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INTRODUCTION

Iodine is the most abundant bio-intermediate minor
element in the oceans (Wong 1991). It is believed to
originate from the excess volatiles in the formation of
seawater (Horn & Adams 1966). While the concentra-
tion of total dissolved iodine, at around 0.45 µM, does
not vary greatly with geographical location in the open

oceans, the concentration in the surface waters is fre-
quently lower than that in the deep water by a few per-
centage points (Elderfield & Truesdale 1980). Iodine is
found in seawater mostly in inorganic forms. However,
dissolved organic iodine can be a sizable contributor in
coastal and inshore waters (Truesdale 1975, Wong &
Cheng 1998, 2001a,b). Based on the thermodynamics
of the inorganic iodine system, iodate should be the
stable and only detectable form of inorganic iodine in
seawater (Sillen 1961, Wong & Brewer 1977, Wong
1980, 1982). However, significant concentrations of
iodide have frequently been observed in the surface
waters so that the concentrations of iodide and iodate
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ABSTRACT: Six species of phytoplankton, representing 6 major phylogenetic groups (2 oceanic
species: a cyanobacteria, Synechococcus sp., and a coccolithophorid, Emiliania huxleyi; and 4 coastal
species: a prasinophyte, Tetraselmis sp., the green algae Dunaliella tertiolecta, the diatom Skele-
tonema costatum and a dinoflagellate Amphidinium carterae) were tested for their ability to reduce
iodate to iodide in batch cultures. They all did so to varying degrees. Thus, the reduction of iodate to
iodide by phytoplankton may be a general phenomenon in the marine environment. At ambient con-
centrations of iodate, the rates of depletion of iodate and appearance of iodide varied between 0.8
and 0.02, and between 0.3 and 0.02 nmol µg chlorophyll a–1 d–1, respectively. E. huxleyi was the least
efficient while A. carterae was the most efficient in the depletion of iodate. However, in the formation
of iodide, while E. huxleyi was also the least efficient, Synechococcus sp. were the most efficient. The
rates of appearance of iodide were noticeably slower than the corresponding rates of depletion of
iodate, suggesting that part of the iodate might have been converted to forms of iodine other than
iodide in these cases. The slight mismatch in the rank order of the rates of depletion of iodate and
appearance of iodide between the phytoplankton species was traced to this variable and incomplete
conversion of iodate to iodide. These rates were increased by up to over an order of magnitude upon
enriching the culture medium with 5 and 10 µM of iodate. The depletion of iodate and appearance of
iodide occurred in all growth phases. However, the rates might vary with growth phase and the
patterns of these variations might be species-specific. Phytoplankton growth was not impeded even
under unnaturally high concentrations of iodate implying that there is little interaction between
iodine processing and the metabolic activity of cell growth.
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may range from <0.01 to 0.3 and <0.1 to 0.45 µM,
respectively, in these waters (Tsunogai & Henmi 1971,
Wong & Zhang 1992a, Wong 1995, Campos et al.
1999). Higher concentrations of iodide are found pri-
marily in the surface waters. Thus, in the open oceans,
the concentration of iodate increases with depth to an
approximately constant level while that of iodide de-
creases with depth to around the detection limit below
the euphotic zone (Elderfield & Truesdale 1980, Wong
et al. 1985). Nonetheless, even in deep waters, low but
detectable concentrations of iodide have been re-
ported (Tsunogai 1971).

Much of the previous research effort on the marine
geochemistry of the iodine system has been focused on
documenting and understanding this paradox of the
presence of iodide in seawater. Based on field observa-
tions on the distributions of iodide and iodate, it has
been widely speculated that iodide is formed in the
oxygenated ocean surface by the biologically medi-
ated reduction of iodate (Wong & Brewer 1974, Elder-
field & Truesdale 1980, Jickells et al. 1988, Wong &
Zhang 1992a, Wong 1995). How this reduction is cou-
pled to biological production is still unclear, and differ-
ent linkages have been invoked by different investi-
gators. Thus, while Campos et al. (1996a) linked the
production of iodide to primary production, Tian et al.
(1996) linked it to regenerated production. Because of
the chemical similarity between iodate and nitrate,
Tsunogai & Sase (1969) suggested that this reduction
may be mediated by the enzyme nitrate reductase.
They also provided qualitative evidence indicating
that bacterial nitrate reductase may reduce iodate to
iodide. Recent field observations and modelling exer-
cises seem to support the linkage between iodate
reduction and nitrate uptake (Campos et al. 1999,
Hung et al. 2000, Wong 2001, Wong & Hung 2001).

Since nitrate reductase is more commonly found in
phytoplankton than in bacteria, if the reduction of
iodate to iodide is mediated by this enzyme, then
phytoplankton may play an even more important role
than bacteria in facilitating this reaction in the oceans.
However, several decades of laboratory studies have
left only a somewhat confused picture of the role of
phytoplankton in the transformation of iodate to
iodide. In one of the earliest studies, Sugawara & Ter-
ada (1967) reported that Navicula sp., marine diatoms,
could assimilate both iodide and iodate, although
iodide was preferred. In the process, both iodate and
iodide could have been converted to the other form of
iodine. Fuse et al. (1989) also suggested that iodide
was preferentially taken up over iodate by several spe-
cies of phytoplankton. Truesdale (1978) and Butler et
al. (1981), on the other hand, reported that no appre-
ciable inter-conversion between iodate and iodide was
observed in the cultures of several species of diatom.

Several possible factors could have contributed to
these apparently conflicting results. First, the intensity
of nitrate reductase activity in a culture can be affected
by the speciation and relative availability of the differ-
ent forms of combined nitrogen in the culture medium
(Conway 1977). For example, in the presence of re-
duced combined nitrogen, nitrate reduction is sup-
pressed. Thus, if iodate reduction is linked to the activ-
ity of nitrate reductase, it may also be suppressed.
Furthermore, if the same enzyme system is involved in
both iodate and nitrate reduction, then, if the concen-
tration of nitrate is much higher than the concentration
of iodate, iodate may not be able to compete success-
fully with nitrate for the reaction site. As a result,
iodate reduction may be impeded. In the earlier
studies, the combined nitrogen condition in the culture
was not taken into consideration in the experimental
design. The culture media were frequently enriched
with up to about 1 mM of nitrate while the correspond-
ing concentrations of iodate used were orders of
magnitude lower. This uncontrolled combined nitro-
gen condition might have affected the behavior of the
phytoplankton toward the iodine species. Second, the
analytical methods used for following the depletion of
iodate and the appearance of iodide were not iodine
species-specific and the possibility of the formation of
organic iodine in the experiments was not considered.
If organic iodine was formed, it could have been
included as iodate in some analytical schemes so that
there might not have been any evidence of a loss of
iodate or a formation of iodide. Third, the possible
presence of bacteria in the cultures could have af-
fected the results. Thus, while Butler et al. (1981)
observed that iodate was converted to iodide in senes-
cent cultures of the diatom Skeletonema costatum,
they concluded that the release of iodide was probably
due to bacteria in the culture. By taking these factors
into consideration, we have studied the reduction of
iodate to iodide by 6 species of phylogenetically di-
verse phytoplankton under controlled nutrient condi-
tions. The changes in the concentration of iodate and
iodide in the culture medium were followed by using
analytical methods that are specific for each of these
2 species of inorganic iodine (Herring & Liss 1974,
Luther et al. 1988). Possible contamination by bacteria
was carefully minimized and monitored. The results
are reported here.

MATERIALS AND METHODS

Axenic cultures were obtained from the Provasoli-
Guillard Center for Culture of Marine Phytoplankton,
Bigelow Laboratory, Boothbay Harbor, Maine, USA.
Species representing the 6 major phylogenetic groups
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of phytoplankton were used as test organisms. Two
were isolated from oceanic environments (a cyanobac-
teria, Synechococcus sp. [CCMP 1334], and a cocco-
lithophorid, Emiliania huxleyi [CCMP 373]); and 4
were representative of near-shore species (a prasino-
phyte, Tetraselmis sp. [CCMP 896]; a green algae,
Dunaliella tertiolecta [CCMP 1320]; a diatom, Skele-
tonema costatum [CCMP 1332]; and a dinoflagellate,
Amphidinium carterae [CCMP 1314]). Stock cultures
were maintained in f/2 medium (Guillard & Ryther
1962) at 20°C under a 12 h light:12 h dark cycle at a
photosynthetically active radiation of approximately
50 µE m–2 s–1. In order to minimize bacterial activities
in the culture solutions, the stock cultures were
treated routinely with Guillard’s antibiotic solution
(Sigma Chemical), which contained penicillin G so-
dium, streptomycin sulfate and chloroamphenicol,
following the procedure of Droop (1967).

Prior to each experiment, an aliquot of a stock cul-
ture was first pre-conditioned for 4 to 5 d in an f/2
medium whose nitrate concentration had been re-
duced to the f/20 level before about 50 ml of it was
inoculated into 2000 ml of the final growth medium. In
order to provide better control of the speciation and
concentrations of the iodine and combined nitrogen
species in the batch culture experiments, the final
growth medium used for the experiments was pre-
pared with aged deep Sargasso Sea water collected at
2000 m. (The concentration of iodate and iodide in the
aged Sargasso Sea water were 0.36 and 0.01 µM,
respectively. The concentration of iodate was similar to
and the concentration of iodide was lower than those
found in the surface North Atlantic; Elderfield & Trues-
dale 1980, Wong 1995.) Then, various known volumes
of a standard potassium iodate solution were added to
the growth medium. Four of the 6 species of phyto-
plankton tested, Synechococcus sp., Tetraselmis sp.,
Dunaliella tertiolecta and Amphidinium carterae, were
exposed to 3 concentrations of iodate: the ambient
iodate concentration and nominal concentrations of
added iodate of 5 and 10 µM. The cultures of Emiliania
huxleyi and Skeletonema costatum were exposed only
to a medium with no added iodate. The initial nitrate
level, at f/20 (or about 88 µM of nitrate), was still suffi-
cient to support healthy phytoplankton growth. After
the inoculation with phytoplankton cells, the culture
was incubated at 100 µE m–2 s–1 at 20°C. Filtrate con-
trols were prepared by filtering the cultures that had
been pre-conditioned at f/20 level of nitrate through 1
µm pore size Nuclepore membrane filters for Syne-
chococcus sp. and through 2 µm pore size Nuclepore
membrane filters for the other phytoplankton species.
Then, about 50 ml of the filtrates was inoculated into
2000 ml of the final growth medium. This filtrate con-
trol was incubated in parallel to a culture with phyto-

plankton cells. At regular time intervals for up to 28 d,
aliquots of the culture were removed for the determi-
nation of relative in vivo fluorescence and cell density
in order to monitor phytoplankton growth and to calcu-
late specific growth rates. About 5 ml of the culture
was used for the determination of relative in vivo fluo-
rescence by using a Turner Model 10 AU fluorometer.
These measurements were made at the same hour of
the day in order to minimize any diel variations. 

After the in vivo fluorescence measurement, the
same aliquot was preserved in a Lugol’s solution for a
microscopic determination of the cell density. The
growth rate, µ, was calculated from changes in cell
numbers. Cells were counted by using a Neubauer
hemocytometer. Separate aliquots of about 30 ml each
were also obtained for the determination of chloro-
phyll a (chl a), iodate and iodide. These aliquots were
filtered through GF/F glass fiber filters. The cells re-
tained on the filters were used for the determination of
chl a by the method of Parsons et al. (1984) by using a
Turner Model 10 AU fluorometer. The filtrates were
stored frozen in polyethylene bottles (Wong 1973,
Campos 1997) until they were analyzed for iodate and
iodide. Both iodate and iodide were determined by
using an EG&G PAR Model 384B-4 polarographic ana-
lyzer system with a Model 303A static mercury drop
electrode. Iodate was determined by differential pulse
polarography according to the method of Herring &
Liss (1974) as modified by Wong & Zhang (1992b). At
concentrations below 0.5 µM, iodate was determined
in the sample directly. At higher concentrations, the
sample was first diluted with water to give a final con-
centration of less than 0.5 µM before it was analyzed.
Iodide was determined by cathodic stripping square
wave voltammetry by the method of Luther et al.
(1988) as modified by Wong & Zhang (1992b,c). Con-
centrations below 0.1 µM were determined directly. At
higher concentrations, the sample was first diluted to
the appropriate concentration before it was analyzed.
A number of samples were analyzed for iodate and
iodide in duplicate. The average precision in these
determinations of iodate and iodide were both about
±10% and no better than ±0.02 and ±0.01 µM for
iodate and iodide, respectively. These precisions were
about a factor of 2 to 3 poorer than those obtained in
open ocean waters (Wong & Cheng 1998). The high
organic content in the growth medium had probably
adversely affected the analytical precision. The pri-
mary intent of the experiments was to survey the gen-
eral behavior of multiple species of commonly found
marine phytoplankton. Each culture was sampled only
5 to 6 times over an incubation period of 28 d. The
sampling intervals were not spaced closely enough to
document the detailed behavior of any given species
during the different growth phases.
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RESULTS

Chl a, relative in vivo fluorescence and cell density

Changes in the concentrations of chl a, relative in
vivo fluorescence and cell density with time in the cul-
tures without any added iodate are shown in Fig. 1. As
expected, the exact time when a culture entered into
the log, stationary and senescent phases of growth var-
ied somewhat from species to species. The log phase of
growth, as indicated by a rapid increase in the concen-
tration of chl a, in vivo fluorescence and cell density
until maximum values were reached occurred in the
first 3 d of growth in Dunaliella tertiolecta and Skele-
tonema costatum and in the first 7 d in the other 4 spe-
cies of phytoplankton. The initial concentration of chl a
varied between 0.19 µg l–1 in Tetraselmis sp. to 9.6 µg
l–1 in D. tertiolecta. The maximum concentrations var-
ied by about a factor of 4, ranging from 114 µg l–1 in D.
tertiolecta to 31 µg l–1 in Amphidinium carterae
(Fig. 1a, Table 1). The stationary phase lasted between
7 and 21 d in Emiliania huxleyi and between 7 and 14
d in Synechococcus sp. For the other species, a station-
ary phase was not observed. The concentration of chl a
decreased systematically and the cells entered into a
senescent phase of growth immediately after a maxi-
mum concentration of chl a had been reached. The cell
density of Synechococcus sp. was not determined. For
the other 5 species of phytoplankton, the initial cell
density and the maximum cell density ranged from 1 ×
103 cells ml–1 in Tetraselmis sp. to 3.1 × 104 cells ml–1 in
E. huxleyi, and from 1.2 × 105 cells ml–1 in A. carterae
to 8.8 × 105 cells ml–1 in E. huxleyi, respectively
(Fig. 1c, Table 1). The growth rate ranged from 0.37 d–1

in Synechococcus sp. to 0.97 d–1 in D. tertiolecta
(Table 1).

The growth of the phytoplankton species tested was
followed at nominal concentrations of added iodate of
0, 5, 10 and 25 µM by monitoring the changes in the
concentration of chl a, relative in vivo fluorescence and
cell density with time. Increases in the concentration of
added iodate did not change any of these curves sig-
nificantly, as illustrated by the chl a-based growth
curves obtained in the culture of Dunaliella tertiolecta
(Fig. 2), and all the species of phytoplankton tested
behaved similarly. The growth rate, maximum concen-
tration of chl a and maximum cell density remained the

30

Fig. 1. Time course of change of (a) chlorophyll a, (b) relative
in vivo fluorescence and (c) cell density during the incubation
of Synechococcus sp. (D), Tetraselmis sp. (m), Emiliania hux-
leyi (j), Dunaliella tertiolecta (s), Skeletonema costatum (n)
and Amphidinium carterae (h) at the ambient concentration
of iodate. In (a), the right scale (II) is for S. costatum. No cell 

density data for Synechococcus sp.
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same, and they are listed in Table 1. In fact, based
on relative in vivo fluorescence, the addition of at
least up to 100 µM of iodate did not alter the
growth curve of any of the species of phytoplank-
ton tested. In the case of Synechococcus sp., the
growth curve was not altered even at a concen-
tration of added iodate of 2000 µM. Thus, while
iodine is toxic to biological systems and is rou-
tinely used in solutions, such as Lugol’s solution,
for preserving phytoplankton samples, at the
concentrations of iodate used in the experi-
ments reported here, the behaviors of the phyto-
plankton species were not affected by the added
iodate.

Iodine speciation

A decrease in the concentration of iodate was
observed at the end of the incubation period of
28 d in all the phytoplankton cultures at all the
concentrations of added iodate (Figs. 3 to 8). At
the ambient concentration of iodate, the concen-
tration decrease in iodate ranged from >0.2 µM
for Dunaliella tertiolecta, Amphidinium carterae
and Synechococcus sp., to 0.1 to 0.2 µM for Skele-
tonema costatum and Tetraselmis sp., to <0.1 µM
for Emiliania huxleyi. The depletion of iodate in
the experiments varied between 70% in D. terti-
olecta and 10% in E. huxleyi. Concomitantly, an
increase in the concentration of iodide was ob-
served in all the experiments (Figs. 3 to 8). The
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Fig. 2. Time course of change of chl a during the incuba-
tion of Dunaliella tertiolecta at the ambient concentra-
tion of iodate (D) and upon the addition of 5 (s), 10 (m)
or 25 (n) µM of nominal concentration of iodate



Mar Ecol Prog Ser 237: 27–39, 2002

concentration increase in iodide ranged from >0.2 µM
in Synechococcus sp. to 0.1–0.2 µM in D. tertiolecta to
<0.1 µM in S. costatum, Tetraselmis sp., E. huxleyi and
A. carterae. The concentration of iodate below which
its availability may limit its reduction is not known.
The concentration of iodate in these experiments did
drop below the concentrations of 0.2 to 0.5 µM that are
usually found at the ocean surface. However, in no
case did the concentration drop below 0.06 µM. Upon
the addition of nominal concentrations of iodate of 5
and 10 µM, the decrease in the concentration of iodate
by the end of the incubation period was no more than
about 50% of the initial concentration. Thus, an ample
supply of iodate was maintained in these experiments.
In the filtrate controls (Figs. 4 & 6 to 8), there were no
noticeable systematic changes in the concentrations of
iodate or iodide during the incubation. This suggests
that the activities of free-living bacteria did not con-
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Fig. 3. Time course of change of the concentrations of
(a) iodate and (b) iodide in a culture of Synechococcus sp. at
the ambient concentration of iodate (D) (left concentration
scale I) and upon the addition of 5 (m) or 10 (j) µM (right con-

centration scale II) of nominal concentration of iodate

Fig. 4. Time course of change of the concentrations of
(a) iodate and (b) iodide in the filtrate control (s) of a culture
of Tetraselmis sp. and in a culture at the ambient concentra-
tion of iodate (D) and upon the addition of 5 (m) or 10 (j) µM
of nominal concentration of iodate. In (a), the left concentra-
tion scale (I) is for the filtrate control and the culture at the
ambient concentration of iodate, while the right concentration 

scale (II) is for the culture with 5 and 10 µM of iodate

Fig. 5. Time course of change of the concentrations of iodate
(D) and iodide (s) in a culture of Emiliania huxleyi at the 

ambient concentration of iodate
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tribute significantly to the observed changes in the
concentrations of iodate on iodide in the phytoplank-
ton cultures.

DISCUSSION

Conversion of iodate to iodide by phytoplankton

Unlike the results obtained in previous studies
(Sugawara & Terada 1967, Truesdale 1978, Butler et al.
1981), consistent depletion of iodate and concomitant
appearance of iodide were found in this study in all the
phytoplankton cultures at all concentrations of added
iodate. This clearly indicates that all 6 phylogenetically
diverse species of phytoplankton tested can induce the
conversion of iodate and iodide. Since these 6 species
of phytoplankton represent the major groups of phyto-
plankton found in the oceanic and coastal environ-
ments, these results suggest that the reduction of
iodate to iodide by marine phytoplankton may be a
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Fig. 6. Time course of change of the concentrations of
(a) iodate and (b) iodide in a filtrate control (s) of a culture of
Dunaliella tertiolecta and in a culture at the ambient concen-
tration of iodate (d) (left concentration scale I) and upon the
addition of 5 (m) or 10 (j) µM (right concentration scale II) of 

nominal concentration of iodate

Fig. 8. Same as Fig. 4 in a culture of Amphidinium carterae

Fig. 7. Time course of change of the concentrations of iodate
and iodide in a culture of Skeletonema costatum (d: iodate,
j: iodide) and in a filtrate control (s: iodate, h: iodide) at the 

ambient concentration of iodate
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common phenomenon and may play a major role in
controlling the speciation of inorganic iodine in the
oceans. The consistent results reported here also sup-
port the notion that the previous studies might have
been hampered by the suppression of iodate reduction
as a result of the high concentrations of nitrate relative
to iodate in the culture media, the lack of specificity in
the analytical methods used for the determination of
the iodine species or the effect of bacterial activities.

Rate of depletion of iodate and appearance of iodide

The rates of depletion of iodate and appearance of
iodide varied from species to species. Precise quantifi-
cation of these variations between the species is com-
plicated by the species-dependent temporal variations
in biomass (Fig. 1). As a first approximation, the aver-
age rates through the 28 d of incubation in each exper-
iment were estimated as the slope of a linear regres-
sion analysis, and the results are listed in Table 1. The
correlation coefficients r2 were above 0.6 in most cases.
This indicates that the relationship between concen-
tration and time can be described adequately by a lin-
ear relationship. The time-averaged chl a concentra-
tions in the cultures were estimated by the trapezoidal
method for each experiment. The rates of depletion of
iodate and the appearance of iodide were then normal-
ized to this time-averaged chl a concentration, and the
results are also listed in Table 1. Without any added

iodate, the concentration of iodate in the culture
medium was similar to those found at the ocean sur-
face. The rates of depletion of iodate varied between
10 and 1 nM d–1 and decreased in the following rank
order: Amphidinium carterae ≈ Dunaliella tertiolecta ≈
Synechococcus sp. > Skeletonema costatum >
Tetraselmis sp. ≈ Emiliania huxleyi. The chl a normal-
ized rates ranged between 0.77 and 0.02 nmol µg
chl a–1 d–1 or 0.06 to 0.002 nmol µg chl a–1 h–1 for a 12 h
day. The rates decreased in the following rank order:
A. carterae > S. costatum ≈ Synechococcus sp. ≈ Tetra-
selmis sp. ≈ D. tertiolecta >> E. huxleyi. Thus, A.
carterae was the most efficient and E. huxleyi was the
least efficient species in the utilization of iodate.
By using 125I-labeled iodate to follow the short term
(hours) uptake of iodate, Moisan et al. (1994) inferred
from the initial uptake rates of iodate into the cells that
the iodate depletion rates ranged from 0.003 to
0.24 nmol µg chl a–1 h–1 in cultures of T. oceanica, S.
costatum, E. huxleyi and D. tertiolecta. The rates
reported here fell well within this range. Furthermore,
unlike the study of Moisan et al. (1994), the rates of
appearance of iodide could also be estimated in the
present study. They ranged between 11 and 1 nM d–1.
This range was similar to the corresponding range for
the depletion of iodate. However, the rank order of the
6 species of phytoplankton tested was somewhat dif-
ferent. The iodide appearance rate decreased in the
following order: Synechococcus sp. > D. tertiolecta >
Tetraselmis sp. ≈ S. costatum ≈ E. huxleyi ≈ A. carterae.
The chl a normalized rates ranged between 0.3 and
0.02 nmol µg chl a–1 d–1 and decreased in the following
rank order: Synechococcus sp. > Tetraselmis sp. ≈ D.
tertiolecta > S. costatum ≈ A. carterae > E. huxleyi.
Thus, Synechococcus sp. was the most efficient and E.
huxleyi was the least efficient species in the produc-
tion of iodide.

The rates of the depletion of iodate and the appear-
ance of iodide increased upon the addition of iodate in
all cases (Table 1). The rate of depletion of iodate
increased dramatically by more than an order of mag-
nitude in Tetraselmis sp. and about an order of magni-
tude in Dunaliella tertiolecta and Synechococcus sp.
upon the addition of 5 µM of iodate. The increase,
about 1.5 times, was much less dramatic in the case of
Amphidinium carterae. The relationship between the
rate of depletion of iodate and the rate of appearance
of iodide is shown in Fig. 9. Many of the data points lie
above the 1:1 line, indicating that the rate of appear-
ance of iodide was frequently lower than the corre-
sponding rate of depletion of iodate. For a given
species of phytoplankton, the discrepancy seemed to
increase with increasing rate of depletion of iodate,
which corresponded to increasing concentration of
added iodate. The discrepancies were the smallest in
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Fig. 9. Relationship between the rate of depletion of iodate
and the rate of appearance of iodide at all levels of added
iodate. (d) Synechococcus sp.; (m) Tetraselmis sp.; (j) Emilia-
nia huxleyi; (s) Dunaliella tertiolecta; (n) Skeletonema costa-
tum; (h) Amphidinium carterae. The solid line represents the 

case where the 2 rates were equal
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the case of D. tertiolecta and the most noticeable in the
case of Tetraselmis sp. Even at ambient concentrations
of iodate, where the rates were the lowest, the discrep-
ancies between the rates frequently far exceeded what
may be reasonably attributed to analytical uncertain-
ties. In A. carterae, the ratio between these 2 rates was
about 12. The lower iodide appearance rates relative to
the corresponding iodate depletion rates indicate that
during the utilization of iodate, iodate is converted not
only to iodide but also to other forms of iodine, such as
particulate iodine, non-volatile dissolved organic iodine
and volatile iodine. Since the magnitude of these dis-
crepancies varied between the phytoplankton species
tested, the ability of marine phytoplankton to appor-
tion the iodate utilized between iodide and other forms
of iodine may vary from species to species. The in-
crease in the discrepancies with increasing concentra-
tion of added iodate indicates that, while the organ-
isms processed iodate at higher rates at elevated
concentrations of iodate, more of the iodate processed
was converted to forms of iodine other than iodide. The
relationships between the rate of depletion of iodate or
the rate of appearance of iodide and the initial concen-
tration of iodate in the culture medium are shown in
Fig. 10. While the data set was still limited, in general,
the rates increased with increasing initial concentra-
tions of iodate.

Relationship to growth stages

The depletion of iodate and the appearance of iodide
occurred during all growth stages. However, there

were indications that these rates may vary with growth
stages and the pattern may vary from one species to
the next. For example, the concentration of iodide
seemed to increase exponentially with time in the cul-
ture of Dunaliella tertiolecta (Fig. 6b). Little to no
iodide was formed during the log phase in the first 3 d
of growth. When the average rates in the log and
senescent phases were estimated individually by lin-
ear regression analyses of the data obtained in each
growth phase (Table 2), the rates in the senescent
phase were at least several times higher than those in
the log phase at all concentrations of added iodate.
Since the time-averaged concentration of chl a was
higher during the log phase than the senescent phase,
normalizing the rates to chl a would further accentuate
the higher rates of appearance of iodide during the
senescent phase. On the other hand, a corresponding
quasi-exponential drop in the concentration of iodate
with time was not observed (Fig. 6a). In fact, the rate of
depletion of iodate was probably higher in the log
phase than in the senescent phase (Table 2). In the
case of Synechococcus sp., a reversed trend was ob-
served. The concentration of iodide seemed to increase
rapidly in the first 14 d of incubation during the log
(0 to 7 d) and the stationary (7 to 14 d) phases before
it leveled off (Fig. 3b). Thus, the average rates of ap-
pearance of iodide in these 2 phases of growth were
several times higher than those in the senescent phase
(Table 2). Normalizing the rates to chl a did not change
this trend under the ambient concentration of iodate.
At nominal concentrations of added iodate of 5 and
10 µM, the rates in these 3 phases became similar to
each other. The corresponding rates in the depletion of

35

Fig. 10. Relationship between (a) the rate of depletion of iodate and (b) the rate of appearance of iodide and the initial
concentration of iodate in the cultures of Synechococcus sp. (d), Tetraselmis sp. (m), Dunaliella tertiolecta (s), and Amphidinium 

carterae (h)
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iodate seemed to follow the same trend in this case
(Table 2). The present data set indicates that there may
be a species-specific relationship between the growth
stages and the transformation of iodate to iodide. How-
ever, for a given phytoplankton species tested, there
were too few data points in each growth phase to
warrant a more rigorous and quantitative analysis of
this possible relationship.

Phytoplankton metabolism and iodine processing, and
implications for the marine geochemistry of iodine

Iodate may be transported into the cell either by dif-
fusion or by a carrier-mediated process, reduced to
iodide and retained by the phytoplankton cell or ex-
creted from the cell at some time during the life cycle.
Since the depletion of iodate was accompanied by an
appearance of iodide, although the latter was fre-
quently smaller than the former, at least a fraction of
the iodate reduced was excreted as iodide. The re-
mainder would have been retained in the cell as par-
ticulate iodine or excreted as volatile or non-volatile
organic iodine. A large-scale sequestration of the iodate
processed as particulate iodine is unlikely. Macroalgae
are known to convert inorganic iodine into organic
forms, such as iodotyrosine (Scott 1954, Tong & Chai-
koff 1955, Klemperer 1957, Meguro et al. 1967) and
lipid halogens (Hewson & Hager 1980), which are
stored in their cells. Similar information is not avail-
able for phytoplankton. The pattern of the uptake of

125I-labeled iodate by marine phytoplankton (Moisan
et al. 1994) showed that phytoplankton have a limited
capacity for incorporating iodate into the particulate
phase. The capacity can be saturated quickly, and any
additional iodate taken up is excreted in the dissolved
form. Particulate iodine is also a small reservoir of
iodine in the oceans as its concentration is 2 to 3 orders
of magnitude smaller than the concentration of dis-
solved iodine (Wong et al. 1976). The data reported
here also indicate that iodate reduction is not necessar-
ily linked to the log phase of growth, when photo-
synthesis, nutrient uptake and cell division are at
their maximum. Furthermore, even under conditions of
unnaturally high concentrations of iodate, the growth
rate, cell numbers and chlorophyll concentrations
(Fig. 2) are unaffected. These imply that there is little
interaction between iodine processing and the meta-
bolic activity of cell growth. Thus, if iodate enters the
cell, phytoplankton must have a detoxification mecha-
nism and excretion of the products formed is a viable
possibility.

The production of volatile iodine compounds, such
as methyl iodide, by marine phytoplankton has been
inferred from their distributions (Klick 1992, Klick &
Abrahamsson 1992, Moore & Tokarczyk 1993) and has
been observed directly in laboratory studies (Moore &
Tokarczyk 1993, Manley & de la Cuesta 1997). Iodate
has also been shown to react with the macroalgal
metabolites dimethyl-β-propiothetin (DMPT) to form
methyl iodide (White 1982, Brinckman et al. 1985,
Manley & Dastoor 1988). Ultimately, these volatile
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Phytoplankton Iodate Time Growth Avg chl a Iodate depletion rate Iodide production rate
species added period phase (µg l–1) Rate* Norm rate Rate Norm rate

(µM) (d) (nM d–1) (nmol µg d–1)a (nM d–1) (nmol µg d–1)a

Synechococcus sp. 0 0–7 L 34 –11 ± 5 –3 22 ± 10 0.6
7–14b S 66 –9 –0.1 20 0.3

14–28 Sc 25 –2 ± 5 –0.08 3 ± 0.2 0.1
5 0–7 L 33 –108 ± 43 –3 42 ± 14 1

7–14b S 59 –104 –2 81 1
14–28 Sc 21 –54 ±7 –3 26 ± 12 1

10 0–7 L 32 –249 ± 329 –8 62 ± 35 2
7–14b S 54 –95 –2 82 2

14–28 Sc 20 –130 ± 50 –7 39 ± 9 2
Dunaliella tertiolecta 0 0–3b L 62 –24 –0.4 ud ud

3–28 Sc 52 –8 ± 2 –0.2 7 ± 2 0.1
5 0–3b L 70 –410 –6 9 0.1

3–28 Sc 56 –73 ± 8 –1 71 ± 14 1
10 0–3b L 74 –570 –8 5 0.07

3–28 Sc 56 –58 ± 10 –1 88 ± 16 2
aDepletion or production rate normalized to time averaged chlorophyll a concentration
bOnly 2 data points were available

Table 2. Iodate depletion and iodide production rates at different growth stages in cultures of marine phytoplankton. *Iodate
depletion and iodide production rates are the slopes of linear regression analyses of concentration vs time during each time
period. Regression analysis was not used. L: log phase; S: stationary phase; Sc: senescent phase; ud: depletion or production not 

detected or too uncertain to be estimated
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organic iodine compounds may make their way to the
atmosphere and play a significant role in the chemistry
of the troposphere (Chameides & Davis 1980, Chatfield
& Crutzen 1990, Solomon et al. 1994). Nonetheless,
globally, a large-scale conversion of iodate to volatile
iodine, which escapes to the atmosphere, is also un-
likely. A typical emission rate of methyl iodide to the
atmosphere from the oceans is about 10–6 to 10–5 mol
m–2 yr–1 (Campos et al. 1996b). Based on these emis-
sion rates, the methyl iodide formed from iodate in the
surface 100 m of the oceans is equivalent to a depletion
of iodate of 10–5 to 10–4 nM d–1. These rates are orders
of magnitude smaller than those (10–3 to 100 nM d–1)
observed in the cultures at ambient concentrations of
iodate (Table 1) after they had been adjusted to the
typical concentrations of chl a (0.1 to 1 µg l–1), in the
open oceans. They are not sufficient to account for the
depletion of iodate in the ocean surface relative to the
deep ocean. Furthermore, the concentration of total
dissolved iodine in the ocean surface stays relatively
constant, and its depletion relative to the deep oceans
is on the order of only a few percentage points. These
distributions do not support a large-scale loss of
dissolved iodine to the particulate phase or to the
atmosphere as volatile iodine.

Significant concentrations of non-volatile dissolved
organic iodine, constituting up to over 50% of the con-
centration of total dissolved iodine, have been reported
in coastal marine waters (Truesdale 1975, Butler &
Smith 1985, Luther et al. 1991, Wong & Cheng 1998,
2001a,b). The general patterns of increasing concen-
trations of non-volatile dissolved organic iodine toward
the coast and decreasing concentrations below the
euphotic zone in the open oceans (Wong & Cheng
1998, 2001a) are in phase with changes in primary pro-
duction and are thus consistent with a biological
origin. However, if dissolved organic iodine is formed
from iodate, then the ultimate fate of this fraction of
iodate utilized would still be the same as the transfor-
mation of iodate to iodide since dissolved organic
iodine can be converted readily to iodide through
photochemical reactions with sunlight (Wong & Cheng
2001b). In fact, in the open oceans, where photo-
chemical decomposition of dissolved organic iodine is
enhanced by the deeper euphotic zone, dissolved
iodine exists almost exclusively as iodate and iodide
(Wong & Cheng 1998) so that, while the concentrations
of iodate and iodide may vary much more than that of
total dissolved iodine, their concentrations are linearly
related to each other with a slope of –1 mol mol–1

(Wong & Cheng 2001b, Wong & Hung 2001). This rela-
tionship between iodate and iodide is consistent with
either a quantitative conversion of iodate to iodide fol-
lowed by an excretion of iodide or a conversion of
iodate to iodide and dissolved organic iodine followed

by an excretion of both products and a ready decom-
position of dissolved organic iodine to iodide. The
enhanced appearance of iodide during the log phase of
growth in Synechococcus sp. indicates that the release
of iodide is not necessarily a passive leakage from
the cells as a result of cell lysis, as observed in
other metabolites such as dimethylsulfoniopropionate
(DMSP) (Matrai & Keller 1994) and methyl chloride
(Tait & Moore 1995). Iodine processing may also be
decoupled from the metabolic activities of cell growth
if iodate is reduced to iodide at the cell surface by a
surface enzyme system so that iodate may never have
to enter the cell. At present, there is no evidence to
support or refute this possibility.

Attempts to link changes in the speciation of dis-
solved iodine to temporal changes in biomass have not
been particularly successful (Jickells et al. 1988, Tian
et al. 1996). This is not unexpected. Wong (2001)
pointed out that changes in the concentration of iodate
and iodide represent a longer-term time-integrated
signal in the dissolved phase, while changes in bio-
mass is a much shorter-term phenomenon in the par-
ticulate phase. Based on the rates of iodate depletion
and iodide appearance found in this study, at the
typical concentrations of chl a of 0.1 to 1 µg l–1 found in
the open oceans, several months to decades will be
needed before a readily detectable change in the
concentrations of iodate and iodide, on the order of
0.1 µM, can be reached. On the other hand, the
turnover time of the biomass in the surface oceans is
several weeks. Aside from this mismatch in timescales,
the longer timescale involved in the changes in the
concentrations of the iodine species also allows physi-
cal mixing to modify the signal produced by this bio-
logical production of iodide. Furthermore, the ability of
a species of phytoplankton to process iodine and its
contribution to biomass are not directly related to each
other. For example, among the oceanic species, the
cyanobacteria can reduce iodate to iodide most effec-
tively. However, in terms of their contribution to bio-
mass, coccolithophores and prasinophytes are major
contributors to the chlorophyll maximum, while the
cyanobacteria are more evenly distributed with depth
(Glover et al. 1988). These divergent behaviors will
further complicate any attempt to link changes in
iodine speciation to temporal and spatial changes in
biomass.
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