Old Dominion University ODU Digital Commons

Mathematics & Statistics Faculty Publications

Mathematics & Statistics

2005

Bounds on Element Order in Rings Z(m) With Divisors of Zero

C. H. Cooke Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_fac_pubs Part of the <u>Applied Mathematics Commons</u>

Repository Citation

Cooke, C. H., "Bounds on Element Order in Rings Z(m) With Divisors of Zero" (2005). *Mathematics & Statistics Faculty Publications*. 69. https://digitalcommons.odu.edu/mathstat_fac_pubs/69

Original Publication Citation

Cooke, C. H. (2005). Bounds on element order in rings Z_m with divisors of zero. Computers & Mathematics with Applications, 49(11-12), 1643-1645. doi:10.1016/j.camwa.2005.02.004

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Available online at www.sciencedirect.com

An International Journal COMPUTERS & mathematics with applications

SEVIER Computers and Mathematics with Applications 49 (2005) 1643–1645

www elsevier com/locate/camwa

Bounds On Element Order in Rings Z_m With Divisors of Zero

C. H. COOKE

Department of Mathematics, Old Dominion University Norfolk, VA 23529, U S.A.

(Received and accepted February 2005)

Abstract—If p is a prime, integer ring Z_p has exactly $\phi(\phi(p))$ generating elements ω , each of which has maximal index $I_p(\omega) = \phi(p) = p - 1$. But, if $m = \prod_{J=1}^R p_J^{\alpha_J}$ is composite, it is possible that Z_m does not possess a generating element, and the maximal index of an element is not easily discernible. Here, it is determined when, in the absence of a generating element, one can still with confidence place bounds on the maximal index. Such a bound is usually less than $\phi(m)$, and in some cases the bound is shown to be strict. Moreover, general information about existence or nonexistence of a generating element often can be predicted from the bound (C) 2005 Elsevier Ltd. All rights reserved.

1. NUMBER THEORETIC PRELIMINARIES

Some results from number theory which form a base for what follows are now given. These results can be found in number theory texts such as [1,2].

MERGED CONGRUENCE. The system of simultaneous congruences, X = a, $Mod(m_i)$, i = 1, 2, ..., R are equivalent to X = a, Mod(m), where $m = l.c.m.(m_1, m_2, ..., m_R)$.

ELEMENT INDEX. If Z_m^* is the set of invertible elements of integer ring Z_m , the order $k = I_m(a)$ of element $a \in Z_m^*$ is the smallest integer k, such that $a^k = 1, Mod(m)$. Element a is invertible iff (a, m) = 1.

EULER'S THEOREM. If (a, m) = 1, $a^{\phi(m)} = 1$, $Mod(m) => k = I_m(a) | \phi(m)$.

EULER TOTIENT FUNCTION. $\phi(m)$ is the number of nonnegative integers, a, not exceeding m, such that (a, m) = 1. $\phi(m)$ is always even, for m > 2.

GENERATING ELEMENTS. If $I_m(a) = \phi(m)$, element a is called a generator of Z_m^* . If a is a generator, every element of Z_m^* can be expressed as an integer power of a.

For prime modulus $\phi(\phi(p)) = \phi(p-1)$ generators exist [1,2]. But, rarely is it the case that a generator exists when m is a composite modulus.

2. MAXIMAL INDEX FOR RINGS POSSESSING DIVISORS OF ZERO

Suppose $m = \prod_{J=1}^{R} p_J^{\alpha_J}$ has factors determined by primes $p_1 < p_2 < \cdots < p_R$, with $\alpha_J > 0$. If $\phi(x)$ is the Euler Totient function, there are $\phi(m)$ invertible elements in ring Z_m . By Euler's

^{0898-1221/05/\$ -} see front matter © 2005 Elsevier Ltd All rights reserved doi:10 1016/j.camwa.2005.02 004

theorem, each invertible element $a \in Z_m$ has index $I_m(a)$ which divides $\phi(m)$. Thus, $\phi(m)$ emerges as an upper bound on the maximal index. This is a strict bound if and only if the set Z_m^* of invertible elements has a generating element, or exactly when Z_m^* is a cyclic group.

The purpose of this research is to carefully consider integer rings Z_m , where Z_m^* may not be cyclic. We shall determine bounds on the order τ_m of the maximal cyclic subgroup possessed by Z_m^* . In some cases, the bound on τ_m is strict.

An additional benefit of such a bound is that in many cases it can be used to declare the existence or nonexistence of a generating element. This is valuable information, as little is known about when integer rings Z_m with composite modulus m have a generating element, although instances where this occurs are known [1,2].

A result of the present research shows one can be assured that Z_m^* is not a cyclic group when integer m has at least two distinct, odd prime divisors, as then it has no generator. A necessary condition that Z_m^* be cyclic is determined, as well as a concomitant set of sufficient conditions, which cut down the work required if a brute force approach to answering the question were employed.

3. A CHARACTERIZATION OF τ_m

THEOREM 2. Let integer <u>a</u> and modulus <u>m</u> be relatively prime, i.e., (a,m) = 1. If $L = 1.c.m. \{\phi(P_J^{\alpha_J}) : P_J \text{ is a divisor of } m, \alpha_J \text{ times, integer } \alpha_J \ge 1\}$, then $a^L = 1$, Mod (m). Therefore,

- (a) L is an upper bound on the index of each $a \in Z_m^*$, and
- (b) if there is at least one integer $J, 1 \leq J \leq R$, such that $L = \phi(P_J^{\alpha_J})$, then L is a strict upper bound on $I_m(a)$;
- (c) always $\tau_m \leq L$; this is a strict bound iff (b) holds;
- (d) thus, when $L < \phi(m)$ a generating element for Z_m^* does not exist.

PROOF. Since (a, m) = 1 implies $(K_J, m) = 1$, where $K_J = (p_J)^{\alpha_J}$, by Euler's theorem $a^{\phi(K_J)} = 1$, Mod K_J . Therefore, $a^L = 1$, Mod K_J , since $\phi(K_J) \mid L$. Since $a^{\phi(K_J)} = 1$, Mod K_J is true for each integer $1 \leq J \leq R$, the theory of merged congruences assures that $a^L = 1$, Mod m. Clearly, $\tau_m \leq L$, and equality holds iff $\phi(K_J) = L$, for some integer J in the range $1 \leq J \leq R$. If $L < \phi(m)$, a generating element for Z_m^* cannot exist, as $\tau_m = \phi(m)$ is a necessary and sufficient for the existence of a generator.

COROLLARY 1. If integer m has at least two distinct odd prime divisors, then Z_m^* is not a cyclic group, as $\tau_m \leq \phi(m)/2$.

PROOF. If m has at least two distinct odd prime divisors, the l.c.m. calculated in determining the bound L of Theorem 1 will satisfy $\tau_m \leq \phi(m)/2$, since $\phi(m)$ will be divisible at least by 4, with two 2s occurring distributed between two distinct divisors of $\phi(m)$, causing at least one 2 divisor of $\phi(m)$ to be dropped when forming the least common multiple, L.

The chief remaining question is: for integer $m = 2^{K}P^{\alpha}$, when is Z_{m}^{*} a cyclic group, and when does it fail to be such? Further research may be required. However, the following can be established.

THEOREM 2. If $m = 2^K P^{\alpha}$ is an integer and (a, m) = 1, a necessary condition that a be a generator of Z_m^* is that $a^{\phi(m)/2} = -1$, Mod (m). This necessary condition, in conjunction with $a^J \neq \pm 1$, Mod (m) for $1 \leq J < \phi(m)/2$, is also sufficient to guarantee that a is a generator.

PROOF OF NECESSITY. Suppose a is a generator of Z_m^* , and $m = 2^K P^{\alpha}$. By definition of a generator, there must be some integer $J < \phi(m)$, such that $a^J = -1$, Mod (m), as -1 is invertible. If $J = \phi(m)/2 \pm K$ is true for any nonzero integer K which satisfies $0 < K < \phi(m)/2$, one arrives at a contradiction to <u>a</u> being a generator: $a^{2J} = 1$, Mod (m) is impossible, since $2J = \phi(m) - 2K < \phi(m)$, and $a^{2J} = a^{\phi(m)+2K} = a^{2K} = 1$, Mod (m), with $2K < \phi(m)$ is likewise impossible.

PROOF OF SUFFICIENCY. Suppose that conditions

- (i) $a^{\phi(m)/2} = -1$, Mod (m) and
- (ii) $a^J \neq \pm 1$, Mod (m), for $1 \le J < \phi(m)/2$

are satisfied by element $a \in Z_m^*$. If integer $K = \phi(m)/2 + J$ with $1 \leq J < \phi(m)/2$, then $a^K = a^{\phi(m)/2}a^J = -a^J$, Mod (m). Clearly, if ± 1 are excluded values for a^J , likewise these are excluded values for a^K . Hence, $a^J \neq 1$, Mod (m), for $1 \leq J < \phi(m)$, but $a^{\phi(m)} = 1$, Mod (m) => a is primitive.

COMMENT. For large composite m, the use of brute force to decide whether or not $a \in Z_m^*$ is a primitive element becomes computationally intensive. However, Theorem 2 significantly reduces the computation required.

4. NUMERICAL EXAMPLES

EXAMPLE 1. Consider the ring Z_m where $m = 32760 = 2^3 3^2 5(7)13$, with $\phi(m) = 4(6)4(6)12$. Since $L = \phi(13) = \text{l.c.m.} \{\phi(K_J) : J = 1, 2, 3, 4, 5\} = 12$, $\tau_m = 12 = \phi(13)$ is a strict bound on element index for Z_{32760} . No generating element exists, as $\tau_m < \phi(m)$.

EXAMPLE 2. For m = 71(31), $\phi(m) = 70(30)$, so $\tau_m \leq L = 7(3)10 < \phi(m)$. Here, Theorem 2 does not guarantee a strict bound. It does establish that $Z^*_{71 \bullet 31}$ has no generating element, as also does Corollary 1.

EXAMPLE 3. It is well known that Z_{25}^* possesses a generating element. In this case,

$$L=\phi\left(m\right)=\tau_{m}.$$

Moreover, $3^{10} = -1$, Mod (20), whereas $3^J \neq \pm 1$, Mod (20), for 1 < J < 10.

REFERENCES

1. K.H Rosen, Elementary Number Theory, Addison-Wesley, New York, (2000).

2. J.K. Streyer, Elementary Number Theory, PWS Publishing Company, Boston, MA, (1994).