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Abstract-The aim of this paper is to investigate the potential artificial compression which can be 
achieved using an interval multiresolution analysis based on a semiorthogonal cubic B-spline wavelet. 
The Chui-Quak [l] spline multiresolution analysis for the finite interval has been mod&xl [2] so 
as to be characterized by natural spline projection and uniform two-scale relation. Strengths and 
weaknesses of the semiorthogonal wavelet as regards artificial compression and data smoothing by 
the method of thresholding wavelet coefficients are indicated. 

Keywords-Semiorthogonal B-spline wavelet, Data compression, Boundary wavelets, Threshold- 
ing. 

1. INTRODUCTION 

Classical approaches to wavelet construction deal with multiresolution analysis (MRA) on the 

entire real axis [3,4]. More recently, the construction of suitable wavelets for bounded inter- 

vals has become of interest [1,5,6], primarily as a means for elimination of edge effects in image 

analysis. Such constructions are usually directed toward synthesis of orthogonal or semiorthog- 

onal wavelets. The two classes have an underlying common structure, yet exhibit diversity in 

methodology and complexity of an associated computational algorithm. 

Meyer [7] has adapted the orthogonal wavelets of Daubechies [4] to the bounded interval. 

However, his procedure for obtaining orthogonality of boundary scaling functions encounters an 

ill-conditioned matrix and ensuing numerical instability as matrix size increases. This mishap 

motivated Cohen, Daubechies, and Vial [5] to take an approach, whereby boundary scaling func- 

tions are no longer obtained by restriction to the interval of the customary scaling functions. 

This causes some inconvenience in reconstruction, as various two scale relations are required near 

boundaries. 

Perhaps anticipating numerical instabilities if proceeding otherwise, Chui-Quak [l] construct 

(and Quak-Weyrich [6] implement) semiorthogonal spline wavelets for the interval, introducing 

special boundary scaling functions which possess multiple nodes at an endpoint. Intuitively, it 

appears unnatural to harbor the inconvenience of scaling functions possessing two scale relations 

which vary over the interval. There is little reason to suspect that otherwise numerical instabilities 

might occur, as for spline wavelets orthogonalization is not a factor. 

Consequently, in a companion paper [2] there has been reexamined, for the case of cubic B-spline 

wavelets with compact support, the feasibility of employing an alternative MRA for the interval. 

The modification is as follows. First, boundary scaling functions which are the restriction to the 

interval of cubic B-spline translates are retained. The reconstruction process is now simplified, 

‘bv=t by 44-W 
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as a two-scale equation which is the interval restriction of the classical two-scale relation applies 

uniformly. Moreover, by employing nested spaces of natural cubic splines for the MRA, it is seen 

that distortion of images is diminished. The revised boundary wavelets do not markedly differ in 

appearance from those of Chui-Quak [1,6]. As numerical results appear equivalent to those of [6], 

whereas operation count is improved and numerical instability is not experienced, the effort is 

deemed successful. 

A natural question from the wavelet user community concerns the plethora of wavelets on the 

market (orthogonal, semiorthogonal, biorthogonal, etc.); namely, what are their relative strengths 

and weaknesses? This question will be explored here, in terms of the determining potential merits 

of semiorthogonal spline wavelets, as regards data compression and data smoothing, employing 

the usual devices in thresholding wavelet coefficients. We find nothing to become excited about 

as regards data smoothing. However, more success is achieved in the area of data compression, as 

without the tree searches of best basis schemes, compression ratios of up to 40-to-1 are obtained, 

where the usual error tolerance of no more than 5% relative error is the standard. 

As the research presented here depends strongly upon the previous work, for clarity of foun- 

dations it will be necessary to review the boundary wavelet machinery previously developed [2]. 

2. PRELIMINARY CONSIDERATIONS 

Quak and Weyrich [6] review the axioms of Mallat [8] required of MRA for &(R), and stipulate 

the requirements for MRA adapted to an interval. For MRA on &[a, b], the sequence of function 

subspaces can be infinite only in the direction corresponding to mesh refinement. There is some 

initial space VI with sufficient nodes to contain entirely the support of at least one inner wavelet, 

and a sequence of nested spaces 

. . . v-2 c v-1 c vo c VI c * * * c V-J c . . . . 0) 

The spaces VJ are related by 

vJ+l = v, @ WJ, (2) 

where WJ is the orthogonal complement in VJ+~ of VJ. The most fundamental requirement of an 

MRA is that there is a scaling function 4(z) such that, for finitely many Ic, the scaling function 

translations satisfy 

f$(Zr) E I’$ ($ 4 (2’2 - k) E VJ, (3) 

and the linear span of these translations covers VJ. 

In the sequel, attention is directed to the interval [0,8]. Vi is the space of natural cubic splines 

with (at most) simple nodes at 0, 1,2,3,4,5,6,7,8. Thus, VJ is the space of natural cubic splines 

with nodes at k/2J, k = 0, 1, . . . , 2J+3. 

Generally, scaling functions inhabit an approximation space, while wavelets are members of 

the orthogonal complement. If d(z) E Vi is a scaling function, a finite number of translations, 

+(23x - k), together with an appropriate number of boundary scaling functions, constitute a 

basis for VJ. In this research, a boundary scaling function is simply the interval restriction of 

some translation of the interior scaling function. 

When the VJ are spaces of natural cubic splines, one can choose as interior scaling function 

for VO the cardinal B-spline (see 191) N(z) = 4[0,1,2,3,4]t(t - z)~+. Here, [., . . . , .]t is the 4th 

divided difference of (t - z)~+. The corresponding two scale relation is 

N(z) = 2 pkN(22 - k - 2), 
k=-2 

(4) 

where pk is an element of [3] 

PC = $[1,4,6,4,1]. (5) 
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On the interval, $(x) E We is an inner wavelet if it possesses no support at the endpoints, 

and some finite collection $(2Jz - k), together with any required boundary wavelets $J:(~~z) 

constitute a basis for WJ. The inner wavelet used in the sequel is the compactly supported 

Chui-Wang cubic B-wavelet [3]. For each space WJ, J 2 0, three boundary wavelets are required 

at each end of the interval, together with 2 J+3 - 6 inner wavelet translations. Translations of a 

boundary wavelet are of no interest. 

3. MAPLE DERIVATION OF BOUNDARY WAVELETS 

Boundary wavelets are derived initially for the space Wc. For J = 1,2,. . . , N, a WJ wavelet is 

a (possibly translated) scaled version of some Wc wavelet. Wavelets for the ultra-coarse spaces 

WJ, J = -1, -2, -3 all have support on at least one boundary: no inner wavelet exists. Thus, a 

unique wavelet derivation is required for each space. In the literature these spaces usually have 

been neglected [ 1,6]. 

The space Ws allows two inner wavelets, whose supports are [0,7] and [1,8]. Wavelets for this 

space are designated as 

h2j-l(X), j = 1,...,8 (6) 

according to the indices of the nodes which disappear when a VI function is projected on Vi, 

where the indices j = 4,5 correspond to inner wavelets. Subsequently, scaled versions of these 

wavelets which are in VJ will be referred to as 

&x)3 k=l,3,...,N-1 (7) 

where N = 2J+3, and the first three and last three index values refer to boundary wavelets. 

The necessity for a boundary wavelet arises when it is observed that left (right) translations of 

$4 ($Js) are no longer orthogonal to Vi. Indeed, the only requirement for constructing boundary 

wavelets in Wc is that 

(a) they are orthogonal to VO, and 

(b) the collection (5) is linearly independent and spans Wc. 

Linear independence can be arranged as follows [l]. Let Q\Ek = $,2k+i(x) and choose the left 

boundary wavelets 90, !Pi, K.Jz to have support [0,4], [0,5], [0,6], whereas the right boundary 

wavelets 95, Qs, and Qr satisfy %‘r_l(z) = \kl(8 - z), 1 = 0, 1,2. 

To satisfy condition (a), the constants Ci in the equations 

2j+4 

‘I+(x) = c CiN(2a: - k), j = 0, 1,2 (8) 
k=-3 

are chosen such that \kj is orthogonal to every function N(x - i) with which it shares support. 

For fixed j, this leads to solving a homogeneous system of 7 + j equations in 8 + 2j unknowns. 

Latitude in solving these systems is removed by the principle of minimal interference with 

interior interaction; the innermost profile of a boundary wavelet is chosen insofar as possible to 

conform to the corresponding profile of the Chui-Wang [1,3] inner wavelet. This choice is made 

possible because j + 1 of the associated determining equations for boundary wavelet @j will be 

identical to those required for the inner wavelet. By substituting inner wavelet coefficients, for 

each j this reduces to finding the unique solution of a system involving six inhomogeneous equa- 

tions in six unknowns. Set up and solution is accomplished using the Maple symbolic algebraic 

manipulation package. Coefficients of the boundary and inner wavelets are given in Table 1. 

Figures l-4 show wavelet profiles. As may be seen, there is no marked difference in appearance 

between the present boundary wavelets and those of Chui-Quak [1,6]. 
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Table 1. Natural spline wavelets. 

Coefficients Of The Two-Scale Relations For Cubic Wavelets 

First Second Third 
i 

Boundary Wavelet Boundary Wavelet Boundary Wavelet Inner Wavelet 

-3 
-451866263 657311485 -419725 

28100016 196700112 24587514 
0 

-2 
157179839 - 138630091 348403 

56200032 393400224 196700112 
0 

-1 
-4718657 -21954047 -168239 

4014288 196700112 49175028 
0 

0 
633094403 7917027 743093 1 

1124000640 17841280 17841280 40320 

-19083341 -1181603407 -385603003 -31 
1 

93666720 1967001120 1967001120 10080 

2 
668851 1202163647 3606559267 559 

- 
16057152 2622668160 7868004480 13440 

3 
-31 -247 -337 -247 

10080 1260 560 1260 

4 
1 559 9241 9241 

40320 13440 20160 20160 

5 0 
-31 -247 -337 

10080 1260 560 

1 
6 0 

559 9241 

40320 13440 20160 

0 0 
-31 -247 

7 
10080 1260 

8 0 0 
1 559 

40320 13440 

9 0 0 0 
-31 

10080 

10 0 0 0 
1 

40320 

: 7 3 1 5 6 ‘I 0 1 7 .5 ‘1 

Figure 1. First boundary wavelet. Figure 2. Second boundary wavelet. 

4. FRONTAL DECOMPOSITION 

Let VJ be the space of natural cubic splines with the most simple nodes at Xk, k = 0, 1, . . . , IV. 
Here, N = 2J+3, h is the node spacing, and let 4;(x) = N(2Jx - k + 4), k = -1,. . . ,N + 1 be 
the cardinal B-spline basis for VJ. 
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Figure 3. Third boundary wavelet. Figure 4. Inner wavelet. 
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Ifyj,j=o,l,... , N are sampled data values from some function f(z), then 

N+l 

4&f = c Ck&w, 
k=-1 

is a projection on VJ, provided the following requirements are satisfied: 

co = Yo CN = YN, 

Ci-I + 4Ci + C+,+l = 6yi, i=1,2 ,...) Iv-l, 

(9) 

(10) 

(11) 

together with the conditions for a natural spline fit 

c-1 = 2cs - ci cN+i = 2cN - c,_1. (12) 

The most desirable feature of a multiresolution analysis is provision of means to calculate the 
relation between the projection Phf on the fine grid Vj and its best natural spline approximation 
P2h f in the coarser space VJ_ 1: 

e&f = P2hf + Wh(Z), (13) 

where 
N/2+1 

P2hf = c C2k+;-1(+ (14) 
k=-1 

Here, even indices are used to emphasize the disappearance of odd-indexed nodes under projec- 
tion, and the natural spline conditions are 

c-2 = 2ci3 - c2 cN+2 = 2cN - cN-2. (15) 

In particular, the function wh(z) is to be expressed in terms of a scaled version applicable to 
wJ-1 of the B-wavelet basis for Wc derived in the previous section: 

N/2 
wh(s) = c dk@k-&), (16) 

k=l 

where the indexing associates a wavelet translation with each odd-indexed node on the fine mesh. 
Boundary wavelets are encountered for the first three and last three index values. 
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Iteration of the projection (20,21) over successively coarser grids is referred to ss decomposition 
of the function f(z) into its wavelet components. There results 

j-l 

Phf = P2jh.f + c W2kh(z). 

k=O 
(17) 

The reverse process of building up the function from knowledge of the ck, dk at each level is 
referred to as rewnstmction. 

For B-wavelets in Ls(R), decomposition using pyramid schemes usually leads to concomitant 
development of a boundary layer of error near interval endpoints, caused by truncation of weight 
sequences [3]. The point of developing MRA for the finite interval is to avoid this difficulty. 
A frontal decomposition scheme for which edge effects have been eliminated is now presented. 
Reconstruction proceeds as usual by a reverse pyramid scheme [3], suitably modified to account 
for boundaries and presence of boundary wavelets. 

By the theory of approximation in Hilbert space, the best approximant in VJ_I to a given 
natural spline Phf is the unique solution of the following constrained optimization problem: 

2N Min 
J 

{P/J - P2hf}2 dx. 08) 
3% 

The solution for the even indexed variables csk, Ic = 0, 1, . . . , M = N/2 is obtained from solving 

the banded system 

AC=F, (19) 

where 

A= 

451 
630 

1013 

2520 
61 

L260 

1 

2520 

1013 

2520 

41 

45 
17 

s 
1 

21 

*. 

0 

0 

0 

0 

61 1 

1260 2520 

17 1 

36 21 

302 397 

0 0 0 0 

0 

0 

0 

-. 

1 

21 
17 

s 
41 
45 

1013 
2520 

0 

0 

0 

0 

0 

1 

2520 
61 

1 

2520 

1 

21 

397 

0 0 

1 

2520 
0 

315 840 

397 302 1 1 

21 2520 840 315 840 

-. 

1 

21 
1 

2520 

1 

2520 

0 

397 

840 
1 

21 

302 397 

315 840 
397 302 

840 315 
1 17 

21 s 
1 61 

2520 1260 

1260 
1013 

2520 
451 

630 

1 

2520 
0 0 

0 0 0 

CT = [‘%, c2, c4, . *. , CN-4, CN-2, CN] I 
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and 

- ( =%7(l) + 
20160 

F= &cw-11) + &C(N-10) + g&N-(l) + g&N-7) 

+gc(N-6) + &C(N-5) + gjC(N-4) + g&N-3) 

-5 _ + 
+10080 (N 2, &%-I)) 

( 
&%-9~ + &O%sJ + $qv-7) + +$(N-6) + g&N-S) 

+gc(N-4) + g&N-3) + g&N-2) + &C(N-1) + &%I 
> 

( 
&cCN-71 + $&?N_,) + $&N-5) + gc(N-4) + sc(N-3) 

+Ec(N-2) + $#(N-1) + &c(N) 
> 

( 
&ftN-5) + &,c(N-4) + $&c(N-3) + Ec(N-2) + sc(N-1) 

443 

+960 -% 
) 

A posteriori there can be calculated 

c-2 = 2ciJ - c2, cN+2 = 2cN - c&7-2. (20) 

The decomposition is continued by solving the linear system 

Ph - ~2h)fb2i-1) = ~djq(szi-l), (21) 
j=l 
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where P2h f is now the best approximant, and i = 1,2,. . . , M = N/2. Coarse grid values are 
readily calculated using the convolution 

1 
(Pzfi) f (zk) = - [CM + 23 (Q-I + ck+r) + ck+s] . 48 (22) 

The system matrix P for equation (21) has bandwidth 7, and its elements are Pij = !J$(zz~_~). 

Table 2 contains the nonzero elements of columns l-4. Columns j = 5,6, . . . , A4 - 4 have zero 
elements except for Pj_k,j = Pd-k,4, with -3 5 k 5 3. The elements of the last three columns 

Satisfy PM-k,M-j = Pk+l,j+l, j = 0,. . . ,3; k = 0,. . . ,kf - 1. 

r 

Table 2. 

Svstem Matrix P - 
i 

- 

1 

2 

3 

4 

5 

6 

7 

- 

pi.1 

613572069 

249777920 

-29086299833 

47208026880 

1039839173 

47208026880 

1 

241920 

0 

0 

0 

I 

Pi,2 

-19114505 

1348800768 

- 1475969333 

5901003360 

- 11642629 

245875140 

197 

40320 

1 

241920 

0 

0 

Pi,3 

6604091 

1348800768 

-111788779 

2360401344 

-1302921391 

5245336320 

-1273 

26880 

197 

40320 

1 

241920 

0 

1 
Pi,4 

1 

241920 

197 

40320 

-1273 

26880 

-15023 

60480 

-1273 

26880 

197 

40320 

1 

241920 

5. RECONSTRUCTION BY DYNAMIC MOVING AVERAGES 

The reconstruction problem, which is the inverse of decomposition, requires an algorithm which 
combines the coefficients ckJ_l, d{-’ obtained from solving equations (19) and (21), to regain the 

coefficients cf, 1 = -1, 0, 1, . . . , N + 1 of equation (9). Viewing equation (13), there will be 
individual contributions 

c; = u; + b: (23) 

from the separate basis function expansions for Pzh f and wh f. It is an easy exercise to show 
that Pshf contributes as follows: 

1 

a25 = c P-ZjC&i, 
N 

j=-1 

k = 0, 1, . . . , T, (24) 

1 

dk+l = c Pl-OjC&~7 k=O,l,..., $1. (25) 
j=O 

Here cf-’ = czl, where czl comes from solving equation (14), and the Pl axe defined by equrt- 
tions (4) and (5). 

Likewise, the contributions from wh(z) are given by 
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and 
3 

bJ 21c+1 = c 
&;+ld&;+l. (27) 

j=-3 

Here, d:-’ = dl results from solving equation (21), and C& is a coefficient from the two-scale 
relation for wavelet $1 (see Table l), where, for an inner wavelet, the zero index value for k 

refers to the center of symmetry. For a boundary wavelet the center of indexing is, again, the 
6th nonzero coefficient, but moving from the interior towards the boundary with which it is 
associated. (It is noted that the so-called third boundary wavelet has six nonzero coefficients to 
one side of the center of indexing, and five to the other side, whereas an inner wavelet has five 
coefficients to either side.) 

Interpretation as a Moving Average 

By the well-known method of up-sampling (insertion of zeros to get the vector c-r, 0, ~0, 0, cl, 

0, c2, . . * ,~,~N/2,~,~N/2+1, 0) the two formulas of equations (24),(25) can be combined into the 
moving average scheme 

LZJ = 2 _?3_jCf~j1* (28) 
j=-2 

Likewise, by upsampling the dkJ_‘, the two equations (26),(27) can be represented by the single 
dynamic moving average 

6 

(29) 
j=-6 

Both equations (28),(29) require index values I = 0, 1,2, . . . , N with a posterior-i calculation (the 
natural spline condition) of 

cJ_, =2&c; J cN+l = 2c; - &_I. (30) 

In these equations, di = 0 if i < 1 or i > N - 1. Except for third boundary wavelet( & = 0. 

6. PROVING THE ALGORITHM 

As significant computer aided algebra has been accomplished in deriving the present decom- 
position algorithm, the first experiment is aimed at verification of accuracy. For cubic splines 
having two continuous derivatives, one should be able to detect discontinuities in a function and 
its first or second derivatives by performing a wavelet decomposition. Further, use of boundary 
wavelets and the frontal decomposition technique should eliminate the boundary errors which 
arise when countable infinite weight sequences are truncated, in adapting wavelet methods for 
Lz(R) to the interval. 

For this purpose, we use the test functions fr(z) and fi(z) 

- 1) (4(2z 1)2 + 322 - - 3) , h(z) -$(2x ifOSs<:, = 

+2x - 1)(2z - 2)(2x - 3), iff <zsl, 

{ 

1 

fib> = 
1 + (22 - 1y 

ifOixSi, 

1 
sex-2z, 2 if-<x51, 

interpolated on 128 points, with grid spacing 2- 7. Figure 5 shows the first function and its 
wavelet part (a plot of the wavelet coefficients); Figure 6 shows corresponding results for the 
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(a) First test function. 
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--0.001 - 

-0.002 - 

-0.003 I I 1 I 
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(b) Wavelet coefficients (j = 7). 

Figure 5. 

0.004 

0.003 - 

0.002 - 

0.001 -- 

0.000 --------- 
-0.001 - 

-0.002 - 

-0.003 - 

-0.004 I I I I 
0.0 0.4 0.8 

(b) Wavelet coefficients (j = 7). 

Figure 6. 

second test function. Although the derivative discontinuity at the center of the interval is not 

visible (Figure 5a) in plotting a test function, its detection by observance of wavelet coefficients 

(Figure 5b) is well localized and accurately space centered, even though the wavelet coefficients are 

of small magnitude. Further, the usual boundary layer of error at endpoints, which is associated 

with weight sequence truncation [3], is seen to have been avoided. But, this is the point of using 

boundary wavelets; hence, the major criteria for success of the present method clearly has been 

achieved. 

7. SOFT THRESHOLD DENOISING 
WITH WAVELET COEFFICIENTS 

A question frequently posed by the user community regards knowing the circumstances under 

which one type of wavelet may or may not be superior to another. The question is explored 

here in the context of an application of wavelets to data smoothing called thresholding in the 

wavelet transform domain. The cubic wavelet structure developed in Section 3 (see Table 1) is 

now applied to data smoothing in the thresholding context, to determine whether semiorthogonal 

wavelets can compete with the successes of orthogonal wavelets in this area. 

Donoho and Johnstone [lO-131 have proposed a very simple procedure for recovering functions 

from noisy data, which attempts to reject noise by thresholding in the wavelet transform domain. 

When the wavelet transform utilizes an orthogonal wavelet, the data smoothing which results by 

thresholding is claimed to be very good [ll]. 

The objective in this section is to report some numerical experiments where the thresholding 

technique is attempted, for the case in which the wavelet transform utilizes the semiorthogonal 

cubic B-spline wavelet and the interval MRA algorithm developed in Sections 3 and 4. The best 

that can be said is that some degree of data smoothing is obtained; however, the level of variance 

reduction is insufficient for acclaim to be credited to the method. Evidently the property of an 
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orthogonal transform of the data, strongly utilized in theoretical studies of Donoho’s method, is 

crucial to significant variance reduction. 

Suppose it is desired to recover an unknown function f(ti) defined on [a, b] from noisy data 

di = f(h) + 0-5, i = 0, 1,2, . . . , n - 1 (31) 

where ti = 1 
n 

& N iV(0, 1) Gaussian white noise 

c7 noise level. 

One interpretation of the term “denoising” is that one’s goal is to optimize the mean-squared 

error 

The denoising process, which is not necessarily optimal, follows. First, the interval-adapted cubic 

B-spline wavelet and natural spline MRA of Sections 3 and 4 are employed to “wavelet transform” 

the data by decomposition over several levels of increasing coarseness. Next, the resulting wavelet 

coefficients are translated towards zero, by applying the soft threshold nonlinearity 

rlt(Y) = sdy)(lyl - t)+ 

where 

w(y) = 

1, if y > 0, 

0, if y = 0, (32) 

-1, if y < 0, 

(IYI - t>+ = 
IYI - t, if IYI > t, 
o 

7 elsewhere, 
(33) 

coordinatewise to the wavelets coefficients, with specially chosen values for the threshold t. Upon 

reversing the pyramid filtering process (by reconstruction), the smoothed values f,t(i/n), i = 

0, 1,2, - * . ) n - 1, are recovered. 

Table 3. Smoothing by projection only. 

R.M.S. Deviation 

0.30634297538607 

0.37763354502562 t = 0.5 0.44165132955322 

0.29557825406323 t=1 0.33079362895004 

0.30936344208145 t = 1.5 0.25484707840785 

0.16003431015278 t=2 0.20541018868544 

0.13060963413918 t=3 0.17873406305794 

A Data Smoothing Experiment 

The outcome of some numerical experiments which implement the denoising technique are now 

reported. A graduated sequence of t-values are employed for the natural B-spline wavelets as seen 

in Table 4. The corrupting signal is white (Gaussian) noise from a random number generator, 

Table 4. Reconstruction with threshold (t). 

Multilevel reconstruction over 5 Levels 

Threshold R.M.S. Deviation 
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which is added to a sinusoidal input sampled over the interval [0,2x]. Numerical results are 
shown below. Table 3 shows the smoothing accomplished by the natural B-spline wavelets simply 
projecting from the fine grid to a coarser grid level, with no thresholding. Table 4 shows the 
effects of thresholding several coarse levels after reconstructing back to the fine level. There is 
a progression in quality of the resulting data smoothing ss the threshold varies, as may be seen 
from Table 4. Indeed, as the threshold approaches t = 3.0, it is seen in Table 4 that the standard 
deviation converges to 0.178734. 

Figures 7-9 depict projected data, wavelet coefficients, and reconstructed data over several 
levels. From the appearance of the wavelet transform coefficients, one might suspect that the 
random noise generator is producing correlated noise in the vicinity of x = 5.0. 

It is seen that Donoho and Johnstone’s soft th~sholding method in conjunction with the 
semiorthogonal wavelet lead to numerical experiments whose resulting smoothing recovery from 
an unknown noisy data is, at best, about the 15% level in variance reduction. Indeed, as a result 
of simply projecting to the fourth level (j = 4) of coarseness, we get better smoothing results 
than are obtainable by thresholding, as may be seen from Table 3. 

Smoothing a Corrupted Sine Wave 

4 = f(ti) + a& i = 0, 1,2, . . . , n - 1 

where ti = A 
n 

& N iV(0, 1) Gaussian white noise 

(T = 1. 

f(ti) = sin(&) 

Wavelet transform ;i = A soft thresholded wavelet coefficient 

Vmimce c (Z- f(ti))2 
i n 

R.M.S. deviation G 

8. DATA COMPRESSION BY 
QUANTILE THRESHOLDING 

In the last few years the advent of multimedia computing has initiated a revolution in research 
concerning image compression. Here, storage and manipulation of image data in raw form can 
be very expensive. For example, a standard 35mm photograph digitized at 12pm per pixel 
requires about 18 MBytes of storage, and one second of NTSC-quality color video requires about 
23 MBytes of storage f14]. High definition television (HDTV) is another area where sheer volume 
of data which must be transported and stored (in real time) boggles the imagination. 

It is clear that in order to take advantage of what is becoming cutting edge technology in 
these areas, some form of data compression is necessary, Indeed, the introduction of the wavelet 
concept has spurred a revolution in the field of data compression. 

In this section, we investigate the quality of data compression that can be obtained from 
lossy compression schemes which employ the interval wavelets derived in Section 3 (see Table 1). 
Basically, there are two different kinds of schemes for compression: lossless and lossy. In the 
csse of lossless compression, one is interested in reconstructing the data exactly, without loss of 
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Figure 7. Multilevel decomposition with Figure 8. Signal reconstruction (t = 1). 
noisy signal. 
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Figure 9. Wavelet coefficients (t = 1). 

information, such as with Huffman Coding [15]. Lossy compression is considered here, where 
error is permitted, as long as image quality after reconstruction is acceptable. In general, much 
higher compression ratios can be obtained with lossy schemes than those characterized by lossless 
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Loss or distortion introduced in reconstruction&all be defined as the R.M.S. or l2 norm of the 

difference between f(z) and its approximation f(z). For simplicity of comparison, this shall be 

normalized to the relative difference [If(r) - ~~)ll/llf(~)ll. 

Signals which are of interest in data compression application are usually characterized by 

a time-varying frequency. One such signal is y = sin(t2), which is to be used for numerical 

experiments. Interest is focused on a data window of length N = 2n, where n = 10. Using 

the techniques of Section 4 involving multiresolution analysis on the interval, this data will be 

decomposed to a level of coarseness n = 3, with quantile thresholding of the wavelet coefficients. 

Table 5. Data cutoff by compression on 1024 points. 

Cutoff(c = 0.001) Cutoff(~ = 0.01) Cutoff(e = 0.1) 

308 414 512 

146 174 234 

66 76 96 

31 34 37 

16 16 19 

9 9 15 

2 2 4 
+ 

Remaining Data 1 438 I 291 I 99 I 

RIMS. 1 4.11x10-3 1 4.07x10-3 1 4.45x10-3 I 

R.E. 5.91x10-3 5.86x 1O-3 6.41 x 1O-3 

Table 6. Data cutoff by compression on 1024 points. 

Level 

j=9 

j=S 

j=7 

j=S 

j=5 

j=4 

j=3 

Remaining Data 

R.M.S. 

R.E. 

Cutoff(E = 1) 1 Cutoff(c = 2) 1 Cutoff(c = 5) 

512 512 512 

256 256 256 

119 127 128 

48 49 53 

24 27 27 

15 15 16 

6 I 7 I 8 

36 I 23 I 16 

4.45x 10-s 

6.41 x 1O-3 

Since distortions up to 5% are considered acceptable in some speech processing applications, 

an optimal compression method for a deterministic signal is one that yields no more than 5% 

distortion while maximizing the compression ratio. Though the quality of the restored signal may 

be criticized in some cases, the data compression results from wavelet signal analysis shown in 

Tables 5 and 6 are, perhaps, amazing. For best case compression, to approximately reconstruct 

the original 1024 word signal requires only 24 data nonzero values to be stored. This is a 

compression ratio of about 40 to 1. 
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Figure 10. Multilevel decomposition y = sin(z2). 
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Figure 11. Signal reconstruction (e = 0.1). Figure 12. Wavelet coefficients (c = 0.1). 

The rule for thresholding is given as 

djquant = 
0, if dj < E, 

dj, ifdj >e. 
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Results for reconstruction when the value e = 0.01 is used are shown in Figures 11 and 12. When 

reconstructing to the original signal, R.E. and R.M.S. errors converge to 6.4x 10V3 and 4.5 x 10e3, 

as shown in Tables 5 and 6. 

9. CONCLUSION 

A Maple derivation of new boundary wavelets which accompany the cubic inner spline wavelet 

of Chui-Quak [l] h as b een presented, together with a frontal technique for decomposition over a 

finite interval of functions contained in the MRA generated by a piecewise cubic B-spline local 

basis. The technique avoids the use of pyramid schemes and the necessity of truncating weight 

sequences of infinite length, which procedure would appear to lower the accuracy of the B-wavelet. 

Numerical experiments indicate excellent results for the frontal method of decomposition, as 

regards both accuracy and efficiency of the algorithm. The problem of boundary error is well 

disposed of by the present scheme, where boundary scaling functions with multiple nodes [1,6] 

at interval endpoints have been avoided by use of more natural scaling functions. Moreover, this 

approach apparently gives results which are equivalent to those of [6], with improved algorithm 

efficiency. Data smoothing by means of thresholding in the wavelet transform domain is not as 

successful for semiorthogonal wavelets as it has been advertised for orthogonal wavelets. On the 

other hand, very good results are achieved for a data compression scheme which employs these 

interval wavelets. A compression ratio of 40 to 1 is experienced. 
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