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Abstract

Let X be distributed as matrix normal with mean M and covariance matrix W ⊗ V, where
W and V are nonnegative definite (nnd) matrices. In this paper we present a simple version of
the Cochran’s theorem for matrix quadratic forms in X. The theorem is used to characterize
the class of nnd matrices W such that the matrix quadratic forms that occur in multivariate
analysis of variance are independent and Wishart except for a scale factor.
© 2003 Elsevier Inc. All rights reserved.

AMS classification: Primary 62H10, 62E15; Secondary 15A63
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1. Introduction

Let xj = (x1j , . . . , xpj )
′ be a column vector consisting of measurements on p

variables or at p time points taken on the j th subject, for j = 1, . . . , n. Suppose that
X = [x1, x2, . . . , xn] ∼ Np,n(M, �), that is, x̃ ∼ Np,n(m̃, �), where x̃ = vec(X),
m̃ = vec(M) and � is a nonnegative definite (nnd) covariance matrix of order np.
Here vec(X) = [x′

1, x′
2, . . . , x′

n]′ denotes the operator which stacks the columns of
the p × n matrix X into a single column vector of length np. There are numer-
ous papers in the literature generalizing the classical Craig–Sakamoto and Cochran
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theorems on the necessary and sufficient conditions for Wishartness (chi-squared-
ness) and independence of (matrix) quadratic forms in X when � is of the form W ⊗
V, where ⊗ denotes the Kronecker product. See for example, [7–10,12,13,17,18,20,
21] and more recently [2]. Other authors, for example [11,19], have obtained similar
results for a general covariance matrix �. See [4] for an extensive bibliography on
the Cochran’s theorem. The purpose of this paper is to simplify various versions of
the Cochran’s theorem obtained by the previous authors in the case where � is the
Kronecker product of two nnd matrices. The results are used to characterize the class
of nnd matrices W such that the matrix quadratic forms that occur in multivariate
analysis of variance, are independent and Wishart except for a scale factor.

The organization of this paper is as follows. In Section 2, we present two impor-
tant lemmas and use them to obtain a simple version of the Cochran’s theorem.
Section 3 contains some applications to multivariate statistics. For example, we char-
acterize the class of covariance matrices such that the one and two sample Hotelling’s
T 2 statistic and the distribution of quadratic forms that occur in multivariate analysis
of variance remain the same except for a scale factor.

2. Wishartness and independence of matrix quadratic forms

Let X ∼ Np,n(M, W ⊗ V). Khatri [7,8] gave necessary and sufficient conditions
for the Wishartness and independence of matrix quadratic forms as well as indepen-
dence of quadratic polynomials, when W and V are positive definite matrices. Styan
[18] obtained similar results for quadratic forms, when p = 1 and W is nnd, whereas
Siotani et al. [17, pp. 95–96], stated the results when W is nnd and V is a positive
definite matrix. Extensions for the Wishartness and independence of quadratic poly-
nomials in the case where both W and V are nnd can be found in [9,19–21]. See
also Chapter 7 in Gupta and Nagar [6]. In this section we present a version of the
Cochran’s theorem in the case where both W and V are nnd matrices. We will use this
version in Section 3 to study invariance properties of the one and two sample Hotell-
ing’s T 2 statistic and the distributions of quadratic forms that occur in multivariate
analysis of variance.

The main results of this paper are the following two lemmas. The first lemma is
useful to establish Wishartness of matrix quadratic forms in singular normal vari-
ables. The second lemma is useful to obtain necessary and sufficient conditions
for matrix quadratic forms to be independently distributed. Throughout the paper
O denotes a matrix of zeros.

Lemma 2.1. Let A and W be symmetric matrices of order n. Let M be a matrix of
order p × n. Consider the following two conditions:

(a) W is an nnd matrix such that tr(AW) = r(A),

(b) r(AW) = r(A).
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If the condition (a) or (b) holds then

(i) WAWAW = WAW, (ii) MAW = MAWAW and
(2.1)

(iii) MAM′ = MAWAM′

if and only if

AWA = A. (2.2)

Proof. Sufficiency is easy to check. To prove the necessity, let (a) be given. Then
from (2.1)(i), we get

T′ATT′AT = T′AT, (2.3)

where T is full column rank such that W = TT′. Therefore r(T′AT) = r(A) which
implies

r(A) = r(T′AT) � r(AT) � r(A)

and thus the two column spaces M(AT) and M(A) are equal. Hence A = ATC =
C′T′A for some matrix C. We get (2.2), if we pre- and postmultiply (2.3) by C′ and
C, respectively. Suppose now (b) holds, then M(AW) = M(A). Therefore AWD =
A for some matrix D such that AWD = D′WA. We get (2.2), pre- and postmultiply-
ing (2.1)(i) by D′ and D, respectively. This completes the proof of the
lemma. �

Lemma 2.2. Let A1, A2 and W be symmetric matrices of order n. Let M be a matrix
of order p × n. Consider the following two conditions:

(a) A1, A2 and W are nnd matrices,
(b) r(A1W) = r(A1) and r(A2W) = r(A2).

If the condition (a) or (b) holds then

(i) WA1WA2W = O, (ii) WA1WA2M′ = O = WA2WA1M′ and
(2.4)

(iii) MA1WA2M′ = O

if and only if

A1WA2 = O. (2.5)

Proof. The sufficiency is easy, so we outline only the proof of the necessary part. Let
(a) be given, then it follows from [15,16] that (2.4) implies (2.5) (see also Theorem
4s in [14, p. 71]). Suppose now (b) is given. Then as shown in Lemma 2.1, we have
A1WC = A1 and A2WD = A2 for some matrices C and D. We get (2.5) by pre- and
postmultiplying (2.4)(i) by C′ and D, respectively. �
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Note that if X ∼ Np,n(M, I ⊗ V), where V is nnd, then XX′ is distributed as
noncentral Wishart distribution Wp(n, V; �), where � = MM′ is the noncentrality
parameter. We now present theorems concerning the distribution of matrix quadratic
forms.

Theorem 2.1. Let X ∼ Np,n(M, W ⊗ V) where W, V are nnd matrices. Let A be
a symmetric matrix of order n. Then Q(X) = XAX′ ∼ Wp(r(A), V; Q(M)) if and
only if AWA = A.

Proof. Follows from Lemma 2.1 and Corollary 3.2 in [19]. �

Corollary 2.2. The distribution of Q(X) in Theorem 2.1 is a central Wishart distri-
bution Wp(r(A), V) if and only if AM′ = O.

Proof. It is easy to see that if AM′ = O then MAM′ = O. Hence Q(X) has a central
Wishart distribution. For the converse, note that if W = TT′ is the rank factoriza-
tion then MAM′ = O implies MAT = O, which in turn implies that MATT′A = O.
Hence AM′ = O since AWA = A. �

Corollary 2.3. Under the assumptions of Theorem 2.1, we have Q(X) ∼ dWp(r(A),

V; �) if and only if AWA = dA where d > 0 and � = 1
d

Q(M).

The next theorem gives necessary and sufficient conditions for the independence
of two quadratic forms. The theorem is an extension of the results contained in
[15,18] for p = 1.

Theorem 2.4. Let X ∼ Np,n(M, W ⊗ V) where W and V are nnd matrices. Let
Q1(X) = XA1X′ and Q2(X) = XA2X′, where A1 and A2 are symmetric matrices of
order n. Consider the conditions: (a) A1 and A2 are nnd matrices and (b) r(A1W) =
r(A1) and r(A2W) = r(A2). If the condition (a) or (b) holds then Q1(X) and Q2(X)

are independently distributed if and only if A1WA2 = O.

Proof. Follows from Lemma 2.2 and Corollary 3.5 in [19]. �

The following is an easy consequence of the above theorem.

Corollary 2.5. Let X ∼ Np,n(M, W ⊗ V) where W and V are nnd matrices. Let A
be a nnd matrix of order n and L be a matrix of order p × n. Then Q(X) = XAX′
and XL′ are independently distributed if and only if AWL′ = O.

It is interesting to note that the necessary and sufficient conditions in Theorems
2.1, 2.4 and the above corollary do not depend on M. We now present a version of
the Cochran’s theorem.
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Theorem 2.6. Let X ∼ Np,n(M, W ⊗ V) where W and V are nnd matrices. Let
Ai (i = 1, . . . , k) and A be symmetric matrices of order n such that A = ∑k

i=1 Ai .

Consider the following conditions:

(a1) XAiX′ ∼ Wp(r(Ai ), V; �i ) where �i = MAiM′ for i = 1, . . . , k,

(a2) XAiX′ and XAj X′ are mutually independent for i /= j = 1, . . . , k,

(a3) XAX′ ∼ Wp(r(A), V; �) where � = MAM′,
(b1) AiWAi = Ai for i = 1, . . . , k,

(b2) AiWAj = O for i /= j = 1, . . . , k,

(b3) AWA = A,

(b4)
∑k

i=1 r(Ai ) = r(A).

Then

(1) any two of the three conditions (a1), (a2), (a3) or
(2) any two of the three conditions (b1), (b2), (b3) or
(3) any two conditions (ai) and (bj ) for i /= j = 1, 2, 3 or
(4) (b3) and (b4) or
(5) (a3) and (b4)

are necessary and sufficient for all the remaining conditions: (a1)–(b4).

Proof. The proof is based on Theorems 2.1 and 2.4. We will only prove that (a3)

and (b4) imply all the remaining conditions. Suppose that (a3) and (b4) hold, then
from Theorem 2.1, we get (b3). Let B = T′AT and Bi = T′AiT for i = 1, . . . , k

where W = TT′ is the rank factorization of W. Then B = ∑k
i=1 Bi . Also from (b3),

we get B2 = B. Using condition (b4), we have

r(A) = tr(AW) = tr(B) = r(B) �
k∑

i=1

r(Bi ) �
k∑

i=1

r(Ai ) = r(A),

since tr(AW) = r(AW) = r(A) from (b3). Hence r(B) = ∑k
i=1 r(Bi ). From Theo-

rem 1 in [5], we get B2
i = Bi and BiBj = O for i /= j = 1, . . . , k. It follows from

Lemma 2.3 that r(Bi ) = r(Ai ) for i = 1, . . . , k. Applying Lemmas 2.1 and 2.2 for
Ai we can see that (b1) and (b2) hold. Now (a1) and (a2) follow from Theorems 2.1
and 2.4. �

Lemma 2.3. Let Ai , Bi , A and B be as defined in Theorem 2.6. Let r(A) =∑k
i=1 r(Ai ) = ∑k

i=1 r(Bi ) = r(B). Then r(Bi ) = r(Ai ) for i = 1, . . . , k.

Proof. It is obvious from the definition of Bi’s that r(Bi ) � r(Ai ) for i =
1, . . . , k. Also, r(Bi ) = r(B) − ∑k

j /=i=1 r(Bj ) = r(A) − ∑k
j /=i=1 r(Bj ) � r(A) −
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j /=i=1 r(Aj ) = r(Ai ). Hence, repeating the same argument we can show that

r(Bi ) � r(Ai ) for i = 1, . . . , k. �

3. Applications to multivariate statistics

Here we present applications of the theorems in Section 2 to multivariate statis-
tical theory. Suppose that X ∼ Np,n(M, W ⊗ V) where W and V are nnd matrices.
Let x̄ = 1

n
Xe be the sample mean and S = XRX′/(n − 1) be the sample covariance

matrix, where R = I − 1
n

ee′ is the centering matrix, and e is a vector of ones. Basu
et al. [1] considered the equicorrelated structure for W and showed that x̄ and S are
independently distributed and their distributions are preserved except for a constant.
We prove the converse in Theorem 3.2.

Theorem 3.1. Let X ∼ Np,n(M, W ⊗ V) where W and V are nnd matrices. Then
for any d > 0, we have (n − 1)S ∼ dWp(n − 1, V; �) where � = 1

d
MRM′, if and

only if

W = d

[
R + 1

n
(ea′ + ae′) − ā

n
ee′

]
, (3.1)

where ā = (a′e)/n, and a = (a1, . . . , an)
′ is an arbitrary vector satisfying

1
n

∑n
i=1(ai − ā)2 � ā.

Proof. Using Corollary 2.3 we can see that W has to satisfy RWR = dR. The
theorem follows from Remark 2.5 in [3]. �

Theorem 3.2. Let X ∼ Np,n(M, W ⊗ V) where W and V are nnd matrices. Then
(n − 1)S ∼ dWp(n − 1, V; �) and is independent of x̄ if and only if W =
d(I − (1−c)

n
ee′) for some c � 0, d > 0 and � is given in Theorem 3.1.

Proof. From Corollary 2.5, we have x̄ is independent of S if and only if

RWe = 0. (3.2)

Now W satisfies (3.1) and (3.2) if and only if Ra = 0 which is true iff a = ce where
c = ā � 0. The proof is completed substituting a = ce in (3.1). �

As a consequence of the preceding theorem we have the following property of the
one sample Hotelling’s T 2 statistic.

Corollary 3.3. Let X ∼ Np,n(M, W ⊗ V) where W is a nnd matrix and V is a
positive definite matrix. Let M = �e′ where � is a vector of order p × 1. Assume
that n − 1 � p. Then



A.K. Vaish, N.R. Chaganty / Linear Algebra and its Applications 388 (2004) 379–388 385

T 2 = n(x̄ − �)′S−1(x̄ − �)

n − 1

n − p

p
∼ cF (p, n − p) (3.3)

if W = d(I − (1−c)
n

ee′) for some c � 0 and d > 0.

For the two sample Hotelling’s T 2 we have

Theorem 3.4. For k = 1, 2, let Xk ∼ Np,nk
(�ke′

nk
, Wk ⊗ V), where W1 and W2

be nnd matrices, and V be a positive definite matrix. Assume that X1 and X2 are
independent and n1 + n2 − 2 � p. Let x̄1, x̄2 be the sample mean vectors and S1,

S2 be the sample covariance matrices of X1 and X2, respectively. Also, let Sp =
[(n1 − 1)S1 + (n2 − 1)S2]/(n1 + n2 − 2) be the pooled sample covariance matrix
and � = �1 − �2. Then

T 2 = n1n2

n1 + n2

((x̄1 − x̄2) − �)′S−1
p ((x̄1 − x̄2) − �)

n1 + n2 − 2

(n1 + n2 − p − 1)

p

∼ F(p, n1 + n2 − p − 1) (3.4)

if

W1 = d(I + βen1 e′
n1

) and W2 = d(I − βen2 e′
n2

)

for some constants β and d such that d > 0 and −1/n1 < β < 1/n2. Here en is a
column vector of ones of order n.

Proof. From Theorem 3.2 we have (nk − 1)Sk ∼ dWp(nk − 1, V) and is indepen-
dent of x̄k if and only if Wk = d(I − (1−ck)

nk
enk

e′
nk

), where ck � 0 for k = 1, 2 and
d > 0. For these Wk’s we have

x̄1 − x̄2 − � ∼ Np

(
0, d

(
c1

n1
+ c2

n2

)
V

)
(3.5)

and
n1 + n2 − 2

d
Sp ∼ Wp(n1 + n2 − 2, V), (3.6)

where � = �1 − �2. Thus for c1 > 0 and c2 > 0 from (3.5) and (3.6) we can see that

n1n2

n1 + n2

((x̄1 − x̄2) − �)′S−1
p ((x̄1 − x̄2) − �)

n1 + n2 − 2

(n1 + n2 − p − 1)

p

∼ c1n2 + c2n1

n1 + n2
F(p, n1 + n2 − p − 1). (3.7)

The proof is completed choosing c1 = n1β + 1 and c2 = 1 − n2β where −1/n1 <

β < 1/n2. �
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Remark 3.1. Selecting c1 = c2 = c in the proof of Theorem 3.4 we can see that the
two sample Hotelling’s T 2 ∼ cF (p, n1 + n2 − p − 1) if Wk = d(I − (1−c)

nk
enk

e′
nk

),
for k = 1, 2, where d > 0.

We turn our attention now to the multivariate analysis of variance. Here the total
corrected sum of squares XRX′ is decomposed as Q1 + · · · + Qm, where Qi =
XAiX′, 1 � i � (m − 1), are matrix quadratic forms useful to test (m − 1) orthog-
onal hypothesis, and Qm = XAmX′ is the matrix quadratic form representing the
residuals. The matrices Ai’s are idempotent and AiAj = O for i /= j . The invariance
property of these quadratic forms is given below.

Theorem 3.5. Let A1, A2, . . . , Am be symmetric and idempotent matrices of order
n such that AiAj = O for all i /= j. Let

∑m
i=1 Ai = R and B = ∑m

i=1 ciAi where R
is the centering matrix and ci > 0 for 1 � i � m. Let X ∼ Np,n(M, W ⊗ V) where
W and V are nnd matrices. Let Qi (X) = XAiX′ for 1 � i � m. Then Qi (X) ∼
ciWp(r(Ai ), V; Qi (M)/ci) for all i and pairwise independent if and only if

W = B + 1

n
(ea′ + ae′) − ā

n
ee′, (3.8)

where a is an arbitrary vector satisfying

1

n

m∑
i=1

a′Aia
ci

� ā. (3.9)

Proof. Follows from Theorem 2.6, Corollary 2.3 and Theorem 2.2 in [3]. �

Theorem 3.5 yields some interesting characterizations in the one way model. Sup-
pose that we have from the kth population a matrix of observations Xk of order p ×
nk such that E(Xk) = �ke′

nk
for 1 � k � g. Assume that X = [X1, X2, . . . , Xg] ∼

Np,n(M, W ⊗ V), where V is a nnd matrix of order p and W is a nnd matrix of
order n = ∑g

k=1 nk . The standard test for testing �k = � for all k, that is, M =
�e′, partitions the total corrected sum of squares XRX′ as Qt (X) + Qe(X) where
Qt (X) = X(J − 1

n
ee′)X′, Qe(X) = X(I − J)X′. Here J = ⊕g

k=1
1
nk

enk
e′
nk

and
⊕

denotes the direct sum. It is well that known that if W = I and �k = � for all
k, then Qt (X) ∼ Wp(g − 1, V), Qe(X) ∼ Wp(n − g, V) and both are independent.
The theorem below gives a complete characterization of the class of W’s such that
these properties hold.

Theorem 3.6. Assume that X ∼ Np,n(�e′, W ⊗ V) where V and W are nnd matri-
ces of order p and n, respectively. Let ci > 0 for i = 1, 2. Then

(1) Qt (X) ∼ c1Wp(g − 1, V),

(2) Qe(X) ∼ c2Wp(n − g, V),

(3) Qt (X) is independent of Qe(X)
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if and only if

W = c2I + (c1 − c2)J + 1

n
(ea′ + ae′) − ā + c1

n
ee′, (3.10)

where a is an arbitrary vector satisfying

a′
(

J − 1
n

ee′
)

a

nc1
+ a′(I − J)a

nc2
� ā. (3.11)

Proof. Choose M = �e′ and A1 = J − 1
n

ee′, A2 = I − J in Theorem 3.5. �

When observations from the g populations are independent we have

Theorem 3.7. Assume that Xk ∼ Np,nk
(�e′

nk
, Wk ⊗ V) where Wk and V are nnd

matrices of orders nk and p, respectively for k = 1, . . . , g and they are independent.
Let ci > 0 for i = 1, 2. If g � 3 then (1)–(3) of Theorem 3.6 hold if and only if

Wk = c2I + (c1 − c2)

nk

enk
e′
nk

for 1 � k � g. (3.12)

Proof. Let W = ⊕g

k=1 Wk . From Theorem 3.6 we can see that (1)–(3) hold if and
only if

W = c2I + (c1 − c2)J + 1

n
(ea′ + ae′) − ā + c1

n
ee′ (3.13)

for some vector a satisfying (3.11). Thus wij , the (i, j)th element of W satisfies

wij = ai + aj − (ā + c1) = 0 for 1 � i � n1, n1 + 1 � j � n

and for
i = n1 + 1, . . . , n1 + n2,

j = 1, . . . , n1, n1 + n2 + 1, . . . , n.

(3.14)

Since g � 3 we have n > n1 + n2 and it is easy to check that (3.14) hold if and only
if a = c1e. For this choice of a, (3.13) simplifies to W = c2I + (c1 − c2)J. This
completes the proof. �
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