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Abstract: The key events of the earliest stages of bone re-
generation have been described in vivo although not yet
modeled in an in vitro environment, where mechanistic
cell-matrix-growth factor interactions can be more effec-
tively studied. Here, we explore an early-stage bone re-
generation model where the ability of electrospun fib-
rinogen (Fg) nanofibers to regulate osteoblastogenesis be-
tween distinct mesenchymal stem cells populations is as-
sessed. Electrospun scaffolds of Fg, polydioxanone (PDO),
and a Fg:PDO blend were seeded with adipose-derived
mesenchymal stem cells (ASCs) and grown for 7–21 days in
osteogenic differentiation media or control growth media.
Scaffolds were analyzed weekly for histologic and molec-
ular evidence of osteoblastogenesis. In response to os-
teogenic differentiationmedia,ASCs seededon theFg scaf-
folds exhibit elevated expression of multiple genes associ-
ated with osteoblastogenesis. Histologic stains and scan-
ning electron microscopy demonstrate widespread miner-
alization within the scaffolds, as well as de novo type I col-
lagen synthesis. Our data demonstrates that electrospun
Fg nanofibers support ASC osteogenic differentiation, yet
the scaffold itself does not appear to be osteoinductive. To-
gether, ASCs and Fg recapitulate early stages of bone re-
generation ex vivo and presents a prospective autologous
therapeutic approach for bone repair.

Keywords: fibrinogen; adipose-derived mesenchymal
stem cell; electrospinning; bone regeneration; osteoblas-
togenesis
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1 Introduction

Healing of a fractured bone in the body occurs through
distinct yet overlapping stages (Table 1) [1], the first of
which is the early inflammatory stage where a fibrin-laced
hematoma develops within the fracture. This hematoma
clot originates from lacerated blood vessels in the bone
and periosteum. Hematoma formation leads to the infil-
tration of inflammatory cells (macrophages, monocytes,
and lymphocytes) and osteoblasts to clean and resorb the
necrotic bone and inflamedhematoma. Granulation tissue
develops from cells of the periosteum and endosteum as
the hematoma is resorbed, followed by an infiltration of
mesenchymal stem cells (MSCs) into the granulation tis-
sue tobegin repairs, includingnewcollagendeposition [2].
In the next stage of healing, the repair stage, the progenitor
cells differentiate into chondrocytes and later osteocytes,
which can be recognized by the upregulation of common
bone-specificmarker genes andproteins, such as osteocal-
cin, osteopontin, Runx2, and bone sialoprotein protein [3].
Recruited fibroblasts further deposit a mesh of connective
tissue to support vascular ingrowth into the granulation
tissue, with a collagen matrix supporting the osteoid. A
soft callus structure ultimately forms around the repair site
that fills with woven bone made by the osteoblasts. Frac-
ture healing concludes in the late remodeling stage, where
healing bone regains its original structures and mechani-
cal integrity.

Though fracture healing usually progresses smoothly,
non-unions in bone are prevalent when regeneration fails.
To accelerate bone healing or the closure of non-unions,
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Table 1: Bone Remodeling During Healing

Early-Stage Bone Regeneration Events# Bone Regeneration Model
Hematoma formation (fiber diameter dependent upon
physiological conditions regulating fiber assembly, with

80–458 nm diameters reported)

Electrospun fibrinogen with 364±142 nm fiber diameter
(n = 50, mean ± SD)

White cells and osteoblasts infiltrate and clear clot in
~7–14 days

MG63 osteoblasts dissociate electrospun fibrinogen
scaffolds in 4–9 days (Fig. 2F)

Type I collagen deposition and ECM remodeling ASCs (and fibroblasts)* remodel electrospun fibrinogen
with collagen (Fig. 2)

Osteoblastogenesis occurs initially from MSCs of
periosteum (pericyte) origin, not from bone marrow MSCs

(BMSCs)

ASCs (putative pericyte origin), but not BMSC,
differentiate into osteoblasts on electrospun fibrinogen

nanofibers (Fig. 2–5)
Bone-specific ECM (e.g. osteocalcin & collagen type I)
deposited by osteoblasts in a mineralized matrix

ASCs in osteogenic conditions remodel electrospun
fibrinogen scaffold with collagen, osteocalcin, and

mineralized matrix (Fig. 2–4, 6)
#Adapted summary from [3]; *Adapted from [27]

some health care providers have recently implemented in-
jecting a basic fibrinogen (Fg) gel for guiding osteogene-
sis into the fracture, both with and without MSCs added to
the mixture [4]. This and other studies indicate high vari-
ability in the results, with an excess of Fg injection seen
to inhibit new bone formation in controlled clinical stud-
ies [4–11]. Further, the form of the Fg [5–8] and the type of
MSC used [5–11] appear to be critical aspects to successful
bone healing in vivo and for modeling osteoblastogenesis
in vitro.

While bone marrow-derived MSCs (BMSCs) have been
the most widely studied of the MSC types, the existence
of analogous adipose-derived mesenchymal stem cells
(ASCs) in human fat have gained considerable interest [12,
13], in part due to sharing a very similar transcriptome,
and a nearly identical immunophenotype [14] and differ-
entiation potential [12–16] with BMSCs. ASCs are up to
1,400 times more abundant and are a more readily ac-
cessible cell source relative to BMSCs [15, 16]. Addition-
ally, ASCs have been shown able to restore lethally irra-
diated bone marrow and fully repopulate the hematopoi-
etic system [17], revealing the potential for allogeneic ASC
transplantation. Furthermore, ASCs, as with MSCs from
other tissue sources, secrete numerous growth factors im-
plicated in tissue development and regeneration [18]. As
progenitor cells of a perivascular origin (such as in the pe-
riosteum) are major contributors to primary bone healing,
the putative pericyte origin for ASCs, as well as their asso-
ciation with a perivascular niche [19–23], suggests a role
for ASCs as a model for osteoblastogenesis.

In tissue engineering, electrospinning has rapidly
gained interest due to its numerous advantages over con-

ventional scaffold fabrication methods [24] for use as
a matrix for in vitro 3-dimensional (3D) cell-based ex-
periments. Natural matrix materials, such as collagen,
laminin, elastin, and Fg, with or without supporting syn-
thetic blends (polydioxanone (PDO) or polyethylene glycol
(PEG)), canbe electrospun into scaffolds of nearly any size,
shape, or microscopic properties [24–28]. Unlike conven-
tional polymer processing techniques, electrospun scaf-
folds can closely resemble native extracellular matrices in
geometry, fiber size, and material composition.

There are numerous practical and biologic reasons for
using Fg to model bone regeneration. Fg is an integrin-
spanning glycoprotein that binds collagen, fibrin, and
heparin sulfate, and has been used clinically for a vari-
ety of applications for more than 60 years [29, 30]. Fg is
an extracellular matrix (ECM) derivable protein, is eas-
ily purified from human specimens [4], and is well suited
for electrospinning [27, 31–33]. Fg binds basic fibroblast
growth factor (bFGF) and vascular endothelial growth fac-
tor (VEGF)with high affinity; both bFGF andVEGFpotenti-
ate endothelial cell proliferation andmay contribute to the
healing response. ASCs express high levels of bFGF and
VEGF, as well as many other pro-angiogenic factors [14],
again supporting the pairing of ASCs and Fg tomodel bone
regeneration.

Addressing a need for generating bone for pre-clinical
testing and for potential therapeutic purposes, we ex-
plore the feasibility of using electrospun Fg to support os-
teoblastogenesis in donor-derived ASCs. Using quantita-
tive RT-PCR (qRT-PCR), immunologic and histologic stain-
ing procedures, and confocal and electronmicroscopy, we
show ASCs together with electrospun Fg recapitulate key
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events in early bone regeneration, thus providing an at-
tractive pre-clinicalmodel for bone regenerativemedicine-
related applications.

2 Materials and Methods

2.1 ASC Primary Isolation and Culture

ASCs were procured from donors as we described previ-
ously [34, 35] and in accordance with Virginia Common-
wealth University’s Institutional Review Board. Briefly,
lipoaspirate was obtained as surgical waste from patients
undergoing elective, cosmetic surgery. Around 250 ml
of fat was extensively washed in PBS then digested for
1 hr in 0.1% collagenase A (Sigma-Aldrich) solution with
shaking at 37◦C. The digested tissue was centrifuged for
10 min at 200 xg, with the floating adipocytes and me-
dia aspirated off and the remaining pellet incubated for
10 min in 140 mM ammonium chloride (Sigma-Aldrich)
red blood cell lysis buffer. The cells were filtered through
100μm and 40μm mesh filters (BD Bioscience) and gradi-
ent separated for mononuclear cells (Histopaque, Sigma-
Aldrich). Cells were plated on plastic in low glucose DMEM
(Invitrogen) with 30% fetal bovine serum (FBS) (Hy-
clone) and 1% antibiotic/antimycotic (ABAM; penicillin-
streptomycin-gentamicin, Invitrogen) overnight. The next
day, non-adherent cells were washed-off with PBS to se-
lect for the adherent MSC population. The cells were cul-
tured in low glucose DMEMwith 10% FBS, and 1% ABAM,
known as basic ASC growthmedia. Adherent cells were ex-
panded and then confirmed by flow cytometry to exhibit
theMSC immunophenotype andbyhistology andqRT-PCR
to display tri-lineage mesenchymal differentiation poten-
tial, as previously described [34, 35].

2.2 BMSCs, BJ Fibroblasts, and MG63 Cell
Culture

Human foreskin fibroblasts (BJ) were obtained from ATCC
(Manassas, VA) and expanded in D9C media (DMEM, 1X
Medium 199, 10% CCS (Cosmic Calf Serum, Hyclone)) and
1% ABAM. MG63 osteosarcoma cells (ATCC) were cultured
in basic ASC growth media or specific differentiation me-
dia. Two BMSC strains were obtained from the iliac crest
of healthy human patient donors in accordance with the
VCU’s IRB, using standard isolation procedures [36]. BM-
SCs and ASCs were maintained in low glucose DMEM sup-
plemented with 10% FBS, 15ng/mL bFGF (Sigma-Aldrich),

and 1% ABAM. All cells were incubated at 37◦C and 5%
CO2. BJ fibroblasts, due to their inability to differentiate
along multiple mesenchymal lineages, provided a nega-
tive cell strain of mesenchymal origin to directly compare
with ASCs. BMSCs and MG63 human osteosarcoma cells
served as a positive control for bone-specific markers.

2.3 Electrospinning Fg, PDO, and Fg:PDO

Solutions of lyophilized bovine Fg (Fraction 1, Type 1-S
from bovine plasma, Sigma Aldrich) were made with a
10% (by volume) 10X minimal essential medium (MEM,
Sigma Aldrich) and 90% 1,1,1,3,3,3 hexafluoro-2-propanol
(HFP; TCI America, Portland, OR) at concentrations of
100 mg/mL (ratio determined to make biomimetic fiber
diameters as described in our prior work [37]), and al-
lowed to dissolve overnight with shaking. Solutions of
PDO (Ethicon, Somerville, NJ) were made at 100 mg/ml
concentrations, dissolved in HFP overnight with shaking
at room temperature (RT). Fg:PDO blended scaffolds were
combined in one vial after mixing overnight with an ad-
ditional 10% MEM to allow the polymers to stay in so-
lution to effectively electrospin. The solution was elec-
trospun to create non-woven, randomly oriented fibrous
mats. The electrospinning apparatus consisted of a sy-
ringe pump (KD Scientific), high voltage power supply
(Spellman CZE1000R, Spellman High Voltage Electron-
ics Corp.), 10 ml syringes (BD Bioscience) with 18-gauge
blunt-end needle, and a 303 stainless steel mandrel (typ-
ically at 10.2 cm length × 2.5 cm width × 0.3 cm thick)
used as a rotating collection target. Electrospinning pa-
rameters were typically constant at 30 kV-applied voltage,
12.5 cm distance between the needle and grounded man-
drel, 2.5 mL/hour solution dispensing rate, a 2 cm/s trans-
lational speed over a 7 cm throw, and 500 RPM rotation
speed, as we reported previously [44]. The scaffolds were
disinfected in 80%ethanol andwashed in PBSwith 10mm
discs formed using tissue biopsy punches for subsequent
cell seeding. ImageJ64 (NIH shareware) was used on scan-
ning electron microscopic (SEM) images to determine the
average (mean) fiber diameter from randomfibers (n = 50),
from scaffolds left in culture media at 37◦C for 7 days.

2.4 Scaffold Cell Seeding and Culture

To reduce donor-specific differences that may exist in
ASCs, the low passage (population doubling 2–8) strains
were pooled for seeding on scaffolds. A concentrated
100 μl drop of 50,000 cells (500 cells/μl) was carefully

Unauthenticated
Download Date | 12/26/16 4:40 PM



Osteoblastogenesis on Electrospun Fibrinogen with Mesenchymal Stem Cells | 13

placed on the center of the 10 mm electrospun discs for
each experimental condition. Cells were allowed to ad-
here in the incubator for 15 min and then 500 μl of
osteogenic differentiation media (high glucose DMEM,
10% FBS, 0.1 μM dexamethasone, 50 μM ascorbate-2-
phosphate, 10mM β-glycerophosphate, 1%ABAM) or con-
trol media (osteogenic media without dexamethasone)
was then added. Cellularized scaffolds were cultured in
ASC growth media or osteogenic media at 37◦C and 5%
CO2, with media changed every 2–3 days. Scaffolds were
collected at days 1, 7, 14, and 21, fixed, and processed as
described below.

2.5 Quantitative Real Time RT-PCR

Total cellular RNA was extracted from electrospun tissue-
analogues using Trizol� Reagent (Invitrogen) accord-
ing to manufacturer’s protocol. For adequate RNA yield,
five cell-seeded 10 mm scaffolds were homogenized for
each condition and pulverized together with a tissue
grinder in 1ml of Trizol. RNA concentrations and pu-
rity were estimated on a nanodrop spectrophotometer
(Thermo Scientific, Waltham, MA). RNA was reverse tran-
scribed using a randomhexamer and the SuperScript First
Strand Synthesis System (Invitrogen). An ABI PRISM 7900
(Life Technologies) was used for gene expression (qRT-
PCR) analysis from quintuplicate samples. Primers for
18S (ABI standard sequences [35]), osteocalcin (Fwd: 5’-
AGCAAAGGTGCAGCCTTTGT-3’; Rev: 5’-GCGCCTGGGTCTCT
TCACT-3’; TaqMan probe: 5’-CCTCGCTGCCCTCCTGCTTGG-
3’), RUNX2 (Fwd: 5’-CCCGTGGCCTTCAAGGT-3’; Rev:
5’-CGTTACCCGCCATGACAGTA-3’; TaqMan probe: 5’-
CCACAGTCCCATCTGGTACCTCTCCG-3’), and alkaline phos-
phatase (Fwd: 5’-GCACTCCCACTTCATCTGGAA-3’; Rev: 5’-
GAAACCCAATAGGTAGTCCACATTG-3’; TaqMan probe: 5’-
CGCACGGAACTCCTGACCCTTGAC-3’) were used. Relative
expression levels for the lineage specific genes were calcu-
lated using standard curves generated from the triplicate
dilution series of the cDNA with normalization to the 18S
housekeeping gene.

2.6 Histological Scaffold Processing and
Evaluation

Scaffolds were washed with PBS and fixed in 10% for-
malin, cryosectioned or paraffin embedded to section,
and mounted for standard histological hematoxylin and
eosin (H&E), Ki67 immunohistochemistry, and Masson’s
Trichrome staining (VCU Clinical Pathology Research Ser-

vices). Ethanol-fixed sampleswere paraffin embedded and
routinely processed for Alizarin Red S staining [12, 43,
46]. Slides were visualized by phase and fluorescence
microscopy. For osteocalcin immunolabeling, cells were
washed with PBS and fixed with 3.7% paraformaldehyde
for 30 min, and then permeabilized with 0.5% Triton X-
100 for 10 minutes. Following PBS washing, cells were
blocked with 4% bovine serum albumin (BSA) or nor-
mal goat serum in PBS for 1 hour, and then incubated
in 4% BSA/goat serum in PBS with a polyclonal anti-
body for osteocalcin (100 μg/ml, Santa Cruz Biotechnol-
ogy) overnight at 4◦C in a humidified chamber. After PBS
washes, cells were incubated 4% BSA in PBS with Alexa-
Fluor 488 goat anti-rabbit IgG (1:200 dilution; Invitro-
gen) for 1 h at RT. Cells were stained 4’,6-diamidino-2-
phenylindole (DAPI) upon mounting in Vectashield (Vec-
tor Lab H-1000).

2.7 Microscopic Scaffold Evaluation

For SEM evaluation, scaffolds were fixed in 50% glu-
taraldehyde andprocessed by standardmethodswith gold
sputter coating prior to analysis by a Zeiss EVO 50 XVP
(Nano Technology System Division, Carl Zeiss). For con-
focal microscopy, cells were grown on scaffolds in cham-
bered coverglass, or prepared from paraffin-embedded
scaffold sectionsmountedon slides.ALeicaTCS-SP2AOBS
confocal laser-scanning microscope was used to capture
images using identical light intensity settings, using Leica
LCSLite imaging software. Phase and fluorescent images
were captured on anOlympus BX51with Q-Capture Pro us-
ing identical light intensity settings.

2.8 Statistical Analyses

Cell numbers and the percentage of positively immunos-
tained cells were based on 5 randomly selected micro-
scopic fields, from on average of 4 different sections. An
ImageJ64 cell counter tool was used to assist with the gen-
eration of quantitative data. Statistical analysis for cell
counts, percent immunopositivity, and qPCR gene expres-
sion comparisonswere performedusing a one-wayANOVA
followed by a Tukey’s test for pairwise comparison with
the a priori significance set at p < 0.05.
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Figure 1: Electrospun Fg:PDO and Fg Scaffolds Support ASCs. ASCs seeded on electrospun 50:50 Fg:PDO (A&C) or Fg (B&D) show cells
present throughout the constructs at 2 weeks of culture, as assayed by H&E (A&B) and DAPI (C&D) (20×magnification). Ki67 staining of
ASCs grown on electrospun Fg:PDO, pure Fg, and PDO was performed (E), with the percent of positive staining, replicative cells quantitated
from 5 random fields. Cells were grown in either osteogenic media (OM) or control media (CM) for 7–21 days (D7, D14, D21) as indicated, and
a minimum of 4 independently seeded scaffolds were analyzed for each assay. *indicates statistical significance at p < 0.05 using one-way
ANOVA vs. PDO scaffolds, and **indicates p<0.05 vs. both PDO and Fg:PDO scaffolds. Arrows indicate cell growth on the matrix.

3 Results

ASC Attachment and Proliferation on
Electrospun Fg Scaffolds

To assess cell attachment, viability, proliferative index,
and penetration into electrospun Fg and Fg:PDO scaffolds,
5 × 105 ASCs were seeded on scaffolds and collected ev-
ery 7 days for DAPI, H&E, and Ki67 immunostaining. We
previously reported that crosslinking Fg by various meth-
ods leaves the scaffold impermeable to cells [37]; there-
fore, scaffolds were left in their native, uncrosslinked state
after electrospinning. As shown in Figure 1, viable ASCs
were abundantly present on pure Fg scaffold (panel B)
with a modest reduction in cellularity on blended Fg:PDO
scaffolds (panel A) after 2 weeks in culture. Of note, the
number of cell layers formed on/within the electrospun
PDO, Fg:PDO, and pure Fg scaffolds was clearly distinct:
for purePDOscaffolds, therewas a single-cell layer ofASCs
on the periphery with no detectable cells penetrating the
interior (data not shown); for the blended Fg:PDO scaf-
folds, ASCs typically formed layers comprising 4-5 cells
thick with some cells infiltrating deeper into the scaffold
(Figure 1A); for pure Fg scaffolds, cells formed thick lay-
ers (averaging 8–12 cells deep) with many cells penetrat-
ing beyond the surface of the scaffold (Figure 1B). H&E

stained scaffolds were also used to compare the cellular-
ity in the blended Fg:PDO (Figure 1C) and pure Fg scaffolds
(Figure 1D). A 2.5-4-fold increase in ASC number was seen
in Fg:PDO and Fg scaffolds as compared to pure PDO scaf-
folds (Figure 1E).

Using Ki-67 as amarker to assess proliferative indices,
we show that on average 9%of undifferentiatedASCs (con-
trol media, CM) proliferate on pure Fg scaffold, and on
average 6% of undifferentiated ASCs proliferate on the
Fg:PDO blend after 3 weeks in culture (Figure 1E). As ex-
pected for cells undergoing differentiation, ASCs when
cultured in osteogenicmedia (OM) exhibited a trend for re-
duced proliferation overtime in culture (Figure 1E), a pat-
tern highly consistent with scaffold cellularity shown in
Figure 2. Of the three materials tested, the pure PDO scaf-
fold was substantially inferior to supporting the viability
or growth of ASCs as shown by Ki-67 staining in Figure 1E.

New Extracellular Matrix Production and
Remodeling By ASCs

Masson Trichrome histochemical staining revealed the
ability of ASCs to deposit newECM.Wefind that ASCswere
able to remodel the Fg scaffolds over time, depositing new
collagen in place of Fg from 1 to asmany as 10weeks of cul-
ture, in both pure electrospun Fg and Fg:PDO (Figure 2).
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Figure 2: Histology of ASCs and MG63s on Electrospun Fg Matrix.
Masson’s Trichrome stains of ASCs in osteogenic differentiation
media grown on electrospun Fg for 21 (A) and 75 days (E) show pro-
nounced Masson’s Trichrome staining (blue for collagen) relative to
an acellular control in media for 21 days (B). Fg:PDO blend similarly
showed new collagen deposition at 21 days of ASC differentiation
(C), as compared to an acellular Fg:PDO control at day 21 (D). H&E
staining of MG63s on electrospun Fg for 7 days shows a dissociated
yet densely cellular scaffold (F). Magnification was 20×.

Figure 3: Topography of Bone-Induced ASCs on Electrospun Fg
Scaffolds. MG63 osteosarcoma cells are shown by SEM at day 7
on electrospun Fg as an osteoblast reference (A). BJ fibroblasts in
osteogenic differentiation media (OM) (B) and ASCs grown in con-
trol growth media (CM) (C) on Fg scaffolds for 14 days are shown
for reference. ASCs maintained in OM are shown at 7–21 days of
differentiation (D–F) via SEM (at 2000×magnification), showing a
unique morphology on the scaffold surface, distinct from ASCs in
CM. Qualitatively, the scaffolds in (D–F) were very brittle.

Contrary to previous data with fibroblast cultures on elec-
trospun Fg, ASCs seem to naturally adhere to the electro-
spun Fg (Figure 2A and 2C) and allow extended culture
on associated 3D scaffolds (up to 75+ days (Figure 2E)). In

contrast, the histology ofMG63 cells grown on electrospun
Fg for 7 days shows a completely dissociated matrix (Fig-
ure 2F).

ASCs Mineralize Electrospun Fg

To assess changes in scaffold surface topography dur-
ing osteogenic differentiation with control or ASCs seeded
on electrospun Fg-containing and PDO scaffolds, we per-
formed SEM of the bone-induced (osteogenic media (OM))
and control media (CM) samples for up to 21 days. Com-
pared to acellular (not shown),MG63- or BJ-seeded Fg scaf-
folds (Figure 3A and 3B, respectively), and ASCs on PDO
(not shown), only the differentiating ASC-containing scaf-
folds exhibited a significant change inmorphology and to-
pography (Figure 3D–3F), with features suggestive of scaf-
fold mineralization. This mineralization-like change in
electrospun scaffold surface topography is consistent with
previous findings from our collaborators using a chemical
mineralization protocol [38] and is in stark contrast to the
Fg scaffolds cellularized with ASCs that are maintained in
control media for 2 weeks (Figure 3C) or for longer periods
of time (up to 5 weeks; not shown).

In order to evaluate the potential of ASCs seeded on
electrospun Fg to form mature bone-like material, we as-
sayed for calcification using Alizarin Red S (ARS) stain-
ing of ASCs seeded on Fg, Fg:PDO and pure PDO scaffolds
seeded up to 21 days after osteoinduction (Figure 4). While
pure PDO scaffolds with ASCs showed a marked absence
of staining (Figure 4A), matrix mineralization was clearly
detected for Fg:PDO (Figure 4B) andwith pure Fg scaffolds
at day 21 (Figure 4F), with staining appearing to intensify
over time on ASCs grown on pure Fg scaffolds from 7 to
21 days in culture (Figure 4D–4F). Fg scaffolds seededwith
ASCs maintained with control media for 21 days showed
little if any ARS staining at 21 days of culture (Figure 4C).
We observed that bone-induced samples of ASC-seeded
Fg scaffolds hardened and became physically brittle only
when seeded with ASCs (not with BJs or BMSCs), with the
created discs (~80–120μm thick) proving too fragile for
consistent mechanical testing.

ASC Osteoblastogenesis on Electrospun Fg

To further assess ASC and BMSC osteoblastogenesis with
electrospun Fg scaffolds, quantitative RT-PCR (qRT-PCR)
was conducted to assess expression levels of Runx2, alka-
line phosphatase (AP), and osteocalcin, which are mark-
ers of early, mid, and late stages of osteoblastogenesis, re-
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Figure 4:Mineralization of Electrospun PDO, Fg:PDO, and Fg Scaf-
folds. Alizarin Red S (ARS) staining of ASCs grown in osteogenic
media (OM) for 21 days on electrospun PDO (A) and 50:50 Fg:PDO
(B) indicate scaffold mineralization for only the 50:50 blend. Pure Fg
scaffold with ASCs grown in control media (CM) lacked ARS staining
at 21 days of culture (C), while ARS staining increases with time on
pure Fg scaffolds seeded with ASCs in osteogenic media at 7 (D), 14
(E), and 21 days (F) of differentiation.

Figure 5: Gene Expression of ASCs and BMSCs on Electrospun Fg
and Cell Counts. (A) Quantitative RT-PCR shows Runx2 expression
at 1 week vs. 3 weeks of culture in both osteogenic media (OM) and
control media (CM) for ASCs grown on Fg scaffolds. qRT-PCR anal-
ysis of alkaline phosphatase (AP) (B) and osteocalcin (C) gene ex-
pression from ASCs on pure Fg, in either CM or OM at 7 or 21 days of
culture, is shown. MG63 cells serve as a positive control for osteo-
calcin expression. (D) The average cell number was also quantified
on the different Fg and Fg:PDO scaffold types with CM or OM from
7–21 days of culture, as indicated. *indicates statistical significance
at p < 0.05 vs. 18S housekeeping control using one-way ANOVA
followed by a Tukey’s test for pairwise comparisons. **indicates
statistical significance at p < 0.05 over all groups (except MG63).

spectively (Figure 5). A substantial increase of Runx2 ex-
pression was noted in ASCs in osteogenic media (OM) but
also in control media (CM) at 7 weeks of culture on Fg scaf-
folds (Figure 5A). AP gene expression at 3 weeks of differ-
entiation was markedly increased compared to 1 week of
differentiation only for ASCs seeded on Fg, while controls
and ASCs showed no significant changes out to 3 weeks
in osteogenic or control media (Figure 5B). Only ASCs in
osteogenic media seeded on pure electrospun Fg scaffolds
at 3 weeks of differentiation showed significant upregula-
tion of osteocalcin relative to 1 week of differentiation (Fig-
ure 5C), while the MG63 positive osteoblast control cells
showed high osteocalcin gene expression on Fg scaffolds,
as expected (Figure 5C). Consistent with the Ki-67 staining
(see Figure 1E), we observe a decline in cell number during
differentiation of ASCs on both pure Fg and Fg:PDO blend
that is not observed in control media (Figure 5D).

To determine if mature bone proteins were being syn-
thesized and incorporated into the electrospun Fg matrix,
osteocalcin expression of bone-induced ASCs on electro-
spunFgwas assessed using immunofluorescence and con-
focal microscopy after 3 weeks of culture. Figure 6 shows
a mild fiber auto-fluorescence in each panel, slightly ob-
scuring the signal; however, the osteocalcin immunolabel-
ing intensity is clearly observed above background levels
and is observed extracellularly in bone-induced scaffolds
on pure Fg and Fg:PDOblended scaffolds (Figure 6), which
was detectable in cell seeded scaffolds maintained in con-
trol media (not shown). In prior studies in our laboratory,
osteocalcin staining was also confirmed with ASCs grown
on plastic in osteogenic media, with strong positive stain-
ing in bone-induced cells observed both microscopically
and validated byWestern blotting to validate the antibody
quality (data not shown).

4 Discussion

While direct comparisons of osteoblastogenesis models to
actual bone regeneration in vivo have a variety of tech-
nical, logistical, and ethical challenges, we show here a
practical in vitro replica of cell-matrix interaction-related
events that mimic some of the key early events of bone re-
generation, using a biomimetic approach for bone-related
tissue engineering. As described in the early steps of ac-
tual bone regeneration, ASCs (and fibroblasts, as previ-
ously shown [34]) actively remodel the electrospun Fg by
depositing new type I collagen, the predominant organic
component of bone. We observed that ASCs (of a putative
pericyte origin) can infiltrate the Fg, undergo osteoblasto-
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Figure 6: Osteocalcin Protein Expression in Osteo-Induced ASCs on
Electrospun Fg. ASCs were seeded on electrospun Fg and cultured
for 21 days in osteogenic media (OM). Sections of ASC/Fg were im-
munostained for osteocalcin along with a nuclear DAPI stain. ASCs
grown on Fg in control media (CM) for 21 days (left panels) showed
minimal staining, while the inclusion of no primary antibody in the
immunostaining served as a negative control for osteocalcin stain-
ing (not included). Magnification is as indicated. (Note: mild auto-
fluorescence from the nanofibers is also observed in all groups at
the same exposure level).

gensis, and synthesize new collagen, as found in actual
bone fracture repair from periosteum or pericytes.

Electrospinning produces scaffolds highly amenable
to cell adhesion, viability, and osteogenic differentiation
using many different template scaffold materials [26, 38].
The electrospinning of Fg nanofibers, published first by
Wnek et al. [27], has provided a tissue engineering ap-
proach with extensive research and therapeutic poten-
tial. However, prior publications with electrospun Fg ma-
trix lacked mechanical stability to serve as tissue engi-
neering scaffolds without crosslinking, as the Fg scaffolds
completely dissociated in 1–2 weeks of culture, a prob-
lem consistently observed with electrospun collagen scaf-
folds [38]. While the mechanical properties of electrospun
Fg may be augmented by chemical crosslinking, we have
previously reported that chemical crosslinking inhibits
cell growth and differentiation [37]. Blending Fg with a
synthetic polymer, such as PDO, improves scaffold stabil-
ity in media [33, 37]. We show here that ASCs inherently
possess a unique ability to remodel a sustainable scaffold
in long-term culture. For up to 75 days of culture with un-
crosslinked Fg, ASCs produced a cellularized Fg scaffold
composed of new collagen (and likely other ECM materi-
als) with long-term in vitro stability.

We find that electrospun Fg and Fg:PDO scaffolds are
capable of supporting the proliferation of ASCs in vitro as
noted by positive Ki67 staining and increased cell num-
ber over time. In contrast, during osteoblastogenesis, we
observed a decline in both mitotic activity and cell num-

ber as ASCs differentiate in osteogenic media, indicating
that ASCs may be exiting the cell cycle and fully commit-
ting to osteoblast differentiation. Interestingly, our model
osteoblast cell line (MG63) completely destroys the elec-
trospun Fg matrix in as little as 3 days, likely the result of
high levels of metalloproteinases (MMPs) reportedly pro-
duced byMG63 cells, as someMMPs are known to regulate
fibrin-invasion [39].

Synthetic materials are valued in tissue engineering
because of their mechanical strength, their elastic proper-
ties, and their general thrift and abundance relative to nat-
urally derived materials. Unfortunately, synthetic materi-
als tend to have poor cell-matrix interactions, as we show
here, and often are reactive with the host immune sys-
tem. The typically poor cellular response of synthetic poly-
mers can be improved by the addition of natural materi-
als, as shownpreviouslywith pre-osteoblast cells grown in
electrospun polycaprolactone (PCL)/hydroxyapatite ma-
trices [40]. Similarly, we show that the typical poor cell-
attachment response, low proliferation and scaffold pen-
etration, and poor osteogenic potential of a synthetic ma-
terial, PDO, can be enhanced by the addition of a natural
protein, Fg.

It is becoming well established that cell-ECM dynam-
ics play roles in cell fate determination, gap-junction com-
munications, cell alignment and shape modulation, gene
expression, cytoskeletal organization, and other functions
using many different cell types [41, 42]. Osteoblastoge-
nesis is a process highly dependent on chemical, struc-
tural, andmechanical interactionswith ECM components,
where, for example, ordered type I collagen fibrils are es-
sential for regulating osteoblast differentiation from os-
teoprogenitors [43]. The ECM can also stimulate circulat-
ing and resident stem cells and bone precursor cells for
regeneration by way of local niche elements [44]. Prior
studies suggest that electrospun PCL fibers either coated
with calcium phosphate or co-electrospun with collagen,
relative to PCL fibers alone, are capable of stimulating
osteoblastogenesis with commonly used MC3T3-E1 osteo-
precursor cells [45, 46]. The ability of a scaffold to main-
tain and induce differentiationmay be a critical parameter
of an ideal scaffold for therapeutic use. Additional work
also suggests that type I collagen formed as biomimetic
electrospun nanofibers is able to support osteoblastogen-
esis, and in some ways, model bone regeneration in vitro,
with a strong biomimetic response favoring collagen fibers
over collagenfilms for upregulating osteogenic differentia-
tion [38]. The earliest stage of bone regeneration, however,
involves fibrin clot formation before collagen deposition.

In amodel systemmimicking native cell-ECM features
of early-stage bone regeneration in vivo, we show elec-
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trospun Fg nanofibers support ASC attachment, prolifer-
ation, scaffold remodeling and matrix mineralization. Us-
ing a biomimetic approach, we present an ex vivomodel of
osteoblastogenesis with multiple cellular andmatrix com-
ponents (Table 1, column 2) recapitulating bone fracture
healing in vivo (Table 1, column 1). The pairing of ASCs and
Fg-based electrospun fibers may provide an entirely au-
tologous therapeutic strategy that is amenable to adding
additional ECM and cellular constituents associated with
bone regeneration events in vivo. Thus,wepresent amodel
that will be a valuable tool for further elucidating cell-
matrix interactions critical for proper bone regeneration.
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