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Photonic band gap analysis using finite- 
difference frequency-domain method 

Shangping Guo, Feng Wu, Sacharia Albin 
Photonics Laboratory, Department of Electrical  & Computer Engineering 

Old Dominion University, Norfolk, Virginia 23529 
sguo@odu.edu 

Robert S. Rogowski 
Non-destructive Evaluation Science Branch, NASA Langley Research Center, Hampton, Virginia 23681 

Abstract: A finite-difference frequency-domain (FDFD) method is applied 
for photonic band gap calculations. The Maxwell’s equations under 
generalized coordinates are solved for both orthogonal and non-orthogonal 
lattice geometries. Complete and accurate band gap information is obtained 
by using this FDFD approach. Numerical results for 2D TE/TM modes in 
square and triangular lattices are in excellent agreements with results from 
plane wave method (PWM). The accuracy, convergence and computation 
time of this method are also discussed. 

©2004 Optical Society of America 
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1. Introduction 

Photonic band gap materials and devices have been under intense research for over a decade 
following the seminal papers [1-2]. There are several methods for band structure analysis, 
such as the plane wave method (PWM) [3-5] and the FDTD [6-9] method. The PWM is able 
to provide complete and accurate information. However, the algorithm complexity is O(N3) 
and the computation is heavy for large problems. The order-N method based on FDTD can 
effectively reduce computation. It solves the Maxwell’s equations within the unit cell in time-
domain by applying an initial field that covers all the possible symmetries; the eigen-modes 
are identified as the spectral peaks from the Fourier transform of the time-variant fields. The 
drawback of this method is that the accuracy depends on the number of iterations in time. 
There is also a possibility of losing true eigen-mode if the corresponding peak is too small, or 
resolution is too low. Moreover, spurious modes may arise from spectral noise. The FDFD 
method has been proposed for optical waveguide analysis [10-12], which is accurate and 
stable. In this paper, we show that this technique can be applied in photonic band gap analysis 
and we note that an FDFD approach using Helmholtz equation has been shown in [13]. First 
we describe the derivation of the FDFD algorithm under generalized coordinate system and 
then apply the algorithm on 2D photonic crystals with two different geometries. The accuracy, 
convergence, and computation time in the FDFD method are compared with those of PWM. 

2. Theory 

We consider nonconductive materials under generalized coordinates denoted by three unit 
basis vectors uq(x,y,z) (q=1,2,3). The Maxwell’s curl equations in complex form can be 
expressed as [9, 15]:  

 ( ) ( )HrjkEErjkH qq
ˆˆˆˆˆˆ

00 µε −=×∇=×∇ , (1) 

and the renormalized fields are: iiiiii HQHEQE == ˆˆ
00 µε , (2) 

where k0 is the wave vector in free space, Qi’s are the grid size along each direction. The ε̂  
and µ̂  are respectively the effective relative permitivity and permeability constants which are 
3x3 tensors under the generalized coordinate system: 
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Q0 is a constant introduced to be roughly equal to Qi's; 321 uuu ×⋅  is the volume of the unit 

cell, εri (µri) is the relative dielectric constant (the relative permeability constant) at the 
position where the electric field iÊ  (the magnetic field iĤ ) is located. g is the metric tensor 
that can be obtained using the three unit vectors,  
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and the length in generalized coordinate can be calculated using: 

 [ ]rgrr T rr 12 −= . (5) 
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We use Yee’s mesh [14] and finite difference to replace the derivates in Maxwell’s curl 
equations [9, 15] and formulate them in matrix form using the approach described in [10]: 
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where Ui and Vi are coefficient matrices formed according to the boundary conditions, and 
they are proportional to iQ1 . 

An eigen-value problem in frequency-domain is formed for either Ê  or Ĥ  by 

eliminating Ĥ  or Ê  in Eqs. (6-7). For a given wave vector k, all the referred components 
outside the unit cell boundary can be obtained using Bloch’s periodic boundary condition:  

 ( ) ( ) ( ) ( ) ( ) ( )rERikRrErHRikRrH llll
ˆexpˆˆexpˆ ⋅=+⋅=+ , (8) 

where Rl can be an arbitrary lattice vector, and here it is limited in the unit cell or supercell. 

Two-dimensional cases 
 

T M :  E 3    H 1   H 2 
T E:   H 3    E 1   E 2 

u1 

u2 
n2 

n1 1 
1 

 
Fig. 1. Yee's 2D mesh in general coordinates. The dotted components are at the boundaries. 

 
A 2D Yee’s mesh under generalized coordinate system is shown in Fig. 1 for both TE and 

TM modes. E and H are arranged along two basis vectors u1 and u2; u3 is coincident with the z 
direction. Since Q3 is infinite, U3 and V3 in the equation (6-7) are zero, and simple eigen-
equations can be obtained. The lattice vector Rl in Eq. (8) is chosen to be aquq, and aq is the 
dimension of the unit cell or supercell along direction q. 

For TM modes, the eigen-equation is shown as follows: 

 ( ) ( ){ } zz EVVUVVUEk ˆˆ
1

1
122

1
1121

1
222

1
211

1
33

2
0

−−−−− −−−= µµµµε . (9) 

The fields E and H in the two dimensional grids are arranged row by row into column 
vectors. Subsequently the Bloch boundary conditions are applied to get the matrices U and V: 
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where  ( )11exp uaikux ⋅= , ( )11exp uaikvx ⋅−−=  (11) 
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where  ( )22exp uaikuy ⋅= , ( )22exp uaikv y ⋅−−= . (13) 

For TE modes, the eigen-equation is: 

 { } zz HVUVUHk ˆˆ
1

1
331

1
222

1
331

1
12

2
0

−−−− −= µεµε . (14) 

The U and V matrices for TE mode are similar to those for TM modes and can be 
obtained by doing the exchange U1�V1 and U2�V2 in the equations (10-13) for TM modes. 

According to Eq. (9), only 1
33
−ε  is involved in TM mode. εr is located at the same point as 

E3, so no averaging is needed for εr3. For TE mode, the εr is half a grid away from E1 and E2 
and the averaging is needed for εr1 and εr2. The periodicity of εr is applied for those grids 
outside the boundary. 

3. Numerical results 

All matrices involved are sparse; hence we can apply sparse matrix techniques to save 
computation time and memory. We implemented the algorithm using MATLAB since it 
provides convenient tools for sparse matrix operation with minimal programming efforts. 
Here we show a few numerical examples using our FDFD method and compare against the 
PWM using the program similar to that in Ref. [16]. The first example is a 2D square lattice 
with dielectric alumina rods in air: εa=8.9, εb=1.0 and radius of the rod R=0.20a (a is the 
lattice constant). The second example is a 2D triangular lattice with air holes in dielectric 
GaAs materials: εa=1.0, εb=13.0 and hole radius R=0.20a. For the square lattice u1=[1 0 0], 
u2=[0 1 0], and u3=[0 0 1] and the metric [g] is a 3x3 identity matrix. For the triangular lattice, 
u1=[1 0 0], u2=[0 1/2 23 ], and u3=[0 0 1] and [g] is calculated by Eq. (4). We used sub-cell 
averaging technique to smooth the transition at the interface and Eq. (5) is used for the rod 
profile transformation. The details of discretization and transformation of the cylindrical rod 
are shown in Ref. [16]. 
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Fig. 2. The band structure for a 2D square lattice by FDFD (o) and PWM (-). 441 plane waves 
are used for PWM and mesh resolution is a/80 for FDFD. Left: TM mode, Right: TE mode. 
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Fig. 3. The calculated band structure of a triangular lattice by FDFD (o) and PWM (-). 441 
plane waves are used for PWM and mesh resolution is a/80 for FDFD. Left: TM, Right: TE. 

 
The TE/TM band gap for 2D square lattice and triangular lattice of the above examples 

are shown in Fig. 2 and Fig. 3 respectively. The FDFD results are indicated by ‘o’ and PWM 
results are plotted as solid lines. The results from the two methods show excellent agreements.  

In Table 1 we list the first five bands at k=0 for the 2D triangular lattice shown above 
using the two methods in order to compare their accuracy and computation time. The 
computation time is measured on a 2.4GHz mobile Celeron® notebook with 256MB memory. 
From the Table we see that FDFD can reach the same accuracy as PWM in a shorter time.  

Table 1. Eigen-frequencies for the first five bands of TE wave (k=0) for a triangular lattice with air holes in dielectric 
materials. 

Band No: 1 2 3 4 5 Time (s) 
PWM 4411 0 0.3240 0.3398 0.3399 0.3414 47.84 
PWM 6251 0 0.3240 0.3399 0.3399 0.3414 105.66 
PWM 9611 0 0.3240 0.3400 0.3400 0.3414 256.36 
FDFD 402 0 0.3237  0.3395  0.3400  0.3418 3.29 
FDFD 802 0 0.3240 0.3400 0.3402 0.3416 11.68 
FDFD 1202 0 0.3240  0.3400 0.3402 0.3415 33.18 
FDFD 1602 0 0.3240 0.3401 0.3402 0.3414 86.09 
1: The number of plane waves, 2: the number of grids along each direction. 
 

A convergence curve for the eigen-frequency of band 5 at k=0 is shown in Fig. 4 versus 
the number of grids used along each direction. The computation time is also presented in the 
figure. The eigen-values converge to the accurate value at a moderate mesh size, for example, 
a/80.  The computation time is highly dependent on the memory available on the computer. 
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When the unit cell or supercell has symmetry properties, computation time could be saved by 
using part of the unit cell under proper boundary conditions [18].  

Next, we show a defect mode analysis using FDFD for the 2D square lattice of alumina 
rods in air as in the first example. A 5x5 supercell is selected and 200 grids are used along 
each direction. In this case, only the defect frequency is of interest since the band gap 
information is already known. Therefore we only have to find a certain number of eigen-
frequencies of interest and the computation time is effectively reduced. The eigen-frequency 
obtained by FDFD is 0.3930. The mode field is shown in Fig. 5. Both results agree well with 
those by PWM and FDTD [16-17]. 
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Fig. 4.  The convergence of eigen-frequency (the 5th band at k=0) and the computation time vs. 
the number of grids along each direction. 
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Fig. 5. The Ez field of a defect mode in a 2D square lattice with alumina rods in air using a 5x5 
supercell with the center rod removed.  The rods are displayed as black circles.  

4. Conclusions 

In conclusion, we have presented a FDFD method for photonic band gap calculations. This 
method is able to provide complete and accurate information about the band structure of a 
photonic crystal. The results of 2D TE/TM modes for two different geometries are compared 
with those obtained using plane wave method, and excellent agreement is achieved. By using 
a generalized coordinate system, various lattice geometries can be analyzed in the same 
manner.  
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