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The average size of spiny lobsters (Decapoda; Palinuridae) has decreased worldwide over the past few decades. Market forces coupled with
minimum size limits compel fishers to target the largest individuals. Males are targeted disproportionately as a consequence of sexual dimorphism
in spiny lobster size (i.e. males grow larger than females) and because of protections for ovigerous females. Therefore, overexploitation of males has
led to sperm limitation in several decapod populations with serious repercussions for reproductive success. In the Caribbean spiny lobster, Panulirus
argus, little is known about the effect of reduced male size on fertilization success or the role that individual size plays in gamete and larval quality.
We conducted a series of laboratory experiments to test the relationship between male size and spermatophore production over multiple mating
eventsand to determine whether spermatophore reduction and female size affected fertilization success or larval attributes in P. argus in the Florida
Keys, FL (USA). We found that over consecutive matings, larger males consistently produced spermatophores of a greater weight and area than
smaller males, although size-specific differences in sperm cell density were undetected and probably obscured by high variance in the data.
Where spermatophores were experimentally reduced to mimic the decline in spermatophore size with declining male size, fertilization success
(the number of fertilized eggs/total number of eggs extruded) declined, indicating that sperm availability is indeed limited. No maternal size
effects on egg size or quality (C:N ratio) or larval quality (size, swimming speed, mortality) were observed. Our results demonstrate the importance
of maintaining large males in populations of P. argus to ensure fertilization success and caution against their overexploitation through fishing, which
may severely reduce reproductive success and thus population sustainability.

Keywords: egg quality, larvae, mating, Panulirus argus, reproduction, spermatophore.

Introduction than females, fishing can skew sex ratios in favour of females.

Fishing significantly alters the size structure of exploited popula-
tions with major consequences for mating systems, reproduction,
and the sustainability of exploited populations (Rowe and
Hutchings, 2003; Maxwell et al., 2009; Butler et al., 2011a; Garcia
et al, 2012; Kuparinen and Hutchings, 2012). Typically, the
largest and oldest individuals are removed first, particularly where
minimum size limits are enforced, which reduces the mean size of
individuals in the population (Roberts and Polunin, 1991;
Jennings and Lock, 1996; Heath and Speirs, 2012). Where there is
sexual dimorphism in the size of adults and males grow larger

Prohibitions on the removal of ovigerous females may further
skew sex ratios. As highlighted by a number of decapod species,
these fishing induced changes in size structure, abundance, and
sex ratio can restructure mating systems and reduce the reproduct-
ive output of the population (Kendall et al., 2002; Sato and Goshima,
2007; Sato et al., 2010; Robertson and Butler, 2013). Such may be the
case for the Caribbean spiny lobster, Panulirus argus.

Panulirus argus is ubiquitous throughout the Western Atlantic
Ocean, Caribbean Sea, and Gulf of Mexico from NC, USA, to north-
east Brazil (Briones-Fourzan et al., 2008). Fisheries for P. argus are
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some of the largest and most economically valuable in the Caribbean
with an estimated annual regional value more than $450 million
USD (CRFM, 2013). As a consequence of its high value and
market demand, many regional populations of P. argus are currently
fully capitalized or overfished (Chavez, 2009; Ehrhardt et al., 2010).
The species displays considerable sexual dimorphism; males grow
more than three times larger (by mass) than females and are distin-
guishable from females by their broader sternum, elongated walking
legs, and curved dactyls (Holthius, 1991). So although fishing
reduces body size in both sexes, the decline is more pronounced
in males (Bertelsen and Mathews, 2001; Cox and Hunt, 2005).

In unfished populations where large males are still present, lob-
sters demonstrate a lek-style mating system in which large males
defend a den from other large males and females choose among
males and their dens (Bertelsen and Cox, 2001). In heavily fished
populations where large males have been removed this system
breaks down, although competition among males still remains a
major component of the mating system (Bertelsen and Mathews,
2001; Butler et al., 2015). During mating, male and female P. argus
couple and males deposit an external, tar-like spermatophore on
the sternum of the female (Lipcius ef al., 1983; Figure 1). Females
resist further mating attempts by males and scratch open the sperm-
atophore 1-28 d after copulation to expose the non-motile sperm,
which fertilize the eggs externally as they are extruded (Talbot and
Summers, 1978; Butler et al., 2011a). The fertilized eggs attach to
the setose pleopods on the underside of the female’s abdomen, and
they are carried there for 3—4 weeks until they hatch (Saul, 2004).
Throughout much of the Caribbean P. argus spawn year-round
(Butler et al., 2010), although spawning peaks in late spring and in
subtropical areas, the breeding season is constrained to just
spring—summer (Chubb, 2000). In Florida, for example, spawning
generally commences in March and continues through August.
However, the number of clutches and the duration of the spawning
period vary with female size; larger females produce more clutches
and become reproductively active earlier in the spawning period
when compared with small, mature females (Bertelsen and
Mathews, 2001). Mating of all palinurids occurs during the inter-
moult phase, and there is no clear link between molting and
mating in P. argus, as there is in other spiny lobster species such as
Jasus edwardsii (MacDiarmid and Butler, 1999).

Individual fecundity in female P. argus is size-dependent with
larger individuals producing exponentially more eggs (Bertelsen
and Mathews, 2001; Ehrhardt, 2005; MacDiarmid and
Sainte-Marie, 2006). A reduction in female body size as a result of
fishing, therefore, has clear implications for reproductive capacity
in terms of egg production. What is less clear is the effect of
reduced male size on reproductive dynamics. Decapods may experi-
ence sperm limitation if ejaculate size scales with male body size,
mating history, expected female output, or future mating opportun-
ities (reviewed by MacDiarmid and Sainte-Marie, 2006). The prob-
ability that populations are sperm limited is therefore closely related
to population structure, mean male size, density, sex ratio, and the
intensity of sexual competition (Sato et al., 2010). Previous
studies of P. argus have demonstrated a clear link between the avail-
ability of large males and female fecundity because spermatophore
size, a function of male size, explains nearly half of the variance in
clutch size (MacDiarmid and Butler, 1999) and because sperm:egg
ratios—which are already low (~25:1)—are 40% lower in fished
populations (Butler et al., 2011a).

Building on the previous work of MacDiarmid and Butler
(1999), we present the results of a series of laboratory experiments
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that describe the mating system of P. argus with special reference
to the effect of male size on reproductive success. First, we experi-
mentally manipulated the size of spermatophores on mated
females to determine the potential effects of reduced male size on
fertilization success and egg production by females. We then
assessed the effects of male size on spermatophore production, de-
pletion, and recovery over successive matings. Finally, using data
from the spermatophore reduction and depletion /recharge experi-
ments, we evaluated maternal effects—i.e. the effects of female size
on egg and larval quality.

Methods

Spermatophore reduction experiment

To assess whether sperm availability can limit reproductive success
in P. argus, we manipulated the size of spermatophores on mated
females collected from the field and measured the resultant produc-
tion of fertilized and unfertilized eggs. Female P. argus with sperma-
tophores were collected by divers from the Florida Keys, FL, USA
(a fished population), and the Dry Tortugas National Park, FL,
USA (a no-take marine protected area; MPA) in February—March
of 1998—-2000. Lobsters were transported in aerated live wells to
the Florida Fish and Wildlife Conservation Commission field
laboratory in Marathon, FL, where the experiments took place.

Females were split into two size classes: small (carapace length
80—90 mm) and large (carapace length >90 mm) and kept in indi-
vidual 75 1 tanks with aeration and flow through seawater; lobsters
were fed squid and shrimp ad libitum daily. These size classes of
female lobsters represent those that are common in heavily fished
vs. unfished populations of P. argus (respectively); thus, the results
of this study provide specific insight into how current fishing prac-
tices potentially impact reproductive dynamics. Spermatophores on
females were then manipulated with a scalpel and flat forceps such
that lobsters belonged to one of three treatment groups: (i) a 50%
reduction in spermatophore mass, (ii) a 75% reduction in sperm-
atophore mass, and (iii) a no reduction control (Figure 1). Sperm
cells are evenly distributed between the left and right halves
(Butler et al., 2011a) of the spermatophore, but are more concen-
trated in the posterior portion of each paired spermatophore.
Therefore, the removal of one of the paired spermatophores is a
proxy for a 50% reduction in spermatophore mass, which approx-
imates the difference in spermatophore sizes transferred to
females by large and small males (MacDiarmid and Butler, 1999);
a75% reduction in size was simply chosen as a third, extreme treat-
ment. Although cutting the spermatophore transversely from anter-
ior to posterior would have maintained the total area of the
spermatophore, they were cut longitudinally to preserve as much
as possible the tough outer layer of the spermatophore and
prevent the exposure of the sperm before fertilization. The 50% re-
duction treatment would not have resulted in any inadvertent
“leakage” of sperm from the remaining spermatophore, given that
each spermatophore half is an independent unit produced by the
paired testes and delivered via paired gonopores. Perhaps, sperm
may have leaked from the remaining portion of the spermatophores
in the 75% reduction treatment, but if so that procedural effect
would be the same for both large and small lobsters.

Lobsters were then monitored daily for the presence of attached
eggs, an indication of spawning and fertilization. After spawning,
unfertilized eggs fail to attach to the female’s pleopods, so we
siphoned them from the tank bottom and counted them to estimate
the abundance of unfertilized eggs (see below). When eyespots
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Figure 1. Visualization of the way in which spermatophore size was diminished in the spermatophore reduction experiment. In each frame is a
ventral view of the same female P. argus with eggs from a previous clutch (visible under the abdomen) and a new spermatophore (black mass) that
will be used to fertilize the next clutch. (a) 50% reduction treatment: white area depicts how half of the spermatophore was removed. (b) 75%

reduction treatment: white areas depict how three-fourth of the spermatophore was removed. (c) Control: no manipulation of the spermatophore.

became visible in brooded eggs (~14 d after spawning), a scalpel
was used to gently scrape off egg masses from the pleopods.
Counts of unfertilized (siphoned from tank) and fertilized
(scraped from female pleopods) eggs were made by taking three
~2 g subsamples (weighed to the nearest hundredth of a gramme)
of each egg mass. Eggs were counted under a dissecting microscope
to provide an estimate of individual female fecundity (number of
fertilized eggs) and the total number of eggs extruded (number of
fertilized + unfertilized eggs). Fertilization success is defined as
the ratio of fertilized eggs retained on pleopods to the total
number of eggs extruded. To evaluate differences in fertilization
success as a function of the spermatophore reduction treatment,
we used a two-factor ANOVA with female size class and treatment
as factors.

Sperm depletion and recovery

We determined if large and small adult males differ in their produc-
tion of spermatophores and their ability to recharge sperm stores
after mating, by repeatedly mating large males collected from an
MPA, and small males from a fished population, with several
females in a laboratory experiment. Divers collected males and
females from the Florida Keys fished population and the Dry
Tortugas National Park MPA during February and March of
1999-2001. The absence of large males in the heavily exploited
Florida Keys population necessitated the collection of large indivi-
duals only from the Dry Tortugas. All males were collected before

the onset of the breeding season and therefore had not mated
since the previous year’s mating season. A single large male (126
160 mm CL; n=22) or small male (90-99 mm CL; n=19)
along with seven females ranging in size from 70—144 mm CL
were placed into experimental tanks (1.75 m diameter; 1500 1)
that received aerated filtered seawater from a flow-through
system. Ambient seawater temperature and photoperiod were
maintained and lobsters were fed shrimp and squid ad libitum.
These experimental conditions (e.g. sizes and sex ratios) are
typical of conditions in the wild during the reproductive season
when females significantly outnumber males on coral reefs
because large, agonistic males temporarily drive smaller males
into alternative habitats (Bertelsen and Mathews, 2001; Butler
etal., 2015).

Females were checked for spermatophores daily. Flat forceps
were used to remove intact spermatophores after they had hardened
for 24 h. Before their removal, the spermatophore area was esti-
mated. An outline of the mass was traced onto a sheet of a clear
acetate paper, which was scanned and digitally measured in Image J.
Once removed, spermatophores were weighed to the nearest hun-
dredth of a gramme and refrigerated at 5°C in 10 ml of filtered sea-
water until sperm counts could be conducted. Females were
returned to their original experimental tanks after the removal of
the spermatophore so that they could remate. In the Florida Keys
and Dry Tortugas, large P. argus females mate and produce up to
three and perhaps four clutches within a given season, whereas
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small females produce only a single clutch per year (Lyons et al.,
1981; Bertelsen and Mathews, 2001). As such, we could rely on
females remaining receptive to courtship and remating during the
course of the experiment. The male mating frequency in the wild
is unknown, but the lek-style mating strategy of large males indicates
that at least large males mate repeatedly during the breeding season.

To conduct sperm counts, spermatophores were laterally sliced
into thin sections (~0.5 mm thick) with a scalpel into a Petri
dish. The spermatophore sections were then washed from the
Petri dish into a 25-ml test tube with 10—15 ml of sterile seawater;
the test tube was capped and then mechanically shaken for 3 min
to liberate sperm from the spermatophore matrix. A haemocytom-
eter was then used to count the number of sperm cells in five separate
10 pl aliquots of each sample. The total sperm number and sperm
density (total sperm number /spermatophore weight) was then cal-
culated. This method for sperm counts has been used previously and
it has been shown to consistently liberate >70% of the sperm from
the spermatophore matrix (Butler et al., 2011a).

Males repeatedly mated with the females in their experimental
tanks and the order in which spermatophores were produced was
recorded. On the cessation of mating (i.e. production of new sperma-
tophores) in each experimental tank, typically 10 d to a month from
first mating, males were removed and isolated in individual tanks for
1,2, or 3 weeks to potentially “recharge” their sperm stores. After the
recharge period, males were returned to their original experimental
tank with the same set of females to resume mating.

Sperm depletion and recharge rates were assessed as a function of
male size with individuals separated into large (>100 mm CL) and
small (<100 mm CL) size classes. To test whether sperm attributes
(i.e. spermatophore weight, spermatophore area, sperm density,
and total number of sperm) varied relative to male size for the
first deposited spermatophore, a one-factor MANOVA with canon-
ical discriminant function analysis was performed. To determine
whether male size affected sperm attributes over repeated matings
(sperm depletion), we used a split plot MANOVA with male size
as the whole plot factor, ejaculate number as the subplot factor,
and individual as a randomized block. To assess whether male size
affected sperm attributes after the set recharge period, we used a
two-factor MANCOVA with the covariate “time between mating”
and the independent variables male size and recharge period (i.e.
1, 2, or 3 weeks). Finally, paired -tests were used to compare sper-
matophores produced initially and following the recharge period
by the same individual.

Egg quality and larval characteristics
During sperm depletion/recharge experiments, the spermatophore
on six mated females from every treatment group was left intact and
the date of spermatophore deposition and the date of egg extrusion
were recorded. This took anywhere between 0 and 19 d for different
females with a mean time of 4 d. These females were removed from
the experimental tanks and on the 10th day after egg extrusion
random samples of the egg masses were removed, for the assessment
of maternal effects on egg quality and to provide the estimates of fe-
cundity. Females were then returned to holding tanks until their
remaining clutch had hatched. Eggs and newly hatched larvae
from these females in the sperm depletion/recharge experiment
and from control females in the spermatophore reduction experi-
ment were used to assess possible maternal effects on egg and
larval quality.

For egg quality, the egg area was determined by measuring the
diameter of 20 eggs per clutch with a dissecting microscope fitted

M. . Butler et al.

with an ocular micrometre. The C:N content of eggs (a measure
of egg lipid content and thus egg condition or quality; Giminez
and Anger, 2001; Liddy et al., 2003; Bas et al., 2007) was also deter-
mined from the subsamples of each egg clutch. Subsamples were
rinsed in sterile seawater, frozen, and stored at —20°C, then dried
before C and N were measured with a Carlo—Erba elemental analys-
er and standard methods.

Larval condition was measured in three ways: larval size, survival,
and swimming speed. The carapace length of 20 first stage phyllo-
some larvae per clutch was determined with a dissecting microscope
fitted with an ocular micrometre. Larval survival was assessed in a
starvation trial in which 20 first stage phyllosome larvae per clutch
were individually housed in 15 ml Petri dishes filled with sterile sea-
water but no food atambientlight and temperature (~26°C). Larval
mortality was assessed daily and sterile seawater was changed daily
until all larvae had expired. The swimming speed of ten individual
phyllosome larvae per clutch was also estimated in a seawater-filled,
black swimming chamber (25 cmlong x 10 cmwide x 5 cm deep)
with a 1-cm grid scale on the bottom. Clear holes (0.5 cm dia) at
either end of the plastic chamber permitted light (wavelength:
400-600 nm; intensity: 0.80—1.00 pmol m 2 s~ 1) to enter either
end of the chamber from a 300-W quartz-halogen filament lamp
(Olympus model LGPS) projected from a fibre optic cable and
through a filter. This wavelength and intensity is similar to that
observed in the surface water (<25 m) of the open sea where first-
stage larvae normally dwell (Butler ef al., 2011b). At the start of
each trial, the room was darkened and a single larva was added to
one end of the test chamber, while the chamber was illuminated
from the opposite end. First-stage phyllosome larvae are positively
phototactic, so they swam towards the light at the opposite side of
the chamber. We measured the distance the larvae moved over a
5-s period and then let the larvae swim all the way to the lighted
end of the chamber. Larvae were given a 1-min respite in total dark-
ness before we illuminated the opposite end of the chamber and
repeated the procedure. The swimming speed of each larva was
tested in this manner ten times and the mean swimming speed deter-
mined for each larvae. The relationships between female size and
egg characteristics (area, C:N ratio) and larval characteristics
(larval carapace length, days until 100% mortality, and swimming
speed) were analysed with linear regression.

Results

Spermatophore reduction and sperm limitation

When spermatophores were experimentally reduced in area, the
total number of eggs that were released did not differ significantly
among treatments (Figure 2). However, fertilization success
(number of fertilized eggs/total eggs extruded) was lower for
females whose spermatophores had been reduced (Figure 2;
ANOVA: F = 13.59, p < 0.001, d.f. = 1). Post hoc tests indicated
that differences lay between the control and 50% reduction treat-
ments (Tukey HSD, p = 0.030) and the control and 75% reduction
treatments (Tukey HSD, p = 0.003) with no detectable difference
between the reduction treatments. When fertilization success was
assessed for large and small females separately, differences among
treatments were only significant for small females (Figure 2;
ANOVA: F=13.78, p = 0.001, d.f. = 1); the results were similar
but not significant for large females (ANOVA: F = 1.34, p = 0.27,
d.f. = 1), although the results for large females are tentative given
the small sample sizes, hence lower power of the tests when the
data were divided into two lobster size groups.

Downl oaded from https://academni c. oup. conlicesjns/article-abstract/72/suppl _1/i 115/ 618433
by O d Domi nion University user

on 09 March 2018



Effect of parental size in the Caribbean Spiny lobster

1e+6
1 Control
I R— . 50% Reduction
8e+5 == 75% Reduction
1 B " =0.003
[} 6045 16 P=0.
D Be+b 16
2 AB A
G
2 4e+5- 16 &
5
=z 16
2e+5 -
0
Total number Number of eggs
of eggs released retained on pleopods
1e+6
NS [ Contral
I 50% Reduction
8e+5 1 l = 75% Reduction
=]
2 5|
5
o 6Ge+b
w
% : P =0.003
5 4e+5 T
= AB
£ 1
A
Z 2e+5 B
11
0

Large females Small females

Figure 2. Results of the spermatophore reduction experiment; bars are
the means with standard errors (top panel). The total number of eggs
released (at left) by female P. argus in the three treatments and the total
number of fertilized eggs retained by female lobsters (at right). (bottom
panel) The number of fertilized eggs produced by large (at left) and
small (atright) female lobsters in the three treatment groups. Note that
the number of eggs retained by female lobsters reflects fertilization
success because unfertilized eggs do not attach to the females
pleopods. NS results and significant results (with P-values) among
treatment groups are shown in each panel; treatments sharing a letter
are not significantly different from each other.

Spermatophores depletion and recharge over multiple
matings

Males took 1-22 d between consecutive matings with a mean time
of 2.5 d between mating events. Attributes of initial spermatophores
varied significantly between large and small males (Wilks” lambda,
p < 0.0001), with large males typically producing spermatophores
that were heavier and of a larger surface area (Figure 3; spermato-
phore weight: F = 13.41, p = 0.001, d.f. = 1; spermatophore area:
F=14.07, p=0.001, d.f. = 1). However, the number of sperm
cells and sperm density for initial spermatophores did not differ sig-
nificantly between large and small males (number of cells: F = 3.41,
p=0.72,d.f. = 1; density: F = 0.01, p = 0.943, d.f. = 1), although
the values for large males are consistently greater than those for small
males and the lack of a difference may very well be due to the high
variance in these data.

Males fertilized between 2 and 27 females consecutively; larger
males (>100 mm) mated with 15 females on average and small
males (<100 mm) mated with 11 females on average over a
period of up to 1 month. This difference was not statistically signifi-
cant (t-test: + = 0.25, p = 0.80, d.f. = 28). For males of all sizes
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Figure 3. Results of the sperm depletion experiment for large (dark
squares; n = 30) and small (grey triangles; n = 11) male P. argus; shown
are the means with 1 s.d. Spermatophore weight (top panel), number of
sperm per spermatophore (second panel), sperm density (third panel),
and spermatophore area (bottom panel) are shown for consecutive
matings and after a non-mating recharge period of 1, 2, or 3 weeks.
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combined, the spermatophore weight and area decreased markedly
asthe number of spermatophores per individual increased (Figure 3;
spermatophore weight: F = 6.26, p < 0.001, d.f. = 41; spermato-
phore area: F = 2.82, p = 0.003, d.f. = 41).

For all males combined, no significant differences in the total
number of sperm cells and sperm density were observed over
repeated matings. But there is a large amount of variance in the
data, particularly for the smaller males, which likely obscures a
clear result when all the data are combined. However, when analysed
by size class, spermatophore weight, spermatophore area, and the
total number of sperm cells declined as the number of spermato-
phores extruded per individual increased (Figure 3; spermatophore
weight: F= 75.18, p < 0.001, d.f. = 1; spermatophore area: F =
101.70, p <0.001, d.f =; total number of cells: F= 15.55,
p<0.001,df = 1).

After arecharge period of 1, 2, or 3 weeks, larger males again had
heavier spermatophores that were larger in area (Figure 3; spermato-
phore weight: F = 6.73, p = 0.018, d.f. = 1; spermatophore area:
F=4.65 p=0.044, df =1), but there were no differences
between large and small males in the total number of sperm cells
or sperm density (Figure 3; number of cells: F = 1.82, p = 0.19,
d.f.=1; sperm density: F=0, p=0.99, d.f =1). This same
result was observed regardless of the length of the recharge period
(Figure 3). There were also no differences in sperm attributes
between initial spermatophores and spermatophores produced fol-
lowing the recharge period (paired t-test, p > 0.05), even when size
classes were analysed separately, with the sole exception of sperm-
atophore weight for the small males (t = 3.8, p < 0.01, d.f. = 7).

Egg quality and larval characteristics

Maternal size did not influence the measured egg characteristics (i.e.
area and C:N ratio), larval carapace length, or larval survival
(Figure 4). The slope of the regression of larval swimming speed
with female carapace length differed significantly from zero and
was unexpectedly negative, but that result was of borderline signifi-
cance (F = 5.51,p = 0.02, d.f. = 43) and the relationship explained
very little variance in the data, as shown by the low r* value (r* =
0.09; Figure 4).

Discussion

The rationale for this study was to obtain a greater understanding of
the effects of male and female P. argus size on gamete production and
quality, fertilization success, and larval characteristics associated
with survival. Given the dramatic reduction in lobster size in
exploited populations, correlations between offspring quality or
quantity with paternal or maternal size could adversely affect the re-
productive potential of those populations. Our results indicate that
smaller males produce lighter and smaller spermatophores over
consecutive mating events. Increased female body size, on the
other hand, had no discernible effect on egg or larval characteristics
beyond the well-known exponential relationship between maternal
size and egg production.

Our finding that reduced spermatophore size did not alter the
number of eggs extruded by females, but instead reduced fertiliza-
tion success, indicates that smaller clutches produced by females
mated by small males are not a result of reduced egg output by the
female but instead reflect the sperm limitation of fertilization
success. Spermatophore reduction also appeared to have a greater
impact on the egg retention and hence fertilization success of
smaller (<90 mm CL) females, as has been similarly noted for the
Western rock lobster P. cygnus (Kuris, 1991). Large P. argus males
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actually allocate larger spermatophores to large females
(MacDiarmid and Butler, 1999) and larger spermatophores are
associated with positive residual clutch weights (MacDiarmid and
Sainte-Marie 2006), so perhaps this results in an over-
apportionment of a viable sperm available for fertilization, which
would explain why our experimental reductions in spermatophore
size were less effective on large females than smaller ones.
Conversely, if males over-apportion sperm to larger females but
are less generous to smaller females, as is true in the American
lobster, Homarus americanus, then smaller females may receive
under-apportioned spermatophores relative to large females
(Gosselin et al., 2003). Females across a range of taxa including
fish (Skinner and Watt, 2007), insects, birds, and amphibians differ-
entially allocate reproductive resources according to the attractive-
ness of their mate (see review by Sheldon, 2000). In decapods,
evidence of differential allocation of eggs based on mate quality is
limited to freshwater crayfish (Galeotti et al., 2006).

For P. argus, the apparent inability to mediate egg output sug-
gests that females should select larger males as mates so as to maxi-
mize fertilization success. Indeed, large females of all palinurid
species thus far tested (P. argus, P. guttatus, Jasus edwardsii) experi-
ence lower fertilization success when mated with smaller males
(MacDiarmid and Butler, 1999; Robertson and Butler, 2013;
Butler et al., 2015), implying that all experience strong selection
for larger mates. Although true for some spiny lobsters (e.g.
P. guttatus; Robertson and Butler, 2013; J. edwardsii; Butler et al.,
2015), it has not proven true in experiments with P. argus
(Butler et al., 2015). This discrepancy among species in female se-
lectivity of males by size is difficult to reconcile and bears further
study.

Spermatophores produced by large males were significantly
heavier and larger initially and following multiple matings. This is
a finding in accord with previous studies of sperm limitation in
P. argus (MacDiarmid and Butler, 1999; Butler et al., 2011a). The
number of sperm cells in the spermatophore and sperm density,
however, was not different between the size classes (the exception
being the number of sperm cells within spermatophores following
multiple matings). This despite indications that the mean number
of sperm for large males was almost always higher than for small
males (Figure 3). So perhaps the high variance in these results
obscures a size-specific difference in sperm abundance in addition
to the clear difference in spermatophore size. We also believe that
our data on the size-specific male recovery of sperm stores after de-
pletion are probably inconclusive. Although there was no statistical
difference between spermatophore attributes after recharge periods
of 1-3 weeks, the sample sizes were small, variances high, and means
inconsistent.

It is also possible that the larger seminal fluid component of the
spermatophore in large males when compared with small males is of
consequence to sperm viability and hence fertilization success.
Similar results have been found for the blue crab Callinectes
sapidus (Kendall et al., 2002). As with blue crabs, however, the con-
sequences of reduced seminal fluid in terms of female reproductive
success are unknown. Accessory fluid has several functions that
include acting as an antibacterial agent or nutritive substance for
sperm, as an aid for storage and retention of sperm (Tram and
Wolfner, 1999), or as a sperm plug (Carver et al., 2005). New
genetic evidence based on paternity analysis (S. Johnson, Univ.
Otago, pers. comm.) suggests that female J. edwardsii may engage
in multiple copulations to fertilize a single egg clutch. This phenom-
enon appears unlikely in P. argus where more detailed examinations
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Figure 4. The relationships between the size of P. argus females and several egg and larval quality attributes, including: (a) egg area, (b) C:N ratio of
eggs, (c) larval carapace length, (d) larval mortality, and (e) larval swimming speed. Regression summary statistics are shown in each panel (r* =
variance explained, ANOVA p-value, n = sample size), although a regression line is only plotted for the one instance where there was a significant

regression.

of spermatophore structure (Butler et al., 2011a) indicates that
reports of layered spermatophores (Mota-Alves and Pavia, 1976)
are most likely due to new, unused spermatophores laid upon pre-
viously exhausted spermatophores used to fertilize a prior clutch.
Thus, to avert sperm competition, large males may use accessory
fluid to enhance the size of their perceived investment or to act as
a barrier to secondary matings. Indeed, previous experiments with
P. argus demonstrate that spermatophores provide both physical
and chemical cues perceptible by females that inhibit them from
further mating before utilization of the existing spermatophore

(Butler et al., 2011a).

As first articulated by Dewsbury (1982), the cost to males of pro-
ducing ejaculates is physiologically non-trivial and all the more so
for multiple ejaculates (Wedell et al., 2002). Evidence of depletion
over the production of successive spermatophores in our study
clearly demonstrates this. Large male P. argus produced more than
25 ejaculates during a mating cycle and small males around 15,
but the size of the ejaculates declined precipitously after just a few
repeated matings. Similarly, small male king crabs Paralithodes
camtschaticus experience reduced reproductive success after seven
matings, whereas large crabs can mate up to nine times before ex-
periencing a reduction in fertilization success (Powell et al., 1974).
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Large P. argus also require a week or so hiatus from mating to restore
spermatophore size; small males appear to need even longer. This is
similar to observations of blue crabs Callinectes sapidus that require
between 9 and 20 d to fully recover sperm stores (Kendall et al.,
2001). Other crab species, such as the coconut crab Birgus latro
and stone crab Haplogaster dentata, are not thought to recover
sperm stores until the next reproductive season (Sato, 2012).

Maternal effects on offspring fitness have garnered considerable
attention, particularly in relation to exploited marine species
(Berkeley et al., 2004a; Green, 2008; Venturelli et al., 2010). In add-
ition to evidence for exponential increases in fecundity relative to
size or age, positive correlations between maternal size or age and
larval characteristics provide further support for the protection of
mature size and age structure in exploited animal populations
(Berkeley et al., 2004b; Birkeland and Dayton, 2005). In lobsters,
the relationship between maternal size and fecundity is clearly estab-
lished (Saul, 2004; MacDiarmid and Sainte-Marie, 2006). In com-
parison, knowledge of maternal influences on egg and larval
characteristics is limited, which is disconcerting given the increasing
truncation of the size range of exploited lobster populations.
Maternal size influences on gamete and/or offspring quality have
been observed in the European clawed lobster Homarus gammarus
(Moland et al., 2010), some populations of the American clawed
lobster Homarus americanus (Attard and Hudon, 1987), and in
the temperate spiny lobster J. edwardsii (A. MacDiarmid, unpub.
data). However, maternal size resulted in no detectable difference
on eggor larval characteristics in P. argus with the possible exception
of larval swimming speed, the result of which we question given its
low r* value. According to Marshall et al. (2010), there are few evo-
lutionary arguments for a maternal size—offspring quality relation-
ship unless the physical environment is the primary driver selecting
for maternal effects.

Although studies on the effects of fishing on female size and re-
productive patterns are known for many species of spiny lobster
(reviewed in MacDiarmid and Sainte-Marie, 2006), detailed
mating and fertilization dynamics are poorly documented. Our
study reveals that the mating system of P. argus is considerably
more complex than previously believed. Years of continuous
fishing and the consequent human manipulation of lobster demo-
graphic structure has added to this complexity. For heavily exploited
populations like those in the Florida Keys, where the largest lobsters
that normally dominate matings are noticeably absent (Bertelsen
and Mathews, 2001; Butler et al., 2015), successful reproduction
now depends on smaller individuals. Smaller males that in healthy
unfished populations would typically be outcompeted for access
to females are afforded the chance to mate repeatedly with available
females in overfished populations. Given both the value of, and the
reliance on, P. argus fisheries in the Western Atlantic, it is imperative
that we incorporate knowledge of mating systems in population
assessments (Rowe and Hutchings, 2003) and undertake research
to better understand the implications of this. This study, like
others before t, clearly demonstrates the importance of maintaining
large individuals in exploited populations if we wish to maintain
healthy breeding populations of P. argus into the future.
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