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INTRODUCTION

Estuaries are highly productive ecosystems where
concentrations of dissolved organic matter (DOM) and
particulate organic matter (POM) can be quite high.
Freshwater end members tend to have particularly
high concentrations of DOM, much of which is terres-
trially derived (Hedges et al. 1997, Hopkinson et al.
1998). However, the availability of many components

of the DOM pool for uptake by organisms is unknown
because DOM is a complex mixture of compounds,
most of which are uncharacterized (Hansell & Carlson
2002). Because of this complexity, a variety of different
substrate-specific extracellular enzymes are necessary
to remineralize DOM in nature (Hoppe 1991) and recy-
cle material for microorganism growth. Particularly
important are extracellular enzymes that degrade
large polymeric biomolecules to small, labile com-
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except at the least saline station in August of both years. Rates of AAO and PH were not linearly cor-
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pounds that can be taken up by microorganisms. The
rates at which they function may limit the availability
of labile compounds in some environments (Chróst
1991).

Two processes whereby proteins, peptides or amino
acids are degraded extracellularly are amino acid oxi-
dation (AAO) and peptide hydrolysis (PH). Both bacte-
ria and phytoplankton can take up NH4

+ and free
amino acids (Antia et al. 1991, Kirchman 2000), which
are produced by these reactions. Extracellular AAO
has been shown to occur in a wide range of taxonomi-
cally diverse phytoplankton and in natural assem-
blages of microbial organisms (Palenik et al. 1990a,b,
Pantoja & Lee 1994, Mulholland et al. 1998) including
those dominated by bloom species (Mulholland et al.
2002). Extracellular PH is thought to produce smaller
peptides and amino acids from larger compounds such
as proteins and polypeptides in oceanic (Hollibaugh &
Azam 1983, Keil & Kirchman 1992, Taylor 1995) and
coastal (Hoppe 1983, 1991, Pantoja & Lee 1999) marine
systems, including those seasonally dominated by
mixotrophic organisms (Mulholland et al. 2002,
Stoecker & Gustafson 2003). Little is known about how
rates of extracellular enzymatic reactions affect avail-
able nutrient pools in nutrient- and organic-rich estu-
aries and tributaries.

Proteins typically represent at least 75% of phyto-
plankton cell N (Dortch et al. 1984, Nguyen & Harvey
1994) and 80% of bacterial cell N (Kirchman 2000). In
oceanic systems, little of the protein produced in the
euphotic zone reaches the sediments due to water-col-
umn degradation and recycling processes (Lee &
Cronin 1984, Smith et al. 1992, Hoppe et al. 1993). Sim-
ilarly, proteins and peptides are rapidly degraded in
estuarine systems (Nguyen & Harvey 1997). Upon
grazing, senescence, death, or cell lysis, particulate
proteins may enter the DOM pool, where they are sub-
ject to further degradation. Dissolved combined amino
acids (DCAA) typically represent between 5 and 20%
of the dissolved organic nitrogen (DON) pool and 3 to
4% of the dissolved organic carbon (DOC) pool in sea-
water (Sharp 1983). DCAA are measured only after
acid hydrolysis, and include peptides, proteins and
amino acids that are adsorbed or bound in some way.
Both DCAA and dissolved free amino acid (DFAA)
concentrations are higher in estuarine systems than in
oceanic systems and are generally correlated with pri-
mary productivity (Sellner & Nealley 1997, Bronk et al.
1998, Nagata 2000).

Many microorganisms can use DOM to meet some or
all of their energy or nutritional demands for growth. In
addition to bacteria, a variety of phytoplankton species
directly supplement their nutrition by taking up and
using organic compounds (e.g. Paerl 1988, Berg et al.
1997, Lewitus et al. 1999, Glibert et al. 2001). In partic-

ular, many nuisance algal species exhibit positive
growth responses to the addition of small organic com-
pounds (Lewitus & Kana 1994, Berg et al. 1997, Gobler
& Sañudo-Wilhelmy 2001). Thus, an important ques-
tion in productive, organic-rich systems is to what
extent does organic matter contribute to auto- and
heterotrophic microbial nutrition relative to inorganic
nutrients?

Here we explore the contribution of AAO and PH to
the C and N nutrition of autotrophic and heterotrophic
plankton in the Pocomoke River, a tributary of the
Chesapeake Bay on Maryland’s eastern shore. We
examine the contribution of AAO and PH to the
turnover of DFAA and DCAA, and relative to the
uptake of DFAA and inorganic N compounds.

MATERIALS AND METHODS

Sampling site and field methods. The Pocomoke
River drains largely agricultural land and has rela-
tively little direct nitrogen input from point sources
(Maryland Department of Natural Resources 1998,
Glibert et al. 2001). Pocomoke waters are rich in DOM,
including DON (Glibert et al. 2001). Samples were col-
lected along a salinity transect of the river from its salty
mouth to freshwater upriver (Fig. 1). The mouth of the
river (e.g. Stn 9A) was sampled more intensively
because it is near the turbidity maximum. Experiments
were conducted during the months of May and August
in 1999 and 2000. From a small boat, water samples
were pumped from just below the surface (<0.5 m) into
10 or 20 l acid-washed plastic carboys, except as noted
below. Samples were transported on ice to Horn Point
Laboratory for sample-processing, which began within
4 to 6 h of collection.

Rate measurements and analytical methods. During
all sampling periods, rates of enzyme activity in differ-
ent size-fractions were compared. Direct uptake rates
of inorganic and organic nitrogenous nutrients (NH4

+,
NO3

–, urea and amino acids) were measured on
selected samples. In addition, at one site, variations in
rates as a function of sample-handling protocols were
assessed. The approaches to determine each of these
rates are described in the following subsections.

Amino acid oxidation and peptide hydrolysis rates:
Rates of AAO and PH were measured using the fluo-
rescent analogs, lucifer yellow anhydride (LYA)-lysine
and LYA-tetraalanine (LYA-ala4), respectively (Pan-
toja et al. 1993, 1997). Rates were measured over time
as the disappearance of substrate and/or appearance
of products. Incubations were initiated by adding sub-
strates to a final concentration of 98 nM LYA-lysine or
95 nM LYA-ala4. Subsamples were collected at
0, 30 min, 1 h and 10 additional times over the course
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of 2 d during May 1999. In later assays, incubations
lasted only 4 to 6 h. At each time-point, samples were
syringe-filtered (0.2 µm) to terminate activity and then
frozen until analysis. LYA-lysine, LYA-ala4, and their
derivatives were quantified by high-performance liq-
uid chromatography (HPLC). Identification and quan-
tification of peaks was accomplished using authentic
standards synthesized in the laboratory (Pantoja et al.
1993, 1997). First-order rate constants (k) were calcu-
lated from time-course incubations. Means and stan-
dard deviations were calculated from triplicate incuba-
tions, and standard deviations were usually less than
5%. Rates of AAO and PH were estimated by multiply-
ing k by the relevant dissolved pool, DFAA, to estimate
AAO, and DCAA (total hydrolysable amino acids
[THAA] minus DFAA) to estimate PH. Turnover times
of particulate pools due to AAO and PH were calcu-
lated by multiplying k by the relevant particulate pool,
either particulate organic C (POC) or particulate
organic N (PON).

Size-fractionation experiments: To determine the
relative size-class of plankton contributing most signif-
icantly to both AAO and PH, measurements were made
on size-fractionated samples selected based on the size
of functional groups (e.g. bacteria, small and large

phytoplankton) and revised based on initial results.
Triplicate acid-cleaned polycarbonate bottles were
filled with either 25 or 50 ml of water from each size-
fraction. In May 1999, water was collected from Stns 9A
and 17 (Fig. 1), size-fractionated by gentle vacuum fil-
tration (<125 mm Hg), and AAO and PH rates mea-
sured in <0.2 µm (abiotic control), <20 µm (bacteria and
small phytoplankton) and whole-water (all plankton)
fractions. In August 1999, water was collected from Stns
1, 9A, 18, and 25 (Fig. 1), and rates measured in <0.2,
<1.0 µm (primarily bacteria) and whole-water size-frac-
tions. This allowed resolution of enzyme activity in the
bacterial size-fraction. Because no activity was ob-
served in the <0.2 µm size-fraction in the 1999 samples,
this size-fraction was omitted in 2000. In May and Au-
gust 2000, water was collected from Stns 5 or 7, 9A, 18,
and 27 and size-fractionated into <1.2 µm (primarily
bacteria), <10 µm (bacteria and small phytoplankton)
and whole-water fractions for rate measurements. The
same high- and low-salinity end-member stations (1
through 7 and 23 through 27, respectively) were not
sampled each time because of weather constraints.

Sample-handling effects : On 2 occasions (May and
August 2000), experiments were conducted to deter-
mine the potential impact of transit time on enzymatic

5
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reaction rates. Samples were collected from Stn 9A,
and AAO and PH rate measurements were initiated
both on the boat dock, within 15 min of sample collec-
tion, and after the sample had been transported to the
laboratory 4 to 6 h after sample collection.

Inorganic nitrogen and urea uptake: In May and
August 2000, uptake rates of 15N-labeled NH4

+, NO3
–,

and urea were measured in whole water and in
<10.0 µm size-fractionated water (bacteria and small
phytoplankton). Experiments were initiated by adding
tracer concentrations (10% of the ambient pool, or
0.03 µmol N l–1) of highly enriched (96 to 99%) 15N-
labelled substrates to samples in acid-clean polycar-
bonate bottles. After 1 h or less, incubations were ter-
minated by gentle filtration (<125 mm Hg) through
pre-combusted (450°C for 2 h) GF/F filters; the filters
were rinsed with filtered seawater and frozen until
analysis. Isotope ratios were measured on a Europa
20/20 isotope-ratio mass spectrometer equipped with
an elemental analyzer. Uptake rates were calculated
using the equations of Glibert & Capone (1993).

Amino acid uptake: Direct uptake of amino acids
was measured using 14C-labeled glutamate (August
1999), 15N-labeled glutamate (May 2000), and 13C and
15N dually labeled glutamate (August 2000). Uptake of
uniformly labeled 14C-glutamate was measured using
standard methods (Lee 1992, Jørgensen et al. 1993)
and 20 min incubations. Samples were incubated in
triplicate after adding 9 nCi ml–1 of radiolabeled sub-
strate. All original label added was accounted for as
either CO2 respired, organic carbon incorporated into
microbial biomass (using 0.2 µm Nuclepore filters), or
unused label. Rates were estimated by multiplying the
percent incorporated or respired per unit time by the
total DFAA pool.

Stable isotope experiments were initiated by adding
0.03 µmol N l–1 of labeled glutamate to water samples
that had been placed in acid-clean polycarbonate bot-
tles. The N atoms of the 15N-labeled glutamate and the
C and N atoms of dual-labeled glutamate were uni-
formly labeled; all C and N labels were highly en-
riched (98% 13C and 96 to 99% 15N). After 1 h or less of
incubation, samples were processed as described
above for inorganic N and urea uptake using 0.7 µm
GF/F filters. Amino acid uptake rates were calculated
using DFAA as the relevant ambient nutrient pool. It
was assumed that the relative labilities of individual
amino acids were equal. The C:N ratio of the ambient
DFAA pool was estimated based on the individual
amino acid composition determined from HPLC analy-
ses (see subsection below) and was used to calculate
the relative C and N uptake from amino acids.

Fate of nitrogen from cell-surface oxidation: The
fate of N released from cell-surface AAO was directly
assessed through the development and application of

an amino acid tagged with both LYA and with 15N. This
compound was synthesized by condensing 15N-labeled
lysine with LYA as described by Pantoja et al. (1993).
Uptake of 15N derived directly from 15N-labeled LYA-
lysine oxidation was measured in August 1999. LYA-
15N-lysine was added to samples in the same quantity
as for experiments conducted with unlabeled LYA-
lysine, as described earlier. After 1 h, 25 ml samples
were filtered onto pre-combusted Whatman GF/F fil-
ters and the filters were frozen until processing. Iso-
topic ratios were measured by isotope-ratio mass spec-
trometry, as described earlier. To calculate the uptake
of 15N derived from the oxidation of LYA-15N-lysine, it
was assumed that 15NH4

+ was the only labeled oxida-
tion product. The rate of AAO we measured was used
to calculate 15NH4

+ production during the 1 h incuba-
tion period. The atom % enrichment of the ambient
NH4

+ pool was then estimated based on the production
of 15NH4

+ from AAO. The uptake rate of NH4
+ released

from amino acids was then calculated using the equa-
tions of Glibert & Capone (1993).

Dissolved nutrient, amino acid and biomass con-
centrations: Samples were filtered through precom-
busted Whatman GF/F filters upon arrival in the lab-
oratory. Chlorophyll a concentrations were deter-
mined on particulate material by fluorometry (Par-
sons et al. 1984). Concentrations of PON and POC
were determined on a Control Equipment CHN ana-
lyzer. Filtrates were placed into combusted scintilla-
tion vials or sterile microcentrifuge tubes and frozen
for later DFAA and DCAA analyses. DFAA were
measured individually by HPLC (Lindroth & Mopper
1979, Cowie & Hedges 1992) or as total dissolved pri-
mary amines by fluorometry (Parsons et al. 1984).
Concentrations of total hydrolysable amino acids
(THAA) were measured by HPLC or fluorometry
after vapor-phase hydrolysis (Tsugita et al. 1987, Keil
& Kirchman 1991). DCAA were calculated as the dif-
ference between THAA and DFAA. Filtered samples
for NH4

+, NO3
– and urea analyses were placed in

acid-cleaned polyethylene bottles and frozen until
analysis. Concentrations of NH4

+ and NO3
– were

measured using an autoanalyzer. Urea concentra-
tions were estimated using the urease method (Par-
sons et al. 1984).

RESULTS

Water quality parameters

Water quality parameters and chemical concentra-
tions measured during the study periods are presented
in Table 1. August, and to a lesser extent May, temper-
atures were higher in 1999 than 2000. Salinity at the
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same or nearby stations was also generally higher in
1999 than 2000. Concentrations of DIN were much
higher at the low-salinity stations and also in 2000
compared to 1999. The C:N ratio of particulate mater-
ial was also highest at the freshwater stations, suggest-
ing that inputs of C-rich, terrestrial organic material
were more important upstream and/or that in situ pro-
duction increased downstream. NH4

+ concentrations
were lowest and chl a concentrations highest at Stn 9A,
the turbidity maximum.

Concentrations of DFAA ranged between 0.07 and
1.34 µM over the 2 yr study period (Table 1), much
higher than oceanic concentrations and higher than in
many other estuaries (Bronk 2002 and references
therein). Concentrations of DCAA were between 0.70
and 3.82 µM, consistent with those in other estuaries
(Kirchman 2000), and showed no relationship to salin-
ity. Aspartic acid, serine, glycine and alanine were the
most abundant DFAA (data not shown), and there was
no clear trend in DFAA or DCAA composition along
the transects. The average C:N ratio was 3.7:1 for the
DFAA pool and 4:1 for DCAA.

Rates of AAO and PH: general trends

With the exception of August 1999, rate constants
within seasons for AAO and PH were generally of the
same order of magnitude, ranging from 0.00 to 5.15 d–1

throughout the study period (Table 2). Absolute rates
for PH were, however, consistently higher than rates of

AAO because the DCAA pool was larger than the
DFAA pool (Table 2). Rates of PH were also much
higher in 1999 than in 2000. With the exception of 1
station in August 2000, rates of AAO were higher with
higher salinity, but there was no overall correlation
between AAO and salinity (Table 2). Rates of PH did
not show a consistent pattern with salinity, either
within experiments or overall (R2 < 0.2). AAO did not
correlate directly with PH.

Rates of AAO and PH: size-fractionation patterns

In both May and August 1999, AAO and PH rates in
the <0.2 µm size-fraction were undetectable (data not
shown), suggesting that enzymes were associated
with particles. The relative contribution of the <1.0 or
<1.2 µm size-fractions to total AAO activity varied
widely, but was highest at Stn 9A in August of both
years (Fig. 2). Overall, rates of AAO were lower in
August than in May during both years. In May 2000,
the highest AAO rates were observed at Stns 5 and
9A, and most of this oxidation was in the >10 µm size-
fraction. Although rates of AAO were not well corre-
lated with chl a (R2 = 0.2) or PON (R2 = 0.57), chl a
concentrations (Table 1) were generally higher at
these 2 stations than upstream, and higher in May
than in August. The substantial amount of activity in
whole water samples suggests that AAO was associ-
ated with phytoplankton, attached bacteria or bac-
terial aggregates.

7

Stn Salinity Temp. NH4
+ NO3

– Urea DFAA DCAA POC PON Particulate Chl a
(PSU) (°C) (µM) (µM) (µM) (µM) (µM) (µM) (µM) C:N (µg l–1)

14 May 1999
9A 7.50 22.4 0.52 0.56 0 0.30 2.06 626 62.4 10.0 23.3
17 1.50 22.2 5.32 27.3 0 0.09 2.14 318 28.3 11.3 17.5

18 Aug 1999
1 20.9 27.5 2.49 0.15 0.13 0.18 0.74 119 16.4 7.2 12.1
9A 16.4 28.1 0.48 0 0.04 0.54 3.07 292 34.7 8.4 22.1
18 7.02 28.9 6.29 7.32 0.38 0.17 3.82 244 24.6 9.9 19.7
25 0.67 28.7 2.9 9.47 0.21 0.08 1.38 167 13.4 12.4 12.1

8 May 2000
5 16.3 19.9 0.46 0.2 0.38 0.57 2.80 210 20.6 8.7 17.6
9A 10.4 22.8 1.61 0.03 0 1.34 2.50 412 38.3 9.2 32.4
18 0.20 21.1 4.61 41.7 0.67 0.22 1.46 289 20.6 12.1 2.83
27 0.06 22.2 4.81 89.8 0.78 0.12 0.70 159 8.6 15.9 0.95

21 Aug 2000
7 10.5 23.3 1.22 0.12 0.33 0.63 3.11 176 20.1 8.8 13.3
9A 4.84 23.0 0.87 1.19 0.38 0.25 2.87 292 32.2 9.1 18.6
18 0.35 24.6 2.09 23.0 0.21 0.07 3.69 164 13.4 12.2 4.25
27 0.03 22.5 2.87 39.1 0.86 0.23 2.36 119 7.8 15.1 2.10

Table 1. Nutrient concentrations and biomass in surface waters of the Pocomoke River in May and August 1999 and 2000. DFAA: 
dissolved free amino acids; DCAA: dissolved combined amino acids
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Stn Rate constants Rates DFAA turnover DCAA turnover POC turnover PON turnover
AAO PH AAO PH from AAO from PH AAO PH AAO PH
(d–1) (d–1) (µM d–1) (µM d–1) (h) (h) (d) (d) (d) (d)

14 May 1999
9A 4.8 5.15 1.43 10.62 5.0 4.66 439 58.9 43.8 5.9
17 1.93 2.28 0.17 4.89 12.4 10.5 1920 65.1 170 5.8

18 Aug 1999
1 0.8 3.82 0.14 2.83 30.0 6.28 830 42.0 115 5.8
9A 0.53 4.89 0.29 15.03 45.3 4.91 1010 19.4 120 2.3
18 0.35 4.19 0.06 15.99 68.6 5.73 4170 15.2 420 1.5
25 0.16 2.19 0.01 3.03 150 11.0 13900 55.0 1120 4.4

8 May 2000
5 2.36 1.67 1.35 4.68 10.2 14.4 156 44.9 15.2 4.4
9A 1.46 2.86 1.96 7.16 16.4 8.39 210 57.5 19.5 5.3
18 0.33 0.68 0.07 0.99 72.7 35.3 3900 292 277 20.7
27 0 0.49 0 0.34 49.0 465 25.0

21 Aug 2000
7 0.10 0.29 0.06 0.90 247 82.8 2880 195 329 22.3
9A 0.17 0.21 0.04 0.60 141 114 6870 485 758 53.5
18 0.33 0.30 0.02 1.11 72.7 80.0 7090 148 579 12.1
27 0.52 0.16 0.12 0.38 46.2 150 992 314 65.5 20.7

Table 2. Amino acid oxidation (AAO) and peptide hydrolysis (PH) rate constants, rates and turnover times of pools affected by
these 2 processes for experiments conducted in the Pocomoke River in 1999 and 2000 on whole water samples. Turnover times of 

DFAA and DCAA pools from AAO and PH, respectively, are the inverse of the rate constant for these processes

Fig. 2. Rates of amino acid oxidation (AAO) and relative contribution of each size-fraction (estimated by difference; <1.0 µm [or
<1.2 or <20 µm], 1.2 to 10 µm and >1, 10 or 20 µm) to total oxidation rates in whole water samples (whole bars) during May

and August sampling efforts in 1999 and 2000
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Rates of PH in the <1.0 or <1.2 µm fractions, with the
exception of the lowest-salinity station in August of
both years, represented <30% of total rates (Fig. 3).
Unlike AAO, the 1.2 to 10 µm size-fraction was the
major contributor to PH in May 2000, and rates, rates of
PH were not always higher in May than in August.
Correlations between PH and DFAA or DCAA (R2 =
0.42), chl a (R2 = 0.42), and PON (R2 = 0.40) were weak.
While the highest rates of both AAO and PH were
observed at low DIN concentrations, that correlation
was also weak.

Rates of AAO and PH: sample handling effects

AAO and PH rate constants were substantially
higher in samples that were transported to the labora-
tory, than in those measured immediately after sample
collection (Table 3). This difference was more pro-
nounced in May. Thus, all rates should be considered
potential rates, as in situ rates were likely to have been
lower than those routinely measured after transport to
the laboratory.

N uptake rates

During 2000, total N uptake rates were higher (up to
3.4 µmol N l–1 h–1) at downriver stations (Stns 5, 7, 9A)
than at upriver stations (18, 27; Fig. 4). The majority of
N uptake (> 50%) was as NH4

+ at all but the least-
saline station. At the freshwater sites, where concen-

9

Location AAO (d–1) PH (d–1)

May
Dock 0.63 (0.01) 1.74 (0.02)
Laboratory 1.30 (0.001) 5.21 (0.11)

August
Dock 0.68 (0.04) 0.72 (0.01)
Laboratory 1.07 (0.01) 0.85 (0.02)

Table 3. Mean (with standard deviation in parentheses)
amino acid oxidation (AAO) and peptide hydrolysis (PH) rate
constants in whole water samples for experiments conducted
on the boat dock immediately after sample collection, and in
the laboratory 4 to 6 h after collection. Water was collected

from Stn 9A in May and August 2000

Fig. 3. Rates of peptide hydrolysis (PH) and relative contribution of each size-fraction, (estimated by difference; <1.0 µm [or <1.2 or
<20 µm], 1.2 to 10 µm and >1, 10 or 20 µm) to total hydrolysis rates in whole water samples (whole bars) during May and August 

sampling efforts in 1999 and 2000. Note scale change between 1999 and 2000 for May
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trations of NO3
– were high, rates of NO3

– uptake were
at least 25% of total N uptake. Rates of DFAA uptake
averaged between 28 and 453 nmol N l–1 h–1 in May
(10 to 22% of total N uptake) and between 26 and
62 nmol N l–1 h–1 in August (2 to 22% of total N uptake)
2000. While DFAA uptake rates were similar or lower
at the less-saline stations relative to the more-saline

stations, they were a much more important source of N
than other inorganic and organic N compounds upriver
(Fig. 4). Amino acid uptake correlated well with both
AAO (R2 = 0.85) and PH (R2 = 0.89).

Most of the uptake of all N compounds tested could
be attributed to the <10 µm size-fraction (small phyto-
plankton and bacteria) rather than to larger cells
(Table 4). A notable exception was in May at Stn 9A,
the turbidity maximum, when most of the uptake was
by larger cells or aggregates in the >10 µm size-
fraction.

Rates of NH4
+ uptake and AAO were compared in

August 1999. Rates of NH4
+ uptake far exceeded rates

of AAO at every station (Table 5), and there was no
correlation between them. AAO provided only 2.5 to
4.0% of the NH4

+ that was taken up.
Rates of PH were up to 13 % of the rates of total N

uptake over the salinity gradient; however, we did not
measure uptake of dipeptides, a likely product of PH in
this study. Turnover times of DFAA and DCAA pools
from AAO and PH, respectively, were on the order of
hours to days (Table 2). Both processes appeared to
contribute more substantially to PON turnover than to
POC turnover.

C uptake rates

Because standard terminology for C uptake differs
between the stable and radioisotope literature, here
we define the amount of label measured in filtered par-
ticulate matter as net uptake; this would be called
incorporation in the 14C-uptake literature. We define
gross C uptake as the sum of net C uptake and respira-
tion (production of CO2).

Net and gross C uptake from amino acids were mea-
sured directly or estimated during August 1999 and in
both months in 2000 (Table 6). Net amino acid C uptake
and respiration by the >0.2 µm (Nuclepore filter) size-
fraction were directly measured in August 1999 using
14C-labeled glutamic acid (Table 6). Gross uptake was
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Stn [NH4
+] [DFAA] AAO 15NH4

+ uptake %
(µM) (µM) (µM d–1) (µM d–1) contribution

of AAO

1 2.49 0.18 0.14 (0.006) 4.07 (1.07) 3.5
9A 0.48 0.54 0.15 (0.005) 3.85 (0.43) 4.0
18 6.29 0.17 0.07 (0.002) 1.97 (0.21) 3.4
27 2.9 0.08 0.05 (0.006) 1.78 (0.34) 2.5

Table 5. Concentrations of NH4
+ and DFAA, and mean (with

standard deviation in parentheses) amino acid oxidation
(AAO) rates and 15NH4

+ uptake from 15N-LYA-lysine in whole 
water samples collected along a river transect (August 1999)

Stn NH4
+ NO3

– Urea N Glutamate C Glutamate N

May 2000
9A 40 15 32 49
18 67 100 61 92
27 94 100 94 97

August 2000
7 95 100 72 61 100
9A 96 53 56 85
18 82 100 88 68 67
27 100 44 80 63 43

Table 4. Percent of total (whole water) measured uptake 
attributable to the <10 µm size fraction

Fig. 4. Rates of total N uptake and relative contribution of  dis-
solved free amino acids (DFAA), urea, NH4

+ and NO3
– uptake

to total rates along river transect in May and August 2000
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then calculated as the sum of net uptake plus respiration.
Respiration rates ranged from 17 to 35% of gross C up-
take. A smaller proportion of gross C uptake was
respired at stations with higher salinities. DFAA-N up-
take rates were calculated from gross C-uptake rates us-
ing the C:N of the DFAA pool. There was no clear trend
of estimated gross C-uptake rate with salinity; rates were
highest at Stn 9A and lowest at the least-saline station.

In May 2000, gross DFAA-C-uptake by the > 0.7 µm
size-fraction (GF/F filter) was estimated from 15N-la-
beled glutamic acid-uptake rates (Table 6). Assuming
that no 15N taken up was re-released into the water (i.e.,
net N uptake = gross N uptake), the measured 15N up-
take rates were multiplied by the C:N ratio of the DFAA
pool to obtain gross C uptake. As in 1999, rates were
highest at Stn 9A and lowest at the least-saline station.

Net amino acid C and N uptake by the > 0.7 µm size-
fraction were directly measured in August 2000 using
dually labeled (13C and 15N) glutamic acid (Table 6).
Again, gross C-uptake rates were estimated from N-
uptake measurements as described above. Dual labels
enabled us to determine the C:N ratios of amino acid
uptake, and these ranged from 0 at Stn 9A, to 2.6 at
Stn 7 (Fig. 5). The difference between the estimated
gross C-uptake rate and the measured net C-uptake
rate was assumed to be due to respiration. Thus, the
percent of gross uptake that was respired by the
>0.7 µm size-fraction ranged from 26 to 93%; this was

much higher than in August 1999 for the >0.2 µm size-
fraction. There was no apparent trend in gross C
uptake with salinity; uptake was lowest at Stn 9A, in
contrast to the other months measured.

Several factors may have affected our uptake esti-
mates. Because of the differences in filter pore size
among experiments using radio- versus stable iso-
topes, it is likely that bacterial C uptake was underes-
timated in the stable isotope experiments (which used
GF/F filters with a nominal pore size of 0.7 µm). In the
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Stn Glutamic acid AAO
Net C uptake Net N uptake Respiration N uptake C release Gross C uptake

as DFAA as DFAA from AAO from AAO from DFAA
(nM C h–1) (nM N h–1) (nM C h–1) (nM N h–1) (nM C h–1) (nM C h–1)

August 1999: 14C glutamate (0.2 µm filters)
1 189 (11) 61.8a 39.8 (8) 5.83 21.6 228.8
9A 568 (31) 189.6a 133.4 (1.2) 12.1 44.7 701.4
18 133 (13) 54.9a 70.2 (10) 2.50 9.25 203.2
25 27 (2) 10.6a 12.2 (0.9) 0.42 1.54 39.2

May 2000: 15N glutamate (GF/F filters)
5 nd 148.9 (nd) 56.2 207.9 550.9b

9A nd 453.9 (11) 81.7 302.2 1679.4b

18 nd 70.4 (7.2) 3.09 11.4 260.5b

27 nd 27.8 (1.7) 0.00 0.0 102.9b

August 2000: 13C, 15N glutamate (GF/F filters)
7 158.0 (43) 61 (7.5) 58.3 2.55 9.42 225.7b

9A 0 (16) 26.3 (1.5) 90.8 1.77 6.55 97.3b

18 82.6 (9.5) 44.1 (3.7) 77.0 0.96 3.56 163.2b

27 106.6 (12.4) 62.1 (1.5) 104.8 4.98 18.4 229.8b

aEstimated from gross 14C uptake and C:N ratio of DFAA pool
bEstimated from net N uptake as dissolved free amino acid  (DFAA) and the C:N ratio of DFAA pool

Table 6. Net amino acid C and N uptake and respiration rates (measured using 14C- [in 1999], 13C- [in 2000] and 15N-labeled
glutamic acid; SD in parentheses), N uptake and C release from amino acid oxidation (AAO), and gross amino acid C uptake
(calculated as the sum of net C uptake and respiration). Data are for whole water incubations collected onto 0.2 and 0.7 µm (GF/F)
filters in August 1999 and May/August 2000, respectively. C:N ratio of 3.7 for the DFAA pool was used to convert between C and

N rates. Bold indicates estimated data. nd: not determined

Fig. 5. Rates of amino acid uptake in August 2000. Dually
labeled (13C and 15N) glutamatic acid was used to estimate net
uptake of C (black bars) and N (white bars) by the size-
fraction collected on GF/F filters (nominal pore size: 0.7 µm)
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calculations of C uptake (Table 6), net N-uptake rates
were not corrected for the uptake of NH4

+ released
from amino acids during extracellular AAO. If all of the
NH4

+ released from AAO were taken up, this correc-
tion would have resulted in lower net N-uptake rates
from DFAA and lower estimates of gross C uptake in
May and August 2000 by the amount shown in Table 6.
Similarly, gross or net C uptake rates were not cor-
rected for the uptake of C compounds released during
extracellular AAO. If C compounds released from AAO
were taken up, gross C-uptake from DFAA would be
overestimated by the amount shown in Table 6.

DISCUSSION

Amino acids are important cellular components that
play a major role in microbial metabolism. Thus, con-

centrations and turnover of DFAA and
DCAA in estuarine and marine systems
have been relatively well studied com-
pared to many other nitrogen-containing
DOM compound classes. The concentra-
tions of DFAA measured in this study are
consistent with those in other studies, e.g.
0.18 to 0.22 µM DFAA in Flax Pond, New
York (Jørgensen et al. 1993), 0.3 to 0.7 µM
in the Delaware Estuary (Middelbøe et al.
1995), and 0.14 to 0.47 µM in the meso-
haline Chesapeake Bay (Bronk et al. 1998).
Concentrations of DCAA are also consis-
tent with those in studies of other estuarine
systems (Keil & Kirchman 1991, 1999).

Extracellular AAO and PH are pathways
whereby dissolved amino acid pools can be
mobilized to provide nutrients (e.g. C and N)
for estuarine autotrophs and heterotrophs.
Fig. 6 shows a conceptual model of the var-
ious interacting pathways. While DOM has
usually been thought to support primarily
heterotrophic nutrition in nature, recent
field evidence has linked DON with phyto-

plankton nutrition, in particular that of bloom-forming
mixotrophic plankton (Paerl 1988, Berg et al. 1997, Glib-
ert et al. 2001). A variety of species can use DON to meet
their N needs (Antia et al. 1991), and heterotrophic up-
take of dissolved organic C (DOC) (Lewitus & Caron
1991) including DFAA (Wheeler et al. 1977) has been ob-
served in a number of phytoplankton taxa. Conse-
quently, in our model, we do not attribute uptake or mo-
bilization of DFAA and DCAA strictly to bacteria (Fig. 6).

N uptake

While uptake of NH4
+ was the dominant pathway of N

uptake in our study, particularly at higher-salinity sta-
tions, NO3

– uptake was important at lower-salinity sta-
tions where NO3

– concentrations were high (Fig. 4). Urea
and DFAA were also significant sources of N (Fig. 4).

12

Site DFAA uptake DFAA uptake as % Method Source
(nM h–1) total N uptake

Chesapeake Bay plume 1.0–92.5 1–7 15N Glibert et al. (1991)
Shinnecock Bay, Long Island 0.6–7.1 11–16 15N Berg et al. (1997)
Long Island Sound 3.8–35.3 3H Fuhrman (1987)
Flax Pond, NY 73.7 14C Jørgensen et al. (1993)
Thames River estuary 6–150 3–93 15N Middelburg & Nieuwenhuize (2000)
Chesapeake Bay 252–376 Up to 55 15N Bronk & Glibert (1993)a

aRepresents uptake from bulk DON pool

Table 7. Literature values for dissolved free amino acid (DFAA) uptake rates from other estuaries

Fig. 6. Conceptual model showing relationships between extracellular
amino acid oxidation (AAO), peptide hydrolysis (PH), NH4

+ uptake, and
dissolved free amino acid (DFAA), uptake and cycling. Broken arrows =

pathways not measured during this study
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Urea can contribute more than 50% of the total N uptake
by phytoplankton in some estuarine systems (Glibert et
al. 1991, Berg et al. 1997); however, the rates observed in
this study were always less than 18% of the total N up-
take. The rates of DFAA-N uptake and DFAA contribu-
tion to total N uptake in the Pocomoke River estuary are
consistent with those in a variety of other estuarine stud-
ies (Table 7).

Extracellular enzymatic activity

Methodological issues. The rates of amino acid
uptake, AAO and PH reported here must be consid-
ered maximum potential rates for 2 reasons: First, for
AAO and PH, rate constants determined on samples
transported to the laboratory were higher than those
determined immediately after collection (Table 3); sec-
ond, calculations assumed that 100% of the DFAA and
DCAA pools were available, and this is unlikely in
nature. Other factors can also affect PH rate calcula-
tions. For example, LYA-ala4 is unlikely to be a perfect
analog of available peptides; the composition and
length of naturally occurring peptide and protein
chains are unknown. Previous studies indicate that the
length and composition of the peptide chain can affect
the rate of hydrolysis (Pantoja et al. 1997, Pantoja &
Lee 1999). Finally, no dilution effects were considered
for any of the enzyme rate calculations, although addi-
tions were usually <10% of the ambient pools and so
could be considered tracer-level additions.

The LYA peptide analogs used in this study allow the
direct measurement of PH products. The methods used
in this study differ from some other approaches used to
assess cell-surface enzyme activity. Commercially
available dipeptide-like substrates, such as L-leucine
7-amido-4-methyl-coumarin (leu-MCA), have been
used to assess leucine aminopeptidase activity (e.g.
Rosso & Azam 1987, Crottereau & Delmas 1998,
Stoecker & Gustafson 2003). In this study of the
Pocomoke River, LYA-dipeptides were the primary
products of hydrolysis; further hydrolysis of dipeptides
to free amino acids was very slow. This observation is
similar to those from previous studies (Pantoja et al.
1997, Pantoja & Lee 1999, Mulholland et al. 2002). Pan-
toja & Lee (1999) found that LYA-peptides containing
>2 amino acids were hydrolyzed 10 to 400 times faster
than dipeptides or the fluorogenic substrate leu-MCA.
One possible explanation for slower dipeptide hydrol-
ysis is steric hindrance of hydrolysis by the presence of
the large fluorescent derivative; however, Pantoja &
Lee (1999) showed that this is unlikely. Alternatively,
dipeptides may be small enough (e.g. <600 Da) to be
incorporated directly by microorganisms, so that
induction of enzymes to hydrolyze dipeptides is not

necessary. Thus, use of dipeptide analogs or leu-MCA
may result in an underestimate of PH rates.

Amino acid oxidation. The first-order rate constants
for AAO reported here were up to 1 order of magni-
tude lower than those observed in Shinnecock Bay,
Long Island (Mulholland et al. 1998), and comparable
to those observed during a brown-tide (Aureococcus
anophagefferens) bloom in Quantuck Bay, another
Long Island embayment (Mulholland et al. 2002),
when temperatures were comparable. The potential
contribution of AAO to NH4

+ uptake over the salinity
gradient was <5% during the 2000 surveys (Table 5),
suggesting that AAO was not a significant source of
NH4

+ for bulk NH4
+ uptake. However, depending on

the community structure, AAO could be an important
source of nutrition to particular organisms. Bacteria
and a variety of phytoplankton species are capable of
AAO (Palenik & Morel 1990a, 1991, Pantoja & Lee
1994, Mulholland et al. 1998), and rates of extracellular
oxidation of amino acids vary among marine environ-
ments (Pantoja & Lee 1994, Mulholland et al. 1998,
Mulholland et al. unpubl. data). Higher rates have
been observed in coastal environments where produc-
tivity is high and inorganic N concentrations are low
(Mulholland et al. 1998). It is likely that the availability
of organic nutrients and/or inorganic N influence the
rates of C and N regeneration by this pathway. How-
ever, the environmental or nutritional conditions and
the importance of community structure in promoting
extracellular AAO activity by microbes and phyto-
plankton are unknown.

Peptide hydrolysis. The rates of PH measured in the
Pocomoke River varied by 1 order of magnitude among
study periods (Table 2). The higher rate constants mea-
sured in 1999 were comparable to those measured in
Quantuck Bay during a brown tide bloom (Mulholland
et al. 2002). In 2000, PH rates in the Pocomoke River
were lower, comparable to those observed during the
colder months in Quantuck Bay (Mulholland et al.
2002). However, rate constants for PH in the Pocomoke
River were comparable to those reported from Flax
Pond, a salt marsh in New York (Pantoja & Lee 1999).
The rates of PH measured in this study exceeded by 1
order of magnitude those reported for brackishwater in
Kiel Fjord using leu-MCA (Hoppe et al. 1993). This
may be due to either lower rates of hydrolysis of dipep-
tides (see earlier subsection ‘Methodological issues’) or
to real differences in productivity among the environ-
ments sampled.

The relative contributions of phytoplankton and bac-
teria to AAO and PH could not be estimated directly in
our study. Similar to our previous studies, no enzymatic
activity was observed in the <0.2 µm size-fractions,
indicating that proteolytic enzymes were not present
in the free state or in association with very small cells.
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Instead, both AAO and PH were associated primarily
with particulate matter, the >1.0 or >1.2 µm size-
fractions in this study. Because bacteria are thought to
be the main consumers and degraders of organic mate-
rial in marine systems, it has been generally assumed
that PH is associated with free-living or attached bac-
teria in marine environments (Chróst 1991, Hoppe
1991). Correlations between rates of PH, and estimates
of enzymatic PON and bacterial biomass turnover have
been used to support the idea that bacterial productiv-
ity is closely coupled with degradation of PON in the
North Atlantic Ocean (Hoppe et al. 1993). Substan-
tially greater proteolytic activity was also found in
association with bacteria attached to sinking aggre-
gates (Smith et al. 1992). However, most existing mea-
surements of PH are attributed to bacterial processes
even when bacterial biomass and productivity are not
correlated with PH (e.g. Hoppe 1991). The results
reported here suggest that either cells other than bac-
teria are capable of PH, or that there is significant PH
by bacteria attached to particles and bacterial aggre-
gates larger than 1.2 µm.

The role of planktonic organisms in the hydrolysis of
peptides has not been extensively examined. Prote-
olytic activity has been found in association with
cyanobacteria (Martinez & Azam 1993) and marine
phytoplankton (Berges & Falkowski 1996), but there
has been little work to quantify its importance to the
nutrition of these organisms. Using LYA-analogs, high
rates of extracellular PH have been observed by nat-
ural and cultured populations of phytoplankton mixo-
trophs, i.e. the dinoflagellate Pfiesteria piscicida
(M. Mulholland et al. unpubl. data), and the pelago-
phyte Aureococcus anophagefferens (Mulholland et
al. 2002). Using leu-MCA, proteolytic activity was also
found in axenic cultures of the dinoflagellates Alexan-
drium tamarense, Heterocapsa triquetra and Prorocen-
trum minimum, as well as for non-axenic cultures of
Akashio tamarense, Gonyaulax grindleyi, Gyrodinium
uncatenum and Karlodinium micrum (Stoecker &
Gustafson 2003). Similarly, in a mixed bloom of
dinoflagellates in the Chesapeake Bay, total leucine
aminopeptidase activity was positively correlated with
dinoflagellate abundance (Stoecker & Gustafson
2003). Other phytoplankton species and groups pro-
duce extracellular enzymes such as amino acid oxi-
dases (Palenik & Morel 1990a, 1991, Mulholland et al.
1998) and alkaline phosphatases (Ammerman 1991),
and thus might also be able to produce hydrolases.

Dissolved proteins and peptides have the potential to
alleviate N limitation for organisms that can break
down and use these as growth substrates. Estuarine
bacteria may use a variety of organic compounds,
including those containing little N, to acquire C for
growth (Arnosti et al. 2000). Sala et al. (2001) used

amino peptidase activity as an indicator of N defi-
ciency in an estuarine microbial community. They
found an inverse correlation between DIN concentra-
tion and PH. However, in our study, DIN concentra-
tions were always measurable even at the higher salin-
ity stations, and there was no correlation between DIN
and PH. Alone, rates of AAO in the Pocomoke River
were not high enough to support typical organismal
growth rates.

The correlation between amino acid and PH uptake in
this study (R2 = 0.89) suggests that the degradation of
DFAA and DCAA uptake are coupled. However, we did
not observe significant production of free amino acids
from PH, and these and previous observations using
LYA-ala4 indicate that the primary products of PH are
dipeptides rather than DFAA. If the failure to produce
DFAA from DCAA is a methodological artifact (see ear-
lier subsection ‘Methodological issues’) and DFAAs are
a significant product of PH, rates of PH may have been
sufficient to produce a large portion of the amino acids
that were taken up or oxidized (Table 2). In a study of the
sea-surface microlayer and the seawater directly be-
neath it, added protein was consumed without a subse-
quent increase in concentration or change in the com-
position of the DFAA pool (Kuznetsova & Lee 2002). This
suggests that there is tight coupling between DCAA
hydrolysis and uptake of hydrolysis products.

Salinity may be an important direct or indirect con-
trol on PH. Although there was no clear correlation
between PH and salinity in the Pocomoke River, rates
of PH were lowest at the lowest-salinity station. Stepa-
nauskas et al. (1999) found that additions of terrestri-
ally derived DOM isolated from 3 wetlands resulted in
higher proteolytic enzyme activity in bacteria grown
on saltwater versus freshwater medium. These investi-
gators concluded that this natural DON was more than
2 times more bioavailable in seawater than in freshwa-
ter, suggesting that marine bacterioplankton are better
adapted for using DON substrates. However, in the
Pocomoke River system, chl a biomass also generally
varied with salinity, so PH activity might as easily be
related to chl a as to salinity, although our correlations
were weak. Stn 9A, located near the estuarine turbid-
ity maximum, always had the highest chl a levels and
the highest PH rates.

DFAA and DCAA turnover. Based on our calcula-
tions, turnover times for the DFAA pool due to AAO
ranged from 5 h in May 1999 to 247 h in August
2000 (Table 2), times that are insufficient to support
typical organismal growth rates. Similarly, the
turnover time for the DCAA pool due to PH ranged
from 4.7 to 150 h. When DFAA uptake was factored
in, average DFAA turnover times were on the order
of 1.6 to 9.9 h (0.07 to 0.41 d), i.e. on the order of
those observed in other estuarine areas. For compari-
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son, in the Mississippi River plume, DFAA turnover
times increased with increasing salinity and ranged
from 0.02 to 0.14 d in the summer and 0.013 to 0.073
d in the winter using 3H-DFAA (Hopkinson et al.
1998). In the mesohaline Chesapeake Bay, DON
turnover times ranged from 0.27 to 2.53 d using 15N
tracer techniques (Bronk et al. 1998). In the Chop-
tank River, another subestuary of the Chesapeake
Bay, low molecular weight DON had shorter turnover
times (15.9 d) than high molecular weight DON
(33.8 d; Bronk & Glibert 1993). In the Chesapeake
Bay plume, Fuhrman (1990) measured very rapid
turnover times using 3H-DFAA.

C–N coupling

Previous studies have employed a variety of isotopic
methods to measure DFAA uptake and turnover; radio-
labeled amino acids (14C and 3H) are commonly used to
measure heterotrophic DFAA-C uptake and turnover
by bacteria, while 15N-labeled amino acids are used fre-
quently to measure DFAA-N uptake by phytoplankton.
An important methodological issue between the
radioisotope and stable isotope techniques is the issue
of filtration and filter-pore sizes. Uptake of 14C- and 3H-
labeled DFAA are usually measured after filtration onto
0.2 µm membrane filters, and uptake is attributed to
bacterial heterotrophs. Uptake of 15N-labeled DFAA
and other N substrates are measured after filtration
onto GF/F filters (compatible with combustion tech-
niques) with nominal pore sizes of 0.7 µm, and uptake is
attributed to phytoplankton autotrophs. To avoid this
problem and still simultaneously determine the relative
contribution of amino acids to C and N nutrition, we
used dual-labeled compounds (13C and 15N) during the
August 2000 study period and related uptake of C and
N to previous measurements made using either 14C or
15N-labeled substrates.

In uptake experiments in August 1999, DFAA were
significant sources of C to organisms >0.2 µm
(Table 6). In August 2000, when dual-labeled amino
acids were used to trace net C and N uptake by larger
cells (e.g. >0.7 µm), net C uptake from amino acids
into these larger cells varied among river stations
(Table 6), and the observed net C:N uptake ratio var-
ied from 0 to 2.6 (Fig. 5). This substantial variation in
C uptake (0 to 52% of the total available amino acid
C) suggests that DFAA may serve as either a C or N
substrate for growth, or both. For example, little
amino acid C was used at Stn 9A in August 2000,
indicating that DFAA were primarily an N source for
growth for cells larger than 0.7 µm at this station. We
did not determine which organisms were responsible
for C and N uptake.

Differences in respiration rates may account for some
of the variability in C versus N uptake. However, com-
petition for amino acid C and N between bacteria and
phytoplankton mixotrophs in environments depleted in
inorganic N may also be important. Higher rates of net
C uptake and a lower proportion of respiration (17 and
19% of gross uptake) were observed in the 2 saltier
river stations compared to the 2 freshwater stations (31
and 34.5% of gross uptake respired) measured in 1999
(Table 6). This is generally consistent with the lower
C:N incorporation ratios (1.7 to 1.9) observed at the
freshwater stations, where DIN concentrations were
much higher in 2000, and the higher C:N incorporation
rates at the saltiest station, where DIN concentrations
were low. However, at Stn 9A, high net C-uptake rates
in 1999 are in marked contrast to the absence of signifi-
cant net C uptake from DFAA in 2000. This contrast
may be due to differences in the nutrient environment
at this station between years or may reflect a higher
bacterial contribution to organic C uptake at this station
(different size-fractions were measured in the two
years). Net uptake of C and N from amino acids needs
to be more carefully examined to explain the relative
uptake of these elements by competing microorgan-
isms. Further examination of species-specific capabili-
ties and nutrient controls on extracellular enzyme activ-
ity and the relative uptake of C versus N from DOM are
needed, particularly in organically enriched environ-
ments where mixotrophy is common.

Summary

Amino acid oxidation and peptide hydrolysis are
pathways of organic matter degradation in the
Pocomoke River system, a mid-Atlantic subestuary of
the Chesapeake Bay. In the Pocomoke River, the con-
tribution of AAO to the total N nutrition and to DFAA
turnover was small, but the importance of this pathway
to individual organisms that are capable of AAO was
not assessed. While PH has been widely attributed to
bacteria, larger organisms, including phytoplankton
mixotrophs may be capable of hydrolyzing peptides at
high rates in estuarine systems. However, the nutri-
tional importance of PH to these organisms has not
been widely examined. Uptake of organic compounds
contributed to the C and N nutrition of estuarine
organisms in this system, including those in the size-
fraction typically used to assess phytoplankton pro-
cesses. Uptake of C and N from amino acid substrates
was uncoupled; uncoupling can result from competing
extracellular and intracellular processes and from com-
petition among auto- and heterotrophs. Organisms
taking up organic substrates can use them for N or C
nutrition or both. This may be important in determin-
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ing community structure and competitive outcomes
among organisms that can use DOM substrates. The
type of organic matter and the nature of competition
for that organic matter might depend on whether com-
peting organisms are C-limited, N-limited, or both,
and whether the organisms are limited by either
organic or inorganic N. Further, the assumptions used
to evaluate degradative and assimilative processes
based on the size-fraction caught on filters need to be
reevaluated, because organic compounds can be used
to support both auto- and heterotrophic nutrition.
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