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Abstract

A consistent set of spectroscopic constants for the a1Δ, d1Σ+, b1Π, c1Φ, and f1Δ states of 48Ti16O has been
determined from analysis of the b1Π–a1Δ, b1Π–d1Σ+, c1Φ–a1Δ, and f1Δ–a1Δ systems. Three Fourier transform
emission spectra have been used for the analysis. New bands of the b1Π–a1Δ and c1Φ–a1Δ systems have been
fitted. The first analysis of the c1Φ–a1Δ system using Fourier transform spectra is also provided. Extensive and
improved line positions are measured. TiO is prominent in the spectra of oxygen-rich cool stellar objects and may
be present in hot-Jupiter exoplanet atmospheres.

Key words: methods: laboratory: molecular – molecular data – techniques: spectroscopic

Supporting material: machine-readable table

1. Introduction

The diatomic TiO molecule is of considerable astronomical
importance. TiO is present in the atmospheres of oxygen-rich
low-mass stellar objects. M dwarfs have strong absorption
features from TiO bands and the relative intensities of TiO
band heads are used for classification of the M subtypes
(Kirkpatrick et al. 1993). In later spectral types, L and T, TiO
features are weaker or absent. TiO features have been used to
discriminate between magnetically active and inactive stars
(Bochanski et al. 2007). Model atmosphere calculations have
been performed for M dwarfs and require the inclusion of TiO
opacities (Kirkpatrick et al. 1993; Allard & Hauschildt 1995;
Allard et al. 2000).

Absorption features from the atmosphere of hot-Jupiter HD
209458b have been tentatively assigned to be due to TiO (Désert
et al. 2008). TiO was suggested to be both in the upper and
lower parts of the atmosphere. For the hot-Jupiter
WASP-12b, conflicting evidence for TiO was found (Sing
et al. 2013; Stevenson et al. 2014). Detection of TiO on
WASP-19b (Sedaghati et al. 2017), WASP-76b, and perhaps on
WASP-121b (Tsiaras et al. 2018) has recently been reported.
Fortney et al. (2008) proposed two classes of hot Jupiters, the
pM class, which is warm enough to have appreciable opacities
due to TiO and VO, and the pL class, which is cooler. Due to the
opacity in the upper atmosphere, TiO has been proposed to
contribute to thermal inversions in the atmospheres of highly
irradiated planets. Radiative-convective radiative-transfer models
and a model of particle settling in the presence of turbulent and
molecular diffusion have shown this to be problematic but not
impossible (Spiegel et al. 2009).

TiO was detected at (sub)millimeter wavelengths in the red
supergiant VY Canis Majoris and its circumstellar environment
(Kamiński et al. 2013). The TiO emission is so far inconsistent
with models of the photosphere and of dust formation.

Schwenke (1998) has calculated line lists for singlet–singlet,
triplet–triplet, as well as forbidden transitions. Potential energy
curves were determined using the RKR (Rydberg–Klein–Rees)
procedure, with spectroscopic constants determined by fitting
transitions to a Hamiltonian model. Transition dipole moment
functions and dipole moment functions calculated by
Schwenke and Langhoff (1997) have been used. The coupling
between states has been estimated using ab initio calculated

spin–orbit and rotational-orbit matrix elements. For better
agreement with experiments, the coupling was adjusted in a
fitting procedure.
Plez (1998) also provided a line list for singlet–singlet and

triplet–triplet allowed transitions. The line list was calculated
using molecular constants determined from experimental data.
The mixing between states was not estimated for the line
strength calculations that used transition moment functions
from Langhoff (1997).
A comparison of energy levels obtained by the Measured

Active Rotational–Vibrational Energy Levels (MARVEL)
analysis (McKemmish et al. 2017) with Schwenke’s line list
was reasonable, in general, but deviations in energy increased
with increasing J. Agreement with the experimentally derived
levels for some states was poor. The vibrational spacing in the
line list by Plez (1998) was found to be incorrect for the singlet
states when compared to the MARVEL energy levels.
Cross-correlation of the high-resolution transmission spec-

trum of HD 209458b with synthetic spectra of model
atmospheres containing TiO transitions tentatively ruled out
detection of TiO in the exoplanet atmosphere (Hoeijmakers
et al. 2015). The model atmospheres used TiO line lists by
Schwenke and Plez, and these line lists were found to be
unsatisfactory. Improvement in the line positions should
facilitate TiO detection by such cross-correlation retrieval
methods.
The Δv=0 bands of the c1Φ–a1Δ system were the first TiO

singlet bands to be analyzed (Lowater 1929). The rotational
analysis of the 0–0 band was first done by Phillips (1950)
together with a rotational analysis of Δv=0 bands of the
b1Π–a1Δ system. Rotational analyses for bands of the
e1Σ+

–d1Σ+, f1Δ–a1Δ and b1Π–d1Σ+ systems were first
provided by Phillips & Davis (1971), Linton (1972), and
Galehouse et al. (1980), respectively. Further measurements of
these systems were carried out by Lindgren (1972), Linton &
Singhal (1974), and others. Pure rotational transitions are
available for the X3Δ state from (sub)millimeter-wave (Namiki
et al. 1998; Lincowski et al. 2016) and microwave-optical
double resonance (Steimle et al. 1990) spectroscopic studies.
Pure rotational transitions were not measured in any singlet
states.
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In this article we provide a complete reanalysis of the
b1Π–a1Δ, b1Π–d1Σ+, c1Φ–a1Δ, and f1Δ–a1Δ systems
(Figure 1). Known and new bands were fitted using three
Fourier transform emission spectra.

2. Experimental

Three emission spectra have been used for the analysis of
TiO reported in this paper. The spectra were measured with the
1 m Fourier transform interferometer associated with the
McMath–Pierce Solar Telescope of the National Solar
Observatory at Kitt Peak.

The first spectrum was measured on 1977 June 29
(770629R0.001). The spectrum was obtained by averaging 34
scans over about 4 hr of integration and covered a spectral
range of 9000–22,000 cm−1, with a spectral resolution of
0.044 cm−1. The interferograms were recorded at a sampling
rate of 2500 Hz. The visible beam splitter, a CG475 filter and a
silicon photodiode detector were used for data acquisition. A
15 cm quartz tube with a window on one end was used as a
sample cell with a continuous flow of gas. TiO was formed in a
microwave discharge of an O2 and TiCl4 mixture diluted in 20
Torr He. A more detailed description is provided by Brandes &
Galehouse (1985). For our analysis, a zero-filling factor of four
was used for all spectra.

The second spectrum was also measured on 1977 June 29
(770629R0.005). Twelve scans were averaged in ~1.5 hours of
integration and covered a spectral range of 3800–12,000 cm−1,
with a spectral resolution of 0.015 cm−1. An InSb detector was
used and the 5000–11,000 cm−1 bandpass was set by the
visible beam splitter and a GaAs filter. The microwave
discharge source was the same as that used for the first
spectrum, with a total pressure of 22 Torr. A more detailed
description is provided by Galehouse et al. (1980).

The third spectrum was measured on 1985 January 19
(850116R0.002). The spectrum was obtained by averaging

thirteen scans in ~1.5 hours of integration. The spectrum
covered 9000–21,000 cm−1, with a spectral resolution of
0.044 cm−1. The UV beam splitter was used with blue-
enhanced photodiode detectors and a CG495 colored glass
filter. TiO was generated in a carbon tube furnace at 1950 K at
a pressure of 50 Torr from outgassing.
A3Φ–X3Δ lines (Ram et al. 1999) have been used to

calibrate the third spectrum with a caibration factor of
1.00000020. This calibration was transferred from the third
to the second spectrum, with strong lines measured in both,
giving a calibration factor of 0.99999924. Ti atomic lines
(Kramida et al. 2018) have been used to calibrate the first
spectrum. In addition to the calibration factor, a spectral shift
was necessary to properly calibrate the first spectrum described
above, due to a missing point or points in the spectrum. A
linear calibration of 0.9999935x+0.0763102 was used. The
absolute accuracy of the calibration was estimated as
0.004 cm−1 or better.
A precision of about 0.003–0.007 cm−1 was calculated for

strong transitions in the 0–0 bands of the fitted systems.

Figure 1. Term energies (T0) of the fitted electronic states and fitted band
systems (arrows).

Figure 2. Part of the b1Π–a1Δ system spectrum showing the 0–0 band R
branch band head and low-J transitions from the Q and P branches.

Figure 3. Part of the c1Φ–a1Δ system spectrum showing the 0–0 band R
branch band head and low-J transitions from the Q branch.
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3. Spectral Analysis and Discussion

The three spectra discussed in Section 2 have been used to fit
the bands of four systems, with all bands being connected. A
consistent set of constants is determined from a simultaneous fit
of all lines. The rotational temperature of TiO generated in the
microwave discharge is lower than that obtained using the
furnace. The lines from the furnace spectrum extend to higher J
values.

The 0–0, 1–1, 0–1, 1–0, 1–2, and 2–3 bands of b1Π–a1Δ
(δ system) were fit. Transitions of Δv=−1 and Δv=1 band
sequences of the δ system are fitted for the first time; only
transitions from the Δv=0 sequence have been assigned
before, most recently by Ram et al. (1996).

The 0–0, 1–1, 0–1, 1–0, 2–0, 0–2, 1–2, 2–1, 2–3, 3–2, 1–3,
2–4, and 3–5 bands of b1Π–d1Σ+ (f system) were fit. An
extensive analysis of the system was done by Galehouse et al.
(1980). Using the same spectrum used by Galehouse et al., we
could not confidently assign transitions for the previously
reported 3–1, 4–2, and 3–4 bands.

The 0–0, 1–1, 2–2, 3–3, 1–0, 2–1, and 3–2 bands of
c1Φ–a1Δ (β system) were fit. The first analysis of the Δv=1
band sequence of the β system is presented; only the Δv=0
sequence has been assigned before. The 0–0 band has been
most recently reported by Amiot et al. (1996). An extensive
analysis of the Δv=0 sequence up to the 3–3 band was
provided by Linton (1974) using data from a grating
spectrograph.

The 0–0, 1–1, 0–1, 1–0, and 1–2 bands of f1Δ–a1Δ system
were fit. An extensive analysis of the system was done by
Brandes & Galehouse (1985). Using the same spectrum used
by Brandes and Galehouse, we could not confidently assign
transitions for the previously reported 2–1 band. As described
in Section 2, a spectral shift was needed for the calibration. We
found our lines to be shifted to lower wavenumbers by about

0.025 cm−1, compared with the Brandes & Galehouse line
positions.
Parts of the 0–0 band spectrum of the b1Π–a1Δ and

c1Φ–a1Δ systems are shown in Figures 2 and 3, respectively.
Figures showing the bands of the b1Π–d1Σ+ and f1Δ–a1Δ
systems can be found in Galehouse et al. (1980) and Brandes &
Galehouse (1985), respectively.
Spectroscopic constants from all previously known TiO

singlet systems have been fitted, excluding the e1Σ+
–d1Σ+

system (Phillips & Davis 1971; Lindgren 1972), as transitions
of the system were not observed in our spectra. The fitting was
done using PGOPHER by Western (2017) and the determined
spectroscopic constants are provided in Table 1. The line
positions and the spectrum used for each line position are
provided in Table 2.
Effective constants were determined for the c1Φ state.

Inclusion of spin–orbit interaction for this state with the C3Δ
state (Namiki et al. 2003) was not required in the fitting.
However, the perturbation was noticeable in the residuals.
In the fitting, the term energies were set relative to the non-

existent v=0 J=0 level of the a1Δ state. The term energy of
a1Δv=0 J=0 was determined by Kaledin et al. (1995) to be
3444.367(1) cm−1. A term energy of 3446.481(8) cm−1 for
a1Δv=0 J=2 was determined by MARVEL analysis
relative to v=0 J=1 of X3Δ1.

4. Conclusions

Using high-quality Fourier transform spectrometer spectra, a
consistent set of spectroscopic constants for most of the known
singlet states of TiO has been determined with improved
accuracy and precision over the previous data. The spectro-
scopic constants and line positions can be used for cross-
correlation retrieval methods and for the calculation of line
lists.

Table 1
Spectroscopic Constants of TiO Singlet States in Units of cm−1

Tv Bv Dv×107 qv×104 qDv×109

a1Δ v=0 0 0.53624855(795) 6.0293(115) L L
a1Δ v=1 1009.2251(17)a 0.53326822(803) 6.0620(117) L L
a1Δ v=2 2009.4713(23) 0.53027079(832) 6.0958(126) L L
a1Δ v=3 3000.7380(63) 0.5272249(110) 6.0620(230) L L
d1Σ+ v=0 2218.7148(17) 0.54767029(796) 6.3765(114) L L
d1Σ+ v=1 3231.9999(19) 0.54431122(818) 6.4011(127) L L
d1Σ+ v=2 4235.5196(25) 0.54094485(860) 6.4280(150) L L
d1Σ+ v=3 5229.2965(47) 0.5375690(130) 6.4570(480) L L
d1Σ+ v=4 6213.342(20) 0.5342159(874) 6.799(825) L L
d1Σ+ v=5 7187.687(12) 0.5308122(248) 6.620(100) L L
b1Π v=0 11272.7586(12) 0.51204209(793) 6.4113(115) −1.6325(73) 2.26(12)
b1Π v=1 12183.9225(14) 0.50916700(794) 6.4644(115) −1.5562(85) 1.71(18)
b1Π v=2 13086.4304(23) 0.50624702(832) 6.5076(130) −1.506(21) 1.95(54)
b1Π v=3 13980.2088(45) 0.50329705(973) 6.5770(180) −1.437(20) [2.26]b

c1Φ v=0 17840.4826(16) 0.52159845(833) 5.1540(130) L L
c1Φ v=1 18750.0717(26) 0.51863964(854) 6.3810(140) L L
c1Φ v=2 19649.6283(36) 0.51537391(945) 6.9890(170) L L
c1Φ v=3 20539.8720(71) 0.5118329(145) 7.1110(540) L L
f1Δ v=0 19068.9639(18) 0.50232706(825) 6.5016(131) L L
f1Δ v=1 19938.0688(32) 0.4993020(110) 6.6400(290) L L

Notes.
a The value in parenthesis is the error estimate (one standard deviation) for the parameter.
b Value held fixed in the fit.
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Table 2
Line Positions of TiO in PGOPHER Line List Style

Molecule M′ J′ S′ #′ M″ J″ S″ #″ Position Branch Name

LinearMolecule b1Pi 45 0 4 d1Sigma+ 45 1 6 6735.7276 Q(45) : b1Pi v=3 45 f—d1Sigma+ v=5 45 e : 770629005_Apo_Cal.dpt—Overlays
LinearMolecule b1Pi 43 0 4 d1Sigma+ 43 1 6 6740.6132 Q(43) : b1Pi v=3 43 f—d1Sigma+ v=5 43 e : 770629005_Apo_Cal.dpt—Overlays
LinearMolecule b1Pi 42 1 4 d1Sigma+ 42 0 6 6742.9677 Q(42) : b1Pi v=3 42 f—d1Sigma+ v=5 42 e : 770629005_Apo_Cal.dpt—Overlays

(This table is available in its entirety in machine-readable form.)
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