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Diffuse light scattering dynamics under conditions of electromagnetically induced transparency

V. M. Datsyuk, I. M. Sokolov, and D. V. Kupriyanov*
Department of Theoretical Physics, State Polytechnic University, 195251, St. Petersburg, Russia

M. D. Havey†

Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
�Received 11 June 2006; published 13 October 2006�

We show that under conditions typical of electromagnetically induced transparency �EIT� in an ultracold
atomic sample in a magneto-optical trap, a significant portion of the incident probe pulse is transferred into
Rayleigh and Raman scattering channels. The light scattered into the Rayleigh channel emerges from the
sample with an EIT time delay. We show that a proper description of the probe light propagation in the sample
should include, in the diffusion dynamics, a spin polariton generated by the two-photon EIT process. The
results have important implications for studies of weak light localization and for manipulation of single and
few photon states in ultracold atomic gases.

DOI: 10.1103/PhysRevA.74.043812 PACS number�s�: 42.50.Ct, 34.50.Rk, 34.80.Qb, 03.67.Mn

I. INTRODUCTION

External control of the electrodynamic response of atomic
systems has been revolutionized by the merger of the ideas
of coherent population trapping �1–4� with the techniques
and concepts of ultracold atom physics �5�. The potential
afforded by the combination was first demonstrated in the
remarkable experiments of Hau et al. �6�, in which a coher-
ent light pulse was compressed in an ultracold gas of sodium
atoms, the excitation having a very small group velocity,
�17 m/s. Subsequent extensive theoretical and experimen-
tal research has shown that a combined atomic-photonic qua-
siparticle excitation is created in the ultracold medium and
that the properties of the polariton can be dynamically ma-
nipulated through the external qualities of the light fields
used to prepare and probe the medium �2–4,7�. Since then,
studies have shown a broad range of physics associated with
coherent manipulation of propagation of electromagnetic
waves �8–15�. For example, Chanelière and coresearchers
have recently shown, in a series of beautiful experiments
�16�, that it is possible to generate single-photon wave pack-
ets and to map them into polaritons in an ultracold sample of
87Rb atoms. The single-photon wave packets could be regen-
erated after a controllable delay by judicious application of a
control electromagnetic field. The physical processes associ-
ated with manipulation and storage of individual photon
wave packets, and entanglement of the quantum states of the
packets with a propagating one, are critical elements for
quantum information protocols and quantum memory appli-
cations.

Among the essential elements needed for practical appli-
cations is quantitative understanding of coherence loss
mechanisms in each stage of a quantum information proto-
col. In many studies of storage and retrieval of single and

multiple quantum wave packets in ultracold gases, the ini-
tially created excitation undergoes decay as the length of the
storage time is increased. In this paper we focus quantita-
tively on one mechanism which can lead to such a potential
loss of fidelity and some of the surprising physics that results
from these considerations. In particular, we consider the dif-
fusely �multiply� scattered light that is necessarily generated
as a result of optical excitation with temporally finite light
pulses. In a general case, the associated finite spectral band-
width produces diffusely scattered Rayleigh and Raman
modes in the sample. These modes show quite different tem-
poral behavior, in comparison with the coherent forward
scattered probe light. In addition, because the Rayleigh scat-
tered component maintains coherence with the incident
probe beam, a new type of quasiparticle, a diffuse polariton,
is created. Finally, we point out that the physics of light
diffusion in a coherent medium consisting of a thermal �not
ultracold� gas of Rb atoms has been investigated by Matsko
et al. �14�. We point out that there have been a large number
of studies of the fascinating physics of coherent population
trapping; some representative papers are cited here �8–14�. A
number of reviews have also appeared on the subjects of EIT
and coherent population trapping, citing contemporary appli-
cations �1,3,4,17,18�.

In the remainder of this paper, we first consider in more
detail why, in the context of the previous discussion, the
diffuse scattering channels are important. This is followed by
a description and discussion of the complex susceptibility for
the case of a typical lambda configuration attainable on hy-
perfine resonance transitions in an ultracold gas of 87Rb at-
oms �19�. The scattering channels are then considered, with
particular attention paid to the Green’s function for propaga-
tion in the inhomogeneous and optically anisotropic medium.
We then present our results describing the temporal behavior
of the forward scattered light and the diffusely scattered fluo-
rescence. We finally show that the coherence of the multiply
scattered Rayleigh mode can be detected through the appear-
ance of the coherent backscattering effect for the weak probe
beam.

*Electronic address: Kupr@DK11578.spb.edu
†Electronic address: mhavey@odu.edu
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II. BASIC ASSUMPTIONS AND CALCULATION
APPROACH

A. Why the scattering channels are important

As an example of a system where electromagnetically in-
duced transparency �EIT� resonance can be clearly observed,
we consider the �-type configuration in the hyperfine mani-
fold of the D1 line of 87Rb �see Fig. 1�. A strong coupling
field with right-handed circular polarization is applied be-
tween the F=2 hyperfine sublevel of the ground state and
F�=1 hyperfine component of the excited level. The atoms
equally populate the relevant Zeeman states of the lower hy-
perfine sublevel F=1. In the figure, the detuning of the cou-
pling �probe� laser from atomic resonance is defined as �1
��2�. Such an atomic configuration is typical for EIT obser-
vation and can be fashioned in ultracold systems using, for
example, magneto-optic or quasistatic dipole traps. Such
configurations have also been widely studied in more tradi-
tional heated atomic gas cells; see for example, Refs.
�12–14�.

In the present paper, we assume that atoms are so deeply
slowed by an atomic cooling process that we can neglect all
effects associated with atomic motion. These are ideal con-
ditions for EIT and the probe mode, being applied with any
polarization to the F=1→F�=1 hyperfine transition, would
find respective �-type excitation channels, thus generating,
as a result of the coherent Raman process, hyperfine coher-
ence in the ground levels. To set our terminology, we refer in
brief to Rayleigh and elastic Raman scattering processes as
Rayleigh scattering. The terminology Raman scattering re-
fers only to hyperfine inelastic Raman scattering. All time
scales are measured relative to the inverse lifetime �−1 of the
87Rb resonance transition.

To reliably observe the conversion of the probe pulse into
a polariton-type quasiparticle state, which, as expected,
would forwardly propagate through the sample, some tempo-

ral and spectral requirements should be fulfilled. There are
two important temporal parameters for the process: the pulse
duration �p and the delay time �d between the entrance and
emergence of the probe light pulse. Apparently, for high-
fidelity conversion of the full incident light pulse into the
polariton pulse, it is desirable that �d��p. For the simplest
�-type configuration the delay time can be estimated as

�d =
L

v̄
� n0�2L

�

�R
2 , �2.1�

where L is the sample length, v̄ is a group velocity for the
probe mode at the resonance, n0 is the density of atoms, � is
the wavelength divided by 2� for the probe radiation, � is
the natural decay rate for the upper state, and �R is the Rabi
frequency for the coupling mode. The time �p can be esti-
mated via the time-frequency uncertainty principle, i.e., as
�p�1/�p, where �p is the spectral width of the pulse. The
spectral width �p is restricted by the condition that, at the
relevant detuning from the EIT resonance, the optical thick-
ness of the sample b��2� at �2=�p would be small enough
and the medium would be transparent. Then, in order of
magnitude, the pulse duration �p is limited by the inequality

�p � �n0�2L
�

�R
2 . �2.2�

For an optically extended medium with �n0�2L�1 the pulse
duration can be made shorter than the delay time, but in
reality such an optically dense sample is rather difficult to
prepare in an experiment with ultracold atoms, where the
parameter n0�2L is typically close to ten or even less in order
of magnitude.

The problem is more subtle if the EIT channel is adjusted
for transport of a portion of “nonclassical” light. As a par-
ticular example, one can imagine a pulse of forwardly propa-
gating squeezed light. Such states of light can be created
with an intracavity optical parametric light source and its
spectral properties can be controlled with the quality factor
of the cavity. For such a light source the outgoing radiation
can be properly described by the model proposed by Collett
and Gardiner in Ref. �20� where the squeezed �X1� and anti-
squeezed �X2� quadrature components are described by the
correlation functions with different relaxation times, which
we respectively denote as �1 and �2. In principle, there exists
an inequality between these correlation times �2��1, which
can be a strong constraint for high degrees of squeezing. For
reliable transport of the squeezed light with preservation of
its unique statistical properties it would be necessary that
�p��2��1. The variation of all these temporal parameters
should be limited both by the longer estimation �2.1� and the
shorter estimation �2.2�. Apparently it would be more diffi-
cult to fulfill the EIT criteria for the squeezed light than for a
pure coherent light source.

However, the atomic sample can be probed with a light
pulse with shorter duration than is given by �2.2�, and the
EIT-mechanism will work even if a portion of the light pulse
is transported via a nonforward scattering channel. For such
an experimental situation the pulse duration �p can be limited
by the time scale � /�R

2 , given by the inverse spectral width

FIG. 1. An example of an excitation scheme for observation of
the EIT effect in the system of hyperfine and Zeeman sublevels of
the D1 line of 87Rb. The coupling field is applied with right-handed
circular polarization to the F=2→F�=1 transition, and the probe
mode in the orthogonal left-handed polarization excites the atoms
on the F=1→F�=1 transition. The EIT effect appears for equal
detunings of the coupling and probe modes from atomic reso-
nances: �1=�2.
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of the transparency window in the local susceptibility of the
medium. Then the input pulse of the probe light should be
transformed into a polariton-type pulse in the diffuse mode,
which now will fill the sample via a coherent diffusion �non-
forward scattering� process.

B. The macroscopic susceptibility and scattering tensors

The dynamics of the macroscopic polarization, induced
by a probe radiation pulse, is driven by the dynamical sus-
ceptibility of the medium. Referring to the excitation scheme
shown in Fig. 1, under conditions of EIT resonance, the sus-
ceptibility of the medium for the probe mode entering the
sample in a particular polarization is generated by two co-
herently interacting �-type channels. In the laboratory frame,
with the z axis directed along the coupling beam, the suscep-
tibility tensor has a diagonal form in the basis of circular
polarizations and can be written as the following sum

	q
q��r,�2� = − 
q

q� �
n�m�,m��m�,m

1

�

��deq
*�nm�2

�2 + i�/2
�mm�r�

	1 −
�Vnm��

2

�2 + i�/2

1

�1 − �2 + �nm���2�
 .

�2.3�

We use standard co-contravariant notation for the basis vec-
tors of circular polarizations, see Ref. �21�, which can be
expressed by Cartesian basis vectors as e0=ez, e±1
= � �ex± iey� /�2 �22�.

The first line in �2.3� has an isotropic form and describes
the local macroscopic susceptibility in the normal approach
of linear electrodynamics. Here the squared transition dipole
moments �deq

*�nm between the lower �m���F ,m� and upper
�n���F� ,n� Zeeman sublevels are weighted with the popula-
tion components of the atomic density matrix �mm�r�
=n0�r� / �2F+1�, where n0�r� is the local density of atoms at
a spatial point r. In a environment characteristic of ultracold
and trapped atoms, the density distribution is typically inho-
mogeneous and the density matrix as well as the susceptibil-
ity tensor are spatially dependent. The frequency detuning �2
is the offset of the probe mode �2 from the resonance �2
=�2−�F�F with F=1,F�=1.

The second line in �2.3� reveals the contribution of the
EIT effect. Here Vnm� are the transition matrix elements for
the coupling mode between those quantum states �n�
��F� ,n� and �m����F ,m�� which are subsequently chained
with an initial state �m� via the respective �-type excitation
channel. This is indicated in the sum by the dependence of
the subscript indices on m: m�=m��m� and n=n�m�. The
frequency detuning �1 is the offset of the coupling mode �1
from the resonance �1=�1−�F�F with F=2,F�=1. The pole
in the denominator of Eq. �2.3� is shifted due to the Autler-
Townes effect and the self-energy correction is given by

�nm���2� � �nm���2� −
i

2
�nm���2� =

�Vnm��
2

�2 + i�/2
. �2.4�

The susceptibility tensor �2.3� describes an anisotropic and
optically active medium despite the homogeneous population
of the Zeeman sublevels. This is a direct consequence of the
EIT effect. Anisotropy comes from the different �-type tran-
sitions activated by differently polarized probe modes. This
effect has a similar physical nature to various optical aniso-
tropy effects associated with the presence of the strong cou-
pling field, see Refs. �23–25�.

The scattering process in a medium is conveniently de-
scribed by the scattering tensor formalism. This tensor is
responsible for frequency- and polarization-dependent trans-
formation of an incident electromagnetic plane wave as a
result of its scattering on an isolated atom. Under conditions
of EIT control for the mode incident on atom at frequency
�2, the scattering tensor is given by

�̂pq
�m�m���2� � �pq

�m�m���2��m��m�

= − �
m��n�,n

1

�

�dp�m�n�dq�nm

�2 + i�/2
�m��m�

	1 −
�Vnm��

2

�2 + i�/2

1

�1 − �2 + �nm���2�
 , �2.5�

which determines the amplitude of the outgoing wave for
either the elastic or inelastic scattering channel accompanied
by transition of the atom from the state �m���Fm� with F
=1 to the state �m����Fm�� with F�1 �Rayleigh channel� or
F=2 �inelastic Raman channel�. The scattering tensor should
obey the following important identity

� d� �
m���

�2��2 + �mm��
3

c4 ��pq
�m�m���2����*�p�q�2

=
4��2

c
Im��pq

�mm���2���*�p�q� , �2.6�

which is an optical theorem reflecting the unitary property of
the scattering process. Here �q and ���*�p are the contravari-
ant circular components of the polarization vectors for the
incident photon and of the complex conjugated polarization
vector, respectively, for the scattered photon. The sum is ex-
tended over all possible scattering channels and all possible
output polarizations. After integration over the full scattering
angle, the left-hand side reproduces the total scattering cross
section.

Because of their similar physical nature, the expressions
for the susceptibility tensor �2.3�, and for the scattering ten-
sor �2.5� are visualized in similar form. The important differ-
ence is that in the expression �2.5�, an arbitrary reference
frame can be assumed and any dipole-type transitions �m�
→ �n� can be initiated. At the same time, each of the upper
states �n� is coupled by the strong field with a certain selected
ground state �m�� that is indicated in the sum as m�=m��n�.
This prohibits the light scattering for the resonance mode
when �2=�1 but opens the scattering channel for any non-
vanishing detuning. Moreover, under the EIT effect it be-
comes quite important which scattering channel �elastic Ray-
leigh or inelastic Raman� the probe photon occupies as it is
scattered away from its original forward propagation. An
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elastically scattered photon still undergoes coherent coupling
and should emerge from the sample with a relatively long
delay. In contrast, in the Raman channel the photon freely
propagates through the sample with nearly the �vacuum�
speed of light, because the medium is ideally transparent in
this case.

C. The Green’s function

Since the probe or scattered beam can propagate in any
direction, its free-path transformation can be properly de-
scribed by the Green’s function formalism. For the transmit-
ted or elastically scattered light the Green’s function can be
expressed in the form of phase integrals

Dq1

q2�r1,r2,�2� = −
�

�r1 − r2�
ei�0�r1,r2�+ik2�r1−r2�

 �cos���r1,r2��
q1

q2

+ i sin���r1,r2���n���̂ �q1

q2� . �2.7�

Here k2=�2 /c and n� =n���2� is the “unit” symbolic vector,
the components of which are defined below.

The parameters of the phase integrals can be expressed by
the major components of the susceptibility tensor, which are
defined by Eq. �2.3� and related to the probe beam either
copropagating in the forward direction or perpendicular to
the coupling beam. In this sense, expression �2.7� gives a
radiation zone asymptote for the retarded-type Green’s func-
tion and the polarization indices q1 ,q2 are defined in the
reference frame naturally linked with the ray direction, such
that z �r1−r2. In this frame the Green’s function has a non-
diagonal form in a natural basis of local circular polariza-
tions with q1,2= ±1 �left-hand/right-hand�.

The phase integrals are given by

�0�r1,r2� =
2��2

c
�

r2

r1

	0�r,�2�ds ,

��r1,r2� =
2��2

c
�

r2

r1

	�r,�2�ds �2.8�

and evaluated along a ray from point r2 to point r1. The
integrand 	0�r ,�2� is expressed in terms of major-axes com-
ponents of the susceptibility tensor as

	0�r,�2� =
1 + cos2 �

4
�	−1

−1�r,�2� + 	+1
+1�r,�2��

+
sin2 �

2
	0

0�r,�2� �2.9�

where � is the polar angle between the ray and the coupling
beam directions. The function 	�r ,�2� is given by

	�r,�2� = ��
i=1

3

	i
2�r,�2��1/2

�2.10�

where

	1�r,�2� =
sin2 �

2
cos �	1

2
�	−1

−1�r,�2� + 	+1
+1�r,�2��

− 	0
0�r,�2�
 ,

	2�r,�2� =
sin2 �

2
sin �	1

2
�	−1

−1�r,�2� + 	+1
+1�r,�2��

− 	0
0�r,�2�
 ,

	3�r,�2� =
cos �

2
�	+1

+1�r,�2� − 	−1
−1�r,�2�� . �2.11�

Here � is an azimuthal angle indicating the uncertainty in
directions of a pair of orthogonal axes, fixing the reference
frame in the plane transverse to the ray. The “unit” symbolic
vector n� is defined by its components as

ni = ni��2� =
	i�r,�2�
	�r,�2�

, �2.12�

and is independent of r. It is described in the general case by
the set of complex components �n1 ,n2 ,n3�.

III. RESULTS

A. The forward transmitted pulse

The graphs in Figs. 2 and 3 show how the original pulse
profile is modified after propagation through the sample in an
EIT channel. The calculations were done for two different
pulse shapes, these being Gaussian-type �Fig. 2� and
rectangular-type �Fig. 3�, with pulse widths of �p=100 �−1.
In our numerical simulations we considered as an example
87Rb atoms, when the coupling field and the probe light ex-
citations were respectively applied at F=2↔F�=1 �empty�

FIG. 2. �Color online� Intensity profiles for light pulses trans-
mitted through a sample of 87Rb atoms via the EIT channels. The
coupling field is applied on the empty F=2↔F�=1 transition with
right-handed circular polarization and the probe field, exciting the
atoms on the F=1→F�=1 transition, is either left-handed polarized
�blue, short-dash curve� or right-handed polarized �green, longer
dash curve�. The black curve indicates the original Gaussian-type
pulse with a duration of �p=100 �−1.
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and F=1→F�=1 �equally populated� hyperfine transitions,
as shown in Fig. 1. The coupling field is always right-hand
circularly polarized and the probe field can have varying po-
larization, being either left- or right-hand circularly polar-
ized. The calculations were based on attainable parameters of
an ultracold atomic cloud confined in a magneto-optic trap.
For a Gaussian atom distribution in the trap, the weak-field
optical depth, on resonance and through the center of the
trap, is given by b0=�2�n0�0r0, where n0 is the peak density
and �0 is the normal �not modified by the EIT effect� reso-
nance cross section, and r0 is the radius of the cloud. The
dependencies shown in Figs. 2 and 3 reproduce the pulse
transformation after its passing through such an atomic
sample with the size r0=0.25 cm and peak optical depth b0
=50. All the parameters are in accordance with the condition
that the delay time �d is longer than the duration �p of the
original pulse. The inequality �d��p can be controlled by
appropriate choice of the Rabi frequency for the coupling
field �c=2 �Vnm��, which we defined with respect to the m�
= �F=2,M =−1�↔n= �F�=1,M�=0� hyperfine Zeeman
transition. For the dependencies shown in Figs. 2 and 3, the
Rabi frequency is given by �c=0.4�.

For the case of a Gaussian profile the output pulse pre-
serves the original shape but becomes more extended in
time. The highest fidelity channel for reproduction of the
original pulse is obtained when the coupling and probe fields
are in orthogonal polarization states �blue curve in Fig. 2�.
The loss of the pulse energy is only 10% for this case, but for
the pulse transmitted through the sample in the right-handed
polarization channel there is up to 40% energy loss. This is a
clear manifestation of the scattering process, which cannot
be ignored, as we argued by simple estimations in Sec. II A.

The modification of the pulse profile manifests itself even
more dramatically if the probe pulse has a rectangular shape.
Due to dispersion the original pulse shape is completely
transformed in the extended medium to a Gaussian form and
the losses of energy are more significant for this case. That
effect is shown by the calculations of the outgoing pulse
profile presented in Fig. 3 for two different polarization
channels. The calculations were done for the initial param-
eters similar to those used in the calculation of the depen-
dencies for Fig. 2. For the outgoing pulses shown in Fig. 3
the losses are up to 60% for the left-handed and up to 80%
for the right-handed polarization channels.

Let us comment on the properties of the transmitted pulse,
as displayed in Figs. 2 and 3, in the context of our previous
discussion given in Sec. II A. As one can see from the fig-
ures, the behavior of the wave packet, forwardly propagating
through the sample, critically depends on its intrinsic spectral
properties. For the smoothed spectral expansion, and particu-
larly for the Gaussian-type spectral distribution, the energy
losses are basically determined by a near resonance overlap
of the wave packet spectral components with the EIT-
modified absorption spectral profile. As far as this overlap
can be effectively minimized by optimal choice of the pulse
spectral extension, as was described in Sec. II A, the level of
losses can be also minimized. As follows from our calcula-
tions, this takes place for the left-handed circular polarized
probe light, and the best data for the transmitted pulse are
reproduced in Fig. 2. Such an optimization would be not
possible to do for a pulse profile having a rectangular shape.
Then there is a non-negligible and even significant contribu-
tion into the integral absorption coefficient, which is deter-
mined by the spectral overlap of the Lorentzian wings of the
absorption spectrum, with far spectral components respon-
sible for the step-type shape of the temporal pulse profile.
The optimal conditions formulated in Sec. II A can never be
ideally fulfilled for this case. It seems to us also important
that for a rectangular pulse such far off-resonant spectral
components can be partly transmitted through the sample via
a normal �not EIT� transparent domain. This results in sharp
transient processes in the time behavior for the transmitted
pulse at the beginning and final stages, which for the sake of
simplicity are not shown in the graphs of Fig. 3.

B. The scattered pulse

The plots in Fig. 4 reproduce the time dependence of
instantaneous intensity for the fractions of the light pulse,
originally incoming with Gaussian profile shown in Fig. 2,
and scattered by the sample in a direction orthogonal to the
incident probe beam. Note that we designate the polarization

FIG. 3. �Color online� Same as in Fig. 2 but for a rectangular
input pulse profile.

Rm σ_ −> h_

 
Rm σ   −> h_+

Rl σ_ −> h_

Rl σ   −> h_+ 
 

FIG. 4. �Color online� The intensity profiles for the portion of
the light pulse scattered at 90° to the direction of the incident pulse.
The curves represent the Rayleigh �Rl� channel �F=1→F�=1
→F=1� and the Raman �Rm� channel �F=1→F�=1→F=2�, with
the input polarization state, and polarization channel of the emerg-
ing light as indicated in the caption. In all cases, the observation
channel corresponds to detection of light with left-hand helicity
�h−�.
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of the scattered light in terms of its helicity, which is a natu-
ral choice when considering the radiation propagating toward
a detector. In Fig. 4, the curves indicate our results for the
Rayleigh scattering channel �F=1→F�=1→F=1� and the
Raman channel �F=1→F�=1→F=2�. Let us recall here
that for the sake of brevity we do not distinguish between
elastic Raman and Rayleigh channels. The calculational pa-
rameters were chosen the same as for the dependencies of
Figs. 2 and 3. The solid and dotted blue curves illustrate the
portion of the scattered light pulse incoming with left-handed
circular polarization ��−� and emerging the sample in the
left-hand helicity polarization �h−�. In turn, the short-dashed
and long-dashed green curves illustrate the portion of the
scattered light pulse incoming with right-handed polarization
��+� and emerging the sample again in the left-hand helicity
polarization �h−�. Thus, for the intensity profiles shown in
Fig. 4, the outgoing light is always considered in the left-
hand helicity polarization channel.

As follows from these dependencies, the scattered light
emerges from the sample with a rather long delay in units of
�−1. This is an indication of the slow light phenomenon typi-
cally associated with the EIT effect, but for the scattered
light. The portion of the input pulse, distorted in the scatter-
ing process, propagates through the sample faster and is
more extended in time than the transmitted pulse. This can
be explained by the spectral structure of the scattered pulse,
which has a deficit of near-resonance photons for which the
EIT mechanism works ideally. For the scattered light pulse
leaving the sample via a Rayleigh channel, the group veloc-
ity is greater than for the transmitted incident pulse. The
photons created in the Raman channel leave the sample with
the speed of light in vacuo because the medium is fully trans-
parent for them. The spectral notch in the distribution of the
scattered photons leads to the beating effect in the time be-
havior of the output light intensity, which is clearly seen for
all the scattering channels presented in Fig. 4.

To show the difference between the usual incoherent scat-
tering and scattering in the environment supporting the EIT
effect, let us turn to the physical background of the process.
If the medium is illuminated by a single-mode probe field,
which is precisely in the resonance with the coupling field
such that �1=�2+�21, where �21 is the hyperfine splitting in
the diagram of Fig. 1, the entire atom-field system is de-
scribed by the following density matrix

�̂ =
1

3 �
j=1,2

�� j�� j� + . . . �3.1�

where dots denote the contribution of noncoupled state and
the sum j=1,2 is extended over two � schemes shown in
Fig. 1. The wave functions contributing to the expansion
�3.1� are given by

�� j� = � �p
�j�

��p
�j�2 + �c

�j�2
�1� j −

�c
�j�

��p
�j�2 + �c

�j�2
�2� j�  �Field�

�3.2�

where �1� j and �2� j are, respectively, the left and right atomic
spin states coupled with the jth �-type excitation channel,

and �c
�j� and �p

�j� are the Rabi frequencies respectively for
the coupling and for the probe fields. For the sake of sim-
plicity we presume both the Rabi frequencies to be real pa-
rameters. It is a crucial point of the EIT effect that despite the
fact that even though the atomic substate given in the square
brackets of �3.2� is not an eigenstate of the atomic Hamil-
tonian, the full wave function �� j� is an eigenstate of the
entire atom-field system if the field is in coherent state. Thus,
under conditions of perfect � resonance the system is not
able to scatter the light.

However if the probe mode is not in exact two-photon
resonance the situation becomes more complicated. In the
single-atom case and as a first approximation there will be
coherent beats with exchange of a photon between coupling
and probe modes of the field, which are initiated by low-
frequency phase oscillation of the atomic spin coherence. In
a macroscopic system these beats are collectivized and trans-
formed to a polariton wave packet created in the sample by a
pulse of the probe field enveloped by a set of near resonance
spectral modes. For a short distance the polariton wave
propagates in the forward direction, but it will be scattered at
long distances if the medium is optically extended. However,
the probe field, even being scattered via Rayleigh channels,
remains in a coherent state and can be also enveloped by the
modes inside the EIT spectral window. Thus, the polariton
wave does not disappear as a result of Rayleigh scattering
but transforms to a diffuse coherent mode. The quantum na-
ture of such a diffuse polariton can be verified if the control
field is switched off and switched on again with delay. Then
the propagation of the polariton wave in the forward direc-
tion and via the Rayleigh scattering channel will be stopped
and be regenerated again with a time delay. Thus, the scat-
tered light, as well as the transmitted light, can be stored in
the medium and recovered on demand. That is a unique
property of the light propagation under EIT conditions.

C. The coherent backscattering process

A clear indicator of the coherence in the Rayleigh scatter-
ing channel is the appearance of the coherent backscattering
�CBS� process. This effect is a typical example of a “which
path” interference fashioned by a disordered medium. For a
portion of a light wave emerging the sample in the backward
direction there is constructive, or for some special cases, de-
structive interference �26� between the scattering amplitudes
along any multiple scattering chain. The various manifesta-
tions of the CBS phenomenon in ultracold atomic systems
�27–29�, and under different physical conditions, has been
the subject of many discussions during the last decade �see
Kupriyanov et al. for a review �30��. Some future prospects
in this field have been summarized by Havey and Kupriy-
anov �31�. In the context of light scattering in an atomic
environment supporting the EIT effect, the CBS process can
be interpreted as interference between two unknown recipro-
cal paths for the diffuse polaritonic wave propagating inside
the sample via Rayleigh scattering as shown schematically in
Fig. 5. The specific nature of the EIT resonance essentially
modifies the time behavior of the interference component of
the outgoing wave packet in comparison with how it is usu-
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ally observed for a pulse-type excitation of an opaque atomic
medium.

For the scattering process developing in the standard con-
ditions of elastic scattering and for a rather long excitation
probe pulse, the “ladder” �noninterference� and the “crossed”
�interference� components have an approximately similar de-
pendence on time. The important difference in their time
behavior is mainly observable in the transient stages of the
excitation process �see Ref. �30��. Inside the pulse the rela-
tion between the instantaneous magnitudes of these compo-
nents, usually expressed in terms of the enhancement factor
for the CBS output intensity, has typically no time depen-
dence. The enhancement factor approaches a stable and con-
stant value inside the pulse. This value reproduces the en-
hancement factor for the steady-state regime in conditions of
a single-mode excitation of the atomic sample with a reso-
nant probe light. A crucial contrast for the CBS process ob-
servable in an environment of the EIT effect is that the reso-
nant carrier mode of the light pulse cannot be scattered and
the spectral profile for the pulse fraction, deflected by the
medium from its original forward propagation, always has a
narrow gap near this mode. That results in a quite unusual
time behavior for the interference overlap of two reciprocal
fragments of the backscattered wave packet.

The dependencies of Figs. 6 and 7 illustrate the temporal
behavior of the instantaneous intensity for the fraction of the
probe pulse scattered in the backward direction via the Ray-
leigh channels �−→h− and �+→h−. The outgoing intensity
is mainly contributed by the ladder-type terms such that the
interference contribution, shown in the magnified bottom
parts of the graphs, gives actually only a few percent of the
total intensity. For convenience in these figures, the gray
curves indicate the time profiles for the incoming and trans-
mitted pulses. Let us point out that these profiles slightly
differ from those which are shown in Figs. 2 and 4 because
the aperture of the probe beams are selected differently for
the two calculations. In Fig. 2 the cross section of the beam

was less than the cross-sectional area of the atomic cloud,
which is a natural requirement for measurements in slow or
stopped light experiments. Alternatively, for observing the
CBS effect from all atoms of the ensemble, it is more natural
to make the cross section of the probe beam bigger than the
cross-sectional area of the atomic cloud. The important fea-
ture of the dependencies displayed in Figs. 6 and 7 is that the
crossed-type terms lead to an oscillating interference en-
hancement near the midpoint of the backscattered pulse pro-
file.

The time behavior of the interference effect can be prop-
erly described in terms of the enhancement factor

��t� =
IS�t� + IL�t� + IC�t�

IS�t� + IL�t�
, �3.3�

where IS�t�+ IL�t� is the contribution of single scattering and
of the ladder terms in multiple scattering and IC�t� is the
contribution of the crossed terms. The dependence of ��t� on
time is illustrated in the graphs of Fig. 8. It is an intriguing
consequence of the calculation results that the behavior of
the enhancement factor is generally quite complicated be-

FIG. 5. �Color online� A schematic diagram explaining the co-
herent backscattering phenomenon. The polaritonic waves scattered
in the medium follow pairs of reciprocal scattering paths indicated
by the solid and dashed traces. The emergent electromagnetic field
in the backward direction can show interference between the propa-
gating modes following the two paths.

FIG. 6. �Color online� The temporal profiles for the fraction of
the light pulse scattered in the backward direction for the �−→h−

Rayleigh scattering channel. The blue solid curve is the total inten-
sity profile and the dotted blue curve is the interference contribu-
tion. The short- and long-dashed gray curves, respectively, indicate
the input and the transmitted pulses. For these graphs the ordinate
only qualitatively reproduces the relative magnitudes of the pulse
intensities.

FIG. 7. �Color online� Same as in Fig. 6 but for the �+→h−

Rayleigh scattering channel.
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cause of the nontrivial manifestation of different spectral
components of the input pulse in formation of the backscat-
tered fraction of the outgoing pulse in different scattering
orders. The most important seems an oscillating enhance-
ment near the midpoint of the scattered pulse, which corre-
sponds with the polaritonic wave packet overlap inside the
medium.

IV. CONCLUSIONS

In summary, we have made a theoretical and calculational
investigation of the Rayleigh and Raman scattered light
modes in a medium configured to demonstrate electromag-
netically induced transparency in the coherently forward
scattered light. In particular, for an anisotropic and inhomo-
geneous sample of ultracold atoms we have examined the
time evolution of the forward scattered light, the diffusely
�multiply� scattered light in a characteristic right-angle fluo-

rescence geometry, and in the backscattering configuration
used to study weak localization of light in ultracold atomic
gases. The intensity of the forward scattered light is modified
by both Rayleigh and Raman scattering of Fourier compo-
nents of the incident pulse which lie outside the EIT trans-
mission window. In particular, the intensity of a light pulse
regenerated in a typical “stopped-light” experiment is signifi-
cantly modified by the loss of these components, which in
part maintain their coherence with respect to the incident
light. In addition, these components produce complex time
dependence in both the fluorescence and in the coherent
backscattering geometries. The interferences responsible for
the coherent backscattering enhancement are a clear indica-
tor of the coherence of the scattering processes. We empha-
size the fundamental conclusion that light scattered into the
Rayleigh modes maintains its coherence with respect to the
original incident pulse. This is manifested by interferometric
enhancement of the backward scattered intensity from the
sample. This in turn implies that, along with the polariton
associated with the forward scattered light, a diffuse and co-
herently related polariton coexists within the volume of the
ultracold atomic sample. We close by noting that a deeper
understanding of the mesoscopic properties of the diffusive
excitation is clearly required, and this report represents a first
step in this direction. Further theoretical and experimental
research into this area is underway.
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