellular 

interactions and tissue engineering. 

2.2 Introduction 

Bioprinting enables the high-precision, high-accuracy, and high-throughput generation of 

biological constructs that can contain: ECM scaffolds, cells, and biochemical factors in 3D. Due 

to these advantages, bioprinters hold the promise of establishing culture conditions that more 

closely mimic the human in vivo microenvironment than animal models, and current 2D cell 

culture environments79,80. Specifically, great progress has been made in the field of tissue 

engineering and regenerative medicine due to the emergence of a wide range of 3D multifunctional 

devices which employ extrusion-based technologies to further the development of advanced 

materials that require proper pre/post-processing for the fabrication of 3D structures81-84. While 

capable of generating high-throughput experimental designs to answer difficult biological 

questions, the technology has remained inaccessible to most research labs due to the initial 

investment and routine, operational costs. Furthermore, the design and implementation of custom-

built 3D bioprinters yields high lab-to-lab variability resulting in unpredictable experimental 

outcomes, generating some unease surrounding their implementation. 

The dominant techniques in microextrusion bioprinting use valve-based pneumatic or gear-

driven actuator extrusion systems to drive cell suspensions out of a micro-needle tip. Numerous 

studies have noted needle diameters under 150μm are not ideal because they are prone to frequent 

needle clogging85,86. Naturally, the print resolutions of these systems are largely dependent on the 

diameter and flow rate at the needle tip. Therefore, despite having highly accurate/precise single-

μm positioning features, the majority of microextrusion bioprinters are limited to 150μm wide 

print resolutions. In addition to clogging, previous reports indicate process-induced damage can 

lead to a significant source of cell death and unexpected post-printing phenotypes87-93. Therefore, 

any design that alleviates clogging and process-induced damage, while simultaneously increasing 

print resolution to the sub-150μm level, would be highly advantageous. 
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Furthermore, the impact of these systems on more sensitive cell types has been 

understudied. One extremely promising cell type prone to defects upon physical manipulation is 

the induced pluripotent stem cell (iPSC). iPSCs are advantageous in both disease modeling and 

tissue engineering as they have the ability to self-renew indefinitely or differentiate into any cell 

type of all three germ layers94. A significant challenge for the implementation of iPSCs into 

bioprinting is the multivariate nature of the differentiation process. When culture conditions permit 

differentiation, iPSC clumps will initially form spheroids, which then differentiate into embryoid 

bodies (EBs) that resemble early stages of embryogenesis. It has been shown that the initial size 

of the EB aggregate is a critical factor in controlling differentiation95. However, few existing 

technologies are capable of reliably controlling the quantity of individual cells in a target location, 

and the overwhelming majority of current investigations rely on handheld pipetting. Additionally, 

mechanically induced stem cell differentiation has been attained through application of mechanical 

forces including stretch, strain, compression, and shear stress96. This awareness has led to the 

development of methods to encapsulate cells through the use of hydrogel-vehicle systems to alter 

the distribution of damaging mechanical forces experienced during flow. Yet, recent studies 

indicate these systems do not offer complete protection from damaging forces, and cell-vehicle 

interactions could ultimately lead to unwanted cell-fate determination post-printing66,97. Therefore, 

the successful use of iPSCs requires biofabrication techniques that not only minimize harmful 

forces and exposure to stress, but also concurrently select the appropriate culture conditions to 

achieve the desired, differentiated cellular product. 

Here we demonstrate the adaptation of a commercially available, 'off the shelf' extrusion-

based, 3D printer (Felix 3.0) into a functional, high-resolution, extrusion based 

bioprinter/bioplotter. Furthermore, we report a goal-based, computational modeling approach to 

optimize the biofabrication of high resolution, fragile cell transfer without the use of encapsulating 

hydrogels to maintain the pluripotency of printed hiPSCs. We experimentally quantified the 

functional limitations of micro-extrusion based bioprinting by exploring relationships among 

parameters such as micro-needle geometry, infusion flow rate, printed cell resolution, cell viability 

and the retention of a functional differentiation capacity. We show via both finite element method 

(FEM) and physical cell-extrusion bioprinting experiments that the use of deposition systems with 

a sharp reduction in inlet diameter coupled to a long, narrow microneedle (such as those found in 

'luer-lock' syringe systems) generate greater amounts of detrimental forces than those with a gently 
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tapered, conical needle geometry. We also demonstrate the ability of our system to print sensitive 

hiPSCs without affecting their pluripotency. With new maker movements taking hold98, the use of 

printable components for accessible bioprinting holds the possibility of making truly transparent, 

and transportable scientific advancements in this field a reality. By lowering the barrier of entry 

for these complex tools, research in laboratories across the world will be able to design studies to 

not only improve the engineering of tissues, but also improve the in vitro study of biological 

processes such as development and tumorigenesis. 

2.3 Materials and Methods 

2.3.1 Cell Culture 

Green fluorescent protein (GFP) labeled rat epithelial cells and GFP labeled MDA-MB-

468 mammary epithelial cells were cultured in a 75 cm2 flask in a mixture of Dulbecco's modified 

Eagle's medium and Ham's F12 medium (DMEM/F12), 10% FBS and 1% ABAM (ThermoFisher). 

MCF-12A cells were purchased from ATCC and cultured in 75 cm2 flask in DMEM/F12, 

supplemented with 20 ng ml−1 hEGF, 0.01 mg ml−1 bovine insulin, 500 ng ml−1 hydrocortisone, 

5% Horse Serum, 0.01 mg ml−1 bovine insulin and 1% ABAM. Established human induced 

pluripotent stem cells lines (hiPSC) were generated from BJ fibroblasts through sendai virus 

reprogramming99 and cultured on Geltrex matrix (ThermoFisher) with Essential 8 medium 

(ThermoFisher) and passaged manually with a pulled glass 'knife' to avoid culture induced 

genomic instability. All cells were cultured at 37.0 °C, and 5.0% CO2. 

2.3.2 Bioprinting System 

We have developed a microextrusion based bioprinting system that is capable of extruding 

biopolymer solutions and living cells for freeform construction of 3D tissue scaffolds. This was 

achieved by modifying a consumer-based 3D printer, Felix 3.0 (FELIXrobotics, NL). The machine 

has listed print resolutions of 13μm, 13μm, and 0.39μm for the x, y, and z axes, respectively. All 
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3D printed components of the deposition system were designed in-house using Solidworks CAD 

software and printed in PLA or ABS using the 3D printer. The deposition apparatus, designed to 

replace the plastic-extruding print head, mounts to the stock printer's x-axis mounting bracket. The 

apparatus is capable of housing a variety of tools through a library of part specific, 3D printed 

inserts. The system is powered by a NEMA 17 hybrid bipolar stepping motor with an integrated 

threaded rod (Pololu, USA, item no. 2268). The traveling nut moved 40μm per full step. The 

stepper motor has a 1.8° step angle (200 steps/revolution) and each phase draws 1.7 A at 2.8 V, 

allowing for a holding torque of 3.7 kg cm (51 oz-in). Therefore, 1 revolution equaled 8000μm of 

linear travel. The Felix 3.0's motor driver is capable of using 1/16th microstepping routines, which 

provided resolutions of 2.5nl. The internal backlash of the motor is ≤ 3°. An 8mm Simplicity® 

linear plain bearing (PCB Linear) and an 8-mm stainless steel rod (McMaster Car) provide support 

during linear displacements. Experiments were defined by user inputs in a custom Python and 

Matlab graphical user interface. The software allows the user to manually or automatically 

populate the wells of a specific plate with specific droplet properties in 3D. The program would 

also correct user operations that would place the needle tip outside the boundaries of the available 

print areas. The plotting locations and printing information was automatically converted into g-

code, loaded into the open-sourced 3D printer controller Repetier Host, v.1.0 and sent to the three-

axis microcontroller.  

2.3.3 Computational Modeling 

To quantify the relationship between fluid flows as a function of microneedle geometry, 

idealized needle geometry profiles were created in Solidworks Flow Simulation (Dassault 

Systems, FR) and Comsol Multiphysics. A goal-driven, computational analysis was solved 

iteratively until flow parameters converged to a certain solution/goal. The flow simulation utilized 

solution-adaptive mesh refinement by splitting the mesh cells in the high-gradient flow regions 

and merging cells in the low-gradient flow regions. The mesh was set to provide advanced, narrow-

channel refinement and optimized thin wall resolutions. The model was given conditions of steady, 

non-Newtonian flow. The fluid used in our experiments was given properties similar to blood. 

Three classes of needle geometries were created representative of the cylindrical needle geometry 

seen in stainless steel 'luer-lock' needles, a straight sided cone, or tapered profiles modeled as 
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hyperbolas, parabolas or ellipses in a similar manner to those seen in Martanto et al.100. The inlet 

diameter for all needle conditions equaled 1mm. The inlet volume boundary condition was based 

on a constant volumetric flow rate of 0.1mm3 s−1 (0.1 μl s−1). The diameter of the flow outlet for 

all simulated conditions equaled 60μm. The flow outlet boundary condition was set to standard 

atmospheric pressure, (101325 Pa). Our model conditions accounted for the effects of gravity on 

cell settling during needle inversion. We were able to specify wall conditions by specifying values 

for accretion rates and the normal and tangential coefficient of restitution. The model features from 

three idealized needle geometries that met our goal criteria (minimum shear rate, pressure, and 

needle diameter while maximizing flow rates) were then fabricated using a Sutter P97 

programmable pipette puller and experimentally quantified using our 3D printed, 3D bioprinter. 

An optical encoder provided measurement scales to confirm needle profiles by visual analysis 

using Matlab and ImageJ. 

2.3.4 Cell Viability Assay 

MCF-12A cells were suspended in media to a concentration of 1 × 106 cells ml–1. For all 

conditions, approximately 25μl of media was loaded into the needle at a rate of 10 μl min−1 and 

dispensed into wells of a 96 well plate at one of four rates: 100, 400, 600, and 1000 μl min−1. All 

four rates were repeated in three separate wells for a total of 12 wells per condition. Four needle 

conditions; no-tip (control), 28-gauge needle, straight cone, and long tapered needle were tested, 

giving a total of 48 wells. Post-printing, cells were maintained in a laboratory incubator at 37.0 

°C, 5.0% CO2. Viability was assessed 1 and 96 hours post-printing with AlamarBlue 

(ThermoFisher) by measuring absorbance at 570 nm on a UV–Vis spectrophotometer with 

SoftMax Pro 6.3. The sample mean viability was calculated and normalized to the initial viability 

of the no-tip control. Statistical significance was determined using one-way ANOVA with 

Dunnett's post hoc test (p < 0.05). Error bars on all figures represent the standard deviation of the 

sample mean. 
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2.3.5 hiPSC Bioprinting and TRA-1-81 Staining of hiPSCs 

Twenty-four hours prior to printing, 50μl of a 1:1 mixture of growth factor reduced Geltrex 

and differentiation suppressive media (Essential 8) was added to 12 wells of a standard 96 well 

plate and stored in a laboratory incubator at 37.0 °C, 5.0% CO2. Before cell plotting, the plate was 

removed from the incubator and placed on the heated print bed (37.0 °C). Single cell suspensions 

of hiPSCs were obtained by rinsing pre-established, hiPSC containing wells with DMEM, 

followed by a 5-min incubation with Accutase (Sigma-Aldrich). Cells were then centrifuged at 

300 x g for 3 min; and the resulting pellet was diluted with essential 8 media to a concentration of 

4.5 × 106 cells per ml. Single cell suspensions of hiPSCs were then loaded into a pulled glass 

needle with a 40μm tip diameter at 10 μl min−1. The plotting routine was set to dispense a number 

of 100nl droplets 200μm (X, Y) apart and 250μm (Z) from the bottom of the plate. Post-printing, 

150μl of essential 8 media was overlaid on the gel, and the plate was incubated at 37.0 °C, 5.0% 

CO2 for 7 days. The overlaid media was changed every 24 hours for 7 days. After 7 days in culture, 

StainAlive TRA-1-81 antibody (Stemgent) was diluted to a concentration of 5 μg ml−1 in fresh cell 

culture medium. The antibody containing media was added to the wells containing hiPSC printed 

aggregates and incubated for 30 min in a laboratory incubator at 37.0 °C, 5.0% CO2. The medium 

was aspirated, and the wells were gently washed two times with cell culture medium. Fresh cell 

culture medium was added to the wells and staining was examined using a Zeiss axio-observer Z1 

fluorescent microscope. 
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2.3.6 Automated Formation hiPSCs Aggregates 

Twenty-four hours prior to printing, 50μl of a 1:1 mixture of growth factor reduced Geltrex 

and differentiation supportive media (10% FBS, 1% ABAM, DMEM/F12) was added to 12 wells 

of a standard 96 well plate and stored in a laboratory incubator at 37.0 °C, 5.0% CO2. Before cell 

plotting, the plate was removed from the incubator and placed on the heated print bed (37.0 °C). 

Single cell suspensions of hiPSCs were obtained by rinsing hiPSC containing wells with DMEM, 

followed by a 5-min incubation with Accutase (Sigma-Aldrich). Cells were then centrifuged at 

300 x g for 3 min; the resulting pellet was diluted with differentiation-supportive media to a 

concentration of 4.5 × 106 cells per ml. These single cell suspensions of hiPSCs were then loaded 

into a pulled glass needle with a 40μm tip diameter at 10 μl min−1. The plotting routine was set to 

dispense a number of 100nl droplets 200μm (X, Y) apart and 250μm (Z) from the plate bottom into 

wells of a 96 well plate containing 50μl of a 1:1 mixture of growth factor reduced Geltrex and 

differentiation supportive media. Immediately following the plotting routine, the plate containing 

fabricated hiPSC aggregates was incubated at 37.0 °C, 5.0% CO2 for 7 days. 150 μl of 

differentiation supportive media was overlaid on the gel post-printing and changed every 24 hours 

for 7 days. Post-plotting, wells containing gel-embedded hiPSC aggregates were monitored using 

brightfield imaging every 30 min for 5 days using a Lumascope 620 microscope. 

2.3.7 Formation of hiPSC EBs Using Hanging Drop Method 

The hiPSC single cell suspension used in the automated plotting experiment was diluted to 

5 × 105 cells ml–1. 1 μl samples of the diluted hiPSC single cell suspension were then manually 

added to 20 μl of differentiation-supportive media which had been previously pipetted onto the 

inside surface of a Petri dish lid. The lid was then inverted to force cells to aggregate due to the 

effect of gravity. The dish bottom was filled with the same media to prevent drying and stored in 

a laboratory incubator for 7 days at 37.0 C, 5.0% CO2. 
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2.3.8 Gene Expression Assay of Printed and Hanging Drop hiPSC Aggregates 

Total cellular RNA was isolated from 7 day old, 3D printed hiPSC aggregates and hanging 

drop hiPSC EBs with Trizol (Life-Technologies) according to manufacturer's protocol. RNA 

quantification was determined by UV absorbance at 260 nm (A260 nm) on a NanoDrop 2000 

(Thermo Scientific). 5 μg of each RNA sample was reverse transcribed into cDNA using the High-

Capacity cDNA Reverse Transcription Kit (Thermo Fisher) according to manufacturer's 

instructions. cDNA samples from established hiPSCs (control), printed hiPSCs and hanging drop 

EBs were amplified and detected using TaqMan Gene Expression Assays for markers, HAND1 

(Hs02330376_s1), SOX17 (Hs00751752_s1), PAX3 (Hs00240950_m1), NANOG 

(Hs04260366_g1), and the endogenous housekeeping gene ACTB (Hs99999903_m1). 

Quantitative Reverse Transcription PCR experiments were conducted with a StepOnePlus Real-

Time PCR System (Applied Biosystems). TaqMan Fast Advanced Master Mix was used in 

conjunction with TaqMan Gene Expression assays per manufacturer's protocol. All experimental 

reactions were completed in triplicate and the relative quantity was calculated using the 2−(ΔΔct) 

method. All statistical comparisons were made with ANOVA (*p < 0.01).
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Fig. 1.  CAD design and 3D printing of bioprinter modifications to the Felix 3.0. (a) CAD model 

of x-axis bioprinting adapter with lead screw and syringe adapter for injector depression. (b) 

Resultant 3D-printed bioprinter injector adaptor mounted to the X-axis of 3D printer with stepper 

motor installed for injector actuation. (c) CAD models for syringe adapter inserts for securing the 

body of the injector (bottom row) and clips for holding the plunger (top row). (d) Example of a 3D 

printed insert and clip used with the pulled glass-microcapillary pipette injector and teflon plunger. 
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2.4 Results 

2.4.1 Bioprinter Fabrication 

Most well-appointed commercial 3D bioprinters cost well above the budget limits of many 

biological laboratories wishing to use these tools for cell-based experimentation. To address this, 

we aimed to use readily available parts to adapt an 'off the shelf' extrusion-based, 3D printer into 

a high-precision, open-sourced bioprinter. The unmodified Felix has a positional resolution within 

a reasonable range for single cell deposition. We used CAD software to design a microextrusion 

apparatus to replace the plastic extruding print head, (Fig. 1a). These prototype parts were then 3D 

printed using the standard extrusion system on the unmodified Felix system, (Fig. 1b). To better 

serve our experimental requirements, the system was designed to be interchangeable with more 

than one type of plunger-driven syringe system (several sizes of luer-lock syringe, microcapillary 

pipettes, etc.), (Fig. 1c). Our 3D printed parts were highly accurate with regard to matching 

specified part dimensions (Fig. 1d). Furthermore, no measurable differences among printed 

components were observed confirming the Felix’s stated precision and accuracy. Additionally, we 

are not aware of any other current bioprinting systems that have the capability to be utilized as 

both a bioprinter and a standard 3D printing system. As such, this is the first report of a device 

with these properties. 
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Table 1:  Analytical solutions to CFD simulations of the bioprinting process using various microneedle 

geometries. Needle tips with a straight-sided, triangular appearance are labeled T. Needle tips with curved 

geometries are labeled C. Simulations were given conditions of steady, non-Newtonian flow of a constant mass 

flow of 6x10-5 kg/s. The inlet and exit diameter for all needle conditions equaled 1 mm and 60µm, respectively. 

The flow outlet boundary condition equaled standard atmospheric pressure, (101325 Pa). Numerical results 

indicated increasing needle length results in an increase in both total pressure and required force across all 

conditions. Results also indicated T needle types generate more internal pressure than C needle types of the 

same length. The average velocity for all T needle types was greater than C needle types. The maximum velocity 

was highest in the 1 mm long T needle type. Interestingly this needle type represents a 1:1 geometry near that 

of a straight-sided cone. 
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2.4.2 Needle Optimization Through Computational Modeling 

As we intended to use our 3D bioprinter to print liquids containing both biomolecules and 

sensitive cell types, we recognized the need to model various needle variants to determine the flow 

characteristics, including shear rates in the needle tip. To do this, we designed several permutations 

of needle types using 3D CAD software. The needle types of our initial simulations included a 

model of a conventional, syringe-needle system, and needles with various lengths and internal 

slopes with a straight-sided triangular, T, or parabolic curved, C, geometry. The straight triangular 

needle is characterized by having a linear change in needle diameter, whereas the curved needle 

types resemble more of a parabolic curve with a slope that is greater than one100. We then measured 

the impact of needle geometry on fluid dynamics during the bioprinting process using computer 

generated, multiphysics simulations. To provide a better understanding of needle clogging due to 

cell accretion, we traced particle streamlines of 10μm wide particles, the typical diameter of cells, 

through our needle models under conditions that favored aggregation. The aggregation of cells 

within the needle tip occurred by increasing particle accretion rates and lowering the normal and 

tangential coefficients of restitution at the needle wall. Particle studies then indicated a large 

population of cells with velocities near zero in the narrowest region of the conventional needle 

configuration, (Fig. 2a). These populations were not observed in triangular needle configurations, 

(Fig. 2b). This indicated the conventional needle type leads to a higher rate of cell aggregation and 

needle clogging when compared to a tapered, triangular needle. Furthermore, the results from the 

flow simulations also indicated cells traveling through the center of the conventional configuration 

have a higher velocity than those in the center of the straight triangular configuration, 75 mm s−1 

versus 55 mm s−1, respectively. 

The velocity profile established in a given flow situation strongly influences the mass 

transfer process. For our method of bioprinting, the mass transfer process is primarily dependent 

on the ability of the ejected droplet to remain inside the surrounding material. Furthermore, the 

needle tip should also impart minimal damage to the gel during the plotting procedures. Therefore, 

the best needle type should be narrow enough to penetrate the gel without disturbing surrounding 

material, limit unfavorable processing conditions for fragile cell types, and perform the printing 

process without clogging. To examine this concept a comparison between triangular, T, and 

curved, C, needles of increasing length was performed. The resulting data indicated all T type 
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needles have a higher average velocity than C type needles. Interestingly, we found the maximum 

velocity was greatest in the 1mm long needle type (Table 1). Yet, the 1 mm long T type requires 

lower force and results in a lower maximum pressure than both 7 mm long needle types. Given the 

inlet diameter for these simulations equaled 1 mm, the 1 mm long straight needle represents a 1:1 

geometry near that of a straight-sided cone. We also found conically shaped needles generate less 

internal pressure than straight-sided triangular needles of the same length. Numerical results 

indicate needle length has a significant effect on total pressure. Interestingly, the 7 mm C needle 

type, showed a sharp reduction in total pressure when compared to a straight-triangular needle type 

of the same length, 7 mm T. We found this relationship to suggest needle length and needle type 

has an effect on total pressure. While longer needle lengths resulted in higher total pressures, the 

C type needles were always lower in total pressure than the straight-triangular type of the same 

length. Overall, the results show that as the cross-sectional area of the microneedle decreases, the 

maximum fluid velocity increases and the pressure decrease.  

Results from our flow simulations also found the shear rate generated in conventional 

systems is greater than shear rates observed in needles with tapered geometries. These simulations 

suggest, as the extent and shape of the flow passages change, the cells within the fluids are 

subjected to stretching in one or more dimensions. It should be noted the shear rate in the 

conventional system was highest in the region immediately after the abrupt reduction in needle 

diameter, and also in the region nearest the needle tip, suggestive of elongational flow, (Fig. 3a). 

On the other hand, the shear rate observed in needles with a straight triangular taper is greatest in 

the region of the tip, (Fig. 3b). Furthermore, we were able to generate this post-constriction 

increase in shear rate in tapered needle types by increasing the length of the narrowest section of 

the needle (data not shown). 
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Fig. 2.  CFD particle studies of the bio-deposition process under conditions that favor 

aggregation. Heat map graphical representations of particle velocities of 10µm wide 

particles, the typical diameter of cells, traveling through idealized microneedle geometries 

representing: (a) conventional ‘luer-lock’ needle type and (b) triangular needle 

configurations under conditions of steady, non-Newtonian flow with a constant mass flow 

of 6x10-5 kg/s. The inlet and exit diameter for all needle conditions equaled 1 mm and 

60µm, respectively. The flow outlet boundary condition equaled standard atmospheric 

pressure (101325 Pa). Our model conditions accounted for the effects of gravity. The exit 

velocity for the conventional ‘luer-lock’ condition (a) was 72 mm/s, whereas the triangular 

needle (b) was 55 mm/s.  The aggregation of cells within the needle tip was encouraged by 

increasing particle accretion rates and lowering the normal and tangential coefficients of 

restitution at the needle wall. Under these conditions, particles near the exit of the 

microneedle with zero velocity (shown in blue) were only observed in the conventional 

‘luer-lock’ geometry types. 
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Using the results from our simulations, three microneedle geometry types were fabricated 

using a programmable pipette puller. The programmable pipette puller and our glass pipettes 

provided the ideal process to fabricate of many custom needle configurations. To provide a 

comparison to the standard 28-gauge stainless steel needle, these three types are shown in (Fig. 

3c). The three needle types shown in (Fig. 3c), from left to right, are examples of a 3 mm long 

straight-triangular needle with a 150μm tip diameter, a 5 mm long curved needle with 150μm 

diameter, and a 6 mm long curved needle with a 75μm diameter. One notable difference between 

the conventional needle and our pulled needles is the length of the narrow channel. 

The narrowest section of the conventional, stainless-steel needle is typically 30 mm long, 

which is five times longer than the typical length of our fabricated needles (~5 mm). Using needles 

with geometric features that minimize the amount of time cells travel through these narrow 

channels presents fewer opportunities for cells to aggregate, with a concurrent reduction in 

detrimental forces, both of which are a significant process improvement. Furthermore, by 

fabricating the needle from borosilicate glass tubes we were able to retain a high degree of 

structural rigidity without the need to increase the thickness of the needle wall. That is to say, the 

ratio of the outer-diameter to the inner-diameter is substantially lower for the glass needles than 

the conventional steel needle (Fig. 3c). This provided a substantial increase to the print resolution 

of our system. The conventional needle was not capable of the same degree of positional precision 

and repeatability as the glass needle. When compared to glass, the thin stainless-steel needle has 

more elastic material properties, which made it prone to bending during the printing process. The 

nonlinearity across the needle meant the needle tip was not always precisely above the target site. 

This also negatively impacted the plotting process by introducing insertion angles that were not 

always perpendicular to the target site, which resulted in increased disruption of the gelled material 

surrounding the target site. 
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Fig. 3.  Shear Rate results from CFD particle studies of the bio-deposition process using 

various microneedle geometries. 10µm wide particles, the typical diameter of cells, 

traveling through idealized microneedle geometries representing: (a) Conventional ‘luer-

lock’ needle geometry, (b) triangular needle geometry under conditions of steady, non-

Newtonian flow with a constant mass flow of 6x10-5 kg/s. The inlet and exit diameter for 

all needle conditions equaled 1 mm and 60µm, respectively. The flow outlet boundary 

condition equaled standard atmospheric pressure (101325 Pa). Our model conditions 

accounted for the effects of gravity. Simulated results indicated cell sized particles travel 

through areas with greater amounts of shear in conventional ‘luer-lock’ needles than 

straight-sided triangular needles. (c) Examples of pulled-glass microcapillary tubes with 

tapered geometries (left to right): 3mm long straight-triangular needle with a 150µm tip 

diameter, 5 mm long curved needle with 150µm diameter, 6mm long curved needle with a 

75µm diameter, and 28-gauge stainless steel needle. 
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While we initially began our experimentation with a narrower 30-gauge needle, the high 

concentration of cells required for the printing process made printing through such long narrow 

needles unreliable due to frequent clogging. Through further experimentation, we found a 28-

gauge needle provided the required performance for our experiments. Despite the 25 μm increase 

in interior needle diameter than a 30-gauge needle, using 28-gauge needles did not completely 

alleviate the clogging issue. It should also be noted that the 28-gauge needle has an inner diameter 

four times larger than the pulled glass microneedles. Overall, borosilicate glass tubes which 

combine the needle and syringe into a single, rigid part with geometry optimized for fragile cell 

transfer are superior to conventional, stainless-steel needles. 

2.4.3 Cell Viability Assay 

To further study the effects of microneedle geometry on the dynamic process of 

bioprinting, we sought to determine if there was an appreciable real-world impact seen when 

applying the various needle permutations. To accomplish this we used an immortalized, non-

tumorigenic, adult MEC line, MCF-12A. Following injection into 96-well plates, the cells were 

assayed for metabolic activity 1 hour post-printing and then again 96 hours post-printing. Results 

from the AlamarBlue assay indicated a significant reduction in the number of viable cells 1 hour 

post-printing for the syringe 28-gauge needle condition compared to control (no-tip) for two 

printing speeds, 600 μl min−1, 1000 μl min−1 (Fig. 4a, *p < 0.05). This experimental data supports 

results from our simulations. A significant increase in viability was also observed 96 hour post-

printing for the 1000 μl min−1, straight-cone or triangular condition, compared to control, (Fig. 

4b, *p < 0.05). These data confirmed that while survival was comparable amongst many of our 

needle designs, when print speeds increase, a corresponding reduction in viability is observed in 

needles that were previously shown to have a greater shear rate. This is likely due to the initial 

stress placed upon the cells resulting in a lack of cellular division during the 96 hour post-print.
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Fig. 4.  MCF-12A Alamar Blue cell viability studies post-printing. (a) Alamar Blue 

reduction 1 hour post-printing (*p < 0.05), (b) Alamar blue reduction 96 hours post-

printing (*p < 0.05). MCF-12A cells were suspended in media to a concentration of 1 x 

106 cells/ml. For all conditions, approximately 25µl of media was loaded into the needle 

at a rate of 10µl/min and dispensed into wells of a 96 well plate at one of four rates: 100, 

400, 600, and 1000µl/min. All four rates were repeated in three separate wells for a total 

of 12 wells per condition. Four needle conditions; no-tip (control), 27-gauge needle, 

straight cone, and long tapered needle were tested, giving a total of 48 wells. The sample 

mean viability was calculated and normalized to the initial viability of the no-tip control. 

Statistical significance was determined using one-way ANOVA with Dunnett’s post hoc 

test (*p < 0.05). Error bars, mean ± s.d. 
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2.4.4 Print Resolution Verification 

As the diameter of most somatic human cells are between 10–30 μm, and the spacing 

between injection points is largely determined by the diameter of the needle, we wished to generate 

a system capable of printing as close to this target range as possible. Precise placement of different 

cell types or signaling molecules and other various components in as close proximity to a 'cellular' 

resolution would be highly advantageous. To test the limits of printed cell resolution and the 

possibility of obtaining single cell extrusion events, we injected 1nl of media containing GFP 

labeled MDA-MB-468 cells into ~1 mm thick Geltrex, (Fig. 5a). To provide better illustration of 

this process, (Fig. 5b-d) represent GFP, bright-field, and combined channels of the single cell 

'events' our system generates. Analysis of the single-cell extrusion events indicated our system is 

capable of reliably extruding single cells. To further examine the capacity of our printer, we 

quantified the distances among printed cell locations using ImageJ software to define positional 

precision. This analysis found the X and Y resolution to be ±6.34μm and ±9.71 μm, respectively, 

confirming the factory-listed resolutions (13μm × 13μm (±6.5μm)). In addition to positional 

precision, bioprinting techniques also require precise control over the amount of extruded material. 

To determine how effective our printer was at controlling the amount of extruded materials, 

we generated a gradient of GFP labeled rat epithelial cells by decreasing the extrusion amount in 

each successive row from 70nl, 60nl, 50nl and 10nl, (Fig. 5e). Upon manual counting, the number 

of cells within each print location, from top to bottom, averaged 68 ± 6, 62 ± 4, 51 ± 4, and 8 ± 2, 

respectively. The theoretical cell concentration in the media used to generate the gradient study in 

(Fig. 5c) represented a distribution of 1 cell per nl. Given this information, we observed an overall 

congruency among the number of counted cells and the directed extrusion amount. The variation 

in the number of printed cells was greatest in row one, the group with the largest extrusion amount. 

We expected to observe greater variation in the number of cells in the larger extrusion conditions 

because our approach is largely based on pairing the probability of a single cell within a specified 

extrusion amount. The duration of the plotting procedure was less than 3 min. Therefore, it appears 

printing within this time window prevents confounding variables such as cell settling due to 

gravity. The results in Fig. 5 provide information on the ability of the system to repeatedly handle 

volumes from 1 to 100nl. Furthermore, they provide insight into our systems ability to repeatedly 

extrude a set number of cells within a single target volume
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Fig. 5.  Printer resolution and functional limitations. (a) 1nl extrusion, each containing a 

single GFP labeled MDA-MD-468 cell printed into ~ 1mm thick Geltrex. Scale bar 100µm. 

(b) GFP channel of single-cell extrusion event using MDA-MD-468 cells. Scale bar 

100µm. (c) Bright-field channel of the same single-cell extrusion event. Scale bar 100µm. 

(d) Combined GFP and bright-field. Scale bar 100µm. (e) Decreasing gradient of GFP 

labeled rat epithelial cells generated by extruding 70µL, 60µL, 50µL, and 10nL. Scale bar 

300µm. 
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2.4.5 Bioprinted hiPSCs 

Bioprinting pluripotent cells to generate biomimetic embryonal structures is a crucial step 

for disease modeling and tissue engineering. However, the printing process can physically alter 

the cellular structure resulting in unwanted shifts in gene expression and protein function. Having 

previously determined our extrusion system has minimal shear and pressure related effects on 

cells, we hypothesized that our system would have no negative impact on hiPSCs printed into 

either differentiation or pluripotent-conducive environments. We first wanted to determine if our 

system was capable of printing hiPSCs that retain their pluripotency post-printing. To test this, we 

used our pulled glass needles to print 3D aggregates of hiPSCs using pluripotency-conducive E8 

media into growth factor reduced Geltrex. Following 7 days post-printing of the iPSCs we then 

stained the aggregates with pluripotency antibody TRA-1-81, a cell surface marker specific for 

pluripotent cells (Fig. 6a), confirming that our system does not alter the ability of iPSCs to retain 

a pluripotent state. 

We next wanted to test the ability of our system to generate differentiated EBs. To confirm 

the differentiation of our injected hiPSCs, we compared their gene expression changes to the gold-

standard hanging-drop EB method. We therefore printed hiPSC in Geltrex (500 cells per injection) 

with FBS containing media and in tandem deposited hiPSCs on culture flask lids (500 cells per 

droplet) and following lid inversion, allowed them to incubate at 5% CO2, 37 °C for 7 days. To 

then evaluate and confirm that the differentiated EBs were similar in nature, mRNA was extracted, 

and qRT-PCR was performed. The results of our gene expression assays indicated a significant 

up-regulation of differentiation markers for the endoderm (Sox17), mesoderm (Hand1), and 

ectodermal (PAX3) lineages in the printed hiPSC group as compared to non-printed, non-

differentiated control hiPSCs, (Fig. 6c), *p < 0.01). Interestingly, the gene expression was also 

significantly upregulated as compared to the hanging drop EBs, possibly indicating a more mature 

differentiation. To observe the motility and growth of our injected hiPSCs we followed the 

injections with time-lapse imaging. This revealed the initial formation of spheroids followed by 

the dynamic growth of secondary and tertiary structures similar to budding, elongation, and 

increased complexity over 7 days, (Fig. 6d, & Sup. Movie 2.1-2.3). 
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Fig. 6.  3D printed hiPSCs. (a) Presence of green fluorescence due to TRA-1-81 binding to 

undifferentiated pluripotent cells in 3D printed hiPSC aggregate 7 days post-printing. Scale 

bar 50µm. (b) Bright-field image of 3D printed hiPSC aggregate. (c) Gene expression 

profiles of hiPSCs using markers for ectoderm (Pax 3), mesoderm (Hand 1), endoderm (Sox-

17), and pluripotent marker (Nanog) (*p < 0.01). Error bars, mean ± s.d. (d) 7 day-time lapse 

images of bioprinted hiPSCs in a 1:1 mixture of Geltrex/differentiation supportive media 

reveal dynamic growth and increased complexity (left to right, top-left taken at t0). 
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2.5 Discussion 

Using 3D printed parts and highly accessible hardware, we were able to reliably print at 

precise XYZ locations within 3D hydrogels cellular aggregates in various concentrations with 

injection volumes ranging from 1nl to hundreds of microliters with spatial resolution only limited 

by the diameter of the needle itself. Currently, our system can obtain prints containing 1 cell per 

injection event. We attribute part of this cellular resolution to the use of stepper motors, which are 

ideally suited for extrusion-based bioprinting as they offer a unique solution for open-loop position 

control. Specifically, the output shaft rotates in a series of discrete angular intervals, or steps, each 

time a command pulse is received, therefore the exact displacement of the shaft is known. This 

feedback allows the user to modify the acceleration rates and deceleration rates of the fluid while 

traveling through the needle during 3D printing experiments. This forward/reverse positional 

control gives an additional level of process control unseen in solenoid valve-based systems that 

have been previously examined90,93. Additionally, the shaft of the motor will remain at a specific 

step until another step pulse is supplied, which provides exceptional positional control and 

eliminates leaks from the needle tip. 

It is known that the fluid characteristics during syringe needle flow introduce three main 

types of mechanical forces capable of cell disruption: (i) shearing forces due to linear shear flow, 

(ii) pressure drop across the cell, and (iii) stretching forces due to extensional flow66. Numerous 

studies have implemented novel hydrogel-vehicle systems as a sacrificial, viscoelastic material to 

encapsulate cells and alter the distribution of damaging mechanical forces experienced during 

flow66,97,101,102. Yet, despite encapsulation in alginate solution (1.5% w/v), one study found ink-jet 

dispensing pressure demonstrated a more significant effect on cell viability than nozzle diameter; 

constructs printed at 40 psi showed a 38.75 % reduction in viability compared to those printed at 

5 psi103. Recently, Faulkner-Jones et al found an effect of nozzle length and dispensing pressure 

on human pluripotent stem cell viability; cells printed through an 8.9mm long nozzle showed 

higher levels of viability than those in a 24.4mm long nozzle93. We therefore tested if injection 

systems which impart the lowest amount of overall shear would be preferable for fragile cell 

transfer; and if those systems which minimize the amount of time a cell flows through the highest 
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shear-rate section of the needle (or nozzle) would be preferable to systems in which the cells spend 

a greater amount of time flowing through high shear-rate sections. 

To investigate this, we compared the force distribution of several needle types using FEM 

to identify features related to cell damaging forces. This approach enabled us to examine the 

development of these forces throughout the bioprinting process using systems of equations that 

included boundary conditions with slip along the needle wall. Mathematical models have been 

developed which indicate tapered needle geometries result in different cell damages due to the 

conical geometry and changing force distribution in the needle100. Billiet et al. found a significant 

pressure and needle type dependence on cell viability; at low inlet pressure, conically shaped 

needles are preferred over cylindrically shaped ones104. However, they found this advantage 

disappears at higher inlet pressures, yet they did not vary the length of the needle or the angle of 

the needle tip in their studies. Our investigation found short, conically shaped needles are preferred 

over long cylindrically shaped geometries due to a favorable axial pressure gradient that requires 

less energy to accelerate fluid through the microneedle, and a substantial reduction in the amount 

of shear in the needle tip. When the cross-section of a pipe gradually narrows, such as the straight-

triangular needle in (Fig. 3b), the streamlines follow closely along the contours of the pipe and 

virtually no extra frictional losses are observed. By generating a more even transition to the narrow 

diameter needle tip, tapered needles provide a better-suited environment for fragile cell transfer. 

Furthermore, when this transition is abrupt, such as those of the conventional 'luer-lock' 

configurations, the inner diameter of the syringe is notably larger than the needle tip, and the cells 

undergo a correspondingly abrupt increase in linear velocity as they pass into the needle, also 

known as extensional flow. This convergence to a small point, coupled with the increased shear 

seen in the long, cylindrical needle appear to be the two components that contribute to unfavorable 

printing conditions related to fragile cell transfer. With these hypothetical variations in mind, we 

confirmed that syringe-needle extrusion rates greater than 600 μl min−1 influence cell viability 

when compared to no-tip controls. Additionally, when examining the 96-h post injection viability 

it was clear that extrusion velocity and the needle geometry had a significant effect on growth. 

3D based organogenesis from hiPSCs is one of the most exciting areas of tissue engineering 

and biofabrication. The approach of self-organizing pluripotent cells into functional differentiated 

cells not only represents a better model of natural processes, but also serves as a highly efficient 

method of organogenesis. Our investigation provides essential information on how biofabrication 
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parameters such as needle geometry and flow rates may affect the post-printing behavior of 

hiPSCs. Positive TRA-1-81 staining of hiPSC printed aggregates in pluripotent supportive 

environments, indicated our printing device was capable of delivering unaltered pluripotent cells 

into 3D environments without the need for protective encapsulation strategies. Furthermore, when 

these same pluripotent cells were injected into differentiation signaling environments, the printed 

hiPSC aggregates generated small, spherical clusters of cells that then began to depart from the 

main body and wander through the 3D matrix. Interestingly the gene expression analysis revealed 

a significant increase in differentiation and pluripotent markers as compared to both the non-

differentiated iPSC and the standard EB formation methods. It is known that the physical features 

of the surrounding structure affect the differentiation of stem cells, therefore, one way to explain 

the increase in relative expression of these genes in the printed group, when compared to the non-

printed control, may be due to an interaction among the hiPSCs and 3D gel-matrix. Instead of 

directly mixing these highly sensitive cell types with the scaffold materials required to generate 

3D structures, our approach sought to prevent these types of cell-structure interactions by placing 

cells into specific 3D locations inside a pre-formed, 3D architecture. Because these cells are not 

directly included in the fabrication process, which often requires the structural change of the 

scaffold from a liquid to a gel post-printing, this method attempts to eliminate these types of 

extraneous variables to better understand the differentiation pathways that iPSCs follow when 

placed in a 3D environment. This feature could expose many future advantages that would 

establish a better understanding of normal tissue and organ development. This holds many benefits 

for developing models that better mimic human disease as well as affording us the capability to 

design and construct accurate replacement cellular constructs. 

Here, we have described a simple process for development of an accessible and high 

precision 3D bioprinter through modification of an inexpensive 'off the shelf' 3D printer. The 

bioprinter uses a pulled-glass capillary pipette to minimize shear stress and optimize positional 

control and precision. This minimal cellular impact enabled our system to successfully print 

hiPSCs while maintaining their pluripotency. Additionally, we were able to print hiPSCs into 

differentiation-conducive environments that generated cells of all three developmental germ-

layers. To the best of our knowledge, our system is the first 3D printed, bioprinting system to 

reliably achieve single cell print resolutions within 50μm resolution, while also exerting minimal 

unwanted impact on the cells viability and post-printing fate. Furthermore, our system is highly 
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modifiable and can be fabricated for use on any 3D printer. This type of system is ideal for 

adaptation by both basic and clinical research laboratories for the study of cellular interactions 

and/or tissue engineering applications.  

We would like to note that our bioprinting system upgrade cost less than $200 (not 

including the off-the-shelf printer, which could be substituted for other models). Our hope is our 

system, or similar systems will lower the technical and financial hurdle of 3D bioprinting to any 

laboratory with an interest in furthering the developments of 3D cellular biology. As open-sourced 

projects have developed advanced software systems such as Unix, and hardware solutions such as 

Arduino and Raspberry Pi, here we institute similar initiatives within the field of biofabrication. 

Overall, these results indicate we successfully achieved our first objective of designing and 

manufacturing an accessible, 3D bioprinting device capable of reliably printing cell aggregates 

and other biological materials. 
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All you behold, tho’ it appears without, 

it is within—in your imagination, 

of which this world of mortality is but a shadow. 

William Blake 

 

CHAPTER 3 

3D BIOPRINTING MAMMARY EPITHELIAL ORGANOIDS 

3.1 Overview 

While capable of generating high-throughput experimental designs to answer today’s ‘big 

data’ biological questions, bioprinting technology has remained inaccessible to most research labs 

due to the uncertainty as to whether the research benefits will outweigh the operational cost. In 

this study, we set out to incorporate our bioprinting technology into 3D cultures of human MECs. 

First, we hypothesize that MEC organoid formation is determined and regulated by the amount of 

local cell-cell interactions. To test this, attention was given to the ability to control the amount of 

‘bio-ink’ deposited in a specified location to promote MEC ‘self-assembly’ into cell-organoid 

structures. Second, it was hypothesized that the orientation of in vitro mammary organoid 

formation is determined by neighboring cell activity that imparts directional cues during the initial 

stages of MEC cell-organoid structure formation. This hypothesis was tested by determining the 

spatial distribution required to direct individual organoids to undergo coordinated, organoid fusion 

events along the entire length of the bioprinted array. Finally, this chapter concludes with a review 

of current work to develop and employ new methods to incorporate additional ‘bio-inks,’ cell 

types, and other biologically active materials into 3D cultures. 

 Standard 3D in vitro culture techniques, such as those used for MECs, rely on random 

distribution of cells through hydrogels. While these systems offer advantages over traditional 2D 

models, limitations persist owing to the lack of control over cellular placement within the hydrogel.  

This results in experimental inconsistencies and random organoid morphology. Robust, high-

throughput experimentation requires greater standardization of 3D epithelial culture techniques. 

Here, I detail the use of a 3D bioprinting platform as an investigative tool to control the 3D-
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formation of organoids, through the ‘self-assembly’ of human MECs. Experimental bioprinting 

procedures were optimized to enable the formation of controlled arrays of individual mammary 

organoids. I define the distance and cell number parameters necessary to print individual organoids 

that do not interact between print locations, as well as those required to generate large, contiguous 

organoids connected through multiple print locations.  Results indicate that as few as 10 cells can 

be used to form 3D MEC structures in a single print location. Furthermore, spacing print locations 

up to 500µm apart can be used to guide the development of large organoids with directed shapes 

and sizes. Using these fusion parameters, both linear and non-linear (contiguous circles) can be 

generated with sizes based on the available material inside the culture area. Results confirm cells 

from individual print locations interact to form structures with a contiguous lumen. This platform 

is adaptable to different culturing protocols and is superior to traditional, random 3D culture 

techniques in efficiency, reproducibility, and scalability. Importantly, due to the low-cost 

accessibility and CNC driven processes of our 3D bioprinter, we have the ability to disseminate 

our experiments with absolute precision to interested laboratories. 

3.2 Introduction 

3D culture systems for generating organoid cultures of MECs inside collagen matrices 

were first introduced over four decades ago33. In 3D culture, multiple parameters operate together 

to affect both experimental outcomes and interpretation of experimental results. These parameters 

include cell type, cell-cell interactions, ECM composition, culture media, and mechanical 

properties such as matrix stiffness and cell confinement40-50. Standard 3D culture procedures 

involve either mixing dispersed mammary epithelial cells within ECM substrates prior to gelling, 

or by culturing cells on top of a pre-formed ECM gel. Once polymerized, the ECM gel can be left 

attached to the culture dish or floated. The encapsulated cells will then randomly organize into 

organoids which remodel and reorganize the substrate matrix to generate structures composed of 

morphologically polarized cells facing an open lumen31,34,36-39. However, the size and morphology 

of resulting organoids varies greatly, even within the same ECM gel substrate. While some 

variability inevitably results from disparities in local environmental conditions, such as collagen 

fiber anisotropy within specific regions of a gel, a major source of potentially controllable 
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variability results from the random distribution of cells within the gel57,59,61,62,105,106. This 

variability leads to difficulty in interpreting and reproducing results, especially laboratory to 

laboratory. As inter-laboratory reproducibility is a major concern in modern biomedical research, 

platforms that will allow for better control and reproduction of results are highly desired107. 

We have recently described the adaptation of an off the shelf 3D printer for the purposes 

of bioprinting cells in 3D substrates108. Our goal was to design an accessible, open-access 

bioprinter that would not be cost prohibitive to research laboratories. Because of the precision 

afforded by the CNC system, and the ability to share the G-CODE underlying the printing process, 

the use of bioprinting in basic research laboratories offers promise for new standards designed to 

increase internal and intra-laboratory experimental reproducibility. Specifically, the use of CNC 

systems to control the spatial deposition of cells in 3D structures appears well suited to recreate 

the tissue-specific, contextual cues needed to overcome the limitations of manual pipette-

patterning108,109. Here, I describe the adaptation and validation of an accessible bioprinter to 

produce high-fidelity, spatially-controlled arrays of human mammary organoids inside 3D 

collagen matrices. We demonstrate the superiority of our printing process over manual matrix 

embedding techniques in efficiency and consistency in organoid morphology. We further describe 

parameters necessary to generate large organoids with shapes dictated by print locations (e.g. linear 

or circular). These data lay the groundwork for adapting 3D bioprinting methods using additional 

cell types and 3D matrices, thereby providing an ideal method to derive empirical standards aimed 

to improve the in vitro culture of biological processes such as development and tumorigenesis. 
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3.3 Materials and Methods 

3.3.1 Cell Culture 

Immortalized non-tumorigenic human breast epithelial cell line, MCF-12A was purchased 

from ATCC. MCF-12A cells were initially cultured in 2D on tissue culture plastic in a 75 cm2 

flask supplemented with a 1:1 mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 

medium (DMEM/F12), 5% Horse Serum, 20 ng ml-1 hEGF, 0.01 mg ml-1 bovine insulin, 500 ng 

ml-1 hydrocortisone and 1% ABAM (ThermoFisher). MCF-12A cells were cultured at 37.0 °C and 

5.0% CO2. After confluence, the cells were dissociated using TrypleE (ThermoFisher) and 

collected by centrifugation. 

3.3.2 Preparation of Collagen ECMs and Manual Cell-Matrix Embedding 

For manual cell-matrix embedding studies, single cell suspensions of MCF-12A cells were 

mixed with neutralizing solution and acidified rat tail collagen I (Corning) as specified by the 

manufacture, unless noted otherwise, to a final concentration of 1.5 mg/ml. Immediately after 

mixing, 500µl of neutralized collagen I gel material, containing approximately 5000 cells, was 

dispensed into a 24 well plate and allowed to solidify and adhere to the surfaces of the well for 1 

hour in a laboratory incubator at 37.0°C and 5.0% CO2. After gelation (solidification), 500µl of 

cell media was added to the wells. Subsequent media changes were performed every 3 days. 

VitroCol, human collagen I solution (Advanced BioMatrix), was prepared according to 

manufacturer’s recommendation to a final concentration of 1.0 mg/ml. For all printing 

experiments, a minimum of 500µl of collagen gel was dispensed into individual wells of a 24 well 

plate and allowed to solidify for 1 hour in a laboratory incubator at 37.0°C and 5.0% CO2. For all 

experiments, cells were monitored using a combination of brightfield imaging/fluorescent imaging 

using a Zeiss axio-observer Z1 fluorescent microscope, or time-lapse imaging using a Lumascope 

620 microscope. 
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3.3.3 Bioprinting System 

A previously developed bioprinting system was used to robotically insert a microneedle 

into specified 3D locations of a polymerized collagen gel108. Immediately before printing, 2D 

cultures of MCF-12A cells were dissociated into single cells using TrypleE (ThermoFisher), 

centrifuged at 300×g, and re-suspended in media to obtain a final ‘ink’ concentration of 60×104 

cells ml-1. Shortly thereafter, 50µl of cell-containing ‘ink’ was loaded into a sterile needle. Printing 

operations were initiated after the ‘ink’ containing needle was attached to the print head. The 

number of cells deposited in a target location was manipulated by varying the volume of cell-

containing ‘bio-ink’ extruded from the needle tip, or to equalize volumes, by increasing or 

decreasing initial cell concentration. Printing operations were optimized to extrude specified 

numbers of cells inside the collagen I gel via a CNC insertion routine which deposited cell 

containing media at a specified ‘target’ location inside the polymerized collagen I gel. Users 

specified intended wells of commercially available tissue culture plates, printing locations, 

distances among printing locations, and the number of cells per target location. The experiment 

information was automatically converted into G-code, loaded into Repetier Host, and sent to the 

three-axis microcontroller of the bioprinter. The bioprinting system was located inside a benchtop 

biosafety cabinet during all printing operations. The heated print bed was set to 37° for all printing 

operations. Needles used by the bioprinting device were fabricated using a Sutter P97 

programmable pipette puller to have tip diameters of 50µm. All printing equipment was sterilized 

using steam autoclave prior to printing procedures. After printing routines were complete, plates 

were covered with 500µl of media and placed inside a laboratory incubator at 37°C, 5% CO2. Post-

printing, cells were monitored using a combination of brightfield imaging/fluorescent imaging 

using a Zeiss axio-observer Z1 fluorescent microscope, or time-lapse imaging using a Lumascope 

620 microscope. Cell-specific media exchange was performed every 3 days. All experimental 

conditions were performed in triplicate. 

3.3.4 Characterization of Organoid Growth and Morphology 

Immediately after printing, the initial quantity of printed cells was verified using manual 

counting and image analysis using ImageJ and Matlab. Post-printing, cells were monitored up to 
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21 days using a Zeiss axio-observer Z1 fluorescent microscope. The size of organoids was 

determined by analyzing bright-field images taken daily for each experimental condition using 

ImageJ. Within this investigation, organoids were operationally defined as a cluster of cells with 

no clear cell-cell boundaries, or the inability to discern individual cells from neighboring cells. 

 3.3.5 Immunofluorescence Staining 

Gels were fixed in 10% neutral buffered formalin, paraffin embedded and sectioned.  

Sections were prepared for staining by deparaffinizing in a xylene substitute, rehydration, and 

heat-mediated antigen retrieval using pH 9 tris-EDTA with 0.05% tween 20. Sections were 

blocked in 10% goat serum and incubated with primary antibodies in a humidified chamber at 4°C 

overnight. Secondary antibodies were added for 1 hour at room temperature. Sections were 

counterstained with DAPI. Antibodies were used at the following concentrations: mouse 

monoclonal antibody to BetaCatenin [12F7] (1:50; ab22656, Abcam), anti-green fluorescent 

protein rabbit IgG Alexafluor 488 conjugated (1:75; Invitrogen A21311); rabbit monoclonal 

antibody to cytokeratin 5 [EP1601Y] (1:75; ab52635, Abcam), mouse monoclonal antibody to 

cytokeratin 8 [C-51] (1:35; ab2531, Abcam), rabbit anti-pan-cadherin (1:75; 71-7100, 

ThermoFisher), rabbit polyclonal antibody to GJB6 [Cx30] (1:25;  HPA014846, Sigma-Aldrich), 

and rabbit polyclonal antibody to GJB1 [Cx32] (1:25; HPA010663, Sigma-Aldrich). Appropriate 

Alexafluor 488 and 568 conjugated goat antibodies (1:1000; ThermoFisher) were used for 

secondary antibody labeling. All sections were counterstained with DAPI and imaged using a Zeiss 

axio-observer Z1 fluorescent microscope. 

3.3.6 Statistical Analysis 

 Statistical analyses were performed using the software GraphPad Prism. Results were 

assessed for statistical significance using Student’s t test. Differences were considered statistically 

significant at *p < 0.05. 



59 

3.4 Results 

3.4.1 Manual Matrix Embedding Culture Technique 

As the main aim of this work was to validate experimental bioprinting methods for 

investigating mammary epithelial biology in 3D culture, we first established baseline behaviors of 

MCF-12A cells using manual cell-matrix embedding techniques. Furthermore, to determine the 

effect of physical parameters on MEC behaviors in 3D cultures, we compared the growth patterns 

of MCF-12A organoid formation in attached and floating 3D collagen I gels. Similar to previous 

findings 61,110, these results found an extremely high level of inter and intra experimental 

variability. 

Heuristically speaking, organoid growth patterns during the first 5 days under these two 

conditions were similar. Day 1 following the manual embedding of cells within collagen gels, the 

cells were similar in morphology, with cells either remaining dispersed individually or forming 

small clusters (Fig. 7a,b). This activity seemed to correspond with the random nature in which the 

cells were embedded in the gel—i.e. the distance among cells in the 3D matrix.  

In both conditions, noticeable structures emerge by day 5 (Fig. 7a,b). However, by day 8 

the attached and floating conditions resulted in prominent structural variations, which, by day 14, 

presented distinguishable organoid morphologies (Fig. 7a,b). An average organoid size of (509 ± 

169µm) and (302 ± 114µm) were obtained after 14 days of culture in attached and floating collagen 

I gels, respectively. Overall, three common organoid morphologies were observed: sphere like 

(Fig. 7c), duct like (Fig. 7d), and star like (Fig 7e,f) which ranged in size from 190-1235µm.  
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Fig.7.  Manual method of MCF-12A Organoid Formation. Example of random organoid 

dispersion and morphology of MCF-12A cells following manual matrix embedding in 

collagen gels either (a) attached to the culture plate or (b) floating, at 5, 8, 10, and 14 days 

(left to right). Scale bar: 200µm. (c) Single phenotypic organoid observed in attached gels.  

Scale bar 50µm. (d) Organoid linking multiple organoids in floating gels. Scale bar 50µm. 

(e) Image showing organoid with protrusions extending into floating gel. Scale bar 100µm. 

(f) Additional organoid type found only in floating gel. Scale bar 100µm. 
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Interestingly, MCF-12A organoids in attached gels only formed hollow, single-cell thick, 

‘sphere-like’ organoids ranging from 190-1235µm in diameter (Fig. 7a,c). However, the ‘sphere-

like’ organoids in floating gels ranged from 100-618µm, displayed more complex morphologies, 

and contained a dark, inner cell-mass (Fig. 1d). Additionally, the cell structures produced in 

attached gels continue to grow into the boundaries of neighboring structures (Fig. 7a). In addition 

to the presence of organoid phenotypes not observed in the attached condition, floating collagen 

gel cultures resulted in networked arrays of organoid structures. (Fig. 7b). It appears that the ‘duct-

like’ organoid phenotype is associated with directional growth patterns, which form networked 

structures among the ‘sphere-like’ acini (Fig. 7e). These ‘duct-like’ organoids were frequently 

preceded by and associated with cells exhibiting elongated morphologies with visible processes, 

likely demonstrating cell-matrix interactions (Fig. 7f). In agreement with previous reports62,  these 

results indicated the floating collagen gels underwent gel shrinkage of several millimeters 

throughout the culture period. 

Within 14 days in a standard 24 well plate, the initial mixtures of 5000 cells/well resulted 

in average of (439 ± 59) and (1060 ± 209) organoids/well for attached and floating conditions, 

respectively.  Thus, attached gels require an average of 11.39 cells per organoid, whereas floating 

gels required about 4.72 cells per organoid. As can be seen from the images in (Fig. 7a,b), the 

matrix embedding technique resulted in random organoid distributions for both culture conditions, 

which further illustrates the difficulty in interpreting experimental findings using traditional 

embedding techniques. However, statistical analysis of experimental data indicated the effect of 

culture conditions was significant (*p < 0.001, two-tailed). These data support the idea that the 

increased rigidity of the culture environment has a negative effect on the ability of breast epithelial 

cells to form organoids. This implies that a biophysical component is involved in regulating breast 

epithelial differentiation. This observation is noteworthy because women with dense breast tissue 

have a four to six-fold increased risk of developing breast cancer111.  
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Fig. 8.  Design of the 3D bioprinting platform. (a) Adapted 

commercially available 3D printer. (b) Example of machine path 

during insertion routine. (c) Pulled-glass microneedle. Scale bar 

1mm. (d) 24 well plate containing 3D bioprinted mammary 

epithelial organoids 14 days post-printing. (e) Bioprinted MCF-

12A organoids 7 days post-printing. Scale bar 500µm. 
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3.4.2 Generation of Consistent Individual Mammary Epithelial Organoids 

Using this baseline as our comparator, we next sought to identify the core parameters to 

reliably generate and guide the formation of organoids using our low-cost bioprinting system (Fig. 

8a)108. Our bioprinting method uses CNC processes to guide microneedles to directly insert cells 

into 3D locations of polymerized collagen I gels (Fig. 8b,c). Importantly, previous studies have 

established that multiple needle insertions into a polymerized collagen gel did not disrupt 

neighboring cell-deposits108. This bioprinting technique eliminated the random cell distribution 

commonly observed in layer-by-layer processes and manual cell-matrix embedding procedures by 

confining cell aggregates in specified locations (Fig. 8d,e).  

We initially assessed if the formation frequency of individual human mammary epithelial 

organoids could be increased by controlling the initial number of singly-dissociated cells in a 

specified location. Using our bioprinting device, we dispensed cell-laden media at equivalent 

volumes in equally spaced, linear arrays inside collagen I gels and tracked them daily for 14 days 

(Fig. 9). Results indicated initial cell injections of ≤ 5 cells formed individual organoids at 

frequency of 1/50 and 28/50 at 7 and 14 days, respectively. However, when the initial printed cell 

number equaled 10 cells, our system achieved 37/50 and 49/50 organoid efficiency at 7 and 14 

days, respectively. Using 40 and 60 cells resulted in consistent (50/50) organoid formation for both 

7 and 14 days. These results indicate reliable generation of individual organoids can be achieved 

by increasing the initial number of cells (≥10) in specified locations with a spacing of 500µm. We 

also found printed cell clusters containing cell numbers (≥10) cells consistently develop branched 

processes, exclusively pointed towards neighboring organoids, which, by day 10, had formed a 

contiguous structure (Fig. 9). Furthermore, the temporal nature of this branching process increased 

correlative to the addition of more cells within the initial printing event. These results suggest 

MEC organoid formation is directly related to the quantity of cells within a local environment. 
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Fig. 9.  Bioprinting results in consistent organoid formation. MCF-12A cells were printed 

at 500µm between print locations using initial cell concentration of 5, 10, 40, or 60 cells 

(columns, left to right, respectively). Images were taken at Days 4, 5, 6, 7, 9, 10, 12 and 14 

(rows top to bottom, respectively). Initial injections of 10 or more cells resulted in 

consistent organoid formation. Consistent fusion of multiple print locations was seen by 

day 14 when ≥10 cells were printed per injection site. Scale bar 500µm. 
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Fig. 10.  Organoid fusion occurs between organoids printed up to 500µm apart. 

MCF-12A cells were printed (40 cells per deposit) at distances of 500µm, 400µm, 

300µm, and 200µm (columns, left to right, respectively). Consistent fusion was 

seen by day 11 in all cases, with contiguous organoids forming between prints 

spaced ≤ 400µm apart. Scale bar 500µm. 
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3.4.3 Directing the Generation of Large, Contiguous, Mammary Epithelial Organoids 

As the consistent nature of individual organoid formation changed with the variation of 

cell number, we next sought to determine if varying the inter-organoid distances could evoke a 

similar impact on the bridged-contiguous organoid formation that we observed in our linear arrays. 

To this end, we monitored the effect of organoid spacing on growth behavior by printing MCF-

12A cells along linear arrays of cell-deposits containing 40 (± 6) cells in collagen gels (Fig. 10). 

Data indicated inter-organoid spacing (≤300µm) directed collective cell growth of all (36/36) 

organoids into duct-like patterns along the entire length of the linear array (~4mm) within 7 days 

post-printing (Fig. 10). At 400µm, 34/36 organoids fused within 7 days post-printing (Fig. 10). 

Twenty-three of the 36 organoids spaced 500µm apart achieved organoid fusion within 7 days, 

however, 35/36 of these organoids achieved fusion by day 11 (Fig. 10).   

Closer examination of the 500µm print conditions indicated cell numbers increased during 

the first 3 days post-printing (Fig. 11a). Between day 3 and day 5, MCF-12A cell clusters began 

to form branched extensions, radiating from the initial print location (Fig. 11b). By day 7, these 

extensions matured and formed connections among neighboring organoids (Fig, 11c). Time-lapse 

imaging confirmed the branched extensions were directed toward neighboring organoids (Sup. 

Movie 3.1). Time-lapse imaging data also indicated global MCF-12A cell migration appears to 

follow the routes established by these initial extensions (Sup. Movie 3.2). It was noted that 

decreasing organoid spacing appears to promote the initial formation of a central structure 

corresponding to the directional-axis of the printed array.  
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Thus, by manipulating the spacing we can predictably increase the formation of a 

contiguous structure. Of note was the propensity of individual organoids to maintain the prescribed 

nature of the initial printed pattern throughout this fusion process. However, the importance of 

spacing distance on the degree of inter-organoid interactions was particularly highlighted when 

neighboring linear arrays printed ≥700µm apart failed to achieve robust interaction (data not 

shown). We believe these results provide substantial evidence of the superior ability of 3D 

bioprinting platforms to direct and control the formation of MEC organoids than manual matrix 

embedding methods. 

 

Fig. 11.  Maturation and formation of MCF-12A organoids. 

Images of bioprinted, MCF-12A cell-deposits at 500µm 

spacing (a) 3 days post-printing, (b) 5 days post-printing, (c) 

7 days post-printing. Scale bar 200µm. 
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3.4.4 Generating Additional Shapes Through 3D Bioprinting 

Next, we examined the possibility of directing contiguous luminal structures to conform to 

alternative shapes. We printed 40 cell clusters in a radial pattern in rat tail collagen gels with 

spacing patterns similar to our linear arrays at 500µm, 400µm, and 300µm (Fig. 12a). After 7 days, 

all of the print locations had formed individual organoids (Fig. 12a), and obvious processes and 

connections were actively forming among the 300µm spaced injections (Fig. 12a). By day 7, 

similar again to our linear arrays, all groups with at least 30 cells formed contiguous structures, 

which reflected the intended circular geometry (Fig. 12b,c). Furthermore, our ability to direct MEC 

structures was maintained throughout 24 days of culture, wherein the cells reacted similarly to the 

linear arrays by maintaining the initial print pattern, and eventually formed a contiguous, luminal 

circle ~ 4mm in diameter (Fig. 12d). These findings indicate mammary epithelial migration 

patterns are not random, rather, the MCF-12A cells actively seek neighboring organoid structures 

to participate in the formation of large structures. Furthermore, when these structures were 

deformed using forceps, they quickly returned to their original shape. Overall, these data clearly 

highlight the tunable nature of our system, where initial cell number and spacing can consistently 

influence the formation of individual MEC organoids. This data also highlights the importance of 

defining and optimizing printing parameters for successful fabrication of large contiguous luminal 

organoids and structures. 
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Fig. 12.  Directed printing of non-linear organoids. (a) MCF-12A cells (40 cells per 

deposit) printed in a radial pattern with print spacings of (a) 500µm, 400µm, or 300µm. 

Images of cell clusters illustrate the ability to direct large scale mammary structures 

within 7 days using additional geometric configurations. (b) Fluorescent image of 

bioprinted, RFP MCF-12A cell clusters 14 days post-print demonstrating fusion of 

individual organoids into a contiguous circular organoid. (c) Brightfield image of large 

circular organoid 14 days post-print. (d) Example of a large circular organoid inside 24 

well culture plate 24 days post-print measuring ~4mm in diameter. Scale bar 500µm. 
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Fig. 13.  Alternating RFP/GFP MCF-12A cell deposits to form contiguous organoids. (a) Day 7, and (b) day 9 organoids resulting 

from alternating RFP+ and GFP+ MCF12A cells using a 200µm spacing. Scale bar 200µm. (c)  Immunofluorescence staining of 

Cx32 (red) and GFP (green) in cross-section of an organoid formed as described in a and b. The presence of GFP+ cells along the 

same lumen as RFP cells along with expression of Cx32 along RFP/GFP cell boundaries indicates the cells from adjacent print 

sites intermingled and formed cellular junctions. Scale bar 50µm. 
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3.4.5 Organoids Cooperate to Form Gap Junctions with Neighboring Organoids 

Having established the cell number and individual organoid spacing necessary to form 

contiguous organoids, we next sought to determine if our custom 3D bioprinting device could 

introduce multiple cell types within the same linear array. Specifically, we wished to determine if 

we could generate contiguous, luminal structures composed of alternating cell types. To this end, 

we printed equally-spaced 200µm linear arrays of alternating red fluorescent protein (RFP) labeled 

and GFP labeled MCF-12A cells in collagen gels. The RFP and GFP printed cells formed 

contiguous organoids with a central structure and branched extensions with mixed GFP and RFP 

cells by day 7 (Fig. 13a). Separating the fluorescent channels of these structures revealed the 

presence of RFP and GFP labeled cells intermingling with one another within regions of the larger 

structure and branched processes at Day 9 (Fig. 13b). Indication of coordinated cellular behavior 

was further supported by positive staining of gap junction protein connexin-32 (Cx32) between 

RFP and GFP MCF-12A cells along the same lumen (Fig. 13c). This suggests MCF-12A organoid 

formation does not result from one single founder cell, rather, local MCF-12A cell populations 

actively participate in the formation of organoid structures. These results also provide evidence of 

our ability to place more than one cell type (RFP and GFP labeled MCF-12A cells) within close 

proximity. 

3.4.6 Bio-Printing in Additional Sources of Collagen ECM 

While rodent derived collagen models recapitulate many features of human mammary 

gland biology, interspecies variations in ECM composition, organization, density, and function 

exist112. Furthermore, the use of substrata derived from EHS tumors, commercial preparations, or 

other synthetic scaffolds can suffer from batch to batch variability. Given the ability to standardize 

the quantity and spatial distribution of MECs in 3D scaffolds, we set to investigate the ability to 

direct MEC organoid formation in additional sources of ECM using human-derived collagen gels.
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Fig. 14.  Alternating RFP/GFP MCF-12A cell deposits in human collagen. (a) 2 days post-printing.  Scale bar 250µm. (b) Images of breast 

epithelial organoids (250µm initial spacing) 7 days post-printing indicating mix of GFP+ and RFP+ cells in the same structure: GFP (b1), 

RFP (b2), brightfield (b3), and merged (b4). Scale bar 500µm. (c) RFP/GFP structure at 7 days using 500µm initial spacing. Scale bar 

500µm. (d) Higher magnification image of RFP/GFP fusion site. Scale bar 50µm. (e) Higher magnification image demonstrating 

RFP+/GFP+ cells in same ‘lobular’ structure. Scale bar 100µm. (f) Alternating RFP/GFP cell deposits at 500µm in attached, rat tail 

collagen gels failed to result in organoid fusion within 14 days. Scale bar 500µm. 
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To this end, we again printed RFP and GFP labeled MCF-12A cells in 200-500µm linear arrays in 

human-derived collagen gels (Fig. 14a).  After 7 days in culture, RFP and GFP cells within this 

spacing window were observed to contribute to the formation of large, branched structures (Fig. 

14b1-b4). Again, upon closer examination in situ, RFP and GFP cells printed at a 500µm spacing 

were observed intermingling to form a contiguous organoid structure (Fig. 14c,d,e). Data from 9 

wells, each containing 60 target locations, indicated a total of 528/540 neighboring organoid fusion 

events within 7 days post-printing. Further, as a direct comparison, alternating RFP/GFP MCF-

12A cells printed 500µm apart in attached rat tail collagen remained isolated and failed to form 

branched processes (Fig. 14f). These results highlight the ability of 3D bioprinting systems to 

standardize 3D cell culture assays. Moreover, this standardization process can be used to increase 

the validity of investigations aiming to determine the effect of various 3D gel-components on cell 

behavior. 

Histological staining of MCF-12A cells printed in human collagen confirmed the presence 

of GFP and RFP labeled cells within the same lumen (Fig. 15a1-a4). The presence of luminal and 

basal cell populations was confirmed by positive staining of Ck5 and Ck8 in the bioprinted MCF-

12A organoids (Fig. 15b1-b4). Full adhesive function in cell-cell adhesion processes were 

supported by noting positive expression of cadherins and β-catenin (Fig. 15c1-c4). 

Importantly, these results illustrate our bioprinting technique can investigate additional 

ECM preparations while maintaining consistent cell-deposit numbers and spatial distribution of 

printed MECs. Additionally, this data suggests our bioprinting platform and associated methods 

can re-create the unique morphologies observed in attached vs floating gel conditions from manual 

embedding experiments. Also, these results confirmed the phenomena of MCF-12A organoid 

fusion is conserved across additional sources of 3D ECM. Together, we believe these results 

validated our bioprinting methods, and provided valuable insights into the process of MEC 

organoid formation. Furthermore, given our ability to controllably-deposit multiple cell types in 

3D, we believe our bioprinting method possess a greater ability to reproduce a ‘tissue-like’ 

organization than those found in 3D matrix embedding. 
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Fig. 15.  Immunofluorescent staining of MCF-12A cell organoids in human collagen. DAPI 

(a1, blue) indicating total cell nuclei, GFP+ cells (a2, green), RFP+ cells (a3, red). Merged 

image (a4) demonstrates presence of both cell types in the same organoid structure. The 

presence of Ck-5 (b2, green) and Ck-8 (b3, red) indicate the distribution of ‘luminal’ and 

‘basal’ cell populations. Expression of Cadherins and β-Catenin indicate functional cell-

cell adhesion throughout the organoid structure. Scale bar 100µm. 
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3.5 Discussion 

The quest for understanding development and disease in higher organisms has been 

hindered by a lack of investigative tools to accurately and repeatedly control the many variables 

that impact 3D in vitro model systems. A profound example of this is evidenced from the disparate 

results among laboratory-to-laboratory, despite the use of biochemically identical ECM matrices 

and cell types55,59,61,62. In the experiments reported herein, we describe a technique to 

systematically investigate the extent to which cell-cell and cell-ECM interactions act as regulators 

of normal epithelial cell differentiation into well-organized structures.  By standardizing the 

number and position of cells inside pre-formed gels, we have developed a method to help 

standardize the analysis of 3D cultures. 

It has been noted that organoids resulting from single, primary epithelial cells vary in 

morphology and formation efficiency compared to organoids derived from primary epithelial cell 

clusters113. Indeed, we expect the increase in efficiency of our system was due in large part to the 

ability to define the initial proximity of printed cells. This observation is a likely cause of the high 

variability in organoid formation rates seen using manual cell-matrix techniques, where individual 

cell migration within the gel occurs in a random, disorganized manner.  In contrast, printed cell 

aggregates were prone to quickly begin internal organization into cell clusters, which then function 

as a group to seek out neighboring organoids (Sup. Movie 3.1,3.2).  Our quantitative data bolstered 

this idea as the formation frequency of organoids increased significantly when we crossed a critical 

cell number threshold. Furthermore, our data suggest reliable control over both initial cell number 

and organoid spacing permits experimenter directed fabrication of large scale, branched, tubular 

structures of epithelial origin. These data frame the idea that the quantity of inter-cellular 

communications, propagated when cells are initially introduced into a foreign 3D environment, 

can impact the initiation of specific sets of response cascades in developing MEC cell aggregates. 

It has been shown that following stable adhesion to ECM components, the mechanical 

interaction between individual cells and ECM results in the transmission of strain patterns which 

can extend through hundreds of microns of gel56-58. This applied mechanical strain leads collagen 

fibers to orient along the direction of the strain59, which results in increased contact guidance. 

Furthermore, early studies found a preference for MEC organoids to develop along tension lines 

between adjacent organoids within collagen gels60. In a similar manner to which MECs actively 
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seek neighboring organoids in 3D gels, we find morphological patterns appear to be associated 

with the relative position of an individual organoid within the printed array. This may explain our 

observations that organoids seemed to “sense” neighboring organoids; extending processes 

preferentially toward neighboring organoids that ultimately lead to organoid fusion and the 

formation of larger, contiguous structures. Therefore, the ability of this bioprinting method to 

direct organoid growth by manipulating the distances among initial cell-deposits may be directly 

related to this phenomenon. 

Throughout the past decade, testing and controlling microenvironmental aspects of 3D 

culture systems has enabled researchers to bridge the gap between traditional 2D cell culture 

systems and animal models for studying development and tumorigenesis. We used our bioprinting 

device to derive a set of guidelines to enable reliable formation of large-scale, human mammary 

epithelial organoids in 3D collagen I gels. These results demonstrate epithelial organoid 

morphology can be directed by initial cell-deposit number, spacing, and overall print geometry. 

However, the development of actual tissues cannot be reduced to cellular events alone. ECM 

synthesis and assembly in the mammary gland is a dynamic and reciprocal relationship between 

multiple epithelial cell types, myoepithelial cells, adipocytes, endothelial cells, immune cells, and 

fibroblasts. Where the ECM serves to support and instruct cell behavior, cells also continuously 

modify and synthesize ECM112. Therefore, each breast tumor should be seen as a unique, and 

complex organ, which continuously evolves as a result of not only specific mutations and genomic 

instability in individual cancer cells, but also dynamic changes in tumor cell interactions. 

The methods described here demonstrate the capability to accurately deposit multiple cell 

types as neighboring aggregates, which can communicate and synchronize their structure-forming 

activities. Our approach allows direct control over the generation of in vitro constructs large 

enough for in vivo implantation. More importantly, using this system to investigate co-cultures of 

two or more cell types in a defined microenvironment would greatly increase the ability to develop 

reliable 3D surrogate models for breast development and carcinogenesis.  This is of interest to our 

group, as we have great interest in understanding how the microenvironment controls 

differentiation of stem and cancer cells114-122.  We plan to adapt these protocols for the development 

of chimeric structures containing cancer and normal epithelial cells as in vitro models that mimic 

our previous in vivo findings. Since in vivo model systems are costly and complex, our 3D 

bioprinting technology stands as the obvious choice for developing physiological, 3D model 
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systems using human cells to create the appropriate contextual cues. Furthermore, we expect the 

processes outlined here to be easily adaptable to other epithelial cell types, including endothelial 

cells, to study vascularization and development in other tissue types. 

3.6 Conclusion 

These data demonstrate that our CNC driven, 3D bioprinter is capable of repeatable and 

reliable printing of MEC structures. Furthermore, through coordinated cluster placement, our 

system can generate consistent, large contiguous luminal structures containing more than one cell 

type. Furthermore, due to the digital transfer of instructional GCODE files, the results of these 3D 

bioprinting experiments could easily be replicated in other laboratories with a similar 3D 

bioprinting platform. This paradigm could engender a digitization of biological experimentation 

that would lead to consistent laboratory-to-laboratory research, improving the ability to progress 

cancer research-to-cures. Thus, these results indicate we successfully achieved our second 

objective. 
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To me life consists simply in this, in the fluctuation between 

two poles, in the hither and thither between the two 

foundation pillars of the world. 

Hermann Hesse 

 

CHAPTER 4 

3D BIOPRINTING CHIMERIC MEC ORGANOIDS 

4.1 OVERVIEW 

A mounting body of evidence suggests the context and status of cellular interactions within 

the microenvironment are a key determinant of whether cells within a tissue retain their normal 

architecture or undergo tumor progression26,123,124. This conclusion was largely made evident 

through co-culturing stroma from one type of tissue with epithelial cells from a different tissue, 

frequently known as chimeric models 26,125-127. In vivo, chimeric-recombination models first 

identified the unique ability of tissue stroma to influence the developing epithelium128. For 

example, when mammary epithelium was recombined with salivary gland mesenchyme, structures 

that resembled salivary gland epithelium were generated129. Additionally, salivary epithelium 

outgrowths in contact with mammary mesenchyme resembled a mammary gland ductal tree, 

became competent for lactation, and responded to hormonal stimuli130. Astonishingly, it has been 

demonstrated that the regenerating mouse mammary gland can reprogram testicular cells, neural 

progenitors, bone marrow and breast cancer cells to adopt a normal mammary progenitor cell 

fate114,116,128,131,132. These studies revealed the highly malleable status of the epithelial component 

and the importance of the in vivo components of the gland for tissue function and cell fate. 

While the accrual of these results highlights the need to investigate the identities and 

molecular mechanisms involved in this process, it is much more challenging to directly and non-

invasively image tumor-cell interactions as they begin to occur in vivo. Furthermore, identifying 

aspects of these mechanisms has been problematic because it is difficult to isolate the effects of an 

individual stimulus on cell behavior in vivo. Additionally, it should be noted that while gland 

reconstitution studies have been able to identify the regenerative capacity of the mammary stem 
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cell, gland reconstruction likely involves injection site wounding, which may induce different fate 

decisions than those occurring during normal gland development3. Also, these investigations lack 

sufficient methods for maintaining cells in close proximity once implanted in vivo22,24,133,134. 

In an effort to study these systems in a more definable space, in vitro 2D cell culture has 

traditionally been employed. Yet, 2D cell cultures are largely non-biomimetic, and as a result, cell-

signaling networks are altered in 2D environments. Many investigations have illustrated 3D 

architectures are necessary to elicit the functional organization and cellular relationships of the in 

vivo environment51. For these reasons, 3D in vitro and ex vivo cell culture systems represent an 

indispensable tool to investigate the processes related to tissue and tumor formation. However, 

previous models of 3D tumor biology, such as tumor organoids, are incapable of fully addressing 

the developmental cues associated with the human cancer ecosystem. Therefore, these systems are 

becoming increasingly complex by the incorporation of additional cell types. Co-cultures of 

stromal and tumor cells, and even tri-cultures of MECs, human fibroblasts and adipocytes have 

been developed to elicit a physiologically relevant, 3D culture surrogate of complex human breast 

tissue135-137. 

3D in vitro co-cultures of stromal and tumor cells, and even tri-cultures of MECs, human 

fibroblasts and adipocytes have been developed to elicit a physiologically relevant, 3D culture 

surrogate of complex human breast tissue61,135-138. Importantly, these in vitro investigations have 

been able to show that restoring the correct level of microenvironmental signaling can ‘revert’ the 

malignant phenotype of breast tumor cells, despite the complete retention of the malignant 

genome63,139-142. For example, by screening seven BRAFV600E mutant melanoma cell lines with 18 

stromal cell lines, researchers uncovered a novel mechanism of vemurafenib resistance mediated 

by secretion of hepatocyte growth factor by six of the co-cultured stromal cell lines143. Thus, there 

exists a growing need to develop advanced 3D cell culture models comprised of multiple cell types 

to decrypt aspects of intra- and intercellular signaling, and the context-driven contributions of 

nongenetic sources of the in vivo environment.  
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4.2 Introduction 

Despite the incorporation of additional cell types in 3D culture models, many components 

of the in vivo microenvironment remain a mystery. This shortcoming may be related to the limited 

availability of suitable technological and analytical methods to investigate these144. For example, 

the standard 3D culture procedures utilized by many of these investigations rely on randomly 

mixing ratios of cells with ECM substrates prior to gelling, or by seeding cell mixtures on top of 

a pre-formed ECM gel. Therefore, the size and morphology of resulting organoids vary greatly, 

which leads to difficulty in interpreting and reproducing experimental results145. 

One potentially controllable, yet major source of the variability of current 3D culture 

systems stems from the manual cell-matrix embedding methods that yield a random distribution 

of cells in the gel. Advances in 3D cell culture technologies, especially accessible 3D bioprinting 

devices, have recently demonstrated the ability to reliably, and repeatedly generate arrays of small-

volume, cell-deposits containing user-specified cell numbers ranging from 1 to hundreds, with 

spatial resolutions below 50µm108. Furthermore, these devices have demonstrated the ability to 

fabricate, large-scale epithelial organoid-structures. Herein, we describe the first example of 3D 

bioprinting technology to facilitate chimeric structure formation between non-tumorigenic human 

MECs (MCF12A) and either of two human tumorigenic cell lines: luminal epithelial mammary 

cell line MCF-7 and metastatic adenocarcinoma mammary breast cancer cell line MDA-MB-468 

in a 3D collagen gel system. 

We demonstrate how this technology not only promises to standardize 3D culture assays, 

but also provides an efficient method to introduce additional cell types into developing and 

previously-established MEC organoid structures. Principal findings indicated a significantly 

enhanced ability to generate chimeric organoids as compared to matrix embedding methods. Both 

MCF-7 and MDA-MB-468 cells survived and incorporated into MCF-12A organoids to form 

chimeric structures. Additionally, the morphological behaviors of both tumorigenic cell lines 

inside chimeric structures was unlike those in control (tumor-only) structures. Histological staining 

indicated tumor cells expressed cadherin and connexin proteins on borders with MCF-12A cells 

in chimeric structures, suggesting the two cell types formed adherens junctions and gap junctions 

under these conditions. Interestingly, by immunofluorescence, both tumorigenic cell lines in 

chimeric structures exhibited β-catenin staining similar to adjacent MCF-12A cells. Furthermore, 
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by using human derived ECM substrates, our 3D bioprinting system offers an innovative platform 

for generating a fully human, in vitro model to dissect cell-cell interactions, the effects of 

microenvironment on cell function, and the effects of different genetic or non-genetic 

modifications on mammary cell transformation. These findings are, to the best of our knowledge, 

the first demonstrations of the capacity of 3D bioprinting devices to mediate and direct the 

formation of chimeric MEC organoid-structures in fully human, 3D culture environment. 

4.3 Materials and Methods 

4.3.1 Cell Culture 

Immortalized non-tumorigenic human breast epithelial cell line, MCF-12A, and MCF-7 

and MDA-MB-468 breast carcinoma cell lines were purchased from ATCC. All cells were 

maintained on 2D tissue culture plastic. MCF-12A cells were initially cultured in 2D on tissue 

culture plastic in a 75 cm2 flask supplemented with a 1:1 mixture of Dulbecco’s modified Eagle’s 

medium and Ham’s F12 medium (DMEM/F12), 5% Horse Serum, 20 ng ml-1 hEGF, 0.01 mg ml-

1 bovine insulin, 500 ng ml-1 hydrocortisone and 1% ABAM (all purchased from ThermoFisher). 

MCF-7 and MDA-MB-468 cells were maintained in Dulbecco’s Modified Eagle’s Medium 

supplemented with 10% fetal bovine serum (FBS, Life Technologies) and 1% ABAM. All cells 

were cultured at 37.0°C and 5.0% CO2. After confluence, the cells were dissociated using TrypleE 

(ThermoFisher) and collected by centrifugation. Chimeric organoids were cultured using 1:1 

mixture of Dulbecco’s modified Eagle’s medium and Ham’s F12 medium (DMEM/F12), 5% 

Horse Serum, 20 ng ml-1 hEGF, 0.01 mg ml-1 bovine insulin, 500 ng ml-1 hydrocortisone and 1% 

ABAM (ThermoFisher). 

MCF-12A cells are considered a model for normal human MECs. The MCF-7 cell line 

represents a rapidly growing, luminal carcinoma cell line that is E-cadherin positive, vimentin 

negative, estrogen receptor-positive, and non-invasive146. MDA-MB-468 cells are EGF receptor 

rich, estrogen receptor-negative, and due to two shortened α-catenin transcripts, lack functional α-

catenin147,148. 
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4.3.2 Preparation of 3D Collagen ECMs for Bioprinting and Manual Cell-Matrix Embedding 

For manual cell-matrix embedding studies, single cell suspensions of MCF-12A cells were 

mixed with neutralizing solution and acidified rat tail collagen I (Corning) as specified by the 

manufacturer, to a final concentration of 1.3 mg/ml. For chimeric studies, MCF-12A cells were 

mixed with one of the two tumorigenic cell lines at a 1:5 ratio. Immediately after mixing, 500µl of 

neutralized collagen I gel material containing approximately 5000 cells (6000 cells for chimeric 

studies) was dispensed into a 24 well plate and allowed to solidify and adhere to the surfaces of 

the well for 1 hour in a laboratory incubator at 37.0°C and 5.0% CO2. After gelation 

(solidification), 500µl of cell appropriate cell media was added to the wells. MCF-12A media was 

used for all chimeric studies. Subsequent media changes were performed every 3 days. 

VitroCol, human collagen I solution (Advanced BioMatrix), was prepared according to 

manufacturer’s recommendation to a final concentration of 1.0 mg/ml. For all printing 

experiments, a minimum of 500µl of collagen gel was dispensed into individual wells of a 24 well 

plate and allowed to solidify for 1 hour in a laboratory incubator at 37.0°C and 5.0% CO2.  

4.3.3 Bioprinting System 

A previously developed bioprinting system was used to robotically dispense cells into 

specified 3D locations of a polymerized collagen gel108. Briefly, neutralized collagen I gel material 

was dispensed into a 24 well plate and allowed to solidify and adhere to the surfaces of the well in 

a laboratory incubator at 37.0°C and 5.0% CO2. Before printing operations, 2D cultures of MCF-

12A, MCF-7 and MDA-MB-468 cells were dissociated into single cells using TrypleE 

(ThermoFisher), centrifuged at 300×g, and re-suspended in media to obtain a final ‘ink’ 

concentration of 60×104 cells ml-1. For chimeric experiments, printing operations were optimized 

to extrude specified numbers of cells inside the collagen I gel via a CNC insertion routine which 

deposited cell containing media at a specified ‘target’ location inside the polymerized collagen I 

gel. Users specified intended wells of commercially available tissue culture plates, printing 

locations, distances among printing locations, and the number of cells per target location. The 

experiment information was automatically converted into G-code, loaded into Repetier Host, and 

sent to the three-axis microcontroller of the bioprinter. The bioprinting system was located inside 
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a benchtop biosafety cabinet during all printing operations. The heated print bed was set to 37° for 

all printing operations. 

4.3.4 Characterization of Organoid Growth and Morphology 

Immediately after printing, the initial quantity of printed cells was verified using manual 

counting and image analysis using ImageJ and Matlab. Post-printing, cells were monitored up to 

21 days using a combination of bright field imaging/fluorescent imaging using a Zeiss axio-

observer Z1 fluorescent microscope, or time-lapse imaging using a Lumascope 620 microscope. 

The size of organoids was determined by analyzing bright-field images taken daily for each 

experimental condition using ImageJ. Within this investigation, organoids were operationally 

defined as a cluster of cells with no clear cell-cell boundaries, or the inability to discern individual 

cells from neighboring cells. The organoid formation rate for manual matrix embedding was 

calculated using the following equation: (number of organoids per well / number of cells seeded 

per well) ×100%. The organoid formation rate for bioprinted organoids was calculated using the 

following equation: (number of organoids per well / number of printed target sites) ×100%. 

4.3.5 Immunofluorescence Staining 

Gels were fixed in 10% neutral buffered formalin, paraffin embedded and sectioned.  

Sections were prepared for staining by deparaffinizing in a xylene substitute, rehydration, and 

heat-mediated antigen retrieval using pH 9 tris-edta with 0.05% tween 20. Sections were blocked 

in 10% goat serum and incubated with primary antibodies in a humidified chamber at 4°C 

overnight. Secondary antibodies were added for 1 hour at room temperature. Sections were 

counterstained with DAPI. 

Antibodies were used at the following concentrations: mouse monoclonal antibody to 

BetaCatenin [12F7] (1:50; ab22656, Abcam), anti-green fluorescent protein rabbit IgG Alexafluor 

488 conjugated ( 1:75; Invitrogen A21311); rabbit monoclonal antibody to cytokeratin 5 

[EP1601Y] (1:75; ab52635, Abcam), mouse monoclonal antibody to cytokeratin 8 [C-51] (1:35; 

ab2531, Abcam), rabbit anti-pan-cadherin (1:75; 71-7100, ThermoFisher), rabbit polyclonal 

antibody to GJB6 [Cx30] (1:25;  HPA014846, Sigma-Aldrich), and rabbit polyclonal antibody to 
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GJB1 [Cx32] (1:25; HPA010663, Sigma-Aldrich). Appropriate Alexafluor 488 and 568 

conjugated goat antibodies (1:1000; ThermoFisher) were used for secondary antibody labeling. 

All sections were counterstained with DAPI and imaged using a Zeiss axio-observer Z1 fluorescent 

microscope. 

4.3.6 Statistical Analysis 

Values represent mean ±standard deviation of samples measured in triplicate. Data 

represent more than three independent experiments. Results were assessed for statistical 

significance using Student’s t test. Differences were considered statistically significant at *p < 

0.05. 

4.4 Results 

4.4.1 Reliable Generation of Mammary Epithelial Tumor Organoids 

To establish baseline behaviors of MCF-7 and MDA-MB-468 cells in 3D collagen cultures, 

we first employed our bioprinting device to generate arrays of tumor cells in polymerized collagen 

gels. Our bioprinting method utilized CNC processes to controllably-deposit cells in 3D locations 

of polymerized collagen I gels (Fig. 16a1,b1). Results indicated both tumor cell lines proliferated 

and formed structures post-printing (Fig. 16a1-a4,b1-b3). Our bioprinting assay identified a 

discrepancy between the growth morphologies of the two tumor cell lines throughout the 21-day 

culture period. MCF-7 tumor cells formed compact, sphere-like structures with little evidence of 

coordinated growth among neighboring organoids, indicative of their previously known, non-

invasive character (Fig. 16c). On the other hand, MDA-MB-468 cell growth illustrated the 

opposite effect, where invasive tumor cells equally dispersed into all radial directions of the 

Collagen I matrix, which resulted in a large, disordered structure lacking defined boundaries (Fig. 

16d). H&E sectioning of bioprinted arrays confirmed cell free regions between MCF-7 print 

locations, which supports the notion that MCF-7 cells do not readily migrate through collagen I 
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(Fig. 16c,e). The opposite effect was confirmed in sections of arrays containing MDA-MB-468 

cells, where cells and small cell clusters appear dispersed throughout the gel (Fig. 16d,f). 

Fig. 16.  3D Bioprinting consistent breast tumor organoids. (a1-4) MCF-7 cell deposits (40 

cells/deposit) spaced 300µm apart at 1, 7, 14, and 21 days post-printing. Scale bar 1 mm. 

(b1-b3) MDA-MB-468 cell deposits (40 cells/deposit) spaced 300µm apart at 1, 14, and 21 

days post-printing. Scale bar 1 mm. Reliable formation of (c) MCF-7 and (d) MDA-MB-

468 tumor organoids at 21 days. Scale bar 500μm. H&E stain of (e) MCF-7 and (f) MDA-

MB-468 tumor organoids at 21 days. Scale bar 150µm. 
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Fig. 17.  Histological analysis of bioprinted MCF-7 breast tumor organoids. MCF-7 cell 

organoids exhibited weak cadherin, and β-catenin staining. Ck-5 was not detected among 

MCF-7 cells, however MCF-7 cells were Ck-8 positive. Expression of Cx-32 was 

observed. Scale bar 50µm. 
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Fig. 18.  Histological analysis of bioprinted MDA-MB-468 breast tumor organoids. Cadherin and β-catenin staining in 

MDA-MB-468 tumor cell organoids. MDA-MB-468 tumor organoids were Ck-5 and Ck-8 positive. Variable expression 

of Cx-30 and Cx-32 was observed. Scale bar 50µm. 



88 

 

Fig. 19.  Comparison of 3D bioprinted, epithelial organoid-structures. MCF-12A cells form epithelial organoids with a luminal 

cavity, express Pan-Cadherin, and express β-Catenin. Tumorigenic cell-organoids from MCF-7 cells displayed less intense Pan-

Cadherin signal and were β-Catenin positive. Tumorigenic cell-organoids from MDA-MB-468 cells express cadherin and β-

Catenin. Scale bar 100µm. 
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Fig. 20.  Collagen density affects morphology of MCF-7 organoid structures. 

Immunohistochemical analysis of 3D bioprinted, MCF-7 tumor organoids in 0.5 mg/ml 

collagen gel indicated MCF-7 organoid-structures under these conditions were cadherin 

and β-Catenin positive, and express both Ck-5 and Ck-8. Lower density collagen gels 

increased the ability of 3D bioprinting to direct MCF-7 organoid fusion. Scale bar 50µm.  
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To further illustrate the ability of our bioprinting device to standardize 3D culture assays, 

we printed MCF-7 cells in 0.5 mg/ml collagen gels (Fig. 20). In the 0.5 mg/ml collagen gel, around 

MCF-7 cells expressed myoepithelial marker Ck5 (Fig. 20), whereas no staining was observed in 

1.0 mg/ml gels (Fig. 17), suggesting that luminal and basal specific markers were co-expressed in 

the cells grown in the less dense collagen. However, MCF-7 cells were still Ki67 positive in 0.5 

mg/ml collagen gels, which suggests the cells still retained a highly proliferative phenotype (Fig. 

20). However, reducing the density of the collagen matrix resulted in the opposite growth 

morphology seen in (Fig. 16c). While MCF-7 cell organoids in 1.0 mg/ml collagen were unable to 

reliably undergo coordinated organoid fusion within 7 or 14 days, individual MCF-7 cell-

organoids were able to fuse within 5 days post-printing in the less dense 0.5 mg/ml collagen gel 

(Fig. 20). These data suggest that MCF-7 cell behavior differs among different culture conditions 

and highlights the ability of bioprinting devices to standardize the comparison of experimental 

results through the reliable patterning of cell quantities. 

4.4.2 Proliferation in MCF-12A, MCF-7, and MDA-MB-468 Cells. 

To provide a better understanding of the differences between MCF-12A cells and 

tumorigenic cell lines in collagen gels, we used manual scoring methods to assess for differences 

in levels of proliferation by immunostaining for a proliferating-cell antigen, Ki67. Compared to 

normal MCF-12A cell structures (Fig. 21a), the number of proliferating epithelial cells was 

significantly higher in tumorigenic MCF-7 (*p < 0.01) (Fig. 21b,d) and MDA-MB-468 cell 

structures (**p < 0.005) (Fig. 21c,d). This confirmed the highly proliferative status of both 

tumorigenic cell lines as compared to normal MCF-12A cells. 
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Fig. 21.  Quantitative analysis of Ki-67 positive epithelial cells 

grown in 1.0 mg/ml collagen gel. (a) MCF-12A, (b) MCF-7, 

(c) MDA-MB-468 stained for Ki-67 (GFP) and nuclear stain 

DAPI. Scale bar 100µm. (d) Compared to MCF-12A cell-

organoids, tumor-organoids contain significantly higher 

numbers of proliferating cells in collagen gels. *p  < 0.01; **p 

< 0.005. 
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Fig. 22.  Bioprinted multicellular assays are more efficient than manual method. (a) Results from manual method at 1, 3, 7, and 14 

days in culture. Scale bar 200µm. Unlike the random cell distribution in manual methods, 3D bioprinted tumorigenic cells are 

immediately exposed to normal MECs. (b) Day 1 result of bioprinted mixture of GFP labeled, tumorigenic cells (MDA-MB-468) 

and RFP labeled MCF-12A cells. Scale bar 100µm. (c) Day 3 results of bioprinted tumorigenic (GFP) and normal (RFP) MEC cells. 

Scale bar 50µm. (d) By day 5, tumorigenic cells were exposed to neighboring MCF-12A cell-organoid interactions. Scale bar 50µm.  



93 

 

 

Fig. 23.  Within 7 days, 3D bioprinting enabled the reliable formation of large chimeric mammary 

epithelial organoid-structure containing (a) tumorigenic cells (MDA-MB-468) and (b) ‘normal’ 

MCF-12A cells. (c) Organoid -structure illuminated with brightfield. (d) Merged image 

demonstrating the presence of both cell types in organoid-structure. Scale bar 500µm. 
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Fig. 24.  Within 21 days, initial mixtures of ‘normal’ MCF-12A cells and tumorigenic cells MDA-

MB-468 undergo coordinated organoid fusion events to generate a large chimeric epithelial 

organoid-structure. Example of (a) tumorigenic cells (MDA-MB-468) located among (b) 

‘normal’ MCF-12A cells. (c) Organoid -structure illuminated with brightfield. (d) Merged image 

demonstrating the presence of both cell types in organoid-structure. Scale bar 500µm. 
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4.4.3 Generation of Chimeric Structures in a 3D Gel 

Given the need to develop high-throughput, in-vitro models to investigate the role of the 

microenvironment on epithelial biology in 3D, we began by determining the effectiveness of 

manual cell-matrix embedding to generate chimeric cell-organoids (Fig. 22a). Consistent with 

previous in vivo demonstrations, our in vitro chimera studies used a 5:1 ratio of normal to 

tumorigenic cells128. Thus, 1000 cells from a single tumorigenic cell line were mixed with 5000 

MCF-12A cells, added to unpolymerized collagen I gels and pipetted into wells of a 24 well plate. 

Under these conditions, MECs and tumorigenic cell lines were able to generate chimeric organoid 

structures during the 21-day culture period (Fig. 22a). However, there were severely limiting 

quantities of chimeric organoids, further complicated by the excessive number and random 

distribution of MCF-12A organoid-structures. 

Having visually identified chimeric tumorigenic cells in MCF-12A organoids, we next 

sought to guide the formation of chimeric organoids using our custom bioprinting system. We 

previously described our ability to standardize the frequency of organoid formation through 

control of the initial cell quantities within bioprinted cell-deposits; cell-deposits containing at least 

40 cells formed organoids within 7 days post-printing (Fig. 9). Using this 40-cell standard, we 

dispensed a 5:1, MCF12A to cancer cell mixture at volumes equivalent to 40 cells in equally-

spaced linear arrays inside collagen I gels. Unlike the random cell distribution of manual 

embedding, our bioprinting method maintained GFP-labeled tumorigenic cells within the 

immediate vicinity of RFP-labeled MCF12A cells post-printing (Fig. 22b). After 3 days, both 

GFP-labeled tumorigenic cell lines showed signs of initial cell-cell clustering associated with 

developing MCF-12A organoid structures (Fig. 22c). Within 5 days, we observed behavioral 

discrepancies between the two tumor types in the RFP-MCF-12A organoids. GFP-labeled MDA-

MB-468 tumorigenic cells were often found equally dispersed, in single cell quantities throughout 

RFP-MCF12A organoid-structures (Fig. 22d).  

After 1 week in collagen gels, bioprinted cell clusters containing normal and tumorigenic 

cell types fused with neighboring organoids into large-epithelial organoid-structures with branched 

extensions directed into unoccupied areas of the gel (Fig. 23a-d). Interestingly, time-lapse imaging 

indicated both MCF-7 and MDA-MB-468 tumorigenic cell lines interact with MCF-12A cells, and 

actively migrate inside MCF-12A organoids (Sup. Movie 4.1, 4.2). After 3 weeks in culture, the 
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cell clusters formed into large, contiguous epithelial- structures, containing chimeric constituents 

from both cancer cell lines (Fig. 24a-d). Importantly, as these structures began to generate 

branched extensions, tumor cells remained equally dispersed within the networked structures (Fig. 

24a). Together, these results indicate our bioprinting process effectively generates chimeric 

structures, which holds the potential to mimic the incorporation of cancer cells within normal 

mammary structures previously described in vivo. These findings indicate our bioprinted chimeric 

structures represent the state of the art system for studying not only cancer cell redirection, but 

also studies of MEC tissue morphology, and the developmental processes associated with 

generating the hollow structures similar to ducts seen in vivo.  

4.4.4 Quantification of Chimeric Organoid Formation 

Surveys of manually-embedded gels indicated the initial 5000 MCF-12A cell-quantity 

resulted in a total of 929± 265 and 1060 ± 209 MCF-12A organoids at 7 and 14 days. Given the 

1:5 ratio of tumorigenic cells in the initial cell mixtures of chimeric experiments, we expected to 

observe tumorigenic cells among 200 of the 1000 MCF-12A organoids in the embedded gels. Yet, 

among these organoids, only 2.3 ± 0.5 and 5.5 ± 1.3 chimeric organoids were observed at 7 and 

14 days, respectively (Table 2). Thus, generating chimeric organoids using manual embedding 

equaled a success rate of 1.15% and 2.75% at 7 and 14 days, respectively (Table 2). 
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Table 2.  Evaluation of chimeric organoid formation. 

Compared to manual cell embedding, 3D bioprinted 

cell mixtures form significantly more chimeric 

organoid-structures. **p < 0.001; *p < 0.01. 
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Among experiments with 36 bioprinted cell-deposits, 34.7 ± 1.6 and 32.2 ± 3.8 chimeric 

cell-organoids formed at 7 and 14 days, respectively (Table 2). Thus, bioprinted cell mixtures 

corresponded to a 96.4 % and 89.5 % chimeric organoid formation frequency at 7 and 14 days. 

When compared to manual methods, the number of bioprinted chimeric organoids increased 

significantly after both 1 week (**p < 0.001) and 2 weeks (*p < 0.01) (Table 2). Overall, this data 

highlights the increased efficiency of our 3D bioprinter to generate chimeric organoid-structures 

compared to manual matrix embedding procedures. 

4.4.5 Distribution of Junctional Proteins in Chimeric Organoids 

We next aimed to characterize the chimeric structures to determine their behavior when 

introduced into mammary epithelial organoids. To do this we immunoassayed slides using 

antibodies for tumorigenic cells (anti-GFP) confirming the presence of tumorigenic cell types 

inside MCF-12A organoids (Fig. 25). Cadherin staining indicated both MCF-7 and MDA-MB-468 

cells express cadherins in chimeric organoids (Fig. 26).  

Positive staining of gap junction proteins Cx30 and Cx32 between tumorigenic and MCF-

12A cells in chimeric organoids suggest tumorigenic cells may form gap-junctions with MCF-12A 

cells in chimeric organoids (Fig. 23). These results indicate maintaining the two cell types in close 

proximity is effective for generating chimeric organoids, and also provide evidence of cell-cell 

interactions among both tumorigenic cell lines and MCF-12A cells. 
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Fig. 25.  Distribution of normal and tumorigenic cell types in chimeric organoids. Fluorescent microscopy confirmed the presence 

of GFP+, tumorigenic cell lines (MCF-7 or MDA-MB-468) inside MCF-12A organoid-structures. β-Catenin staining of MCF-12A 

and either tumorigenic cell line in chimeric organoids indicated all cell types were β-Catenin positive. Scale bar 100µm. 
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Fig. 26.  Immunohistochemical comparison of cadherin expression in chimeric epithelial organoids. Examples of chimeric, epithelial 

organoid structures containing MCF-12A cells (shown in green) and either tumorigenic cell line (MCF-7 and MDA-MB-468) identified 

with arrows. Histological observations using pan-cadherin antibodies indicated MCF-7 cells within chimeric structures display less 

intense staining than neighboring MCF-12A cells. Pan-Cadherin staining in MDA-MB-468 cells exhibited more variable intensities. 

Scale bar 100µm. 
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Fig. 27.  Immunohistochemical comparison of connexin expression in chimeric epithelial 

organoids containing MCF-7 and MCF-12A cells. MCF-7 cells appear to display a decreased level 

of Cx-30 compared to neighboring MCF-12A cells. Cx-32 staining appears more variable in MCF-

7 cells, however both MCF-7 and MCF-12A cells appear to express Cx-32. Scale bar 25µm. 
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Fig. 28.  Immunohistochemical comparison of connexin 30 (Cx30) expression in chimeric epithelial 

organoids containing MDA-MB-468 and MCF-12A cells. Both cell types express Cx30. Scale bar 100µm. 



103 

 

 

Fig. 29.  Immunohistochemical comparison of connexin 32 (Cx32) expression in chimeric 

epithelial organoids containing MDA-MB-468 and MCF-12A cells. White arrows indicate MDA-

MB-468 tumor cells. (b) Both cell types express Cx32. (c) MCF-12A cells shown in green. (d) 

Merged image. Scale bar 50µm.  
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Fig. 30.  Manipulating cell-cell interactions through bioprinting. (a) Day 3 results of GFP-MDA-MB-468 cell deposits spaced in-

between MCF-12A cell deposits. Scale bar 200µm. (b) By day 7, MDA-MB-468 cell-extensions emerged from the end of the printed 

array. Scale bar 200µm. 
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Fig. 31.  Alternative methods for generating chimeric organoids. (a) GFP+ MDA-MB-468 cells 

and RFP+ MCF-12A cells printed independently as concentric rings. (b) By day 5, individual 

cell deposits fuse together to form a larger structure composed of both cell types. Scale bar 

500µm.Tumorigenic cell types (c) can be introduced into previously developed MCF-12A cell-

organoids (d). Evidence suggests some GFP+ MDA-MB-468 cells were successfully 

incorporated inside MCF-12A organoid structures from previous 21-day cultures. Scale bar 

100µm. 
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4.4.6 Manipulating Microenvironmental Cues Through Bioprinting 

In addition to increased efficiency, our bioprinting device also provides the ability to 

generate unique combinations, geometric configurations, and temporal additions of multiple cell 

types. Previously, we described organoid fusion events, where neighboring MECs initiate the 

formation of directional extensions to generate organized, large epithelial structures. Presumably, 

the areas where these restructuring processes occur contain ‘normal’ developmental cues. To 

determine if human cancer cell organoids could be influenced by these interactions, we utilized 

our bioprinting apparatus to place tumor-only cell-deposits between normal-MEC cell-deposits in 

equally spaced, linear arrays. Within 3 days, GFP-labeled MDA-MB-468 cells located in-between 

MCF-12A organoids appear to conform to the directional orientation of the merging MCF-12A 

structures in the bioprinted array (Fig. 30a, Sup. Movie 4.3). MDA-MB-468 cells located in-

between normal organoids were incorporated into large, chimeric organoid structures (Fig. 30b). 

In addition to placing tumor cells between normal cell-deposits, we also wanted to determine the 

possibility of generating chimeric organoids by printing tumor and normal cells as separate, 

concentric rings (Fig. 31a). Within 5 days, we observed the formation of chimeric organoids, and 

no remaining evidence of the separate rings was present (Fig. 31b). These results suggest organoid 

formation is not limited to initial cell mixtures alone. Specifically, neighboring MCF-12A cells 

can influence the directional growth of tumor-only cell-deposits. 

In addition to investigating tumorigenic responses to developing MEC organoids, we 

evaluated the potential use of our bioprinting device to deposit cells in mature stages of organoid 

development. To this end, we were able to successfully introduce tumorigenic cells into an 

established, 3-week culture containing mature MEC organoid-structures (Fig. 31c,d). These results 

indicate the bioprinting methods described here are capable of placing multiple cell types in more 

than just initial cell mixtures, which has been a major limitation of manual matrix embedding 

methods. 
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4.5 Discussion 

This work provides a description of how bioprinting technology can be utilized to 

standardize current and future chimeric models of 3D epithelial cell culture assays. As such, 3D 

bioprinting platforms are ideally suited to facilitate the high-throughput analysis of potential 

mechanisms related to cancer cell redirection. To reliably recreate ‘context’ in vitro requires 

technologies capable of investigating how multiple cell types elicit changes in ECM before, during 

and after organoid development112. Conventional methods for studying tumor cell behaviors have 

relied on injection of tumor cells into cleared mammary fat pads, Boyden assays, or random 3D 

matrix embedding assays. While each of these methods offers its own advantages, they are difficult 

to optimize for visualization and biophysical parameter control, such as spatial and temporal 

control over experimental conditions. This report provides evidence of the superiority of 

bioprinting systems over conventional methods for studying tumor cell behaviors, particularly in 

the context of cancer cell redirection. Furthermore, the ability to introduce tumorigenic cells into 

epithelial organoid-structures from 21-day cultures of MCF-12A cells suggests our bioprinting 

method is not limited to a single, initial cell placement. This advantage gives us the ability to ask 

previously unanswerable, interesting questions such as: what would happen if we introduced 

‘normal’ cell types into established tumor organoids? 

We report the ability to generate chimeric epithelial structures containing focal outgrowths 

that radially expand into unoccupied regions of a collagen I gel. After a few days post-printing, 

these foci of epithelial growth show a centrally located lumen and the earliest development of a 

duct, and what appears to be a ‘TEB-like’ structure. By standardizing the process of 3D mammary 

epithelial organoid formation, we believe this system may provide a potential method to reliably-

investigate the contextual properties of the in vivo situation. 

Understanding the bidirectional communication between tumor cells and their 

microenvironment represents a powerful, advantageous way to investigate the mechanisms that 

influence disease promotion and progression. Furthermore, identifying the contextual 

contributions related to ‘normalizing’ or reversing the tumor-specific ECM associated with cancer 

stands as an interesting target for novel screening methods and therapeutic targets for clinical 

tumor therapy. 
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4.6 Conclusion 

The study of breast cancer itself has ‘evolved’ in the past decade; research has migrated 

away from 2D culture and xenotransplantation, towards fully-humanized, 3D model systems. But, 

as with most things, our ability to address the experimental complexity required to further scientific 

investigations of this disease have been limited due to a lack of available technology. Through the 

ability to create and control 3D environments with a significantly increased level of precision, our 

bioprinting platform represents a scientific ‘catalyst’ to further advance the capabilities of in vitro 

models of numerous biological systems. While the experiments reported here represent the 

successful achievement of the last objective of this work, this achievement represents just the 

beginning of our main aim to incorporate this powerful technology to design personalized 

‘microenvironments’ that better recapitulate the in vivo situation. Specifically, incorporating 

multiple cell-lines with reporter genes in our organoid arrays may provide a further method to 

systematically identify the factors that are integral to the normal niche, and thus sufficient to direct 

neoplastic mammary cells toward normal cell behavior. As our understanding of biological 

systems continues to develop in breadth and complexity, the ability to use bioprinting to assist in 

any combinatorial approach to model these dynamic interactions may be the only means necessary 

to fully comprehend the roles of the numerous agents involved in most biological systems. 
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We shall not cease from exploration, 

And the end of all our exploring 

Will be to arrive where we started 

And know the place for the first time. 

T. S. Eliot 

 

CHAPTER 5 

SUMMARY AND FUTURE WORK 

5.1 Summary of the Current Study 

In this study, we addressed the need to further technical advances towards the development 

of disease models using 3D, in vitro cell cultures that accurately recapitulate the in vivo situation. 

While 3D bioprinting technology is not new, the technology has yet to be heavily incorporated in 

current experimental techniques due to the uncertainty as to whether the research benefit will 

outweigh the operational cost. Furthermore, most commercially available 3D bioprinters are 

unable to address the unique research demands of individual research labs. Importantly, this work 

identified the need to overcome the limitations imposed by conventional, ‘luer-lock’ syringe 

systems in commercially available bioprinters. Furthermore, the custom system demonstrated the 

ability to handle precise cell quantities, without compromising fragile cell types. Thus, we believe 

we were successful in completing the first objective of this investigation, to design and develop 

3D bioprinting technology capable of completing experimental tasks related to precision cell 

handling. 

Next, we utilized our system to address the experimental inconsistency of manual cell 

matrix embedding techniques commonly used in MEC research. Results showed that placing 

multiple cells in confined locations is a viable method for generating arrays of bioprinted, MEC 

organoids. Results indicated a positive relationship between the number of initial cells and the 

amount of time required for MEC organoid formation. Importantly, our 3D bioprinted MEC 

organoids were of uniform size and morphology, indicating this method is sufficient for 

eliminating the experimental inconsistency associated with manual methods.  
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We then used the bioprinting platform to identify effective distances to generate large, 

epithelial structures that resembled the initial print geometry. This organoid ‘fusion’ process was 

further investigated by patterning alternating GFP and RFP-labeled MECs in a single, bioprinted 

array. After 14 days in culture, results indicated neighboring RFP and GFP-labeled cell-deposits 

underwent coordinated, interacting behaviors to generate a contiguous RFP/GFP epithelial 

structure. Overall, these results highlight the ability of 3D bioprinting to direct individual organoid 

formation, and to control the ‘self-assembly’ of large epithelial structures through coordinated, 

organoid fusion events. These findings indicate we successfully completed our second main 

objective, which was to identify the parameters associated with reliable MEC organoid generation 

and the ability to direct the formation of large epithelial structures using 3D bioprinting.  

Given the importance of the cellular environment in regulating cellular signaling, we 

investigated the ability of our bioprinting platform to further advance in vitro methods for the study 

of cell-cell interactions among tumorigenic cell lines (MCF-7, MDA-MB-468) and normal cell 

line (MCF-12A). As expected, when compared to manual embedding methods, 3D bioprinted co-

cultures of MCF-12A and either tumorigenic cell line (MCF-7, MDA-MB-468) resulted in a 

significant increase in chimeric organoid formation at 1 (**p < 0.001) and 2 weeks (*p < 0.01) 

(Table 2.). Furthermore, tumorigenic cell-deposits located in between ‘normal’ MCF-12A cell-

deposits appear to conform to the linear growth pattern directed by organoid ‘fusion’ determined 

by the print geometry. This method may provide a potential means to recapitulate the effect of 

developing tissue environments, and as such it could offer an effective method to improve studies 

of tumor cell behavior. Given our ability to deposit multiple cell types, reliably generate chimeric 

organoids, and provide evidence of the ability of MCF-12A organoids to influence neighboring 

tumorigenic cell behavior, we believe we were successful in completing the third objective of this 

work.  

5.2 Additional Considerations for Future Research 

Previous investigations into the early events of 3D morphogenesis of human MECs 

revealed that 3D structures undergo a coordinated rotational movement, and this process is 

required for assembly of laminins and collagen around the 3D structures37. This rotational motion 
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was independent of the cell cycle, and was directly related to the assembly of endogenous BM 

around the 3D structures37. Furthermore, structures formed by cancer-derived cell lines failed to 

display rotational motion, and were defective in weaving exogenous laminin matrix37. 

Interestingly, dissolution of BM around mature, nonrotating acini, restored rotational movement 

and the ability to assemble exogenous laminin37. Together, these findings indicate that coordinated 

rotational motion during 3D morphogenesis of MEC acini is a significant, regulating feature of the 

BM assembly process.  

Given the importance of rotational motion in developing MEC tissues, we utilized time-

lapse imaging surveys of developing, bioprinted, MEC structures to determine the presence of 

rotational motion. Throughout the first week of culture, data indicated our bioprinted MEC cell 

aggregates underwent coordinated, cell-cell interactions to produce a rotational motion in the 

direction of forward growth (Sup. Movie 3.1). Overall, it appears that the process of rotational 

motion may be intimately related to the collective migration of cells. Similar to the way water 

flows out of a spring to form a river, cells appear to ‘flow’ across the entire organoid structure in 

the direction of active growth (Sup. Movie 3.2). Given our bioprinted MEC organoids exhibit 

collective, rotational motion, we believe this data provides evidence in support of our primary goal 

of validating our 3D bioprinting technology for generating MEC organoids. While the role of 

rotational motion in establishing a properly assembled BM is not fully understood, in future 

studies, our bioprinting technology stands as an ideal platform to controllably investigate and 

understand the mechanisms that regulate cell-cell and cell-matrix interactions, despite their state 

of constant flux. 

Throughout our investigation to develop methods to reliably maintain cell-deposits inside 

a 3D hydrogel, we noted microneedle geometries with taper lengths less than the programmed 

insertion depth of the needle tip typically resulted in a broad circular deformation on the top of the 

collagen I gel. While this increase in gel-deformation did not alter the ability of our bioprinter to 

maintain cells in the target area, MECs were able to follow this opening and proliferate in the 2D 

environment on-top of the gel. Interestingly, these cells would then encompass the deformed, 

needle insertion point while maintaining cell-cell linkage with the developing organoid-structure 

deep within the gel.  This process resulted in the generation of individual ‘sprout-like’ structures 

at each injection site in the 3D gel. Using time-lapse imaging to track the behavior of migrating 

cells inside these ‘sprout-like’ structures, we found the cells within the tips of these structures 
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appeared to uniformly rotate in a ‘fluid-like’ motion associated with BM assembly37(Sup. Movie 

5.1). Throughout the culture period, the initial ‘sprout’ grew in diameter and length to resemble 

TEB structures seen in vivo (Fig. 25a). Further, some of these structures began to form secondary 

branches, indicating that these structures were not just artifacts from the needle insertion routine 

(Sup. Movie 5.1). The rotational motion was always perpendicular to the direction of the 

elongating duct (Fig. 25b). Additionally, the rotational motion was observed in both clockwise and 

counterclockwise directions among neighboring ‘TEB-like’ structures (Sup. Movie 5.1). 

Similar ‘TEB-like’ structures resulted using MCF-7 and MDA-MB-468 tumorigenic cell 

lines, which suggests this effect is conserved across multiple mammary cell lines, albeit without 

secondary branches or rotational motion (Fig. 25c,d). Similar to the numerous, previously stated 

discrepancies among the two tumor cell lines, both tumor cell lines exhibited unique growth 

morphologies under these conditions. While the overall shape of the structures from MDA-MB-

468 cells were similar to MCF-12A structures, the appearance of MDA-MB-468 structures was 

less smooth due to the presence of extensive fingerlike projections. ‘TEB-like’ structures of MCF-

7 cells were long narrow tubes, with what appears to be consistent, tightly woven cell-cell contacts 

(Fig. 25d). While the meaning of this unexpected, yet interesting result has not been thoroughly 

investigated, we noted this process would only occur when a hole was maintained between the 

inside and outside layer of the gel. Could the physical presence of an ‘opening’ provide instructive 

cues for the initial polarization and lumen formation in the developing mammary epithelium? 

Indeed, for every functional mammary gland, an ‘opening’ must be created to the outside through 

the nipple. The nipple is where the fetal epidermis initially invaginates into the mammary fat pad, 

and as such it represents the growth point origin of the mammary epithelium. We also find it 

interesting to note that the mammary glands of male rats develop similarly to females but have no 

external connection to the epidermis. While we currently do not know what processes control the 

formation of the nipple ‘opening’ through the skin above the fetal anlage, the physical deformation 

of gel materials, similar to the disruption of gel materials described above, certainly presents one 

possible way to generate such an ‘opening’ in vitro. 
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Fig. 32.  Bioprinted breast organoids form ‘TEB-like’ morphologies. ‘TEB-like’ 

morphology results when cell-deposits are able to maintain linkage to the surface of 3D 

gels. (a) Section of a developing mouse mammary gland. Black arrows point to ‘TEB’ 

structures. Scale bar 1 mm. (b) ‘TEB-like’ structures grown in vitro after 14 days in culture 

using MCF-12A cells. Black arrows point to rounded cell mass located at the end of ‘stalk-

like’ structure. Scale bar 500µm. Tumorigenic cell lines MDA-MB-468 (c) and MCF-7 (d) 

also formed similar ‘TEB-like’ structures at 14 days. Scale bar 500µm. 
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5.3 Future Directions for Bioprinting in MEC Research 

One of the most iconic, yet mysterious structures in the mammary system is the TEB. The 

environment created by the TEB appears to elicit important features of regulatory signaling in the 

developing gland. For example, the TEB is the regulatory control point for basement membrane 

deposition, branching, angiogenesis, and pattern formation8,10. Also, the signaling pathways which 

drive and regulate the directional growth and motility of TEBs are responsible for establishing the 

primary structure of the entire mammary tree16. Despite advances in our understanding of the 

genetic regulation of mammary development3, the cellular basis of ductal elongation of bifurcation 

remains unknown. Active TEBs are also of a special interest, due to their ability to recruit stromal 

cells, heterogeneous cellular composition, invasive ability, angiogenic properties, and high 

proliferation rate (60-90%)10. Thus, any method that would create an in vitro model of the 

developing TEB, would represent an ideal model of the constant flux among cell-cell and cell-

matrix interactions that regulate mammary gland growth and development. Furthermore, given 

90% of human mammary cancers are of ductal origin, fully understanding the processes related to 

ductal growth would represent a significant advancement in the battle against breast cancer. 

Additional areas of research should also focus on determining the contribution of cell types 

outside of the epithelium compartment in the development and function of the mammary gland. 

As our bioprinting device has the capability to place multiple cell types within close proximity, it 

stands as an optimal candidate to systematically investigate the impact of additional cell types on 

MEC behavior. 

While our extrusion based bioprinting device has been able to achieve the reliable control 

of small cell quantities, our current bioprinting technology is still affected by cell settling due to 

the force of gravity. A solution to this can be as simple as increasing the viscosity of the cell 

containing bio-ink. This would also increase the extrusion force, which may negatively impact the 

extrusion process. For this reason, limiting the effect of cell settling stands as a key area to advance 

this technology. 

Another method to improve our current bioprinting technology could come from 

incorporating cell surface marker sorting technology into the injection device. This would provide 

the capability to isolate and select specific cell populations during the printing process. 

Additionally, current cell sorting approaches have been known to vary between studies, which 
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makes quantitative comparisons of the prevalence of different populations difficult3. For example, 

a tenfold increase in gland reconstitution in one study was shown to be related to transplant 

conditions, suggestive of the dramatic effect of transplant conditions on reconstitution 

efficiency149. Thus, incorporating this technology with bioprinting devices would have a 

significant impact on performing assays designed to identify the different epithelial cell 

populations with stem cell properties. As stem cells are intimately related to normal development 

and tissue pathologies, future studies will require methods for evaluating the role of these cells 

during mammary development and cancer. 

One of the greatest impacts of bioprinting technology is the high-throughput generation of 

3D cultures. However, the increased proficiency in generating 3D cultures means nothing if there 

is no equally matched system to analyze results. To this end, incorporating artificial intelligence 

and machine learning algorithms to systematically measure experimental results, such as 

histological slides and 3D image stacks, stands as the most logical method to retain consistency 

among thousands of experiments. However, just like the need to ‘tailor-fit’ 3D culture conditions 

to the cell type, these algorithms must be fine-tuned and maintained for each individual 

experiment. For example, traditional methods for measuring Ki67 staining rely on observer 

discretion. While routine training can help control inter-observer variance, the amount of Ki67 

bound nuclei is better represented with a ratio scale than a nominal scale (binary: yes/no). One 

could understand how setting a numerical threshold in an algorithm would result in a significant 

improvement in scoring data. We have begun to incorporate these protocols for analyzing 

histological sections and other large 3D image stacks. For example, in the case of Ki67 staining, 

we can utilize specific features of DAPI stained nuclei to detect and label each nucleus in any 

given slide (Fig. 33a1-a2). Next, these labels can be overlaid onto the original Ki67 image (Fig. 

33a3-a4). This method allows us to determine the corrected total cell flux for each nucleus in the 

sample, which provides more specific quantification of overall Ki67 activation.  
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Fig. 33. Algorithm to standardize measurement of histological data. (a) To measure Ki-67 

staining, nuclei (a1) are identified and counted to make a mask (a2) which can then be 

applied to Ki-67 staining (a3) to determine scoring data. (b) Isolating sub-populations in 

histological slides. (b1) GFP labeled MCF-7 cells inside chimeric organoid. (b2) β-catenin 

staining of chimeric organoid. (b3) MCF-7 cell population identified by algorithm. (b4) 

MCF-7 cell area subtracted from original β-catenin image. Scale bar 50µm. 
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Furthermore, this method can be utilized for additional proteins and histological assays. 

For example, consider GFP-labeled, MCF-7 cells in chimeric organoids (Fig. 33b1). Given the 

overall expression of β-catenin in a single histological slide (Fig. 33b2), if we identify the GFP-

labeled MCF-7 cells (Fig. 33b3) and remove these objects from the original β-catenin image (Fig. 

33b4), we can isolate the region of a distinct member from the original image. Similar to the Ki67 

protocol, we can then calculate the corrected total cell flux for just the MCF-7 cells or MCF-12A 

cell population. Using this method, large batch analysis of experimental conditions can be 

simultaneously, and quantitatively compared without observer bias, which ultimately function to 

reduce both intra and inter-laboratory variance. 

5.4 Conclusion 

Overall, the future challenge for mammary research is to place the genes and proteins they 

encode into the larger picture of mammary development and function. Pertinent to this task of 

understanding the physiological significance of the unique proteins in the puzzle of mammary 

gland development will be the introduction of in vitro approaches that use genetically manipulated 

primary cells or cell lines to form a functional epithelium. Further, these in vitro constructs could 

then be implanted in vivo to define their position in the signaling networks related to mammary 

gland development. Furthering our use and development of these systems will be invaluable in 

modelling tumor progression and testing pharmacological agents in a biologically relevant context. 

Here we detailed the custom-design and use of 3D bioprinting systems to improve upon 

conventional methods for studying tumor cell behaviors in 3D assays. These results indicate 

microfabrication techniques have the potential to become valuable tools in mimicking distinct 

properties of the in vivo situation. We expect the use of these systems will provide new 

perspectives and opportunities for future research design.  

Investigating the histological patterns of both invasive and preinvasive tumors associated 

with breast carcinomas stands as a highly valuable means of obtaining prognostic information. As 

much remains to be learned about how the genotypic abnormalities associated with cancer elicit 

the phenotypic changes related to tumorigenesis, any technology capable of systematically 

investigating these mechanisms will be useful. Through the imaginative, new perspectives and 
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opportunities provided by bioprinting techniques, we are currently working on utilizing these 

microfabrication techniques as a tool for mimicking distinct properties of the in vivo situation. 

Thus, our bioprinting platform would provide the ideal method to generate high-throughput assays 

of primary tumor cells from patient biopsies. Therefore, in addition to acting as a multipurpose 

technique for a range of applications including biomedical implants and tissue engineering, we 

believe the greatest impact of 3D bioprinting technology may come from the potential service as 

an important diagnostic platform for clinicians in treatment centers and hospitals everywhere. 

 



119 

REFERENCES 

1 Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates 

development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22, 287-309 (2006). 

2 Neville, M. C., Medina, D., Monks, J. & Hovey, R. C. The mammary fat pad. J Mammary Gland Biol 

Neoplasia 3, 109-116 (1998). 

3 Inman, J. L., Robertson, C., Mott, J. D. & Bissell, M. J. Mammary gland development: cell fate specification, 

stem cells and the microenvironment. Development 142, 1028-1042 (2015). 

4 Adriance, M. C., Inman, J. L., Petersen, O. W. & Bissell, M. J. Myoepithelial cells: good fences make good 

neighbors. Breast Cancer Res 7, 190-197 (2005). 

5 Sonnenberg, A., Daams, H., Van der Valk, M. A., Hilkens, J. & Hilgers, J. Development of mouse mammary 

gland: identification of stages in differentiation of luminal and myoepithelial cells using monoclonal 

antibodies and polyvalent antiserum against keratin. J Histochem Cytochem 34 (1986). 

6 Sekhri, K. K., Pitelka, D. R. & DeOme, K. B. Studies of mouse mammary glands. I. Cytomorphology of the 

normal mammary gland. J Natl Cancer Inst 39, 459-490 (1967). 

7 Silberstein, G. B. Postnatal mammary gland morphogenesis. Microsc Res Tech 52, 155-162 (2001). 

8 Williams, J. M. & Daniel, C. W. Mammary ductal elongation: differentiation of myoepithelium and basal 

lamina during branching morphogenesis. Dev Biol 97, 274-290 (1983). 

9 Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84-88 

(2006). 

10 Paine, I. S. & Lewis, M. T. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol 

Neoplasia 22, 93-108 (2017). 

11 Russo, J. & Russo, I. H. DNA Labeling Index and Structure of Rat Mammary-Gland as Determinants of Its 

Susceptibility to Carcinogenesis. J Natl Cancer I 61, 1451-1459 (1978). 

12 Silberstein, G. B. & Daniel, C. W. Glycosaminoglycans in the basal lamina and extracellular matrix of the 

developing mouse mammary duct. Dev Biol 90, 215-222 (1982). 

13 Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell 

rearrangements drive mammary branching morphogenesis. Dev Cell 14, 570-581 (2008). 

14 Fleury, V. & Watanabe, T. Morphogenesis of fingers and branched organs: how collagen and fibroblasts 

break the symmetry of growing biological tissue. C R Biol 325, 571-583 (2002). 

15 Faulkin, L. J., Jr. & Deome, K. B. Regulation of growth and spacing of gland elements in the mammary fat 

pad of the C3H mouse. J Natl Cancer Inst 24, 953-969 (1960). 

16 Hinck, L. & Silberstein, G. B. Key stages in mammary gland development: the mammary end bud as a motile 

organ. Breast Cancer Res 7, 245-251 (2005). 

17 Wiseman, B. S. et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate 

mammary gland branching morphogenesis. J Cell Biol 162, 1123-1133 (2003). 

18 Hu, M. C. & Rosenblum, N. D. Genetic regulation of branching morphogenesis: lessons learned from loss-

of-function phenotypes. Pediatr Res 54, 433-438 (2003). 

19 Daniel, C. W., Robinson, S. & Silberstein, G. B. The transforming growth factors beta in development and 

functional differentiation of the mouse mammary gland. Adv Exp Med Biol 501, 61-70 (2001). 

20 Hennighausen, L. & Robinson, G. W. Information networks in the mammary gland. Nat Rev Mol Cell Biol 

6, 715-725 (2005). 

21 Davies, J. A. Branching morphogenesis. Springer Science (2006). 

22 Smith, G. H. Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct 

cellular progenitors of the ductal and lobular phenotype. Breast Cancer Res Treat 39, 21-31 (1996). 

23 Smith, G. H. & Boulanger, C. A. Mammary epithelial stem cells: transplantation and self-renewal analysis. 

Cell Prolif 36 Suppl 1, 3-15 (2003). 

24 Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single 

cell. Development 125, 1921-1930 (1998). 

25 Deome, K. B., Faulkin, L. J., Jr., Bern, H. A. & Blair, P. B. Development of mammary tumors from 

hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer 

Res 19, 515-520 (1959). 

26 Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. 

Proc Natl Acad Sci U S A 72, 3585-3589 (1975). 



120 

27 Legate, K. R., Wickstrom, S. A. & Fassler, R. Genetic and cell biological analysis of integrin outside-in 

signaling. Genes Dev 23, 397-418 (2009). 

28 El-Sabban, M. E., Abi-Mosleh, L. F. & Talhouk, R. S. Developmental regulation of gap junctions and their 

role in mammary epithelial cell differentiation. J Mammary Gland Biol Neoplasia 8, 463-473 (2003). 

29 Gudjonsson, T. et al. Normal and tumor-derived myoepithelial cells differ in their ability to interact with 

luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 115, 39-50 (2002). 

30 Bissell, M. J., Hall, H. G. & Parry, G. How does the extracellular matrix direct gene expression? J Theor Biol 

99, 31-68 (1982). 

31 Vichas, A. & Zallen, J. A. Translating cell polarity into tissue elongation. Semin Cell Dev Biol 22, 858-864 

(2011). 

32 Streuli, C. H. & Bissell, M. J. Expression of extracellular matrix components is regulated by substratum. J 

Cell Biol 110, 1405-1415 (1990). 

33 Emerman, J. T. & Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated 

mammary epithelium on floating collagen membranes. In Vitro 13, 316-328 (1977). 

34 Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G. & Bissell, M. J. Functional differentiation and alveolar 

morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105, 223-

235 (1989). 

35 Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane 

serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast 

epithelial cells. Proc Natl Acad Sci U S A 89, 9064-9068 (1992). 

36 O'Brien, L. E., Zegers, M. M. & Mostov, K. E. Opinion: Building epithelial architecture: insights from three-

dimensional culture models. Nat Rev Mol Cell Biol 3, 531-537 (2002). 

37 Wang, H., Lacoche, S., Huang, L., Xue, B. & Muthuswamy, S. K. Rotational motion during three-

dimensional morphogenesis of mammary epithelial acini relates to laminin matrix assembly. Proc Natl Acad 

Sci U S A 110, 163-168 (2013). 

38 Davis, G. E. & Cleaver, O. B. Outside in: inversion of cell polarity controls epithelial lumen formation. Dev 

Cell 31, 140-142 (2014). 

39 Plachot, C. et al. Factors necessary to produce basoapical polarity in human glandular epithelium formed in 

conventional and high-throughput three-dimensional culture: example of the breast epithelium. BMC Biol 7, 

77 (2009). 

40 Wozniak, M. A. & Keely, P. J. Use of three-dimensional collagen gels to study mechanotransduction in T47D 

breast epithelial cells. Biol Proced Online 7, 144-161 (2005). 

41 Overeem, A. W., Bryant, D. M. & van, I. S. C. Mechanisms of apical-basal axis orientation and epithelial 

lumen positioning. Trends Cell Biol 25, 476-485 (2015). 

42 Cassereau, L., Miroshnikova, Y. A., Ou, G., Lakins, J. & Weaver, V. M. A 3D tension bioreactor platform 

to study the interplay between ECM stiffness and tumor phenotype. J Biotechnol 193, 66-69 (2015). 

43 Carey, S. P., Martin, K. E. & Reinhart-King, C. A. Three-dimensional collagen matrix induces a 

mechanosensitive invasive epithelial phenotype. Sci Rep 7, 42088 (2017). 

44 Rodriguez-Fraticelli, A. E. & Martin-Belmonte, F. Picking up the threads: extracellular matrix signals in 

epithelial morphogenesis. Curr Opin Cell Biol 30, 83-90 (2014). 

45 Glukhova, M. A. & Streuli, C. H. How integrins control breast biology. Curr Opin Cell Biol 25, 633-641 

(2013). 

46 Manninen, A. Epithelial polarity--generating and integrating signals from the ECM with integrins. Exp Cell 

Res 334, 337-349 (2015). 

47 Yonemura, S. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment. PLoS 

One 9, e112922 (2014). 

48 Begnaud, S., Chen, T., Delacour, D., Mege, R. M. & Ladoux, B. Mechanics of epithelial tissues during gap 

closure. Curr Opin Cell Biol 42, 52-62 (2016). 

49 Ravasio, A. et al. Gap geometry dictates epithelial closure efficiency. Nat Commun 6, 7683 (2015). 

50 Inman, J. L. & Bissell, M. J. Apical polarity in three-dimensional culture systems: where to now? J Biol 9, 2 

(2010). 

51 Wang, F. et al. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-

dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad 

Sci U S A 95, 14821-14826 (1998). 

52 Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241-254 (2005). 



121 

53 Kleinman, H. K. & Martin, G. R. Matrigel: basement membrane matrix with biological activity. Semin 

Cancer Biol 15, 378-386 (2005). 

54 Barnes, C. et al. From single cells to tissues: interactions between the matrix and human breast cells in real 

time. PLoS One 9, e93325 (2014). 

55 Dhimolea, E., Soto, A. M. & Sonnenschein, C. Breast epithelial tissue morphology is affected in 3D cultures 

by species-specific collagen-based extracellular matrix. J Biomed Mater Res A 100, 2905-2912 (2012). 

56 Rudnicki, M. S. et al. Nonlinear strain stiffening is not sufficient to explain how far cells can feel on fibrous 

protein gels. Biophys J 105, 11-20 (2013). 

57 Stopak, D. & Harris, A. K. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture 

observations. Dev Biol 90, 383-398 (1982). 

58 Vanni, S., Lagerholm, B. C., Otey, C., Taylor, D. L. & Lanni, F. Internet-based image analysis quantifies 

contractile behavior of individual fibroblasts inside model tissue. Biophys J 84, 2715-2727 (2003). 

59 Dhimolea, E., Maffini, M. V., Soto, A. M. & Sonnenschein, C. The role of collagen reorganization on 

mammary epithelial morphogenesis in a 3D culture model. Biomaterials 31, 3622-3630 (2010). 

60 Foster, C. S., Smith, C. A., Dinsdale, E. A., Monaghan, P. & Neville, A. M. Human mammary gland 

morphogenesis in vitro: the growth and differentiation of normal breast epithelium in collagen gel cultures 

defined by electron microscopy, monoclonal antibodies, and autoradiography. Dev Biol 96, 197-216 (1983). 

61 Krause, S., Maffini, M. V., Soto, A. M. & Sonnenschein, C. A novel 3D in vitro culture model to study 

stromal-epithelial interactions in the mammary gland. Tissue Eng Part C Methods 14, 261-271 (2008). 

62 Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. & Keely, P. J. ROCK-generated contractility regulates 

breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen 

matrix. J Cell Biol 163, 583-595 (2003). 

63 Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture 

and in vivo by integrin blocking antibodies. J Cell Biol 137, 231-245 (1997). 

64 Ouyang, L. et al. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid 

body formation. Biofabrication 7, 044101 (2015). 

65 Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nature Biotechnology 32, 773-785 (2014). 

66 Aguado, B. A., Mulyasasmita, W., Su, J., Lampe, K. J. & Heilshorn, S. C. Improving Viability of Stem Cells 

During Syringe Needle Flow Through the Design of Hydrogel Cell Carriers. Tissue Engineering Part A 18, 

806-815 (2012). 

67 Vaezi, M., Seitz, H. & Yang, S. F. A review on 3D micro-additive manufacturing technologies. Int J Adv 

Manuf Tech 67, 1721-1754 (2013). 

68 Highley, C. B., Rodell, C. B. & Burdick, J. A. Direct 3D Printing of Shear-Thinning Hydrogels into Self-

Healing Hydrogels. Adv Mater 27, 5075-5079 (2015). 

69 Wang, Y., Adokoh, C. K. & Narain, R. Recent development and biomedical applications of self-healing 

hydrogels. Expert Opin Drug Deliv 15, 77-91 (2018). 

70 Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery 

3, 711-715 (2004). 

71 Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328-337 

(2013). 

72 Sun, X. X. & Yu, Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta 

Pharmacol Sin 36, 1219-1227 (2015). 

73 Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic 

response. Nature 501, 346-354 (2013). 

74 Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 

7, 139-147 (2007). 

75 Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire 

organism. Dev Cell 18, 884-901 (2010). 

76 Polyak, K., Haviv, I. & Campbell, I. G. Co-evolution of tumor cells and their microenvironment. Trends 

Genet 25, 30-38 (2009). 

77 Bissell, M. J. & Radisky, D. Putting tumours in context. Nat Rev Cancer 1, 46-54 (2001). 

78 Radisky, D., Hagios, C. & Bissell, M. J. Tumors are unique organs defined by abnormal signaling and 

context. Semin Cancer Biol 11, 87-95 (2001). 

79 Xu, F. et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell 

patterning platform. Biotechnol J 6, 204-212 (2011). 

80 Horvath, L. et al. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5, 7974 (2015). 



122 

81 Santis, R. et al. Advanced composites for hard-tissue engineering based on PCL/organic-inorganic hybrid 

fillers: From the design of 2D substrates to 3D rapid prototyped scaffolds. Polymer Composites 34, 1413-

1417 (2013). 

82 Patricio, T. et al. Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. 

Rapid Prototyping Journal 20, 145-156 (2014). 

83 De Santis, R. et al. Towards the Design of 3D Fiber-Deposited Poly(epsilon-caprolactone)/Iron-Doped 

Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration. Journal of Biomedical 

Nanotechnology 11, 1236-1246 (2015). 

84 Esposito, A. R. et al. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering. Biores Open Access 2, 138-

147 (2013). 

85 Khalil, S., Nam, J. & Sun, W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. 

Rapid Prototyping Journal 11, 9-17 (2005). 

86 Chang, R. & Sun, W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform 

fabrication-based direct cell writing. Tissue Engineering Part A 14, 41-48 (2008). 

87 Tirella, A. & Ahluwalia, A. The impact of fabrication parameters and substrate stiffness in direct writing of 

living constructs. Biotechnology Progress 28, 1315-1320 (2012). 

88 Smith, C. M., Christian, J. J., Warren, W. L. & Williams, S. K. Characterizing environmental factors that 

impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue 

Engineering 13, 373-383 (2007). 

89 Buyukhatipoglu, K., Jo, W. & Clyne, A. M. The role of printing parameters and scaffold biopolymer 

properties in the efficacy of a new hybrid nano-bioprinting system. Biofabrication 1 (2009). 

90 Faulkner-Jones, A. et al. Development of a valve-based cell printer for the formation of human embryonic 

stem cell spheroid aggregates. Biofabrication 5 (2013). 

91 Li, M. G., Tian, X. Y., Schreyer, D. J. & Chen, X. B. Effect of needle geometry on flow rate and cell damage 

in the dispensing-based biofabrication process. Biotechnology Progress 27, 1777-1784 (2011). 

92 Li, M. G., Tian, X. Y., Zhu, N., Schreyer, D. J. & Chen, X. B. Modeling Process-Induced Cell Damage in 

the Biodispensing Process. Tissue Engineering Part C-Methods 16, 533-542 (2010). 

93 Faulkner-Jones, A. et al. Bioprinting of human pluripotent stem cells and their directed differentiation into 

hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7 (2015). 

94 Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast 

cultures by defined factors. Cell 126, 663-676 (2006). 

95 Park, J. et al. Microfabrication-based modulation of embryonic stem cell differentiation. Lab on a Chip 7, 

1018-1028 (2007). 

96 Stolberg, S. & McCloskey, K. E. Can Shear Stress Direct Stem Cell Fate? Biotechnology Progress 25, 10-

19 (2009). 

97 Yan, C. Q. et al. Injectable Solid Peptide Hydrogel as a Cell Carrier: Effects of Shear Flow on Hydrogels 

and Cell Payload. Langmuir 28, 6076-6087 (2012). 

98 Baden, T. et al. Open Labware: 3-D Printing Your Own Lab Equipment. Plos Biology 13 (2015). 

10.1371/journal.pbio.1002175 (2015). 

99 Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. & Hasegawa, M. Efficient induction of transgene-free human 

pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host 

genome. Proc Jpn Acad Ser B Phys Biol Sci 85, 348-362 (2009). 

100 Martanto, W., Baisch, S. M., Costner, E. A., Prausnitz, M. R. & Smith, M. K. Fluid dynamics in conically 

tapered microneedles. AIChE Journal 51, 1599-1607 (2005). 

101 Floren, M. & Tan, W. Three-dimensional, soft neotissue arrays as high throughput platforms for the 

interrogation of engineered tissue environments. Biomaterials 67, 204-204 (2015). 

102 Wust, S., Godla, M. E., Muller, R. & Hofmann, S. Tunable hydrogel composite with two-step processing in 

combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta 

Biomaterialia 10, 630-640 (2014). 

103 Nair, K. et al. Characterization of cell viability during bioprinting processes. Biotechnol J 4, 1168-1177 

(2009). 

104 Billiet, T., Gevaert, E., De Schryver, T., Cornelissen, M. & Dubruel, P. The 3D printing of gelatin 

methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35, 49-62 

(2014). 

105 Roeder, B. A., Kokini, K. & Voytik-Harbin, S. L. Fibril microstructure affects strain transmission within 

collagen extracellular matrices. J Biomech Eng 131, 031004 (2009). 



123 

106 Doyle, A. D., Carvajal, N., Jin, A., Matsumoto, K. & Yamada, K. M. Local 3D matrix microenvironment 

regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat Commun 

6, 8720 (2015). 

107 Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452-454 (2016). 

108 Reid, J. A. et al. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and 

stem cell differentiation. Biofabrication 8, 025017 (2016). 

109 Ranga, A. et al. 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 5, 4324 (2014). 

110 Linnemann, J. R. et al. Quantification of regenerative potential in primary human mammary epithelial cells. 

Development 142, 3239-3251 (2015). 

111 Boyd, N. F., Lockwood, G. A., Byng, J. W., Tritchler, D. L. & Yaffe, M. J. Mammographic densities and 

breast cancer risk. Cancer Epidemiol Biomarkers Prev 7, 1133-1144 (1998). 

112 Maller, O., Martinson, H. & Schedin, P. Extracellular matrix composition reveals complex and dynamic 

stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia 15, 301-318 (2010). 

113 Sokol, E. S. et al. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast cancer 

research : BCR 18, 19 (2016). 

114 Bruno, R. D. et al. Mammary extracellular matrix directs differentiation of testicular and embryonic stem 

cells to form functional mammary glands in vivo. Sci Rep 7, 40196 (2017). 

115 Bruno, R. D. et al. Paracrine-rescued lobulogenesis in chimeric outgrowths comprising progesterone-

receptor-null mammary epithelium and redirected wild-type testicular cells. J Cell Sci 127, 27-32 (2014). 

116 Bruno, R. D. & Smith, G. H. Reprogramming non-mammary and cancer cells in the developing mouse 

mammary gland. Semin Cell Dev Biol 23, 591-598 (2012). 

117 Bruno, R. D., Boulanger, C. A. & Smith, G. H. Notch-induced mammary tumorigenesis does not involve the 

lobule-limited epithelial progenitor. Oncogene 31, 60-67 (2012). 

118 Boulanger, C. A., Bruno, R. D., Rosu-Myles, M. & Smith, G. H. The mouse mammary microenvironment 

redirects mesoderm-derived bone marrow cells to a mammary epithelial progenitor cell fate. Stem Cells Dev 

21, 948-954 (2012). 

119 Boulanger, C. A. et al. Embryonic stem cells are redirected to non-tumorigenic epithelial cell fate by 

interaction with the mammary microenvironment. PLoS One 8, e62019 (2013). 

120 Francis, M. P., Sachs, P. C., Elmore, L. W. & Holt, S. E. Isolating adipose-derived mesenchymal stem cells 

from lipoaspirate blood and saline fraction. Organogenesis 6, 11-14 (2010). 

121 Sachs, P. C. et al. Defining essential stem cell characteristics in adipose-derived stromal cells extracted from 

distinct anatomical sites. Cell Tissue Res 349, 505-515 (2012). 

122 Zhao, M. et al. Mesenchymal stem cells in mammary adipose tissue stimulate progression of breast cancer 

resembling the basal-type. Cancer Biol Ther 13, 782-792 (2012). 

123 Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the 

microenvironment to resistance. Cancer Cell 21, 488-503 (2012). 

124 Jeanes, A. I., Maya-Mendoza, A. & Streuli, C. H. Cellular microenvironment influences the ability of 

mammary epithelia to undergo cell cycle. PLoS One 6, e18144 (2011). 

125 Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable offspring derived from fetal 

and adult mammalian cells. Nature 385, 810-813 (1997). 

126 Hochedlinger, K. et al. Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18, 

1875-1885 (2004). 

127 Dolberg, D. S. & Bissell, M. J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 

309, 552-556 (1984). 

128 Rosenfield, S. M. & Smith, G. H. Redirection of Human Cancer Cells upon the Interaction with the 

Regenerating Mouse Mammary Gland Microenvironment. Cells 2, 43-56 (2013). 

129 Sakakura, T., Nishizuka, Y. & Dawe, C. J. Mesenchyme-dependent morphogenesis and epithelium-specific 

cytodifferentiation in mouse mammary gland. Science 194, 1439-1441 (1976). 

130 Cunha, G. R. et al. Mammary phenotypic expression induced in epidermal cells by embryonic mammary 

mesenchyme. Acta Anat (Basel) 152, 195-204 (1995). 

131 Bussard, K. M., Boulanger, C. A., Booth, B. W., Bruno, R. D. & Smith, G. H. Reprogramming human cancer 

cells in the mouse mammary gland. Cancer Res 70, 6336-6343 (2010). 

132 Boulanger, C. A., Mack, D. L., Booth, B. W. & Smith, G. H. Interaction with the mammary 

microenvironment redirects spermatogenic cell fate in vivo. Proc Natl Acad Sci U S A 104, 3871-3876 (2007). 

133 Boulanger, C. A. & Smith, G. H. Reprogramming cell fates in the mammary microenvironment. Cell Cycle 

8, 1127-1132 (2009). 



124 

134 Smith, G. H. et al. Long-term in vivo expression of genes introduced by retrovirus-mediated transfer into 

mammary epithelial cells. J Virol 65, 6365-6370 (1991). 

135 Holton, S. E., Bergamaschi, A., Katzenellenbogen, B. S. & Bhargava, R. Integration of molecular profiling 

and chemical imaging to elucidate fibroblast-microenvironment impact on cancer cell phenotype and 

endocrine resistance in breast cancer. PLoS One 9, e96878 (2014). 

136 Yang, C. C. & Burg, K. J. Designing a tunable 3D heterocellular breast cancer tissue test system. J Tissue 

Eng Regen Med 9, 310-314 (2015). 

137 Wang, X. et al. A complex 3D human tissue culture system based on mammary stromal cells and silk 

scaffolds for modeling breast morphogenesis and function. Biomaterials 31, 3920-3929 (2010). 

138 Campbell, J. J. et al. A 3-D in vitro co-culture model of mammary gland involution. Integr Biol (Camb) 6, 

618-626 (2014). 

139 Wang, F. et al. Phenotypic reversion or death of cancer cells by altering signaling pathways in three-

dimensional contexts. J Natl Cancer Inst 94, 1494-1503 (2002). 

140 Muschler, J. et al. A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. 

Cancer Res 62, 7102-7109 (2002). 

141 Howlett, A. R., Petersen, O. W., Steeg, P. S. & Bissell, M. J. A novel function for the nm23-H1 gene: 

overexpression in human breast carcinoma cells leads to the formation of basement membrane and growth 

arrest. J Natl Cancer Inst 86, 1838-1844 (1994). 

142 Rizki, A. et al. A human breast cell model of preinvasive to invasive transition. Cancer Res 68, 1378-1387 

(2008). 

143 Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF 

secretion. Nature 487, 500-504 (2012). 

144 Weigelt, B., Ghajar, C. M. & Bissell, M. J. The need for complex 3D culture models to unravel novel 

pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev 69-70, 42-51 (2014). 

145 Zhou, Y. et al. Multiparameter analyses of three-dimensionally cultured tumor spheroids based on respiratory 

activity and comprehensive gene expression profiles. Anal Biochem 439, 187-193 (2013). 

146 Schiemann, S., Schwirzke, M., Brunner, N. & Weidle, U. H. Molecular analysis of two mammary carcinoma 

cell lines at the transcriptional level as a model system for progression of breast cancer. Clin Exp Metastasis 

16, 129-139 (1998). 

147 Arteaga, C. L., Hurd, S. D., Dugger, T. C., Winnier, A. R. & Robertson, J. B. Epidermal growth factor 

receptors in human breast carcinoma cells: a potential selective target for transforming growth factor alpha-

Pseudomonas exotoxin 40 fusion protein. Cancer Res 54, 4703-4709 (1994). 

148 Hollestelle, A. et al. Four human breast cancer cell lines with biallelic inactivating alpha-catenin gene 

mutations. Breast Cancer Res Treat 122, 125-133 (2010). 

149 Spike, B. T. et al. A mammary stem cell population identified and characterized in late embryogenesis reveals 

similarities to human breast cancer. Cell Stem Cell 10, 183-197 (2012). 



125 

APPENDICES 

APPENDIX A: GELATION PROTOCOL FOR COLLAGEN I, RAT TAIL 

Place on ice the following: 

1.1 Corning Collagen I, rat tail 

1.2 Sterile phosphate buffered saline (PBS) 

1.3 Sterile 1 N NaOH 

1.4 Sterile tube of sufficient capacity 

2.0 Determine the Desired Collagen Concentration (mg/mL).  

3.0 Determine the total volume of Collagen I solution required to perform the experiment (V-

total) 

4.0 Place on ice a sterile tube of sufficient capacity to contain the final volume of Collagen I 

(Vtotal). 

5.0 Use the following equation to calculate the volume of stock collagen (Vstock) to achieve the  

Desired Collagen Concentration (step 2.0) and the total volume of collagen I solution (Vtotal) 

required for the experiment (step 3.0). 

 

𝑉𝑜𝑙. 𝑜𝑓 𝑆𝑡𝑜𝑐𝑘 𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛 (𝑉𝑠𝑡𝑜𝑐𝑘) =
(𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

𝑚𝑔
𝑚𝐿

)  ×  (𝑉𝑡𝑜𝑡𝑎𝑙 𝑚𝐿)

𝑆𝑡𝑜𝑐𝑘 𝐶𝑜𝑙𝑙𝑎𝑔𝑒𝑛 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 
𝑚𝑔
𝑚𝐿

 

 

6.0 Determine the volume of sterile, ice cold 1 N NaOH required for the experiment (VNaOH). 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑁𝑎𝑂𝐻 (𝑉𝑁𝑎𝑂𝐻) = 𝑉 𝑠𝑡𝑜𝑐𝑘(𝑚𝐿) × 0.023 𝑚𝐿  

 

7.0 Next, determine the volume of PBS required for the experiment (VPBS) by subtracting V-

NaOH and Vstock (step 5.0 & 6.0) from the total volume of collagen I solution required for the 

experiment Vtotal (step 3.0). 

 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑃𝐵𝑆 (𝑉𝑃𝐵𝑆) = 𝑉𝑡𝑜𝑡𝑎𝑙  −  𝑉𝑠𝑡𝑜𝑐𝑘 − 𝑉𝑁𝑎𝑂𝐻 

 

8.0 Perform the following steps, in the provided order, using aseptic technique. 

8.1 Add the required volume of sterile, ice-cold PBS (VPBS) to the sterile tube on ice. 

8.2 Next, add the required volume of sterile, ice-cold 1 N NaOH (VNaOH) to the volume of PBS 

(VPBS). 

8.3 Mix the contents of tube and place in ice. 

8.4 Add the calculated volume of stock collagen (Vstock), mix, and leave on ice until ready for 

use. 

9.0 Aseptically deliver collagen solution into cell culture device and allow to get at 37°C for 

at least 30 minutes prior to printing. If not used immediately, collagen solution may be held on 

ice for 2-3 hours.
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