Bounds on Element Order in Rings Z(m) With Divisors of Zero

C. H. Cooke
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs
Part of the Applied Mathematics Commons

Repository Citation

Cooke, C. H., "Bounds on Element Order in Rings Z(m) With Divisors of Zero" (2005). Mathematics \& Statistics Faculty Publications. 69.
https://digitalcommons.odu.edu/mathstat_fac_pubs/69

Original Publication Citation

Cooke, C. H. (2005). Bounds on element order in rings Z_{m} with divisors of zero. Computers \& Mathematics with Applications, 49(11-12), 1643-1645. doi:10.1016/j.camwa.2005.02.004

Bounds On Element Order in Rings Z_{m} With Divisors of Zero

C. H. Cooke
Department of Mathematics, Old Dominion University
Norfolk, VA 23529, U S.A.

(Recevved and accepted February 2005)

Abstract

If p is a prime, integer ring Z_{p} has exactly $\phi(\phi(p))$ generating elements ω, each of which has maximal index $I_{p}(\omega)=\phi(p)=p-1$. But, if $m=\prod_{J=1}^{R} p_{J}^{\alpha_{J}}$ is composite, it is possible that Z_{m} does not possess a generating element, and the maximal index of an element is not easily discernible Here, it is determined when, m the absence of a generating element, one can still with confidence place bounds on the maximal index. Such a bound is usually less than $\phi(m)$, and in some cases the bound is shown to be strict. Moreover, general information about existence or nonexistence of a generating element often can be predicted from the bound (c) 2005 Elsevier Ltd. All rights reserved.

1. NUMBER THEORETIC PRELIMINARIES

Some results from number theory which form a base for what follows are now given. These results can be found in number theory texts such as $[1,2]$.
Merged Congruence. The system of simultaneous congruences, $X=a, \operatorname{Mod}\left(m_{\imath}\right), \imath=$ $1,2, \ldots R$ are equivalent to $X=a, \operatorname{Mod}(m)$, where $m=1$.c.m. $\left(m_{1}, m_{2}, \ldots, m_{R}\right)$.
Element Index. If Z_{m}^{*} is the set of invertible elements of integer ring Z_{m}, the order $k=I_{m}(a)$ of element $a \in Z_{m}^{*}$ is the smallest integer k, such that $a^{k}=1, \operatorname{Mod}(m)$. Element a is invertible iff $(a, m)=1$.
Euler's Theorem. If $(a, m)=1, a^{\phi(m)}=1, \operatorname{Mod}(m)=>k=I_{m}(a) \mid \phi(m)$.
Euler Totient Function. $\phi(m)$ is the number of nonnegative integers, a, not exceeding m, such that $(a, m)=1 . \phi(m)$ is always even, for $m>2$.
Generating Elements. If $I_{m}(a)=\phi(m)$, element a is called a generator of Z_{m}^{*}. If a is a generator, every element of Z_{m}^{*} can be expressed as an integer power of a.

For prime modulus $\phi(\phi(p))=\phi(p-1)$ generators exist [1,2]. But, rarely is it the case that a generator exists when m is a composite modulus.

2. MAXIMAL INDEX FOR RINGS POSSESSING DIVISORS OF ZERO

Suppose $m=\prod_{J=1}^{R} p_{J}^{\alpha_{J}}$ has factors determined by primes $p_{1}<p_{2}<\cdots<p_{R}$, with $\alpha_{J}>0$. If $\phi(x)$ is the Euler Totient function, there are $\phi(m)$ invertible elements in ring Z_{m}. By Euler's
theorem, each invertible element $a \in Z_{m}$ has index $I_{m}(a)$ which divides $\phi(m)$. Thus, $\phi(m)$ emerges as an upper bound on the maximal index. This is a strict bound if and only if the set Z_{m}^{*} of invertible elements has a generating element, or exactly when Z_{m}^{*} is a cyclic group.

The purpose of this research is to carefully consider integer rings Z_{m}, where Z_{m}^{*} may not be cyclic. We shall determine bounds on the order τ_{m} of the maximal cyclic subgroup possessed by Z_{m}^{*}. In some cases, the bound on τ_{m} is strict.

An additional benefit of such a bound is that in many cases it can be used to declare the existence or nonexistence of a generating element. This is valuable information, as little is known about when integer rings Z_{m} with composite modulus m have a generating element, although instances where this occurs are known $[1,2]$.

A result of the present research shows one can be assured that Z_{m}^{*} is not a cyclic group when integer m has at least two distinct, odd prime divisors, as then it has no generator. A necessary condition that Z_{m}^{*} be cyclic is determined, as well as a concomitant set of sufficient conditions, which cut down the work required if a brute force approach to answering the question were employed.

3. A CHARACTERIZATION OF τ_{m}

Theorem 2. Let integer \underline{a} and modulus \underline{m} be relatively prime, i.e., $(a, m)=1$. If $L=$ l.c.m. $\left\{\phi\left(P_{J}^{\alpha_{3}}\right): P_{J}\right.$ is a divisor of m, α_{J} times, integer $\left.\alpha_{J} \geq 1\right\}$, then $a^{L}=1, \operatorname{Mod}(m)$. Therefore,
(a) L is an upper bound on the index of each $a \in Z_{m}^{*}$, and
(b) If there is at least one integer $J, 1 \leq J \leq R$, such that $L=\phi\left(P_{J}^{\alpha_{J}}\right)$, then L is a strict upper bound on $I_{m}(a)$;
(c) always $\tau_{m} \leq L$; this is a strict bound iff (b) holds;
(d) thus, when $L<\phi(m)$ a generating element for Z_{m}^{*} does not exist.

Proof. Since $(a, m)=1 \mathrm{implies}\left(K_{J}, m\right)=1$, where $K_{J}=\left(p_{J}\right)^{\alpha_{J}}$, by Euler's theorem $a^{\phi\left(K_{J}\right)}=$ $1, \operatorname{Mod} K_{J}$. Therefore, $a^{L}=1, \operatorname{Mod} K_{J}$, since $\phi\left(K_{J}\right) \mid L$. Since $a^{\phi\left(K_{J}\right)}=1, \operatorname{Mod} K_{J}$ is true for each integer $1 \leq J \leq R$, the theory of merged congruences assures that $a^{L}=1$, Mod m. Clearly, $\tau_{m} \leq L$, and equality holds iff $\phi\left(K_{J}\right)=L$, for some integer J in the range $1 \leq J \leq R$. If $L<\phi(m)$, a generating element for Z_{m}^{*} cannot exist, as $\tau_{m}=\phi(m)$ is a necessary and sufficient for the existence of a generator.

Corollary 1. If integer m has at least two distinct odd prime divisors, then Z_{m}^{*} is not a cyclic group, as $\tau_{m} \leq \phi(m) / 2$.
Proof. If m has at least two distinct odd prime divisors, the l.c.m. calculated in determining the bound L of Theorem 1 will satisfy $\tau_{m} \leq \phi(m) / 2$, since $\phi(m)$ will be divisible at least by 4 , with two 2 s occurring distributed between two distinct divisors of $\phi(m)$, causing at least one 2 divisor of $\phi(m)$ to be dropped when forming the least common multiple, L.

The chief remaining question is: for integer $m=2^{K} P^{\alpha}$, when is Z_{m}^{*} a cyclic group, and when does it fail to be such? Further research may be required. However, the following can be established.

THEOREM 2. If $m=2^{K} P^{\alpha}$ is an integer and $(a, m)=1$, a necessary condition that a be a generator of Z_{m}^{*} is that $a^{\phi(m) / 2}=-1, \operatorname{Mod}(m)$. This necessary condition, in conjunction with $a^{J} \neq \pm 1, \operatorname{Mod}(m)$ for $1 \leq J<\phi(m) / 2$, is also sufficient to guarantee that a is a generator.
Proof of Necessity. Suppose a is a generator of Z_{m}^{*}, and $m=2^{K} P^{\alpha}$. By definition of a generator, there must be some integer $J<\phi(m)$, such that $a^{J}=-1, \operatorname{Mod}(m)$, as -1 is invertible. If $J=\phi(m) / 2 \pm K$ is true for any nonzero integer K which satisfies $0<K<\phi(m) / 2$, one arrives at a contradiction to \underline{a} being a generator: $a^{2 . J}=1, \operatorname{Mod}(m)$ is impossible, since
$2 J=\phi(m)-2 K<\phi(m)$, and $a^{2 J}=a^{\phi(m)+2 K}=a^{2 K}=1, \operatorname{Mod}(m)$, with $2 K<\phi(m)$ is likewise impossible.
Proof Of Sufficiency. Suppose that conditions
(i) $a^{\phi(m) / 2}=-1, \operatorname{Mod}(m)$ and
(ii) $a^{J} \neq \pm 1, \operatorname{Mod}(m)$, for $1 \leq J<\phi(m) / 2$
are satisfied by element $a \in Z_{m}^{*}$. If integer $K=\phi(m) / 2+J$ with $1 \leq J<\phi(m) / 2$, then $a^{K}=a^{\phi(m) / 2} a^{J}=-a^{J}, \operatorname{Mod}(m)$. Clearly, if ± 1 are excluded values for a^{J}, likewise these are excluded values for a^{K}. Hence, $a^{J} \neq 1, \operatorname{Mod}(m)$, for $1 \leq J<\phi(m)$, but $a^{\phi(m)}=1$, $\operatorname{Mod}(m)=>a$ is primitive.
Comment. For large composite m, the use of brute force to decide whether or not $a \in Z_{m}^{*}$ is a primitive element becomes computationally intensive. However, Theorem 2 significantly reduces the computation required.

4. NUMERICAL EXAMPLES

Example 1. Consider the ring Z_{m} where $m=32760=2^{3} 3^{2} 5(7) 13$, with $\phi(m)=4(6) 4(6) 12$. Since $L=\phi(13)=$ l.c.m. $\left\{\phi\left(K_{J}\right): J=1,2,3,4,5\right\}=12, \tau_{m}=12=\phi(13)$ is a strict bound on element index for Z_{32760}. No generating element exists, as $\tau_{m}<\phi(m)$.
Example 2. For $m=71(31), \phi(m)=70(30)$, so $\tau_{m} \leq L=7(3) 10<\phi(m)$. Here, Theorem 2 does not guarantee a strict bound. It does establish that Z_{71031}^{*} has no generating element, as also does Corollary 1.
Example 3. It is well known that Z_{25}^{*} possesses a generating element. In this case,

$$
L=\phi(m)=\tau_{m}
$$

Moreover, $3^{10}=-1, \operatorname{Mod}(20)$, whereas $3^{J} \neq \pm 1, \operatorname{Mod}(20)$, for $1<J<10$.

REFERENCES

1. K.H Rosen, Elementary Number Theory, Addison-Wesley, New York, (2000).
2. J.K. Streyer, Elementary Number Theory, PWS Publishing Company, Boston, MA, (1994).
