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Interactive regulation of dissolved copper toxicity by an estuarine microbial community
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Abstract

Cultured marine microorganisms under copper stress produce extracellular compounds having a high affinity for
copper (copper-complexing ligands). These ligands are similar in binding strength to those found in natural waters,
but few studies have examined the relationship between copper, copper-complexing ligand concentrations, and
natural microbial populations. A series of in situ experiments in the Elizabeth River, Virginia, revealed that an intact
estuarine microbial community responded to copper stress by production of extracellular, high-affinity copper-
complexing ligands. The rate of ligand production was dependent on copper concentration and resulted in a reduction
of the concentration of free cupric ions, Cu21, by more than three orders of magnitude during a 2-week period in
one experiment. We believe that this interactive response to copper stress represents a feedback system through
which microbial communities can potentially buffer dissolved Cu21 ion concentrations, thereby regulating copper
bioavailability and toxicity.

Copper is widely used in industrial applications, notably
as the active agent in antifouling coatings on ship hulls, and
meeting regulatory criteria is costly to industry. The current
acute water quality criterion for copper in Virginia waters is
5.9 mg L21 (92.8 nmol L21), based upon the National Am-
bient Water Quality Criterion for copper (U.S. Environmen-
tal Protection Agency [U.S. EPA] 1999). Controlling the re-
lease of dissolved copper from commercial and military
shipping activity is a major concern, particularly in indus-
trialized estuaries, because copper can be toxic to marine
organisms (such as phytoplankton) at free cupric ion con-
centrations of 0.01 nmol L21 or above (Sanders et al. 1983;
Sunda and Ferguson 1983; Brand et al. 1986; Sunda et al.
1987). Therefore, understanding the dynamic ecological fac-
tors and feedbacks that affect the toxicity and bioavailability
of dissolved copper is crucial for development of cost-effec-
tive management strategies for estuaries.

A major factor governing the toxicity and bioavailability
of dissolved copper to marine organisms is its chemical spe-
ciation. Dissolved copper may exist in various forms (spe-
cies): as free cupric ions (Cu21), inorganic complexes (e.g.,
with Cl2, OH2, CO , and SO ), and as complexes with22 22

3 4

various organic ligands (e.g., humic substances, phytoplank-
ton metabolites, proteins, etc.). The toxicity and nutrient
availability of copper to marine organisms decrease as a re-
sult of complexation by natural organic ligands, indicating

1 Corresponding author (agordon@odu.edu).
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that the toxicity and availability of copper is controlled by
the free cupric ion Cu21 (Sunda and Guillard 1976; Ander-
son and Morel 1978; Brand et al. 1986). In marine and es-
tuarine waters, many indigenous marine organisms are suf-
ficiently sensitive to copper that they would be severely
affected by copper toxicity at ambient copper concentrations
in the absence of organic complexation (Hering et al. 1987;
Coale and Bruland 1990). In most natural waters, the ma-
jority of dissolved copper (usually 95% or more) is com-
plexed by strong organic ligands (usually termed L1-class
ligands) having conditional stability constants (K ) be-9

CuL

tween 101121013 (Coale and Bruland 1990; Moffett et al.
1990).

Although it has been known for some time that organic
ligands control copper speciation in most natural waters, the
sources of these ligands are not fully understood. In estuarine
environments, ligands may derive from terrestrial sources,
sediment, and, hypothetically, from water column processes
(Sunda and Guillard 1976; Brand et al. 1986; Moffett et al.
1990; Bruland et al. 1991; Sunda and Huntsman 1995; Skra-
bal et al. 1997). Laboratory studies indicate that autotrophic
picoplankton (the ,2-mm component of the phototrophic
planktonic microflora) (Moffett et al. 1990; Bruland et al.
1991; Gordon et al. 1996, 2000; Moffett and Brand 1996)
and heterotrophic bacteria (Gordon et al. 2000) produce li-
gands having binding strengths similar to the L1-class li-
gands observed in natural waters in response to elevated
copper concentrations in culture. These culture observations
have led to the hypothesis that a biological feedback system
may regulate dissolved copper speciation in marine and es-
tuarine waters (Bruland et al. 1991; Donat et al. 1994).
While such a feedback system has been demonstrated in cul-
tures of marine and estuarine microorganisms (Bruland et al.
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Fig. 1. Map of Hampton Roads and the Elizabeth River. The Elizabeth River consists of a main
stem and four branches (Lafayette River, Eastern Branch, Western Branch, and Southern Branch).
The study site is indicated on map with a black circle.

1991; Moffett and Brand 1996), it has not previously been
demonstrated in natural microbial communities.

The objective of our study was to examine the dynamics
of copper-complexing ligand production by natural microbial
assemblages under realistic environmental conditions in situ,
thus avoiding the potential pitfalls inherent in extrapolation
of laboratory studies to field conditions. This response would
have important implications for our understanding of the fate
and effects of copper in estuarine systems, since it would
demonstrate that natural microbial communities could par-
ticipate in a negative feedback loop that influences the bio-
availability and toxicity of copper to themselves and to other
estuarine biota.

Materials and methods

Study location—The study site was located at the mouth
of the Elizabeth River, Virginia, adjacent to Norfolk Naval
Base, which is home to the North Atlantic Fleet and is the
largest naval base in the world. The Elizabeth River is an
urban, industrialized subestuary of the Chesapeake Bay. The
experimental station is well mixed and flushed because of
its close proximity to the mouth of the Chesapeake Bay (Fig.
1).

Sample collection, pre-equilibration, and incubation—In
May and November 2000, June 2001, and July 2002, estu-
arine seawater was collected from a depth of 1 m at the
mouth of the Elizabeth River (Fig. 1). During sample col-
lection, the temperature, salinity, and pH were measured.

Using trace metal clean techniques, study-site surface water
was collected into acid-cleaned, polycarbonate carboys using
acid-cleaned Teflon tubing and a peristaltic pump (Bruland
et al. 1979; Flegal et al. 1991; Donat et al. 1994). To min-
imize copper and ligand loss to bottle walls by adsorption,
each acid-cleaned polycarbonate incubation bottle was pre-
equilibrated for 1 week with 0.22-mm filtered site water at
48C prior to each experiment. Water used for pre-equilibra-
tion had the same copper amendment that was used in the
experimental bottles.

Under a laminar flow hood, pre-equilibrated incubation
bottles were filled with unfiltered site water and either re-
ceived one of several experimental treatments or were left
unaltered. These treatments included addition of copper (100
and 200 nmol L21) with and without addition of the meta-
bolic poison sodium azide (15 mmol L21). Dark incubation
bottles were used with selected treatments, including the un-
altered and addition of copper without azide. Within 10 h
after water collection, the incubation bottles were placed in
a moored array at the study site approximately 1 m below
the water’s surface. After 1 or 2 weeks of incubation, the
bottles were retrieved for analysis. Each incubated bottle was
immediately subsampled for total dissolved copper, copper
speciation/complexation, and microbial enumeration under a
laminar flow hood following trace metal clean techniques
(Bruland et al. 1979; Flegal et al. 1991). Total dissolved
copper and copper speciation subsamples were filtered, using
a peristaltic pumping system, through 0.22-mm MSI poly-
carbonate cartridge filters (Fisher Scientific). Total dissolved
copper subsamples were acidified to pH 2 with HCl (Optima
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Table 1. Summary of initial in situ data during experiments performed in the Elizabeth River, Virginia.

Date
Temp
(8C) Salinity

Total
dissolved Cu
(nmol L21)

Autotrophic
picoplankton

numbers
(108 L21)

Bacterioplankton
numbers

(106 ml21)

May 2000
Nov 2000
Jun 2001
Jul 2002

16.0
14.5
21.8
25.6

16.4
16.5
18.2
13.2

12.3
16.2
19.2
15.5

0.8
0.5
1.2
1.4

4.5
2.3
4.9
5.3

Grade, Fisher Scientific). Copper speciation subsamples
were not acidified but were immediately frozen after collec-
tion until analyzed. Microbial enumeration subsamples were
unfiltered, fixed immediately with 2.5% glutaraldehyde,
stored at 48C, and analyzed within 1 week of collection (Por-
ter and Feig 1980).

Total dissolved copper determination—Total dissolved
copper concentrations were determined using cathodic strip-
ping voltammetry (CSV), as described by Campos and van
den Berg (1994). The only modification made to the Campos
and van den Berg (1994) CSV method included the use of
a 4-(2-hydroxyethyl)piperazine-1-propanesulfonic acid
(HEPPS) buffer solution (Sigma; final concentration 0.01
mol L21) rather than a borate buffer solution. The analytical
system consisted of an EG&G PARC (Princeton) 264A po-
larographic analyzer interfaced with an EG&G PARC
(Princeton) 303A hanging mercury drop electrode.

Copper complexation and speciation analysis—Copper
speciation was determined at natural pH using competitive
ligand equilibration–adsorptive cathodic stripping voltam-
metry (CLE/ACSV) with salicylaldoxime (SA) as the com-
petitive ligand (Campos and van den Berg 1994). The the-
ory, application, and limitations of CLE/ACSV methods for
determining copper-complexing ligand concentrations are
discussed in detail elsewhere (e.g., Donat and van den Berg
1992; van den Berg and Donat 1992; Campos and van den
Berg 1994; Donat et al. 1994; Bruland et al. 2000). The final
concentrations of the HEPPS buffer and SA in a sample to
be analyzed were 0.01 mol L21 (resulting pH 8.2) and 2
mmol L21, respectively. An analytical competition strength,
log aCu(SA)2, of 3.8 (see Bruland et al. 2000 for description
and definition) was used for all titrations to detect the stron-
gest class of Cu-binding ligands.

Copper-complexing ligand and conditional stability con-
stant calculations—To obtain ligand concentrations (CL) and
conditional stability constants (K ), the data from the CLE/9CuL

ACSV measurements and Ruzic/van den Berg linearization
were used (Ruzic 1982; van den Berg 1982; Campos and
van den Berg 1994). A detailed description of the theory
behind the calculations used is presented in Campos and van
den Berg (1994) and Rue and Bruland (1995). Using ligand
concentrations and conditional stability constants obtained
by CLE/ACSV, the overall copper speciation and free Cu21

ion concentrations were calculated with the chemical equi-
librium modeling program MINEQL1q.

Enumeration of bacterioplankton and autotrophic pico-
plankton—Epifluorescent direct counts of bacterioplankton
and autotrophic picoplankton followed the method of Porter
and Feig (1980) using the DNA stain 496-diamidino-2-phen-
ylindole (DAPI). The DAPI-stained samples were observed
under ultraviolet excitation for total counts and blue light
excitation for the chlorophyll autofluorescence of the auto-
trophic picoplankton (Affronti 1990). The average counting
error was 9% using the Porter and Feig (1980) method and
counting 20 fields. Every field had a minimum of 30 indi-
vidual cells of each type (i.e., bacterioplankton and autotro-
phic picoplankton).

Results and discussion

Initial incubation conditions and total dissolved copper
recoveries—The initial conditions for all incubations are
presented in Table 1. Study site salinities ranged from 13.2
to 18.2 on the sampling dates, and water temperature varied
from 14.58C in November to 25.68C in July. Total dissolved
copper concentrations ranged from 12.3 to 19.2 nmol L21,
five to eight times lower than the current acute copper cri-
terion in Virginia waters (93 nmol L21) (U.S. EPA 1999).
Initial bacterial concentrations varied twofold, from 2.3 to
5.3 3 106 ml21, and autotrophic picoplankton numbers var-
ied threefold, from 0.5 to 1.4 3 108 L21. Peak bacterial and
autotrophic picoplankton numbers were observed during
July 2002, the study month that also had the highest tem-
perature (25.68C) and the lowest salinity (13.2).

When the bottle contents were analyzed after incubation,
41% to 120% of the copper added to experimental bottles
was measured in the dissolved form (Tables 2, 3). The bal-
ance was presumably partitioned between particulate matter,
including cells, and the container walls (despite precondi-
tioning of bottles with site water). Achterberg et al. (2003)
observed similar total dissolved copper recoveries and re-
moval by particles. Dissolved copper concentrations in these
experiments ranged from 45 to 190 nmol L21, compared to
ambient concentrations of 10 to 50 nmol L21 throughout the
Elizabeth River (Donat unpubl. data). The copper concen-
trations to which microbial communities were exposed in
this study, then, were realistic relative to Elizabeth River
ambient copper concentrations and to the acute copper cri-
terion for Virginia waters (93 nmol L21) (U.S. EPA 1999).

Copper-complexing ligand production—The ligand pro-
duction rate (Fig. 2) increased with increasing copper addi-
tions in every experiment except the November 2000 ex-
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Table 2. Total dissolved copper (Cu) concentration, ligand con-
centration (CL), and conditional stability constants (K9CuL) in incu-
bation bottles with 100 nmol L21 copper added (no azide added).

Date

Incubation
time

(weeks)

Total
dissolved

Cu
(nmol L21)

CL

(nmol L21) K9CuL

May 2000

Nov 2000

0
1
0
1
2

46.963.3
51.264.3
45.361.5
54.864.6
52.763.8

88.463.0
106.263.8

75.663.7
72.167.7
70.567.0

12.560.2
12.7

12.660.2
12.3
12.5

Jun 2001

Jul 2002

0
1
2
0
1

93.1613.2
120.163.3

80.963.8
76.965.8

104.467.5

65.466.9
146.165.1
124.869.3

83.465.3
153.967.7

12.260.5
13.0
13.0

12.560.3
12.7

Fig. 2. Rates of ligand (L1) production by intact microbial com-
munities (solid symbols) and by azide-killed controls (open sym-
bols) as a function of copper concentration. Ligand production rates
were determined from the change in ligand concentration during the
first week of incubation.

Table 3. Total dissolved copper (Cu) concentration, ligand con-
centration (CL), and conditional stability constants (K9CuL) in incu-
bation bottles with 200 nmol L21 copper added (no azide added).

Date

Incubation
time

(weeks)

Total
dissolved

Cu
(nmol L21)

CL

(nmol L21) K9CuL

May 2000

Nov 2000

0
1
0
1
2

81.967.2
93.968.9
99.466.3

161.066.9
190.1612.5

84.161.1
121.7617.1

66.662.5
98.761.4

156.264.0

12.760.3
12.7

12.760.3
12.8
12.9

Jun 2001 0
1
2

155.8610.6
156.962.8
115.568.4

107.666.5
160.7613.9
124.961.5

12.560.2
12.5
12.5

Fig. 3. Rates of ligand (L1) production by an intact microbial
community incubated under ambient light exposure and in the dark
(white bars are light bottles and black bars are dark bottles). July
2002 data only collected for unaltered and 100 nmol L21 copper
treatment. ** indicates a significant difference (P , 0.01; t-test)
after 100 nmol L21 copper addition. Rates of ligand production in
bottles with no copper addition and with a 200 nmol L21 addition
were not significantly different. Error bars are standard deviations.

periment, in which 100 nmol L21 was added. These
experimental data indicate that ligand production increased
in response to above-ambient copper concentrations. A sim-
ilar production of strong copper-complexing ligands in re-
sponse to added copper has also been observed in cultures
of the cyanobacterium Synechococcus (Moffett and Brand
1996) and heterotrophic bacteria (Schreiber et al. 1990; Gor-
don et al. 2000). A net loss of ligands was observed in con-
trol incubations with no added copper and in copper-treated
samples containing the biological poison azide. Ligand loss
could be due to photodegradation, biodegradation, or ligand
adsorption onto container walls. Biologically mediated li-
gand production, and not leakage from cells or release due
to cellular lysis, is the likely candidate, because ligand con-
centrations showed either no change or a net decrease in the
azide-killed controls.

Light/dark incubations were used to determine whether
ligand production is linked to photosynthesis (Fig. 3). Light
and dark production was not significantly different for the
control and the 200 nmol L21 Cu treatment in June 2001.
However, incubations carried out in light and dark bottles
(June 2001 and July 2002) showed a reduction in the rate
of L1-class ligand production in the dark bottles to which
100 nmol L21 copper had been added. These findings indi-
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Fig. 4. Ligand (L1) concentration as a function of time after A)
100 nmol L21 copper addition in three seasonal in situ incubations
and B) corresponding free Cu21 ion concentrations as a result of
increased ligand concentrations in response to 100 nmol L21 copper
addition. Error bars are standard deviations. The lines in panel B
represent the free Cu21 ion concentrations causing reduced repro-
ductive rates for diatoms (dia), coccolithophores (cocco), dinofla-
gellates (dino), Synechoccocus sp. (Ssp), and Synechoccocus bacil-
laris (Sb) (Brand et al. 1986).

cate that different populations within the microbial com-
munity may be responsible for L1 class ligand production at
different copper concentrations and that heterotrophic pro-
cesses (probably bacterial) can significantly contribute to L1-
class ligand production under some conditions (i.e., copper
stress). These results along with culture studies by Gordon
et al. (2000) and Schreiber et al. (1990) support the sugges-
tion by Croot et al. (2000) that heterotrophic bacteria could
be a major biological source of copper chelators.

Copper-complexing ligands and Cu21—With an addition
of 100 nmol L21 copper, an increase in ligand concentrations
was observed over the first incubation week for May 2000,
June 2001, and July 2002 (Fig. 4A; Table 2). In November
2000, no increase in ligand concentration was detected over
the 2-week incubation. The decrease in dissolved (i.e., fil-
terable) ligand concentrations from week 1 to week 2 in the
June 2001 incubation may be attributed to a loss of filterable
bound copper species, either from adsorption onto container
walls, particle surfaces, or coagulation of colloidal copper
species (Wells et al. 1998).

A ligand concentration increase over the first week of in-
cubation for May 2000, June 2001, and July 2002 resulted
in a decrease in free Cu21 ion concentration (Fig. 4B). In
November 2000, the Cu21 ion concentration did not signif-
icantly increase or decrease, which is expected since the li-
gand concentration remained constant. During June 2001, a
decrease in the free Cu21 ion was observed from week 1 to
2; however, as discussed previously, the ligand concentration
decreased instead of increasing as expected. Therefore, the
decrease in the free Cu21 ion was due to that 33% loss of
total dissolved copper and not to increased complexation by
ligands or changes in conditional stability constant.

The culture study by Brand et al. (1986) provides a useful
reference for which phytoplankton might be impacted by the
free Cu21 ion concentrations found in our study. The free
Cu21 ion concentrations that have been reported to reduce
the relative reproductive rates of several phytoplankton clas-
ses in that study are indicated as horizontal lines on Fig. 4B.
In the May 2000, November 2000, and July 2002 experi-
ments, the free Cu21 ion concentrations present at the be-
ginning of the experiments after 100 nmol L21 copper was
added were high enough to reduce the relative reproductive
rates of only the more copper-sensitive cyanobacterium Sy-
nechococcus. In June 2001, at time 0, all phytoplankton clas-
ses represented would have been affected. The free Cu21 ion
concentration decreased for May 2000, June 2001, and July
2002 during the entire incubation. With no change in the
ligand concentration in November 2000, the free Cu21 ion
concentration showed little reduction during the 2-week in-
cubation with only Synechococcus being affected.

An increase in ligand concentrations was observed over a
1-week period for May 2000, June 2001, and November
2000 incubations with an addition of 200 nmol L21 copper
(Fig. 5A; Table 3). Ligand concentrations continued to in-
crease in copper-amended containers up to 2 weeks in No-
vember 2000, but in June 2001, ligand concentrations de-
creased after 1 week (Fig. 5A). This ligand decrease was
similar to that observed with the addition of 100 nmol L21

Cu in June 2001. Again, the decrease may be attributed to

a loss either from adsorption onto container walls, particle
surfaces, or coagulation of colloidal copper species (Wells
et al. 1998).

As the ligand concentration increased during May 2000
and June 2001, the concentration of free Cu21 ion decreased
(Fig. 5B). In May 2000, the free Cu21 ion concentration
decreased by approximately an order of magnitude 1 week
after 200 nmol L21 copper was added to the incubation bot-
tles, and in June 2001, the free Cu21 ion concentration de-
creased more than three orders of magnitude (Fig. 5B). Al-



1120 Dryden et al.

Fig. 5. Ligand (L1) concentration as a function of time after A)
200 nmol L21 copper addition in three seasonal in situ incubations
and B) corresponding free Cu21 ion concentrations as a result of
increased ligand concentrations in response to 200 nmol L21 copper
addition. Error bars are standard deviations. The lines in panel B
represent the free Cu21 ion concentrations causing reduced repro-
ductive rates for diatoms (dia), coccolithophores (cocco), dinofla-
gellates (dino), Synechoccocus sp. (Ssp), and Synechoccocus bacil-
laris (Sb) (Brand et al. 1986).

though the ligand concentration increased in November
2000, there was an equivalent increase in dissolved copper,
resulting in no change in the free Cu21 ion. Additional ligand
production would have been necessary to reduce the free
Cu21 ion concentrations significantly in November 2000.
The differences among initial free Cu21 ion concentrations
in May 2000, June 2001, and November 2000 trials was
largely caused by variations in dissolved copper owing to
variable loss of copper from solution. At every sampling
time and in each trial, the free Cu21 ion concentration was

only a small fraction of the total copper (;2.5% to 0.005%),
consistent with previous reports dissolved copper speciation
in estuaries (Donat et al. 1994; Kozelka and Bruland 1998).

In a survey of algal species, Brand et al. (1986) found
that cyanobacteria were the most sensitive to copper toxicity;
dinoflagellates and coccolithophores had intermediate sen-
sitivity; and diatoms were the least sensitive. In the Novem-
ber 2000 and June 2001 experiments, the free Cu21 ion
concentrations present at the beginning of the experiments
after 200 nmol L21 copper was added were high enough to
reduce the relative reproductive rates of all the phytoplank-
ton classes listed in Fig. 5B. However, in the May 2000
experiment, the lower Cu21 ion concentration would cause
a reduced reproductive rate in only the more copper-sensitive
cyanobacterium Synechococcus. In May 2000, the free Cu21

ion concentration decreased to a level that would affect the
growth rate of only the most sensitive cyanobacterial spe-
cies, Synechococcus bacillaris. Likewise, in June 2001, the
decrease in the free Cu21 ion concentration observed over
weeks 1 and 2 would be expected to affect only Synecho-
coccus. Since the November 2000 free Cu21 ion concentra-
tion showed little reduction during the 2-week incubation,
the free Cu21 ion concentration would have continued to
affect all the phytoplankton presented in Fig. 5B during the
entire incubation.

Analogous to marine phytoplankton, Sunda and Ferguson
(1983) found that marine bacteria show toxic responses to
relatively low Cu21 ion concentrations (15 to 30 pmol L21).
Cultures of heterotrophic bacteria have also been reported to
produce dissolved, high-affinity copper ligands in response
to elevated Cu21 concentrations (Schreiber et al. 1990; Gor-
don et al. 2000). Based on these culture studies, and since
the intact microbial community contained marine bacteria as
well as marine phytoplankton, the marine bacteria could be
producing copper-complexing ligands in response to elevat-
ed Cu21 ion concentrations.

Population density and copper additions—Copper addi-
tions of 100 and 200 nmol L21 affected the population den-
sity of both autotrophic picoplankton and bacterioplankton
(Fig. 6). Both the 100 and 200 nmol L21 copper concentra-
tions resulted in a reduction of the population density of
autotrophic picoplankton and bacterioplankton with time.
However, neither population was completely eliminated,
even by the 200 nmol L21 copper addition. Several factors
may explain why copper additions did not totally eliminate
all the autotrophic picoplankton and bacterioplankton. One
set of factors could be the amelioration of any copper tox-
icity by production of strong copper-complexing ligands,
which results in a reduction of free Cu21 ion concentration.
Also, since a significant portion of the added copper was
lost to adsorption on container walls or particles, an addi-
tional reduction in copper toxicity could occur, resulting in
the remaining autotrophic picoplankton and bacterioplankton
cells. Another plausible rationale could be that some re-
maining cells may be resistant to copper toxicity (Gordon et
al. 1993). During all four trials, autotrophic picoplankton
were somewhat more affected by copper additions than were
bacterioplankton. This observation is consistent with labo-
ratory studies of copper sensitivity in various bacterioplank-
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Fig. 6. A, B) Effect of copper addition on abundance of bacterioplankton, and C, D) autotrophic picoplankton during in situ incubation
of the intact microbial community. Abundances shown are the percent cells remaining in comparison to control bottles to which no copper
was added (average counting error was 9%).

ton and autotrophic picoplankton species that generally show
that autotrophic picoplankton species, such as some Syne-
chococcus sp., are among the most sensitive to copper
(Brand et al. 1986).

Elevated copper concentrations, within realistic limits, in-
duced the natural estuarine microbial communities of the
Elizabeth River, Virginia, to produce L1 class copper-com-
plexing ligands, which dramatically reduced the free Cu21

ion concentrations in the water column. Our in situ data in-
dicate that estuarine microbial communities have the capac-
ity to respond to copper stress and ameliorate copper toxicity
by actively buffering the free Cu21 ion through organic li-
gand production. Production is not due simply to cell death
and lysis or it would have been observed in the azide-killed
controls. Production of these ligands will potentially affect
the interaction of copper with all organisms in the estuary
as well as its biogeochemical cycling. This detoxification
pathway is a negative feedback loop that needs to be taken
into account when predicting the impact of copper discharge
into estuarine systems. The results of this study indicate that
both autotrophic picoplankton and bacterioplankton can be
important contributors to production of L1 class ligands.

To our knowledge, this is the first study to show that in
situ exposure of an intact indigenous estuarine microbial
community to copper stress led to production of L1 class
ligands, resulting in amelioration of copper toxicity. This

information contributes to our understanding of the complex
processes taking place in copper-polluted estuarine environ-
ments. Clearly, additional measurements in different envi-
ronments will be required before generally applicable mod-
els of copper-responsive ligand production can be developed.
In addition, other sources of copper-complexing ligands,
such as sediment pore waters (Skrabal et al. 1997), and the
contribution by heterotrophic bacteria need to be taken into
account in any general models of copper biogeochemistry in
estuaries.
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