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Abstract: With increasing demands in real-time or near real-time remotely sensed imagery
applications in such as military deployments, quick response to terrorist attacks and disaster rescue,
the on-board geometric calibration problem has attracted the attention of many scientists in recent
years. This paper presents an on-board geometric calibration method for linear CCD sensor arrays
using FPGA chips. The proposed method mainly consists of four modules—Input Data, Coefficient
Calculation, Adjustment Computation and Comparison—in which the parallel computations for
building the observation equations and least squares adjustment, are implemented using FPGA chips,
for which a decomposed matrix inversion method is presented. A Xilinx Virtex-7 FPGA VC707 chip
is selected and the MOMS-2P data used for inflight geometric calibration from DLR (Köln, Germany),
are employed for validation and analysis. The experimental results demonstrated that: (1) When the
widths of floating-point data from 44-bit to 64-bit are adopted, the FPGA resources, including the
utilizations of FF, LUT, memory LUT, I/O and DSP48, are consumed at a fast increasing rate; thus,
a 50-bit data width is recommended for FPGA-based geometric calibration. (2) Increasing number
of ground control points (GCPs) does not significantly consume the FPGA resources, six GCPs is
therefore recommended for geometric calibration. (3) The FPGA-based geometric calibration can
reach approximately 24 times faster speed than the PC-based one does. (4) The accuracy from
the proposed FPGA-based method is almost similar to the one from the inflight calibration if the
calibration model and GCPs number are the same.

Keywords: FPGA; on-board; geometric calibration; parallel computing; spaceborne sensor

1. Introduction

Geometric calibration is one of the most important steps for quality control in high-resolution
optical satellite imagery [1–3] and is a prerequisite for high-accuracy of direct georeferencing of
remotely sensed images [4,5]. Previous researchers have made efforts in inflight geometric calibration
on the basis of PC computers in the past decades. With increasing demands for real-time or near
real-time remotely sensed imagery in applications such as military deployments, quick response
to terrorist attacks and disaster rescue (e.g., flooding monitoring), the on-board implementation of
geometric calibration is has been attracting many scientists’ interest worldwide in recent years.
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The parameters of geometric calibration consist of the exterior orientation elements (EOEs) and
interior orientation elements (IOEs). Usually, the IOEs are calibrated in the laboratory, while the EOEs
often change due to micro-gravidity, solar pressure, etc. when the satellite runs in space for a certain
while. Hence it is necessary to develop the calibration method and algorithm to carry out an on-board
geometric calibration.

The concept of “on-board geometric correction” was first presented by Zhou et al. [6], but the
authors did not present any details of its on-board implementation. This paper presents a Field
Programmable Gate Array (FPGA)-based implementation of geometric calibration. The FPGA can
offer a highly flexible design, a scalable circuit, and a high efficiency in data processing, because of its
pipeline structure and fine-grained parallelism. Moreover, the DSP units embedded in the FPGA are
suitable for floating point arithmetic. The proposed FPGA-based architecture of geometric calibration
is depicted in Figure 1, which consists of five modules: Template Image Selection, Image Matching
(Huang and Zhou [7]), Initial value EOEs, Bundle Adjustment, and Timing Control.
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Figure 1. The FPGA architecture of geometric calibration.

All of the functional modules in Figure 1 are managed by the Timing Control module.
The Template Images Selection module is used for selection of target template images from a template
image library that is created from many template images, each of which has a unique ID number.
The principle of this module is carried out through matching between the geodetic coordinates
centralized at an imaged area and the coordinates of a georeferenced template image. The Image
Matching module accurately determines the coordinates of spaceborne image and geodetic coordinates
of template images by matching their sub-image windows. The Initial external orientation elements
(EOEs) module computes the initial values of EOEs of the spaceborne sensor. The Bundle Adjustment
module accurately computes six external orientation elements (EOEs). Due to the resource limitation
of a FPGA chip, it usually applies external memory to store multiple template images and ground
control points (GCPs) data. Random Access Memory (RAM) is used to store the data stream of a
template image and/or an imaged scene temporarily. The line buffers of image data are generated
using multiple RAMs for further image matching.

This paper presents the details of FPGA-based implementation of on-board geometric calibration.
The input parameters (i.e., GCPs and initial EOEs) are assumed to be directly provided by other
modules (for the details, please reference to the Huang and Zhou [7]). The paper is organized as
follows: Section 2 overviews previously relevant efforts; Section 3 gives the detailed FPGA-based
implementation of on-board geometric calibration. Section 4 describes the validation and the
experimental results. The conclusions are drawn up in Section 5.



Sensors 2018, 18, 1794 3 of 19

2. Relevant Efforts

Traditional geometric calibration methods have been investigated for several decades and a
number of papers have been published in the computer vision [8–10], image processing [11,12],
robotic vision [13,14] and photogrammetry communities. However, geometric calibration on-board
spaceborne implementation has not yet been reported worldwide so far, although in-lab and/or inflight
(also called on-orbit) geometric calibrations for various satellites have overwhelmingly been reported
in the past two decades [15–17], such as SPOT1-5 [18], IKONOS [19], ALOS [20], Orbview-3 [21],
IRS-1C [22], GeoEye-1 [23], MOMS-2P [24,25], CBERS-02B [26], TH-1 [27] and ZY-3 [28,29].

Jacobsen [30,31] implemented geometric calibration of the IRS-1C satellite using self-calibration
bundle block adjustment with additional parameters. Crespi et al. [23] used the block adjustment method
to investigate the inflight calibration of the GeoEye-1 satellite, with which the accuracy reached 3.0 m
without GCPs. Lei [28] presented a self-calibration bundle block adjustment on the basis of the known
interior orientation parameters with line array CCD. Li [29] and Li et al. [32] proposed a geometric
calibration method with step-by-step on the basis of imaging model of the ZY-3 satellite. The experimental
results indicated that the calibration accuracy of ZY-3 can meet the requirement of the accuracy of
1:50,000 mapping. Yang et al. [33] also presented an on-orbit geometrical calibration model for ZY-1 02C
panchromatic camera. The experimental results demonstrated that the accuracy with or without GCPs is
better than 0.3 pixels. Zhang et al. [34] proposed an on-orbit geometric calibration for and a validation of
ZY-3 linear array sensors. Wang et al. [3] constructed an on-orbit rigorous geometric calibration model
through selecting optimal parameters. The experimental results discovered that the geometric accuracy
without GCPs is significantly improved after on-orbit geometric calibration. Cao et al. [35] proposed a
named “look-angle calibration method” for on-orbit geometric calibration of ZY-3 satellite imaging sensors.
The experimental analysis discovered that the accuracy under the nadir-looking images is higher than
±2.7 m when five GCPs are utilized and the laboratory calibration parameters are provided as initials.
Cao et al. [36] proposed a simple and feasible orientation method for calibration of the CCD-detector’s
look angles in the three-line array cameras of ZY-3. The experimental results discovered that the accuracies
in planimetry and height are 3.4 m and 1.6 m with four GCPs, respectively. Wang et al. [37] proposed an
on-orbit geometric calibration method for TH-1 three-line-array camera based on a rigorous geometric
model. The experiment results demonstrated that the accuracies in both planimetry and height are
approximately 6.93 m and 3.96 m, respectively.

Although research in on-board geometric calibration is relatively rare so far, the FPGA-based
on-board data processing for spaceborne images has been reported. For instance, the German
small satellite BIRD applied an on-board data processing system consisting of DSP, FPGA and
network co-processor in on-board implementation of radiation correction, rectification of partial
systematic geometric and image classification using neural network algorithm [38]. Surrey Satellite
Technology Limited in the UK applied FPGA as an on-board data processing chip in a small
satellite [39]. The French used FPGA chip to realize on-board data processing for Pleiades imagery [40].
Stuttgart University in Germany designed an on-board computing system using FPGA for the
small satellite Flying Laptop to realize real-time attitude control, housekeeping, data compression
and image processing [41]. The U.S. Jet Propulsion Laboratory employed a Xilinx FPGA to
realize on-board hyperspectral image classification based on Support Vector Machine (SVM) [42].
González et al. [43] conducted the investigation on an FPGA-based implementation of N-FINDR
algorithm for hyperspectral image analysis. Williams et al. [44] also investigated an FPGA-based
implementation of real-time cloud detection of spaceborne image. Hihara et al. [45] analyzed an
on-board image processing system for hyperspectral imagery. All of the efforts mentioned above have
shown a promise for FPGA-based implementation of geometric calibration, which is presented in
this paper.
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3. On-Board Geometric Calibration Using FPGA Chip

3.1. Brief Overview of Geometric Calibration Model

The different linear imaging systems may have their own imaging modes, resulting in the slight
difference of the geometric calibration algorithm. This paper takes MOMS-2P as an example to describe
the calibration model (for details readers should refer to [46,47]).

The geometric calibration algorithm of the MOMS imaging system was performed at the
laboratories of the German Aerospace company DASA (Stuttgart, Germany), where the MOMS
was developed and manufactured. A rigorous model of describing geometry calibration is composed
of five parameters (also see Table 1):

Principal point coordinates of each sensor (x0, y0),
Rotation parameter κ of CCD array in the image plane,

Deviation of the focal length df and distortion parameter k of the sensor curvature. The sensor
curvature is modeled by a second order polynomial equation. The parameter k here indicates the along
track deviation at the edges of the CCD-array at 3000 pixel distance from the array center, caused by
the sensor curvature.

Table 1. Lab-calibrated camera parameters for moms-2p [46,48].

HR5A HR5B ST6 ST7

f (mm) 660.256 660.224 237.241 237.246
x0 (pixel) 0.1 0.2 −7.2 −0.5
y0 (pixel) −0.4 0.1 8.0 19.2
Kc (pixel) −0.3 −0.4 −1.1 1.7
k (mdeg) −2.9 5.4 −1.5 −1.4

3.1.1. Interior Orientation

Interior orientation is to transform sensor coordinates (i and j in Figure 2) into image coordinates
(x and y in Figure 2) and correct the lens distortion (symmetric and tangential) and CCD array curvature
distortion. Thus the following tasks should be performed.

• Define the sensor (called “screen”) coordinate system and image coordinate systems,
• Apply the principal point offset that should be estimated from an in-lab or in-flight calibration, and
• Correct various distortions.
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Figure 2. Sensor/screen and image coordinate system.

3.1.2. Transformation from Image to Reference Coordinate System

Each of the fore-, nadir- and aft-looking array has its own image coordinate system (xc, yc and
zc, right-handed). An image reference coordinate system (xR, yR and zR, right-handed) is defined to
unify image coordinates from all three arrays (Figure 3). The transformation from an image coordinate
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system to the reference coordinate system involves a translation (dx, dy and dz) and three rotations
(ω, ϕ and κ). We define a counterclockwise rotation angle as positive. The transformation equation is: xR

yR
zR

 = RR
C

 xc

yc

zc

+

 dx

dy

dz

 = RR
C

 x
y
− f

+

 dx

dy

dz

 (1)

where:

RR
C =

 cosϕcosκ cosωsinκ + sinωsinϕcosκ sinωsinκ − cosωsinϕcosκ

−cosϕsinκ cosωcosκ − sinωsinϕsinκ sinωcosκ + cosωsinϕsinκ

sinϕ −sinωcosϕ cosωcosϕ

 (2)
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Figure 3. From image coordinate to image reference coordinate system.

3.1.3. Geometric Calibration Model

For any image point within a CCD array, its image reference coordinates are (xR, yR and zR).
The coordinates of the exposure center of the array in the ground coordinate system at the imaging
epoch t are (XC(t), YC(t), ZC(t)). The corresponding ground point coordinates are (XG, YG, ZG).
The collinearity condition states that all of the three points must lie on the same straight line: xR = zR

r11(XG−XC(t))+r12(YG−YC(t))+r13(ZG−ZC(t))
r31(XG−XC(t))+r32(YG−YC(t))+r33(ZG−ZC(t))

yR = zR
r21(XG−XC(t))+r22(YG−YC(t))+r23(ZG−ZC(t))
r31(XG−XC(t))+r32(YG−YC(t))+r33(ZG−ZC(t))

(3)

where rij (i, j = 1, 2, 3) are the elements of rotation matrix RR
G = RR

C(ϕ(t), ω(t), κ(t)); ϕ(t), ω(t) and κ(t)
are defined for each CCD array at the epoch t.

A separate image coordinate system is defined for each CCD array which is related to an
image reference coordinate system by a 3D transformation. They are a focal length f, principal
point offset (x0, y0), and a curvature parameter Kc. The sensor coordinates (i, j) are transformed to
image coordinates in the following steps (the details can be referenced to [46,47]):

• Step 1: Transformation from sensor/screen coordinates to image coordinates by x′ = 0;
y′ = (j− column/2)× 10e− 3(mm);

• Step 2: CCD curvature correction by cx = Kc× y′ × y′;
• Step 3: Lens distortion correction is unavailable;
• Step 4: Final image coordinates computed by x = cx− x0, y = y′ − y0.

To reduce the calculation budget and save the FPGA resources, a first-order polynomial equation
is adopted to compute the six EOEs, i.e.:
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XC(t) = X0

C + a0 ϕC(t) = ϕ0
C + d0 + d1t

YC(t) = Y0
C + b0ωC(t) = ω0

C + e0 + e1t
ZC(t) = Z0

C + c0κC(t) = κ0
C + f0 + f1t

(4)

where
(
X0

C(t), Y0
C(t), Z0

C(t), ϕ0
C(t), ω0

C(t), κ0
C(t)

)
are initial values of EOEs at epoch t. The initial values

of EOEs are provided by DLR, Germany. In one epoch t, Equation (3) is linearized by Taylor Series.
Substitute Equation (4) into Equation (3), and then linearize it by Taylor Series, it yields:{

vx = a11∆a0 + a12∆b0 + a13∆c0 + a14∆d0 + a15∆e0 + a16∆ f0 + a17∆d1 + a18∆e1 + a19∆ f1 − lx

vy = a21∆a0 + a22∆b0 + a23∆c0 + a24∆d0 + a25∆e0 + a26∆ f0 + a27∆d1 + a28∆e1 + a29∆ f1 − ly
(5)

The vector form of Equation (5) is described as:

Vt = AtXt − lt (6)

where Vt =
[

vx vy

]T
, Xt =

[
∆a0 ∆b0 ∆c0 ∆d0 ∆e0 ∆ f0 ∆d1 ∆e1 ∆ f1

]T
, which are

the unknowns; lt = [lxly]
T ; At is coefficient vector, which is expressed by:

At =

[
a11 a12 a13 a14 a15 a16 a17 a18 a19

a21 a22 a23 a24 a25 a26 a27 a28 a29

]
(7)

The detailed derivation of At can be found in [46,47]. When the number of GCPs are greater than
5, the observation equation is constructed as follows:

V = AX− L (8)

where V = [V1 V2 L Vn]T, X = [X1 X2 L Xn]T, A = [A1 A2 L An]T, L = [l1 l2 L ln]T, n represents the
number of GCPs. The Equation (8) is solved by least square algorithm, and the solutions are:

X =
(

AT A
)−1(

AT L
)

(9)

The solution for Equation (9) is obtained by an iterative process. A flowchart of the entire
algorithm is presented in Figure 4.
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As seen from Figure 4, the initial data are first used to compute the rotate matrix (RR
G), which are

used for computation of the coefficient matrix, A and constant matrix, L. The inversion of (ATA) is
computed by an LDLT algorithm. The solution, X, is obtained by the iteration process and is compared
to a given threshold. If the increments of X are less than the given threshold, then computation ends,
and the X is considered as the final solution. Otherwise, the above computation is repeated, until the
increments are less than the given threshold.

3.2. FPGA-Based Computation of On-Board Geometric Calibration

3.2.1. Design for On-Board Geometric Calibration

An FPGA-based implementation for on-board geometric calibration is proposed in Figure 5,
which consists of four modules: Input Data, Coefficient Calculation, Adjustment Computation, and
Comparison. The details of the four modules are described as follows:

(1) The initial data and the updating data are stored in RAM of the Input Data module. When
receiving an enable signal, the data are sent to the Coefficient Calculation module at the same
clock cycle.

(2) The elements of matrixes A and L (in Equation (8)) are calculated by the Coefficient Calculation
module, and the computed results are sent to the Adjustment Computation module at the same
clock cycle.

(3) The solution X in Equation (9) is calculated by matrixes A and L in the Adjustment
Computation module.

(4) If the increments of solution X meet the requirement of a given threshold, the iteration
computation is terminated, and the solution a0, b0, c0, d0, e0, f 0, d1, e1 and f 1 are outputted.
Otherwise, the X is updated and the iteration is recomputed until the increments of the solutions
meet the requirement of the given threshold.
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3.2.2. FPGA-Based Parallel Computation for Matrixes RR
G, lt and At

Because the elements (r11 through r33) in the rotation matrix RR
G involves sine and cosine functions

of three rotational angles, ϕ, ω and κ, which is time/resources-consuming, a parallel computation
method is presented in Figure 6a, where the implementations of sine and cosine functions are carried
out by a CORDIC IP core. To ensure that all of the intermediate results are outputted at the same clock
cycle, the delay units are adopted for some intermediate results. This module includes 12 multipliers,
2 adders and 2 subtractors.

For computation of lt in Equation (6), the initial data stored in the Input Data module and the
rotation matrix are used to compute the lx and ly, which are presented in Figure 6b. The delay units are
used to ensure that the final results are outputted at the same clock cycle.
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Six elements in matrix At, i.e., a11i, a12i, a13i, a21i, a22i, a23i, are computed in parallel, where
18 multipliers, 1 divider and 6 subtractors are employed (see Figure 6c). The rest of the elements in
matrix At, i.e., a14i, a15i, a16i, a17i, a18i, a19i, a24i, a25i, a26i, a27i, a28i, a29i, are also computed in parallel,
which includes 39 multipliers, 10 subtractors, 3 adders, and 1 divider (see Figure 6d).
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negate unit means the negation of value; (b) is for l computation, lx and ly; (c) is for a11 thru a13 and a21

thru a23, computation, and (d) is for parallel computation of a14 thru a19 and a24 thru a29.

3.2.3. FPGA-Based Parallel Computations for ATA and ATL

Due to limitation of the FPGA resource, a parallel computation method for ATA in Equation (9) is
presented through modifying ATA, i.e.:
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B9×9 = AT
9×2n A2n×9 =


A1 A1 A1 A2 · · · A1 A9

A2 A1 A2 A2 · · · A2 A9
...

...
. . .

...
A9 A1 A9 A2 · · · A9 A9

 (10)

With considering the symmetry of ATA, an FPGA-based parallel computation for the upper
triangular matrix of ATA is presented and depicted in Figure 7. As seem from Figure 7a, a number of
processing elements (PEs) units are employed to reduce the complexity of computation [49]. All of the
PE units are with the same structure, i.e., “a1b1 + a2b2”, which is enlarged in Figure 7b. Similarly, the
method for computation of ATL in Equation (8) is the same as that of the ATA.
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3.2.4. FPGA-Based Parallel Computation for B−1

Also due to limitation of the FPGA resources, computing matrix inversion, B−1 is implemented
through Cholesky decomposition method [50], i.e.:

B = LDLT (11)

where L is a lower triangular matrix, D is a diagonal matrix, and LT is L’s transpose. The solutions of L
and D are expressed by:

d11 = b11, dii = bii −
i−1
∑

k=1
likdkklik(2 ≤ i ≤ n)

li1 = bi1
d11

(2 ≤ i ≤ n), lij =

(
bij −

j−1
∑

k=1
likdkkljk

)
/djj(1 ≤ j < i ≤ n)

(12)

With the characteristics of LDLT, d11 and li1 are first calculated, and then dii and lij are calculated
on the basis of d11 and li1. In other words, the latter results are calculated on the basis of the formerly
computed results. Since Equations (11) and (12) avoid the computation of square root and alleviate
the dependency of the data, the modified equations, Equations (11) and (12), are able to speed up the
computation [51].

The FPGA-based parallel computation for the LDLT is depicted in Figure 8. As observed from
Figure 8, it includes 1 driver and 8 PE units. The PEi (i = 1, 2, 3 and 4) are for calculating dii and lij. Thus,
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the computation of B−1 can be divided into two steps: (1) Decompose B into the LDLT; (2) Compute
the inversion of LDLT by:

B−1 =
(

LDLT
)−1

=
(

LT
)−1

(LD)−1 =
(

L−1
)T

D−1L−1 (13)
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9 × 9 (i.e., n = 9) is taken as an example.

Summarily, the FPGA-based flowchart of B−1 is depicted in Figure 9, which consists of five parts.
Each of the parts is explained in detail as follows.

(1) The first MUX at the left hand of Figure 9 is to construct the column elements of B;
(2) The LDLT is to calculate the elements of L and D;
(3) The third dash-rectangle, consisting of two MUXes, L−1 and D−1, is to compute the inversion of

L and D, where the second MUX is to construct the vector of L; L−1 presents the calculation of the
inversion of L through unit lower triangular matrix [52]; the third MUX is to construct the vector
of (L−1)T; and D−1 is to construct the row vectors composed of the elements of D and calculate
the reciprocal of the elements of D by a divider; D−1 is the outputted result;
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(4) (L−1)TD−1 module means that (L−1)T matrix multiplies with D−1;
(5) (L−1)TD−1L−1 module denotes that (L−1)TD−1 matrix multiplies with L−1;
(6) B−1 is the outputted result through the last MUX.
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4. Experiments and Performance Analysis

4.1. Test Area and Data Set

The test area and data set are from DLR, Germany. The data sets were used for the inflight
geometric calibration of MOMS-2P. The test area is comprised of Scenes 27 through 30 from southeast
of Germany to about 160 km beyond the Austrian border (see Figure 10, in which the area is about
178 × 50 km2, and the ground pixel size of imagery is 5.9 m at 390 km orbit height).
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Figure 10. Geographical location of test area.

In the test area, the ground coordinates of 10 GCPs and 24 check points were obtained by
topographic maps at a scale of 1:50,000 with an accuracy of 1.5 m in X, Y and Z (see Figure 11,
the details can be found in [46,47]).

They were located in the 4th zone of Gauss-Krueger coordinate system. The navigation data of
Orientation Lines (OLs) (the definition of OLs can be found in [46,47]), the ground coordinates of
GCPs and the corresponding image coordinates were all provided by Institute of Photogrammetry at
University of Stuttgart [53].
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4.2. Hardware Environments

A Virtex-7 FPGA VC707 board produced by Xilinx Corporation (San Jose, CA, USA). The key
chip, XC7VX485T FFG1761, has 485,760 logic cells, 507,200 CLB Flip-Flops, 2800 DSP DSP48E1,
37,080 Kb total block RAM and 700 Single-Ended I/O. The Vivado software (v. 2014.2) and the System
Generator software (v. 2014.2) developed by Xilinx Corporation are employed as the development
tools. The hardware description language is Verilog HDL. A PC (personal computer) with a Windows
7 (64 bit) operation system is selected for the purpose of comparison analysis. The PC computer is
equipped with an Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 8 GB RAM.

4.3. Analysis of Various Floating-Point Data Widths

4.3.1. Relationship between the Data Width and the Accuracy

Due to the resource limitation of the FPGA chip, this paper attempts to study the relationship
between the floating-point data width vs. the accuracy of geometric calibration. The experiment
is conducted using 6 GCPs under the floating-point data widths, 44-bit, 48-bit, 50-bit, 54-bit and
64-bit. In accordance with the IEEE standard 754, a floating-point data width consists of the sign part,
exponent part and fractional part. The five types of floating-point data widths are experimented,
as shown in Table 2.
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Table 2. Format of floating-point.

44-Bit 48-Bit 50-Bit 54-Bit 64-Bit

Sign part 1 1 1 1 1
Exponent part 8 8 9 9 11
Fractional part 35 39 40 44 52

With the different data widths, the solutions of the coefficients in Equation (5) computed by the
FPGA and the PC computer are presented in Table 3. As seen in Table 3, when the data width increases
from 44-bit to 64-bit, the maximum differences of the coefficients, ∆b0 and ∆c0 decrease from 2.8684
to 5.8651 × 10−4, and from 0.9676 to 0.0021, respectively. The differences of the coefficients, ∆d0, ∆e0,
∆f 0, ∆d1, ∆e1 and ∆f 1, decrease from approximatively 1 × 10−7 to 1 × 10−10 when the data wide
decrease from 44-bit to 64-bit. When the data width reaches 64-bit, the solutions of 9 coefficients solved
by the FPGA and by the PC computer are almost exactly the same. Consequently, the experimental
results discover that (1) the differences of geometric calibration parameters solved by FPGA and PC
computer are small enough; (2) With increasing the data widths, the accuracy of geometric calibration
parameters increases.

Table 3. Differences of the results computed by FPGA-based and PC-based computations with various
data width.

|PC-FPGA| 44-Bit 48-Bit 50-Bit 54-Bit 64-Bit

∆a0 0.1026 0.0408 0.0050 4.3282 × 10−4 1.8679 × 10−5

∆b0 2.8684 0.1184 0.0418 0.0019 5.8651 × 10−4

∆c0 0.9676 0.0301 0.0043 0.0018 0.0021
∆d0 2.018 × 10−7 1.995 × 10−8 2.281 × 10−9 9.935 × 10−10 8.365 × 10−10

∆e0 3.359 × 10−7 1.031 × 10−8 1.154 × 10−9 5.487 × 10−11 7.704 × 10−11

∆f 0 7.660 × 10−7 2.798 × 10−8 3.685 × 10−9 4.254 × 10−10 1.630 × 10−10

∆d1 1.316 × 10−8 6.464 × 10−10 1.685 × 10−10 1.819 × 10−12 5.190 × 10−12

∆e1 9.478 × 10−11 7.295 × 10−11 7.087 × 10−12 1.687 × 10−12 3.684 × 10−13

∆f 1 2.776 × 10−8 1.912 × 10−9 1.833 × 10−10 9.606 × 10−12 8.882 × 10−14

4.3.2. Relationship between the Data Width and the Consumption of FPGA Resources

Although an increasing data width can increase the accuracy of the calibration parameters,
it consumes more FPGA resources. Thereby, it is necessary to investigate the relationship between the
data width and the consumption of FPGA resources. For this reason, the five widths of floating-point
data and the consumptions of FPGA resources, including FF, LUT, Memory LUT, I/O and DSP48,
are analyzed. The results are displayed in Figure 12. As seen from Figure 12, when the data width
increases from 44-bit to 54-bit, the utilization of FF increases from 14.98% to 16.37%, LUT from 61.31%
to 75.33%, Memory LUT from 9.32% to 10.86%, I/O from 33.57% to 40.71% and DSP48 from 55.71% to
92.86%. The consumption of DSP48 unit increases from 6 to 10 when data width changes from 50-bit
to 54-bit. This means that the DSP48 resources consume very fast when data width increases. When
the data width reaches 64-bit, the utilizations of FPGA resources reaches 100%. It can therefore be
concluded that the data width with 54-bit is recommended in this paper.
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4.3.3. Relationship between the Data Width and the Computational Speed

Computational speed is considered as one of the most important indexes in FPGA-based
implementation. This sub-section discusses the relationship between the data width and the computational
speed using the five types of floating-point data. For the purpose of comparison analysis, the calibration
parameters are also computed by PC-based Microsoft Visual studio 2015 (C++). The results are presented
in Tables 3 and 4. As observed from Tables 3 and 4, the computational speed at data widths of 44-bit,
48-bit, 50-bit and 54-bit can reach a 217 clock cycle (approximately 0.01736 ms under the clock frequency
of 12.5 MHz) when using FPGA, which is 22 times faster than that by the PC-based implementation.
However, the computation at the data width of 64-bit is failure to be operated, since the utilization of the
DSP48 unit reaches 100% (see Figure 12). Hence, the data width with 64-bit is not recommended.

With the experimental results in Table 3, it can be concluded that when the data width increases
from 44-bit to 64-bit, the accuracy can be improved, while the speed of FPGA-based implementation
remains consistent, except for the data width of 64-bit. The reasons are that (1) the IP cores with
different data widths can be defined as the same clock delay for the results outputting; (2) the larger
data width will consume more DSP48 unit, resulting in that the consumption of DSP48 in 64-bit data
width reaches over 100% (see Figure 12). Therefore, a width of floating point data with 50-bit is
recommended for on-board geometric calibration.

Table 4. Comparision of FPGA-based and PC-based computing time.

FPGA-Based Implementation PC-Based Implementation (64-Bit) Conclusion

44-bit

0.0174 (ms)
(217 clock, 12.5 MHz) 0.378 (ms)

The FPGA-based computation is
22 times faster than the PC-based does.

48-bit

50-bit

54-bit

64-bit Fail to calculation Fail to calculation

4.4. Analysis of the Optimum Number of GCPs

4.4.1. Relationship between the Number of GCPs and the Accuracy

In general, the more GCPs, the higher geometric calibration accuracy. However, for a FPGA-based
implementation, many GCPs will add the burden of computational time and the consumption of
FPGA resources. Thereby, it is necessary to investigate the optimum number of GCPs for on-board
geometric calibration. For this reason, this sub-section investigates the different numbers of GCPs
(i.e., 5, 6, 8 and 10) vs. computational accuracy when the floating-point data width is fixed at 50-bit.
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Also for the purpose of comparison, the calibration parameters solved by PC-based Microsoft Visual
studio 2015 (C++) is applied as the references under the same GCPs. The differences of the parameters
between the FPGA-based and the PC-based computations are shown in Table 5. As seen in Table 5,
with increasing number of GCPs, the differences of calibration parameters become smaller and smaller.
The maximum difference reaches 0.015 for a0, when the number of GCPs is 5; even decreases to 0.008
when the number of GCPs reaches 10. The differences of the other parameters, b0, c0, d0, e0, f 0, d1, e1

and f 1 in Table 5, display a similar phenomenon.

Table 5. Differences of calibration between FPGA-based and PC-based calculations.

|PC-FPGA| 5 GCPs 6 GCPs 8 GCPs 10 GCPs

∆a0 0.01481804 0.00502983 0.00648983 0.00749144
∆b0 1.12103 × 10−5 0.04178977 0.00766325 0.00091729
∆c0 0.00077522 0.00427705 0.00244571 0.00394770
∆d0 3.3568 × 10−9 2.28135 × 10−9 2.19579 × 10−10 2.72209 × 10−10

∆e0 2.99778 × 10−10 1.15354 × 10−9 1.19552 × 10−9 5.38698 × 10−10

∆f 0 1.5894 × 10−9 3.68499 × 10−9 7.32229 × 10−10 2.71596 × 10−9

∆d1 5.21121 × 10−11 1.68484 × 10−10 1.68234 × 10−11 3.37348 × 10−11

∆e1 1.39511 × 10−11 7.08677 × 10−12 1.05921 × 10−11 1.29294 × 10−11

∆f 1 9.92273 × 10−12 1.8332 × 10−10 9.54881 × 10−11 1.29121 × 10−10

4.4.2. Relationship between the Number of GCPs and the Consumption of FPGA Resources

In order to select an optimum number of GCPs, a relationship between the number of GCPs and
the consumption of the FPGA resources is investigated. With the fixed data wide at 50 bit as described
above, 5 GCPs, 6 GCPs, 8 GCPs and 10 GCPs are selected to investigate the consumption of FPGA
resources, respectively. The results are presented in Table 6. As observed from Table 6, when the
number of GCPs varies from 5 to 10, the consumptions of the BRAM, DSP48 and BUFG remain the
same, but the consumptions of FF, LUT and Memory LUT increase a little bit. This means that the
increasing number of GCPs will not significantly consume the FPGA resources.

Table 6. The utilizations of FPGA resources under different numbers of GCPS.

GCPs BRAM (%) DSP48 (%) BUFG (%) FF (%) LUT (%) Memory LUT (%)

5 1.31 55.71 3.12 16.14 69.67 9.46
6 1.31 55.71 3.12 16.37 70.04 10.09
8 1.31 55.71 3.12 16.96 70.63 11.48

10 1.31 55.71 3.12 17.58 71.78 12.92

4.4.3. Relationship between the Number of GCPs and the Computational Speed

From Vivado software’s instruction, the clock cycles span from 75.94 ns, 76.76 ns, 75.34 ns
to 75.82 ns. To ensure enough clock delay when executing a floating-point calculation, the clock
cycle is set at 80 ns (the corresponding clock frequency is 12.5 MHz) in this group of experiments.
The computational time under the different number of GCPs is listed in Table 7. As observed in Table 7,
the computational time changes from 0.0170 ms to 0.0186 ms when the number of GCPs increases from
5 to 10, while the computational time from PC-based computation increases from 0.377 ms to 0.463 ms.
In other words, the FPGA-based maximum computation speed can reach approximately 22 times
faster than the PC-based does when five GCPs are adopted; the FPGA-based minimum computation
speedup can achieve approximately 25 times faster than the PC-based does when the number of GCPs
increases to 10. Thereby, it can be concluded that FPGA-based on-board implementation of geometric
calibration can reach approximately 24 times faster than the PC-based does.
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Table 7. The FPGA-based computational time under different numbers of GCPS.

GCPs By FPGA (ms) By PC (ms) Speedup

5 0.0170 (213 clock, 12.5 MHz) 0.377 22
6 0.0174 (217 clock, 12.5 MHz) 0.378 22
8 0.0180 (225 clock, 12.5 MHz) 0.458 25
10 0.0186 (233 clock, 12.5 MHz) 0.463 25

4.5. Accuracy Comparison between FPGA-Based and Inflight-Based Computations

To investigate the relationship between FPGA-based and inflight-based implementations of
geometric calibration, the data wide is fixed at 50 bits; the 10 GCPs and 24 check points are selected;
and the calibration model, associated with other conditions, are the same. The experimental results
are presented in Table 8. As shown in Table 8, the RMSX of 11 m for X-coordinate, RMSY of 8 m
for Y-coordinate and RMSZ of 11 m for Z-coordinate can be reached. The RMS differences (noted, ∆)
between the inflight-based and the FPGA-based implementations are 0.16 m for X-coordinate, 0.19 m
for the Y-coordinate and 0.11 m for the Z-coordinate, respectively.

Table 8. Accuracy of ground coordinates calculated by inflight-based and FPGA-based implements.

GCP Check Points σ0 [um] σx [m] σy [m] σz [m] RMSX [m] RMSY [m] RMSZ [m]

Inflight-based
[43] 10 24 6.99 7.14 5.32 6.01 11.14 8.28 10.76

FPGA-based 10 24 6.99 7.29 5.49 6.16 11.31 8.47 10.87
∆ 0.15 0.17 0.15 0.16 0.19 0.11

5. Conclusions

This paper first presents an FPGA-based on-board computation and implementation for geometric
calibration. A Xilinx Virtex-7 FPGA VC707 board is selected as hardware and the experimental data
used for inflight geometric calibration from DLR (Köln, Germany), is employed to validate our method.
The main contributions of this paper are as follows.

(1) An FPGA-based on-board geometric calibration computation is designed and implemented.
(2) FPGA-based parallel computation for coefficient matrixes construction (e.g., matrix A and matrix

L), matrix multiplication (e.g., ATA and ATL), matrix decomposition (e.g., B = LDLT), and matrix
inversion (e.g., B−1) are developed. With the experimental results, it has been demonstrated that
the proposed method is able to save large amount of the FPGA resources.

(3) From the experimental results, it can be found that:

(a) With increasing data width, FPGA resources consume increasingly. For example,
the utilization of DSP48 unit suddenly increase from 55.7% to 92.9%, this fact demonstrates
that the data width of 64-bit is impropriate for on-board implementation of geometric
calibration for the selected FPGA chip due to the limitation of the FPGA resource.

(b) The computation speed executed by the FPGA is approximately 22 times faster than that
executed by the PC computer when five GCPs are adopted; and approximately 25 times
faster than that executed by the PC computer when 10 GCPs are adopted. It can therefore
be concluded that the computing speed executed by the FPGA can reach approximately
24 times faster than that executed by PC computer with Microsoft Visual Studio 2015 (C++).

(c) More than 90% of the DSP48 unit resources are consumed when the data width of 54-bit
or 64-bit is selected. Considering the limitation of FPGA resources, a width of 50-bit
floating point data is recommended, as which it meets the requirement of geometric
calibration accuracy.
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(d) When the floating-point data width is fixed at 50-bit and the number of GCPs varies from
five to 10, the utilizations of the FPGA’s BRAM, DSP48, and BUFG remain unchanged,
the utilizations of FF, LUT and Memory LUT slightly increase and the computational
speed increase a little bit. This means that increasing the number of GCPs will not
significantly increase the consumption of the FPGA resources and the computational
speed. Therefore, six GCPs are recommended during an on-board geometric calibration.

The proposed method in this paper not only can be used for satellites, but also used for van-based
mobile mapping and ground-based robots for speedup of geometric calibration. Moreover, part of the
FPGA-based modules developed in this paper, such as matrix multiplication and matrix inversion,
can be used for geometric calibration captured by frame cameras as well.
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