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ABSTRACT 

Network security specialists use machine learning algorithms to detect computer network 

attacks and prevent unauthorized access to their networks. Traditionally, signature and 

anomaly detection techniques have been used for network defense. However, detection 

techniques must adapt to keep pace with continuously changing security attacks. 

Therefore, machine learning algorithms always learn from experience and are appropriate 

tools for this adaptation. In this paper, ten machine learning algorithms were trained with 

the KDD99 dataset with labels, then they were tested with different dataset without 

labels. The researchers investigate the speed and the efficiency of these machine learning 

algorithms in terms of several selected benchmarks such as time to build models, kappa 

statistic, root mean squared error, accuracy by attack class, and percentage of correctly 

classified instances of the classifier algorithms. 
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INTRODUCTION 

The number of Internet security threats are growing astronomically. In 2016, the report 

(Symantec, 2016) revealed that, more than 430 million new malwares were discovered in 2015, 

up 36 percent more from the year before; a new zero day vulnerability was discovered on 

average each week in 2015, up 125 percent from the year before; more than 429 million personal 

identities were stolen in 2015, up 23 percent from the year before; over one million web attacks 

each and every day in 2015; spear-phishing attacks increased 55 percent in 2015; ransomware 

increased 35 percent in 2015; and more than 100 million fake technical support scams were 

blocked in 2015. Meanwhile, in 2016, the report (FBI, 2016) from the FBI disclosed that 

approximately 300 thousand cybercrime complaints were filed and the total loss of those victims 

was about 1.33 billion dollars. These data demonstrate that it is crucial and very challenging to 

protect end users from security threats and cybercrimes while they are connecting to the Internet 

via private or public networks.  

Many approaches have been developed in the past few years for defending networks 

against security threats. Such technologies include IP traceback (Gong & Sarac, 2008) 

(Murugesan, Shalinie, & Neethimani, 2014) (Song & Perrig, 2001), IP traffic classification 

(Crotti, Gringoli, Pelosato, & Salgarelli, 2006) (Nguyen & Armitage, 2008) (Callado, et al., 

2009), intrusion detection (Zhou & Lang, 2003) (Dharmapurikar & John W. Lockwood, 2006) 

Note: This manuscript has been accepted for publication, and is online 

ahead of print. It will undergo copyediting, typesetting, and review of the 

resulting proof before it is published in its final form. 

Virginia Journal of Science 

Volume 68, Issue 3 & 4 

Fall & Winter 2017 

doi: 10.25778/PEXS-2309 

Virginia Journal of Science, Vol. 68, No. 3, 2017 https://digitalcommons.odu.edu/vjs/vol68/iss3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Old Dominion University

https://core.ac.uk/display/217292787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

(Chen & Leneutre, 2009) (Das, Nguyen, Zambreno, Memik, & Choudhary, 2008) (Hu, Hu, & 

Maybank, 2008) (Mabu, Chen, Lu, Shimada, & Hirasawa, 2011) having been widely discussed 

and implemented. Their performance, advantages and disadvantages have been thoroughly 

investigated as well. In addition, cybersecurity issues caused by human factors are also addressed 

and discussed (Hadlington, 2017). Recently, machine learning technology has been used to 

detect network threats and malicious executables (Kolter & Maloof, 2006) (Siddiqui, Khan, 

Ferens, & Kinsner, 2016). Machine learning gives computers the ability to learn without being 

explicitly programmed (Samuel, 1959). In 1997, Tom Mitchell (Tom Mitchell, 1997) gave the 

definition: “A computer program is said to learn from experience E with respect to some task T 

and some performance measure P, if its performance on T, as measured by P, improves with 

experience E.” Furthermore, machine learning is a data analysis approach that builds automatic 

models for processing, predicting data, and decision making (Mannila, 1996) (Chandiok & 

Chaturvedi, 2015).  

We focus on applying machine learning algorithms for network defense. However, the 

efficiencies of those algorithms vary quite a bit. In this paper, we investigate various machine 

learning algorithms. Our goal is to help researchers to select the appropriate algorithm based on 

speed and efficiency. In this research, we have used the KDD99 dataset (KDD Cup 1999 Data, 

n.d.) and the Weka software (Weka 3: Data Mining Software in Java, n.d.). A number of authors 

have pointed out some drawbacks of the KDD99 dataset (A. Olusola, S. Oladele, & O. Abosede, 

2010) (Tavallaee, Bagheri, Lu, & Ghorbani, 2009) (McHugh, 2000) (Kayacik & Zincir-

Heywood, 2005). Each of the proposals has its merits and demerits. However, we have used the 

original KDD99 dataset for training and testing the classifier algorithms. The focus of our 

research is benchmarking the machine learning algorithms used for network defense.  

The remainder of this paper is organized as follows: Section 2 reviews related literature. 

Section 3 introduces research materials and methods. Section 4 discusses our research results. 

Section 5 concludes this paper and points out future work. Section 6 expresses our thanks to the 

research sponsors. 

LITERATURE REVIEW 

Several articles have studied and investigated machine learning algorithms. In (Solanki & 

Dhamdhere, 2015), the authors compared the performance of the support vector machines 

(SVM) and the C 4.5 algorithm. Accuracy of the two algorithms was tested for four different 

computer network attacks. The findings indicate that C 4.5 outperforms SVM. This finding 

agrees with the result we obtained with the J48 tree which is a Weka implementation of the C 4.5 

algorithm.  

In (Nguyen & Choi, 2008), the authors investigated a set of classifier algorithms for 

denial of service (DoS), remote to local (R2L), user to root (U2R), and surveillance (PROBE) 

attacks. The authors tried to determine the best algorithms for each attack category. The results 

show that Naïve Bayes, Bayes Net, One-R are the best algorithms for PROBE, U2R, and R2L 

attacks, respectively. Most of the algorithms were reported to have significant performance for 

DoS attack category. 
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Hidden Markov models are usually used for speech recognition (Rabiner, 1989). 

However, Gao, Ma and Yang have used hidden Markov models to model the normal and 

abnormal behavior of computer networks to detect network intrusions (Gao, Ma, & Yang, 2002). 

Comparing detection anomalies of different experiments, the highest accuracy achieved was 

63.2% detection. Some other authors (Zhou & Lang, 2003) have used Fourier series methods for 

network intrusion detection. They used such methods to extract network traffic periodic patterns 

from raw network traffic and classify those periodic patterns as normal or abnormal traffic 

behavior. Gomez and Dasgupta (Gomez & Dasgupta, 2001) have proposed the use of fuzzy logic 

for network intrusion detection. The authors claim that their results are comparable to 95.4% 

detection rate.  

Unlike most researchers who focused on a single audit of the data, Ye et. al. (Ye, Li, 

Chen, Emran, & Xu, 2001) introduced a multiple audit method based on frequency properties of 

the traffic data. However, the data they used for testing was “pure data” which was not noisy 

network data and did not reflect real case scenario of network traffic. In addition, Goonatilake, 

et. al. (Goonatilake, Herath, Herath, Herath, & Herath, 2007) used Chi-square goodness of fit 

tests for network intrusion detection. They used the test to determine abnormal network traffic 

activities which deviate from normal traffic patterns. Related research shows that all the existing 

algorithms found in the literature have challenges to determine and estimate the optimal 

parameters which will give us the highest detection rates within the fastest time. However, the 

goal for network security is still better profiling, better classification and better prediction 

(Wang, 2008). 

In (Dao & Vemuri, 2002), the authors compared and analyzed the performance measures 

for five neural networks. The result of the study indicates quasi-Newton and conjugate gradient 

descent produced better detection rates. Our contribution is to use rigorous statistical analysis 

such as tests of normality, hypothesis testing, and nonparametric tests of statistical significance 

to compare the differences in true positive rates for ten classifier algorithms and propose 

benchmarks for their performance measures. 

MATERIALS AND METHODS 

In this simulation study, we use multiple learning algorithms and test benchmarks for 

each of them. The computer we selected is DELL PRECISION T3610. It equips with a 64-bit 

Windows 7 Pro Operating System and an Intel Xeon CPU E5-1607 V2 @ 3.00 GHZ processor 

with 16 gigabytes memory. 

In this investigation, we have used twenty three sub-attacks. We kept the number of 

attacks the same for each classifier algorithm. We used ten different machine learning 

algorithms. Then we compared and contrasted the results of the classifiers. We have used a 

sample of classifiers instead of the whole population of classifiers to reduce the computational 

complexity. Whether this sample is representative sample or not we leave it to others. 

Nevertheless, we made careful observations of the variables within the selected sample of 

classifiers. The ten machine learning algorithms used in this research are J48 Tree (Patil & 

Sherekar, 2013), Naïve Bayes (Patil & Sherekar, 2013) (Wu, et al., 2008) (Ashari, Paryudi, & 
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Tjoa, 2013), Random Forest (Ho, 1995) (Dietterich, 2000), Support Vector Machines (Wu, et al., 

2008) (Collobert & Bengio, 2004), Multilayer Perceptron (Collobert & Bengio, 2004), Radial 

Basis Function (Que & Belkin, 2016), Bayes Net (Heckerman, Geiger, & Chickering, 1994), 

Bagging (Dietterich, 2000), AdaBoostM1 (Wu, et al., 2008), and Stacking (Sikora & Al-

laymoun, 2014). 

RESULTS AND DISCUSSION 

In this study, the total number of instances used for testing each algorithm is 494020. The 

ratio of number of correctly classified instances and the total number of instances used was 

converted into a percentage of correctly classified instances. Random Forest was found to have 

the highest percentage of correctly classified instances and lowest value of root mean squared 

error. Therefore, it is more precise than others. Furthermore, Random Forest has the highest 

Kappa Statistic. This result supports that this classifier has highest agreement between the actual 

and predicted values. The results are given in Tables 1 - 3 and in Figures 1 - 2. 

We have investigated the performance of ten classifier algorithms. We used twenty three 

sub-attacks and determined the true positive (TP) rates, false positive (FP) rates, precision, recall, 

F-measure, and the receiver operating characteristic (ROC) area of each algorithm. The twenty 

three sub-attacks can be reduced into four major categories; namely, denial of service (DoS) 

attack, remote to local attack (R2L), user to root attack (U2R), surveillance (PROBE). However, 

instead of reduction, we decided to retain the twenty three sub-attacks and find their accuracies 

using the ten classifier algorithms. The results of the accuracy by class are given in Tables 4 - 13. 

In this simulation, we compared and contrasted the true positives of all ten classifier 

algorithms. However, before we compared the true positive rates of machine algorithms, tests of 

normality were performed. As shown in Table 14, Kolmogorov-Smirnov and Shapiro-Wilk tests 

were used to test the assumption of normality. Lilliefors significance correction was used for 

Kolmogorov-Smirnov test. The results indicate that the model violates the assumption of 

normality. Therefore, parametric statistics cannot be used to analyze this data. We decided to use 

non-parametric statistics. The results for the normality tests are given in Table 14. 

When we selected non-parametric statistics, the Kruskal-Wallis test was used to compare 

the differences in true positive rates of the machine learning algorithms. We input identical 

twenty three sub-attacks into ten different classifiers. The findings show that the differences in 

true positive rates for the ten classifiers are statistically significant. The result for the overall 

model is significant and is given in Table 15. 

The pairwise comparison logically follows if the overall model is statistically significant. 

Only significant pairwise comparisons are given in Tables 16 & 17. The findings indicate that 

J48 Tree outperforms AdaBoostM1 and Stacking. Naïve Bayes outperforms Radial Basis 

Function, AdaboostM1 and Stacking. Random Forest outperforms Multilayer Perceptron, Radial 

Basis Function, AdaBoostM1 and Stacking. Multilayer Perceptron outperforms AdaboostM1 and 

Stacking. Support Vector Machines outperform AdaBoostM1 and Stacking. Radial Basis 

Function outperforms Bagging, AdaBoostM1 and Stacking. Bayes Net outperforms 

AdaBoostM1 and Stacking. Bagging outperforms AdaBoostM1 and Stacking. 
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CONCLUSION 

A fundamental goal of network security is to use statistical models with the highest true 

positive rates. In general, network security engineers have to choose the most appropriate 

machine learning algorithms to prevent abnormal uses of their computer systems. However, they 

are faced with many competing parameters such as speed and the efficiency of the selected 

algorithm.  

We used the KDD99 dataset as a benchmark for testing ten classifier algorithms. We 

found Stacking algorithm is the fastest for the time to build models. Additionally, for the 

correctly classified instances, Random Forest is the winner. Random Forest has the highest true 

positive rates. However, we infer based on our simulation results that AdaBoostM1 and the 

Stacking classifiers have the lowest true positives rates out of the ten classifiers. With regard to 

the model performance measures, our data supports that J48 Tree, Naïve Bayes, Random Forest 

and Support Vector Machines are the top four best performers in true positive rates.  
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Figure 1: Kappa Statistic 

 

 

Figure 2: Root Mean Squared Error 
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Table1: Benchmark comparison of various algorithms 

Algorithm Time to Build 

Model (seconds) 

Correctly Classified 

Instances (%) 

Kappa Statistic Root Mean Squared 

Error 

J48 Tree 69.47 99.9603 % 0.9993 0.0057 

Naïve Bayes 2.89 92.7794 % 0.8806 0.0772 

Random Forest 588.21 99.9794 % 0.9997 0.0041 

Support Vector 

Machines (SVM) 

254.31 99.9245 % 0.9987 0.1961 

Multilayer 

Perceptron (Neural 

Networks) 

46212.93 99.7911 % 0.9965 0.0132 

Radial Basis 

Function (Neural 

Networks) 

41623.78 99.3243% 0.9886 0.0217 

Bayes Net 17.42 99.667  % 0.9944 0.0153 

Bagging 206.18 99.9524 % 0.9992 0.0059 

AdaBoostM1 65.12 97.8576 % 0.9635 0.1225 

Stacking 2.31 56.8378 % 0 0.1603 

 

Table 2: Benchmark comparison of various algorithms based on Time to Build Model (seconds) 

Algorithm Ranks based on 

Time to Build Model 

(seconds) 

Stacking 2.31 

Naïve Bayes 2.89 

Bayes Net 17.42 

AdaBoostM1 65.12 

J48 Tree 69.47 

Bagging 206.18 

Support Vector 

Machines 

254.31 

Random Forest 588.21 

Radial Basis 

Function (Neural 

Networks) 

41623.78 

Multilayer 

Perceptron (Neural 

Networks) 

46212.93 
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Table 3: Benchmark comparison of various algorithms based on Correctly Classified Instance (%) 

Algorithm Ranks based on 

Correctly Classified 

Instances (%) 

Random Forest 99.9794 % 

J48 Tree 99.9603 % 

Bagging 99.9524 % 

Support Vector 

Machines 

99.9245 % 

Multilayer 

Perceptron (Neural 

Networks) 

99.9245 % 

Bayes Net 99.667 % 

Radial Basis 

Function (Neural 

Networks) 

99.3243 % 

AdaBoostM1 97.8576 % 

Naive Bayes 92.7794 % 

Stacking 56.8378 % 

 

Table 4: Accuracy by Class of Attacks (J48 Tree) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0.998 0 0.998 0.998 0.998 0.999 Back 

0.999 0 1 0.999 0.999 0.999 teardrop 

0 0 0 0 0 0.729 load module 

1 0 1 1 1 1 Neptune 

0 0 0 0 0 0.622 rootkit 

1 0 0.667 1 0.8 1 phf 

0.989 0 0.992 0.989 0.991 0.996 Satan 

0.7 0 0.656 0.7 0.677 0.895 Buffer_overflow 

0 0 0 0 0 0.578 ftp_write 

0.81 0 0.895 0.81 0.85 0.905 land 

0 0 0 0 0 0.453 spy 

0.993 0 0.994 0.993 0.993 0.999 ipsweep 

0 0 0 0 0 0.857 multihop 

1 0 1 1 1 1 smurf 

1 0 0.996 1 0.998 1 pod 

0.667 0 0.5 0.667 0.571 0.997 perl 

0.979 0 0.994 0.079 0.987 0.998 warezclient 

0.952 0 0.991 0.333 0.421 0.995 nmap 

0.333 0 0.571 0.333 0.421 0.818 imap 

0.8 0 0.889 0.8 0.842 0.923 warezmaster 

0.986 0 0.993 0.986 0.989 0.997 portsweep 

1 0 0.999 1 0.999 1 normal 

0.943 0 0.962 0.943 0.952 0.972 Guess_passwd 
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Table 5: Accuracy by Class of Attacks (Naïve Bayes) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0.975 0.005 0.485 0.975 0.648 0.999 Back 

0.995 0.001 0.638 0.995 0.777 0.999 teardrop 

0.556 0 0.022 0.556 0.041 0.999 load module 

0.996 0 1 0.996 0.998 1 Neptune 

0.5 0.003 0.003 0.5 0.006 0.977 rootkit 

0.75 0 0.071 0.75 0.13 0.995 phf 

0.954 0.002 0.58 0.954 0.722 0.996 Satan 

0.133 0 0.018 0.133 0.032 0.999 Buffer_overflow 

0.75 0.003 0.004 0.75 0.009 0.997 ftp_write 

0.952 0 0.323 0.952 0.482 1 land 

1 0 1 1 1 1 spy 

0.966 0.009 0.205 0.966 0.339 0.994 ipsweep 

0.429 0 0.068 0.429 0.118 1 multihop 

0.999 0 1 0.999 0.999 1 smurf 

0.985 0.037 0.014 0.985 0.028 0.998 pod 

0.333 0 0.333 0.333 0.333 1 perl 

0.478 0.006 0.143 0.478 0.22 0.988 warezclient 

0.446 0.001 0.167 0.446 0.243 0.995 nmap 

0.917 0 0.141 0.917 0.244 0.942 imap 

0.9 0.001 0.055 0.9 0.103 0.994 warezmaster 

0.907 0.001 0.65 0.907 0.757 0.998 portsweep 

0.652 0.001 0.997 0.652 0.788 0.999 normal 

0.943 0.001 0.07 0.943 0.13 0.989 Guess_passwd 

Table 6: Accuracy by Class of Attacks (Random Forest) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

1 0 1 1 1 1 Back 

1 0 1 1 1 1 teardrop 

0.333 0 1 0.333 0.5 1 load module 

1 0 1 1 1 1 Neptune 

0.1 0 1 0.1 0.182 1 rootkit 

0.75 0 1 0.75 0.857 1 phf 

0.99 0 0.999 0.99 0.995 0.999 Satan 

0.833 0 0.833 0.833 0.833 1 Buffer_overflow 

0.375 0 1 0.375 0.545 0.937 ftp_write 

0.857 0 0.947 0.857 0.9 1 land 

0 0 0 0 0 1 spy 

0.991 0 0.996 0.991 0.994 1 ipsweep 

0.429 0 0.6 0.429 0.5 0.929 multihop 

1 0 1 1 1 1 smurf 

0.996 0 0.996 0.996 0.996 1 pod 

0.667 0 1 0.667 0.8 1 perl 

0.993 0 0.994 0.993 0.994 1 warezclient 

0.974 0 1 0.974 0.987 1 nmap 

1 0 1 1 1 1 imap 

0.8 0 0.889 0.8 0.842 1 warezmaster 

0.995 0 0.996 0.995 0.996 1 portsweep 

1 0 0.999 1 1 1 normal 

0.962 0 1 0.962 0.981 1 Guess_passwd 
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Table 7: Accuracy by Class of Attacks (Support Vector Machines) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0.997 0 0.991 0.997 0.994 1 Back 

0.998 0 1 0.998 0.999 1 teardrop 

0 0 0 0 0 0.994 load module 

1 0 1 1 1 1 Neptune 

0 0 0 0 0 0.882 rootkit 

0 0 0 0 0 1 phf 

0.972 0 0.998 0.972 0.985 0.998 Satan 

0.6 0 0.75 0.6 0.667 0.999 Buffer_overflow 

0.5 0 0.667 0.5 0.571 0.999 ftp_write 

1 0 0.955 1 0.977 1 land 

0 0 0 0 0 1 spy 

0.982 0 0.987 0.982 0.984 1 ipsweep 

0 0 0 0 0 0.998 multihop 

1 0 1 1 1 1 smurf 

0.992 0 0.992 0.992 0.992 1 pod 

0 0 0 0 0 1 perl 

0.915 0 0.925 0.915 0.92 1 warezclient 

0.965 0 0.933 0.965 0.949 0.997 nmap 

0.833 0 1 0.833 0.909 1 imap 

0.75 0 0.789 0.75 0.769 0.999 warezmaster 

0.994 0 0.998 0.994 0.996 0.998 portsweep 

0.999 0.001 0.998 0.999 0.998 0.999 normal 

0.943 0 0.98 0.943 0.962 1 Guess_passwd 

Table 8: Accuracy by Class of Attacks (Multilayer Perceptron) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0.727 0 0.979 0.727 0.835 0.992 Back 

1 0 0.998 1 0.999 1 teardrop 

0 0 0 0 0 0.648 load module 

1 0 1 1 1 1 Neptune 

0 0 0 0 0 0.751 rootkit 

0 0 0 0 0 0.931 phf 

0.987 0 0.994 0.987 0.99 0.996 Satan 

0.2 0 0.286 0.2 0.235 0.885 Buffer_overflow 

0 0 0 0 0 0.846 ftp_write 

0 0 0 0 0 0.93 land 

0 0 0 0 0 0.736 spy 

0.982 0 0.964 0.982 0.973 0.999 ipsweep 

0 0 0 0 0 0.94 multihop 

1 0 1 1 1 1 smurf 

0.981 0 0.974 0.981 0.977 0.997 pod 

0 0 0 0 0 0.769 perl 

0.917 0 0.936 0.917 0.926 0.995 warezclient 

0.792 0 0.91 0.792 0.847 0.936 nmap 

0 0 0 0 0 0.918 imap 

0 0 0 0 0 0.953 warezmaster 

0.996 0 0.984 0.996 0.99 0.998 portsweep 

0.999 0.002 0.992 0.999 0.995 0.999 normal 

0.925 0 0.69 0.925 0.79 1 Guess_passwd 
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Table 9: Accuracy by Class of Attack (Radial Basis Function) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0.907 0 0.978 0.907 0.941 0.998 Back 

0.994 0 1 0.994 0.997 1 teardrop 

0.333 0 0.6 0.333 0.429 0.868 load module 

0.998 0 0.999 0.998 0.999 1 Neptune 

0 0 0 0 0 0.66 rootkit 

0.75 0 1 0.75 0.857 0.796 phf 

0.897 0.001 0.824 0.897 0.859 0.999 Satan 

0.567 0 0.81 0.567 0.667 0.944 Buffer_overflow 

0 0 0 0 0 0.993 ftp_write 

0.19 0 0.444 0.19 0.267 0.961 land 

0 0 0 0 0 0.182 spy 

0.52 0 0.992 0.52 0.682 0.998 ipsweep 

0 0 0 0 0 0.722 multihop 

0.999 0 1 0.999 0.999 1 smurf 

0.841 0 0.892 0.841 0.865 1 pod 

0.333 0 1 0.333 0.5 0.455 perl 

0 0 0 0 0 0.994 warezclient 

0.442 0 1 0.442 0.613 0.992 nmap 

0.583 0 0.875 0.583 0.7 0.727 imap 

0.15 0 0.5 0.15 0.231 0.931 warezmaster 

0.88 0 0.963 0.88 0.92 0.997 portsweep 

0.996 0.007 0.972 0.996 0.984 0.999 normal 

0.83 0 0.917 0.83 0.871 0.969 Guess_passwd 

Table 10: Accuracy by Class of Attacks (Bayes Net) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0.997 0 1 0.997 0.998 1 Back 

0.999 0 0.924 0.999 0.96 1 teardrop 

0 0 0 0 0 0.999 load module 

0.999 0 1 0.999 1 1 Neptune 

0.4 0 0.033 0.4 0.06 0.994 rootkit 

0.5 0 1 0.5 0.667 1 phf 

0.913 0 0.982 0.913 0.946 1 Satan 

0.767 0 0.288 0.767 0.418 1 Buffer_overflow 

0.25 0 0.087 0.25 0.129 0.998 ftp_write 

1 0 0.189 1 0.318 1 land 

0 0 0 0 0 0.999 spy 

0.929 0.001 0.729 0.929 0.817 1 ipsweep 

0 0 0 0 0 0.994 multihop 

1 0 1 1 1 1 smurf 

0.989 0 0.779 0.989 0.871 1 pod 

0 0 0 0 0 1 perl 

0.996 0 0.815 0.996 0.896 1 warezclient 

0.472 0 0.341 0.472 0.396 0.998 nmap 

0.833 0 0.286 0.833 0.426 0.998 imap 

0.75 0 0.221 0.75 0.341 0.999 warezmaster 

0.977 0 0.905 0.977 0.939 1 portsweep 

0.989 0 0.999 0.989 0.994 1 normal 

0.962 0 0.85 0.962 0.903 1 Guess_passwd 
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Table 11: Accuracy by Class of Attacks (Bagging) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

1 0 1 1 1 1 Back 

1 0 1 1 1 1 teardrop 

0.444 0 0.571 0.444 0.5 0.944 load module 

1 0 0.999 1 1 1 Neptune 

0 0 0 0 0 0.899 rootkit 

0.5 0 1 0.5 0.667 1 phf 

0.981 0 0.996 0.981 0.989 0.994 Satan 

0.867 0 0.722 0.867 0.788 0.967 Buffer_overflow 

0 0 0 0 0 0.875 ftp_write 

0.952 0 0.952 0.952 0.952 0.976 land 

0 0 0 0 0 1 spy 

0.974 0 0.997 0.974 0.985 0.996 ipsweep 

0 0 0 0 0 0.928 multihop 

1 0 1 1 1 1 smurf 

1 0 0.992 1 0.996 1 pod 

0.333 0 1 0.333 0.5 1 perl 

0.99 0 0.979 0.99 0.984 1 warezclient 

0.965 0 0.97 0.965 0.967 0.989 nmap 

0.833 0 1 0.833 0.909 0.958 imap 

0.85 0 0.81 0.85 0.829 0.95 warezmaster 

0.951 0 0.999 0.951 0.974 0.988 portsweep 

1 0 0.999 1 0.999 1 normal 

0.925 0 0.942 0.925 0.933 1 Guess_passwd 
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Table 12: Accuracy by Class of Attacks (AdaBoostM1) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0 0 0 0 0 0.692 Back 

0 0 0 0 0 0.661 teardrop 

0 0 0 0 0 0.643 load module 

0.995 0.007 0.975 0.995 0.985 0.998 Neptune 

0 0 0 0 0 0.663 rootkit 

0 0 0 0 0 0.738 phf 

0 0 0 0 0 0.856 Satan 

0 0 0 0 0 0.665 Buffer_overflow 

0 0 0 0 0 0.661 ftp_write 

0 0 0 0 0 0.586 land 

0 0 0 0 0 0.71 spy 

0 0 0 0 0 0.588 ipsweep 

0 0 0 0 0 0.662 multihop 

0.999 0 1 0.999 0.999 1 smurf 

0 0 0 0 0 0.584 pod 

0 0 0 0 0 0.638 perl 

0 0 0 0 0 0.691 warezclient 

0 0 0 0 0 0.598 nmap 

0 0 0 0 0 0.617 imap 

0 0 0 0 0 0.599 warezmaster 

0 0 0 0 0 0.608 portsweep 

0.99 0.02 0.925 0.99 0.956 0.995 normal 

0 0 0 0 0 0.688 Guess_passwd 

Table 13: Accuracy by Class of Attacks (Stacking) 

TP Rate FP Rate Precision Recall F-Measure ROC area Class of Attacks 

0 0 0 0 0 0.5 Back 

0 0 0 0 0 0.5 teardrop 

0 0 0 0 0 0.45 load module 

0 0 0 0 0 0.5 Neptune 

0 0 0 0 0 0.5 rootkit 

0 0 0 0 0 0.2 phf 

0 0 0 0 0 0.5 Satan 

0 0 0 0 0 0.5 Buffer_overflow 

0 0 0 0 0 0.4 ftp_write 

0 0 0 0 0 0.479 land 

0 0 0 0 0 0.1 spy 

0 0 0 0 0 0.499 ipsweep 

0 0 0 0 0 0.35 multihop 

1 1 0.568 1 0.725 0.5 smurf 

0 0 0 0 0 0.495 pod 

0 0 0 0 0 0.15 perl 

0 0 0 0 0 0.5 warezclient 

0 0 0 0 0 0.498 nmap 

0 0 0 0 0 0.433 imap 

0 0 0 0 0 0.5 warezmaster 

0 0 0 0 0 0.5 portsweep 

0 0 0 0 0 0.5 normal 

0 0 0 0 0 0.48 Guess_passwd 
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Table 14: Tests of Normality 

Algorithms Kolmogorov-

Smirnov Test 

(KS) 

Statistic 

KS 

df 

KS 

Sig. 

Shapiro-Wilk 

Test (Sh-W) 

Statistic 

Sh-W 

df 

Sh-W 

Sig. 

J48 Tree 0.287 23 0.000 0.697 23 0.000 

Naïve Bayes 0.266 23 0.000 0.833 23 0.001 

Random Forest 0.279 23 0.000 0.729 23 0.000 

Support Vector Machines 0.281 23 0.000 0.702 23 0.000 

Multilayer Perceptron 0.287 23 0.000 0.711 23 0.000 

Radial Basis Function 0.173 23 0.073 0.873 23 0.007 

Bayes Net 0.245 23 0.001 0.767 23 0.000 

Bagging 0.310 23 0.000 0.708 23 0.000 

AdaBoostM1 0.517 23 0.000 0.403 23 0.000 

Stacking 0.539 23 0.000 0.215 23 0.000 

 

Table 15: Kruskal-Wallis Test 

 True Positive Rates 

Chi-Square 62.965 

df 9 

Asymp. Signif. 0.000 

 

Table 16: Pairwise comparison for true positive rates 

Algorithms Mann-

WhitneyU 

WilcoxonW  

 

Z 

Statistic 

Asymp. 

Signif. 

Two-

tailed 

Mean Rank 

J48 Tree vs AdaboostM1 98.500 374.500 -3.983 0.000 J48 Tree > AdaboostM1 

J48 Tree vs Stacking 75.500 351.500 -4.654 0.000 J48Tree > Stacking 

Naïve Bayes vs Radial 

Basis Function 

170.500 446.500 -2.067 0.039 Naïve Bayes > Radial Basis 

Function 

Naïve Bayes vs 

AdaBoostM1 

60.000 336.000 -4.690 0.000 Naïve Bayes > AdaBoostM1 

Naïve Bayes vs Stacking 22.500 298.500 -5.633 0.000 Naïve Bayes > Stacking 

Random Forest vs 

Multilayer Perceptron 

169.500 445.500 -2.109 0.035 Random Forest > Multilayer 

Perceptron 

Random Forest vs Radial 

Basis Function 

150.500 426.500 -2.510 0.012 Random Forest > Radial Basis 

Function 

Random Forest vs 

AdaBoostM1 

55.000 331.000 -4.844 0.000 Random Forest > AdaBoostN1 

Random Forest vs Stacking 31.000 307.000 -5.494 0.000 Random Forest > Stacking 

Support Vector Machines 

vs AdaBoostM1 

111.500 387.500 -3.713 0.000 Support Vector Machines > 

AdaBoostM1 

Support Vector Machines 

vs Stacking 

87.500 363.500 -4.420 0.000 Support Vector Machines > 

Stacking 
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Table 17: Pairwise comparison for true positive rates 

Algorithms Mann-

Whitney 

U 

Wilcoxon 

W 

Z 

Statistic 

Asymp. 

Sig. (2-

tailed) 

Mean Rank 

Multilayer Perceptron vs 

AdaBoostM1 

155.500 431.500 -2.817 0.005 Multilayer Perceptron > 

AdaBoostM1 

Multilayer Perceptron vs 

Stacking 

131.500 407.500 -3.589 0.000 Multilayer Perceptron > 

Stacking 

Radial Basis Function vs 

Bagging 

173.000 449.000 -2.020 0.043 Radial Basis Function > 

Bagging 

Radial Basis Function vs 

AdaBoostM1 

111.500 387.500 -3.668 0.000 Radial Basis Function > 

AdaBoostM1 

Radial Basis Function vs 

Stacking 

78.000 354.000 -4.587 0.000 Radial Basis Function > 

Stacking 

Bayes Net vs 

AdaBoostM1 

94.000 370.000 -4.044 0.000 Bayes Net > 

AdaBoostM1 

Bayes Net vs Stacking 66.000 342.000 -4.818 0.000 Bayes Net > Stacking 

Bagging vs AdaBoostM1  90.500 366.500 -4.132 0.000 Bagging > AdaBoostM1 

Bagging vs Stacking 64.00 340.000 -4.876 0.000 Bagging > Stacking 
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