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Abstract

Motivation: Accurate segmentation of brain electron microscopy (EM) images is a critical step in

dense circuit reconstruction. Although deep neural networks (DNNs) have been widely used in a

number of applications in computer vision, most of these models that proved to be effective on

image classification tasks cannot be applied directly to EM image segmentation, due to the differ-

ent objectives of these tasks. As a result, it is desirable to develop an optimized architecture that

uses the full power of DNNs and tailored specifically for EM image segmentation.

Results: In this work, we proposed a novel design of DNNs for this task. We trained a pixel classifier

that operates on raw pixel intensities with no preprocessing to generate probability values for each

pixel being a membrane or not. Although the use of neural networks in image segmentation is not

completely new, we developed novel insights and model architectures that allow us to achieve su-

perior performance on EM image segmentation tasks. Our submission based on these insights to

the 2D EM Image Segmentation Challenge achieved the best performance consistently across all

the three evaluation metrics. This challenge is still ongoing and the results in this paper are as of

June 5, 2015.

Availability and Implementation: https://github.com/ahmed-fakhry/dive

Contact: sji@eecs.wsu.edu

1 Introduction

Anatomical connections between neurons in the brain form circuits

that are responsible for the rapid information flow. Knowledge of

the circuit structure is crucial for the investigation of its function.

Mapping the structure and components of these circuits is one of the

top priority research areas in neuroscience. It provides a foundation

for understanding what the brain is made of at the cellular and

structural levels, and how these properties change across the normal

life span and in brain disorders. The reconstruction of such circuits

at a very high resolution using electron microscopy (EM) is con-

sidered to be the gold standard for circuit mapping (Brain Research

through Advancing Innovative Neurotechnologies, BRAIN, 2014).

Currently, sparse circuit reconstruction has been widely used on

a small-scale. Most of the studies focused on the very small

Caenorhabditis elegans or small parts of the nervous systems of the

Drosophila. Recently, some of those efforts were extended to recon-

struct the inner plexiform layer in the mouse retina (Briggman et al.,

2011; Helmstaedter et al., 2013; Kim et al., 2014). Using EM data

in large-scale studies are currently a challenge, where the main

bottleneck is data analysis. Better automatic image segmentation

techniques would substantially amplify the impact of dense EM re-

construction. Machine learning and artificial intelligence approaches

are expected to be the main driver for the desired advancements in

this area.

In this work, we focused on the automatic segmentation of ser-

ial-section Transmitted Electron Microscopy (ssTEM) images. We

provided a novel design of deep neural networks (DNNs) (LeCun

et al., 1989) that extends the techniques described in Ciresan et al.
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(2012a). We built a pixel DNN classifier that predicts the probabil-

ity of every individual pixel in a given image being a membrane (bor-

der) pixel or not. Our DNN classifier accepts raw pixel intensities as

input without any preprocessing and learns highly discriminative

features automatically before producing final probability maps.

These probability maps were fed later to another machine learning

classifier based on random forests (Breiman, 2001) to produce final

segmentations.

DNNs have been widely used in a number of applications in

computer vision. It achieved the state-of-the-art performance on

tasks like large-scale image and video recognition (Ji et al., 2013;

Krizhevsky et al., 2012; Zeiler and Fergus, 2014), digit recognition

(Ciresan et al., 2012b) and object recognition tasks (LeCun et al.,

2004). Recently, many attempts have been made to extend the usage

of these models to the field of image segmentation, leading to im-

proved performance (Briggman et al., 2009; Jain and Seung, 2009;

Jain et al., 2007; Ronneberger et al., 2015; Turaga et al., 2010;

Zhang et al., 2015). Although some of the existing popular models

have proved the ability to generalize well for different recognition

tasks like the model in Krizhevsky et al. (2012), most of these mod-

els that excelled on image classification and recognition tasks cannot

be applied directly to EM image segmentation tasks, given the differ-

ence in objectives between those tasks as well as the difference be-

tween EM and natural images (more details in Section 2.1). As a

result, it is desirable to develop an optimized architecture that util-

izes the full power of DNNs and tailored specifically for EM image

segmentation.

In this work, we developed a DNN model architecture that is

highly optimized for ssTEM image segmentation. The key contri-

bution is in the model itself and the novel insights about the spe-

cific kernel configuration leading to substantially improved results.

We evaluated the effect of model configuration along with kernel

structures and depth on the final segmentation outcome. We vali-

dated our approach by applying it to the ISBI 2012 EM

Segmentation Challenge (ISBI, 2012) (http://brainiac2.mit.edu/

isbi_challenge/), achieving the best performance on all evaluation

metrics out of more than 40 participating groups (more groups are

participating as the challenge is ongoing). Our model was one of

the few that were able to beat the performance of a second human

observer.

2 Methods

In our work, we used a full stack of EM image slices of the

Drosophila first-instar larva ventral nerve cord (Cardona et al.,

2010) provided by the organizers of the ISBI 2012 EM

Segmentation Challenge (ISBI, 2012). The training stack consists of

30 grayscale sections of 512 � 512 pixels each, where there is a cor-

responding label map for each image slice representing whether the

pixels are membrane or non-membrane. We trained a deep convolu-

tional neural network (DNN) pixel classifier to predict the label of

every pixel separately. We applied this classifier on another stack of

30 sections representing the testing data where the ground truth is

only known to the organizers of the challenge.

In order to use a pixel classifier, we adopted a patch-based train-

ing technique. For every pixel in every slice, we extracted a square

patch of a fixed size with the target pixel in its center. For boundary

pixels, we mirrored the pixels across the slice borders. Upon testing,

we obtained a membrane probability map for each slice of the test-

ing data. These probability maps then underwent post-processing to

generate the labels.

2.1 Key insights
The key contributions of this work are the optimized architecture of

a DNN model for EM image segmentation and the underlying mo-

tivation and observations. Although the use of DNN architecture

usually leads to good performance on similar segmentation tasks, a

careful design of the network architecture and choices of kernel sizes

and placement are the key to utilize the full performance power of

the model. For example, in the model suggested by Krizhevsky et al.

(2012), the kernel sizes were chosen to be very large at the bottom

layers of the network and then reduced gradually. Later, Zeiler and

Fergus (2014) showed that a better performance could be obtained

by reducing the receptive field size and choosing a smaller stride for

the first convolutional layer in the same model. On the other hand,

in Simonyan and Zisserman (2014), a network of a very small kernel

size which was fixed for all layers proved to achieve the best per-

formance on image localization and classification tasks. This high-

lights the importance of these architectural details in achieving

record-breaking performance on different computer vision tasks.

Unfortunately, the application of the very powerful models like

Simonyan and Zisserman (2014) and Szegedy et al. (2014) to the

task of EM image segmentation does not yield as good results as it

did on natural image recognition tasks. The reason is that the two

tasks are genuinely different in terms of their objective and training

characteristics. In segmentation, the objective is to assign a label for

every single pixel in the image as opposed to a single label assigned

to the entire image in classification. In addition, training for segmen-

tation tasks includes a lot of redundancy in the input data due to the

patch-based technique, as opposed to training on the whole image

or random crops of it in classification tasks. In terms of the data it-

self, EM images are characterized by their high density and the in-

variability of the objects it composes unlike the natural images that

are regularly used in classification tasks like the ImageNet data

(Deng et al., 2009). We experimented with several networks that are

considered state-of-the-art for image classification and recognition

tasks and the results were inferior. In particular, the VGG net

(Simonyan and Zisserman, 2014) has performed very poorly on this

specific segmentation task. We attribute this to the very small kernel

sizes (3 � 3) in the network which does not include enough context-

ual information that this segmentation task requires based on our

experiments.

The key observation about this task is how important the con-

text information is for building discriminative features especially in

the bottom layers of DNN in EM image segmentation tasks. It is

crucial to provide each kernel with a large enough receptive field es-

pecially in the bottom layers in order to be able to learn better fea-

tures. At the same time, if the context is too wide for the bottom

layers, the performance will drop due to the excessively large neigh-

borhood which will contain some noise. For example, in the VGG-

net (Simonyan and Zisserman, 2014) all the kernels are fixed to a

size of 3 � 3 which is very small and not enough for the features to

be learned from the underlying data. In Krizhevsky’s network, they

started with an excessively large kernel size of 11 � 11 at the bot-

tom. When we tried both networks on the EM data, the results were

both inferior. In our architecture, we focused on starting with a ker-

nel size of 8 � 8 at the bottom which is moderately large and suffi-

cient for the network to be able to learn discriminative features

without being affected by noise. Increasing the kernel sizes of the

bottom layers in the network increases the receptive fields of each

unit in the resulting feature maps, thereby increasing the impact of

context information in generating these features. This leads to learn-

ing more discriminative features which improves the overall
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performance. On the contrary, the pixels in the feature maps of the

top layers already correspond to a very large receptive field due to

the presence of max pooling layers beneath them regardless of

the kernel sizes in the layer directly beneath them as illustrated in

Figure 1. Using smaller kernel sizes for the upper layers also allows

the model to grow deeper as we can add more convolution layers.

As a result, we decreased the kernel sizes gradually as we went

deeper in the network.

Another key insight is the impact of non-linearity and network

depth on the overall network performance. We argue that increasing

the number of convolution layers along with their corresponding

rectified linear unit (RELU) layers usually increases the networkes

accuracy. Increasing the number of convolution layers increases the

number of features to be learned, while the RELU layers are respon-

sible for increasing the non-linearity in the network and preventing

the gradient from saturation. In Krizhevsky network (Krizhevsky

et al., 2012), although the input image size was 224 � 224, the net-

work did not have enough non-linearity with only five convolution

layers and five corresponding RELU layers in between them. On the

other hand, our best performing network had six convolution layers

while the input size is only 95 � 95. This high non-linearity in our

network was crucial for obtaining a better performance. We vali-

dated these insights through the network design in the next section.

2.2 The architecture
We used DNN with multiple convolution, pooling and fully con-

nected layers for our pixel classifier. We experimented with a wide

range of window sizes, network depth and kernel sizes to assess the

effect of each parameter on the final segmentation outcome. We

used window sizes ranging between 35 and 95, depth between 6 and

8 trainable layers and kernels between 3 � 3 up to 10 � 10.

Although our architectures are quite different from each others,

they share some common properties that experimentally proved to

be the best for the current task. No preprocessing was applied to

any of the networks except for mean subtraction. The overall mean

of all the pixels in all sections was subtracted from each pixel value.

In our designs, we limited the number of max pooling layers in favor

of more convolution layers in all the architectures. Increasing the

number of convolution layers helped the model find more discrim-

inative features. The key challenge was to add as many convolution

layers as possible without losing the translation invariance advan-

tage that the max pooling layers provide. In addition, the choice of

the window size would always affect the network depth and the

number of convolution layers in turn. We compared several

architectures containing different numbers of max pooling layers

ranging between two and five and we found that three max pooling

layers always give the best results. As a result, each network we

trained is divided into three blocks; each block contains a number of

convolution layers (differs per network configuration and per block)

which are followed by a single max pooling layer of size 2 � 2 and

stride 2 by the end of the block.

We also introduced back to back convolution layers interleaved

by only RELU as the non-linear transformation in all architectures.

Instead of using a single convolution layer with a very large kernel

size in every block, we chose to stack multiple convolution layers

above each other with moderate kernel sizes while adding RELU

layers in between them. This was done mainly to increase the nonli-

nearity in the model and thus encouraging it to learn more complex

features. In addition, breaking down a single large kernel into sev-

eral smaller ones reduced the total number of parameters need to be

trained, thus reducing the overall computation time (Simonyan and

Zisserman, 2014).

Our networks concluded with two fully connected layers after

their third block. The last fully connected layer contains only two

neurons corresponding to the segmentation tasks. The outcomes of

these two neurons were finally passed through a softmax layer to

produce probability values that represent either membrane or non-

membrane classes.

We trained four DNNs sharing the common characteristics

described earlier but with different configurations. These architec-

tures were inspired by the networks used in Ciresan et al. (2012a);

Krizhevsky et al. (2012); Simonyan and Zisserman (2014). The full

architectures of the four networks can be found in Table 1.

Networks A and B are both shallow with six trainable weight

layers each. Network A has a very small window size of 35 � 35

pixels which highly restricted the depth and the kernel sizes used.

Network B starts with a window size of 65 � 65 pixels which we

utilized to test the effect of using excessively large kernels while

keeping the depth constant. On the other hand, Networks C and D

have a relatively large window size of 95 � 95 pixels each to include

more contextual information and to allow them to grow deep. Both

networks use slightly larger kernels than the ones used in network A

and slightly less than the ones used in network B.

In our experiments, we hypothesized that starting with a large

kernel size in the bottom layers of the network and reducing the size

as we move upwards is much better than the opposite direction

where we start with small kernels at the bottom. We tested this hy-

pothesis through the configuration of networks C and D. Network

C started with a small kernel size for its bottom layer, and then the

Fig. 1. In this figure, we demonstrate that the upper layers in the network always correspond to a large receptive field due to the presence of max pooling layers.

In the figure, even with a shallow network that uses 2 � 2 convolution for its bottom layer and only 2 max pooling layers, the generated feature map in the last

layer corresponds to a receptive field equals to the entire input size
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kernel size was constantly increased till the top convolution layer.

For network D, we started by a moderately large kernel size which is

double the initial kernel size of network C then we constantly

decreased it. Another advantage of beginning with a large kernel

size was that we aggressively reduced the resolution of the feature

maps, leading to a reduction in the computations.

To ensure learning in networks C and D, we applied local re-

sponse normalization (LRN) before the max pooling layers in the

first two blocks. This was because the number of parameters to be

trained for these networks is higher than the other two due to the

larger kernel sizes used and the increasing number of feature maps.

Although RELUs are not easily saturated, adding LRNs is supposed

to increase model generalization (Krizhevsky et al., 2012).

Experimentally, we found that the performance improvement using

LRNs is minimal and does not contribute to the overall performance

gain. We still included it in our models for the sake of completeness

and to allow reproducibility of the results. We also applied dropout

after the first fully connected layer in both networks C and D (de-

tails given in Section 2.4).

2.3 Test data augmentation
Ensemble learning techniques are well known to improve perform-

ance on various learning tasks. Random forest (Breiman, 2001) is a

clear example that proved to be one of the most effective ensemble

learning techniques. In random forests, many decision trees are built

based on some random variations in the input and feature spaces,

and eventually each decision tree votes for a specific class. The com-

bined vote is then considered as the output decision of the random

forest. Extending a similar scheme to neural networks is however

computationally expensive. A single DNN usually takes several days

of training even using GPU-based implementation for a data set

with a million of samples. Training several of these networks would

be computationally inefficient.

We chose to perform augmentation upon testing instead of the

computationally expensive ensemble of DNNs [similar to the tech-

nique used in Cireşan et al. (2013)]. We applied several linear

transformations on the input image before testing. The transform-

ations were combinations of horizontal and vertical mirroring, and/

or rotations byþ90, �90 and 180�. After passing the transformed

image through the network and obtaining a probability map, a re-

verse transformation was applied. In total, eight variations were

applied to each testing image and then we took the average. The

augmentation was implemented so that each variation received a

vote in the final decision produced by the model. This technique is

computationally more efficient than training several models as test-

ing time is typically very fast. Our experiments showed a consider-

able advantage of applying those variations as the segmentation

error dropped by half as compared with its original value.

2.4 Overfitting reduction
One of the challenges of using a DNN is overfitting. Because our

deep networks have a huge number of parameters (up to tens of mil-

lions of them), we needed a very large data set to avoid overfitting.

In our data set, we extracted all the patches of the membrane pixels

in every slice and an equivalent number of non-membrane pixels

sampled randomly per slice. This generated about 3 million training

patches in total, a number that may not be enough to train a very

deep network without the risk of overfitting.

We applied data augmentation to increase the variability in our

training data. At the beginning of each epoch, a linear transform-

ation to the input patch was randomly selected. We rotated each

patch either by þ90 or �90 and/or mirrored it either horizontally or

vertically. The data augmentation significantly improved the accur-

acy of the classifier. In addition, we applied dropout with 0.5 drop-

ping ratio after the first fully connected layer in networks C and D

to further improve the performance.

2.5 Model design and implementation
Our patch-based classifier implementation is based on the publicly

available CþþCaffe (Jia et al., 2014) (branched out in October

2014) with several modifications. We implemented our custom data

augmentation where we decoupled cropping from mirroring as it is

not desirable in our experiments in addition to implementing rota-

tions with several angles. We also added random shuffling of data at

the beginning of each epoch through randomly dropping a few sam-

ples in each mini-batch with a specific percentage. A window size

can also be supplied before augmentation to determine the patch

size desired for each configuration to avoid the recalculation of the

patches and the databases.

We trained our DNN classifier using back propagation (LeCun

et al., 2012) with stochastic gradient decent. We used a mini-batch

size of 256, a momentum of 0.9 and a weight decay of 0.0005. We

started with a base learning rate of 10�2 and decreased it by a factor

of 10 every 100K iterations. We used random initialization for the

weights through sampling from a normal distribution with a zero

mean and 10�2 variance. The biases were initialized to either 0 or 1.

Experimentally, we found that the model requires 30 epochs of

training to achieve the desired accuracy on an NVIDIA K80 GPU.

The training time took typically several days to complete.

We used an image-based approach for generating the probability

maps for the testing data set. We implemented our own image-based

forward propagation code (Giusti et al., 2013). The model was

trained first by Caffe using a patch-based approach then the weights

of the kernels and biases were extracted and fed to our image-based

code. Our image-based prediction speeded up the testing time dra-

matically as compared to a patch-based GPU forward propagation

even though our code was running on a CPU (takes roughly 2–4 min

Table 1. The complete architecture of the four DNNs used in our

experiments

A B C D

input 35 � 35 input 65 � 65 input 95 � 95 input 95 � 95

conv4-30 conv10-30 conv4-48 conv8-48

LRN LRN

maxpool

conv3-50-pad1 conv5-50 conv5-128 conv6-128

conv5-128 conv6-128

LRN LRN

maxpool

conv3-60-pad1 conv3-60 conv6-256 conv4-256

conv3-60-pad1 conv3-60 conv6-256 conv3-256

conv6-256 conv3-256

maxpool

FC-100 FC-100 FC-500 FC-500

Drop-0.5 Drop-0.5

FC-2

softmax

Each of the networks from A to D is divided into three blocks ending with

a max pooling layer each. The convolution layer parameters are illustrated as

‘conv<kernel size>-<number of kernels>-<padding size if any>’. All the

max pooling layers are 2 � 2 with stride 2 while all the convolution layers are

of stride 1. The RELU layers are omitted here for brevity.
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on a CPU machine). In addition, our image-based code did not re-

quire any computational and storage overhead for generating the

patches for the testing data, making it much more convenient and

efficient.

2.6 Post-processing
Our network D achieved the best pixel accuracy on the ISBI 2012

data set without any post-processing. However, the best pixel accur-

acy is not necessarily accompanied with the best segmentation. Even

the slightest mis-prediction of certain boundary pixels could severely

hurt the overall segmentation. Our model is in nature a pixel classi-

fier that was designed to achieve the best pixel accuracy but was not

optimized to produce a better segmentation.

We used the watershed merge tree post-processing technique

used in Liu et al. (2012, 2013). The technique starts by generating

an initial segmentation using watershed for each probability map

and then gradually raising the water level to produce hierarchical

segmentations forming a watershed merge tree. A decision of merg-

ing two nodes in the merge tree is based on the result of a random

forest boundary classifier that predicts the merge based on various

features extracted from each two nodes. This scheme reduced the

segmentation error to less than half of its original value.

3 Results and discussion

We created a validation data set from the training slices for which

the truth labels are available. We divided the 30 training slices into

20 training and 10 validation slices to obtain quantitative evalu-

ations for our models before submitting the final results to the ISBI

2012 challenge. The evaluation of the testing data in this challenge

was done through an automated online system where the submitted

segmentations were compared with the hidden ground truth based

on three different metrics:

Minimum Splits and Mergers Warping error is a segmentation

metric that penalizes topological disagreements, i.e.: the number of

splits and mergers required to obtain the desired segmentation.

Foreground-restric Rand error is defined as 1 � the maximal

F-score of the foreground-restricted Rand index, a measure of simi-

larity between two segmentations.

Pixel error is defined as 1 � the maximal F-score of pixel similar-

ity, or squared Euclidean distance between the original and the re-

sult labels.

We note that these evaluation metrics have been modified by the

challenge organizers after this manuscript has been submitted. We

demonstrate most of the results and model comparisons on the val-

idation data before we show the performance of the best model on

the testing data. It is worth mentioning that the results based on the

validation data set may be affected by the reduction in the training

data set size. This is because we only trained on the 20 slices instead

of all the 30 slices, since the remaining 10 slices are in the validation

set. Nonetheless, the results obtained on the validation data set are

very useful for model comparison. Table 2 illustrates the compari-

son between the four networks evaluated on the validation data set.

Although all the pixel error values are similar, the rand error gives a

better interpretation in terms of segmentation. We observed that the

post-processing reduced the rand error, but increased the pixel and

warping errors. This is because the DNN is a pixel classifier aiming

at optimizing the pixel error directly, and the warping error is

closely related to the pixel error. Thus, we chose to report the pixel

and warping errors before we applied the post-processing. After

post-processing, the pixel and warping errors were highly altered in

favor of obtaining a better segmentation. For that, the rand error

values reported in Table 2 are obtained after applying the post-

processing.

Our results are clearly in favor of the deeper networks C and D,

which highlights the impact of the depth on the outcome of the seg-

mentation. Networks A and B used less number of trainable layers,

and this hurt the performance regardless of the kernel sizes used or

the model configuration. On the other hand, networks C and D used

a large window size with a deeper architecture and relatively large

kernel sizes. Network D in particular achieved the best performance

among all the other networks in terms of rand index. This validates

our hypothesis that starting with a large kernel size in the bottom

layers indeed helps the model learn more useful features than start-

ing with small kernels as in network C.

We report the effectiveness of the techniques described in

Sections 2.3 and 2.4 in Table 3. The comparison was made using

our best performing network D on the validation data set. We

noticed that both the data augmentation and rotations during testing

are highly effective for improving the segmentation accuracy. The

model suffered from severe overfitting without augmentation while

the rotations applied during testing provided robustness to the clas-

sifier, thereby reducing the effect of input data randomization to a

great extent.

After selecting the best architecture and evaluating different tech-

niques applied upon training and testing, we extended our experi-

ments to the testing data. We trained network D on the 30 training

slices and evaluated them using the online system for the ISBI 2012

Challenge. Note that, although winners have been declared before

ISBI 2012, the challenge is still ongoing. Figure 2 reports the final re-

sults on two slices of the testing stack.

On the ISBI 2012 Challenge data set, our approach achieved the

best results on all the three evaluation metrics, breaking the record

maintained by other participants for years. A complete comparison

between our approach and other competing methods is shown in

Table 4.

Table 2. Comparison between the four networks using the valid-

ation data set

Network Rand

error [0.1023]

Warping

error [0.1026]

Pixel

error [0.1023]

A 82 1548 52

B 95 1729 50

C 75 1775 51

D 47 1684 49

Both the pixel and warping errors are reported before applying the post-

processing while the rand error is reported after the post-processing.

Table 3. Comparison between the results obtained using network

D before and after using train data augmentation and test data

augmentation

Network Rand

error [0.1023]

Warping

error [0.1026]

Pixel

error [0.1023]

D 47 1684 49

D—no training

augmentation

271 2905 61

D—No testing

augmentation

212 2176 61

These results were obtained by evaluation on the validation data set.
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In comparison to the second best approach (Ciresan et al.,

2012a) which was also based on a DNN and uses the same post-

processing technique, our network is deeper and uses a highly opti-

mized network architecture. The largest kernel size used in that

network was 5 and the bottom layer starts with a kernel size of 4.

They also implemented an actual ensemble of models where they

trained several networks with different window sizes and then

averaged their results. We believe that applying variations upon

testing is much faster and more efficient. The larger kernels utilized

in our architecture, the specific configuration of these kernels

along with data augmentation techniques we applied are key fac-

tors in outperforming all the other competitive approaches in all

metrics.

We demonstrate the training time requirements for the different

architectures in Table 5. The comparison is based on training on

20 slices of the training stack on a GPU machine. Network C was

the most computationally expensive network with the training time

reaching roughly 5 days as the number of parameters to train was

much higher than the other architectures. However the testing time

of all networks was very fast even on our own Matlab-based CPU

code with an average of few seconds on network A to roughly 4 min

on network C.

3.1 Most recent results
Due to the ongoing nature of the ISBI 2012 challenge, the evaluation

metrics along with the leading groups are continuously changing.

During the review process of this work, the organizers have pub-

lished new evaluation metrics, leading to new rankings in the leader

board along with new participating teams. In this section, we list the

new metrics along with the updated team rankings.

The challenge organizers revealed that the old metrics were not

sufficiently robust to variations in the widths of neurite borders

(Arganda-Carreras et al., 2015). They proposed two new metrics

based on specially normalized versions of the rand error and vari-

ation of information, namely foreground-restricted rand scoring

after border thinning (rand score thin) and foreground-restricted in-

formation theoretic scoring after border thinning (information score

Fig. 2. Slices 1 and 12 from the testing stack are shown along with their segmentations in the top and bottom rows, respectively. The first column represents the

raw input image, the second column represents the probability map output of the pixel classifier and the third column represents the final segmentation after the

post-processing

Table 4. Comparison between our method and the other compet-

ing techniques

Group Rand

error [0.1023]

Warping

error [0.1026]

Pixel

error [0.1023]

DIVE-SCI

(Our method)

17 307 58

IDSIA-SCI 18 616 102

optree-idsia 22 807 110

motif 26 426 62

SCI 28 515 63

Image Analysis Lab

Freiburg

38 352 61

Connectome 45 478 62

IDSIA-V 46 462 61

Table 5. Comparison of the training time and number of param-

eters for different architectures

A B C D

Training hours 5 30 120 104

No. of parameters 169,580 196,100 7,615,208 5,719,016
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thin). The latest team rankings based on these two evaluation met-

rics are given in Table 6.

4 Conclusion

The key contributions of our work are to provide novel insights on

DNN for brain EM image segmentation and to provide record-

breaking results. Our network is deep, wide and carefully designed

to achieve the full performance power of DNN. We achieved the

best results in the challenge without having to combine several mod-

els together, which makes the approach even more efficient. We be-

lieve that pretraining of our model on other data sets like ImageNet

and combining the results of several models would further improve

the accuracy. In addition, our model can generalize easily to differ-

ent EM segmentation tasks due to the nature of DNNs, which learn

features from data. We are also extending this deep learning scheme

on the Vaa3D (Peng et al., 2010) platform for other neuron images

in large brain projects such as the BigNeuron (Peng et al., 2015).
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Cireşan,D.C. et al. (2013). Mitosis detection in breast cancer histology images

with deep neural networks. In: MICCAI, pp. 411–418. Springer.

Deng, J. et al. (2009). Imagenet: a large-scale hierarchical image database. In:

CVPR, pages 248–255. IEEE.

Giusti,A. et al. (2013) Fast image scanning with deep max-pooling convolu-

tional neural networks. arXiv Preprint arXiv, 1302, 1700.

Helmstaedter,M. et al. (2013) Connectomic reconstruction of the inner plexi-

form layer in the mouse retina. Nature, 500, 168–174.

ISBI. (2012). Segmentation of Neuronal Structures in EM Stacks challenge -

ISBI 2012.

Jain,V. and Seung,S. (2009). Natural image denoising with convolutional net-

works. In: NIPS, pp. 769–776.

Jain,V. et al. (2007). Supervised learning of image restoration with convolu-

tional networks. In: ICCV, pp. 1–8. IEEE.

Ji,S. et al. (2013) 3d convolutional neural networks for human action recogni-

tion. PAMI, 35, 221–231.

Jia,Y. et al. (2014) Caffe: convolutional architecture for fast feature embed-

ding. arXiv Preprint arXiv, 1408, 5093.

Kim,J.S. et al. (2014) Space-time wiring specificity supports direction selectiv-

ity in the retina. Nature, 509, 331–336.

Krizhevsky,A. et al. (2012). Imagenet classification with deep convolutional

neural networks. In:7 NIPS, pp. 1097–1105.

LeCun,Y. et al. (1989) Backpropagation applied to handwritten zip code rec-

ognition. Neural Comput., 1, 541–551.

LeCun,Y. et al. (2004). Learning methods for generic object recognition with

invariance to pose and lighting. In: CVPR, vol. 2, pp. II–97. IEEE.

LeCun,Y.A. et al. (2012). Efficient backprop. In: Montavon, G., Orr, G.B.,

Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, LNCS,

vol. 7700. 2nd edn. Springer, Heidelberg, pp. 9–48.

Liu,T. et al. (2012). Watershed merge tree classification for electron micros-

copy image segmentation. In: ICPR, pp. 133–137. IEEE.

Liu,T. et al. (2013). Watershed merge forest classification for electron micros-

copy image stack segmentation. In: ICCV, vol. 2013, pp. 4069. NIH Public

Access.

Peng,H. et al. (2010) V3d enables real-time 3d visualization and quantitative

analysis of large-scale biological image data sets. Nat. Biotechnol., 28,

348–353.

Peng,H. et al. (2015) Bigneuron: large-scale 3d neuron reconstruction from

optical microscopy images. Neuron 87, 252–256.

Ronneberger,O. et al. (2015). U-net: Convolutional networks for biomedical

image segmentation. In: Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2015, pp 234–241. Springer.

Simonyan, K., and Zisserman, A. (2014) Very deep convolutional networks

for large-scale image recognition. arXiv Preprint arXiv, 1409, 1556.

Szegedy, C. et al. (2014) Going deeper with convolutions. arXiv Preprint

arXiv, 1409, 4842.

Turaga,S.C. et al. (2010) Convolutional networks can learn to generate affin-

ity graphs for image segmentation. Neural Comput., 22, 511–538.

Zeiler,M.D. and Fergus,R. (2014). Visualizing and understanding convolu-

tional networks. In: ECCV, pp. 818–833. Springer.

Zhang,W. et al. (2015) Deep convolutional neural networks for multi-modal-

ity isointense infant brain image segmentation. NeuroImage, 108, 214–224.

Table 6. The most recent leader board with the updated metrics

that were published during the review process of this work

Group Rand score thin Information score thin

IAL LMC 0.9803 0.9883

IAL MC 0.9795 0.9869

CUMedVision 0.9768 0.9886

CUMedVision-motif 0.9765 0.9883

DIVE-SCI (Our method) 0.9762 0.9873

r1q 0.9747 0.9848

IDSIA-SCI 0.9730 0.9874

Image Analysis Lab Freiburg 0.9727 0.9866

We list only the top-8 groups.

2358 A.Fakhry et al.

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/15/2352/1743853
by Old Dominion University user
on 09 March 2018

Deleted Text: the 
Deleted Text: -

	Old Dominion University
	ODU Digital Commons
	2016

	Deep Models for Brain EM Image Segmentation: Novel Insights and improved Performance
	Ahmed Fakhry
	Hanchuan Peng
	Shuiwang Ji
	Repository Citation
	Original Publication Citation


	btw165-TF1
	btw165-TF2
	btw165-TF3
	btw165-TF4

