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Activation of the phospholipid scramblase TMEM16F by
nanosecond pulsed electric fields (nsPEF) facilitates its
diverse cytophysiological effects
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Claudia Muratori‡1, Andrei G. Pakhomov‡, Elena Gianulis‡, Jade Meads‡, Maura Casciola‡, Peter A. Mollica§,
and Olga N. Pakhomova‡

From the ‡Frank Reidy Research Center for Bioelectrics, and the §Department of Medical Diagnostics and Translational Sciences,
Old Dominion University, Norfolk, Virginia 23508

Edited by Dennis R. Voelker

Nanosecond pulsed electric fields (nsPEF) are emerging as a
novel modality for cell stimulation and tissue ablation. However,
the downstream protein effectors responsible for nsPEF bioeffects
remain to be established. Here we demonstrate that nsPEF activate
TMEM16F (or Anoctamin 6), a protein functioning as a Ca2�-de-
pendent phospholipid scramblase and Ca2�-activated chloride
channel. Using confocal microscopy and patch clamp recordings,
we investigated the relevance of TMEM16F activation for several
bioeffects triggered by nsPEF, including phosphatidylserine (PS)
externalization, nanopore-conducted currents, membrane bleb-
bing, and cell death. In HEK 293 cells treated with a single 300-ns
pulse of 25.5 kV/cm, Tmem16f expression knockdown and
TMEM16F-specific inhibition decreased nsPEF-induced PS expo-
sure by 49 and 42%, respectively. Moreover, the Tmem16f silencing
significantly decreased Ca2�-dependent chloride channel currents
activated in response to the nanoporation. Tmem16f expression
also affected nsPEF-induced cell blebbing, with only 20% of the
silenced cells developing blebs compared with 53% of the control
cells. This inhibition of cellular blebbing correlated with a 25%
decrease in cytosolic free Ca2� transient at 30 s after nanoporation.
Finally, in TMEM16F-overexpressing cells, a train of 120 pulses
(300 ns, 20 Hz, 6 kV/cm) decreased cell survival to 34% compared
with 51% in control cells (*, p < 0.01). Taken together, these results
indicate that TMEM16F activation by nanoporation mediates and
enhances the diverse cellular effects of nsPEF.

Permeabilization of biological membranes by high voltage
pulsed electric fields (PEF),2 known as electroporation, is a ver-
satile technique in biomedicine used for intracellular delivery of
drugs, plasmid DNA, and siRNA, as well as for tissue and tumor
ablation (1). More recently, the pulse duration has been short-
ened into the nanosecond range. The effects of such short

pulses have been shown to reach into the cell interior (2, 3),
thereby giving rise to specific biological effects and opening of
new opportunities to control cell function.

The best known primary effect of nanosecond pulsed electric
fields (nsPEF) is the permeabilization of membranes including
the plasma membrane, endoplasmic reticulum, and mitochon-
dria (2– 6). nsPEF triggers the formation of pores of nanometer
size (nanopores) on the cell membrane (7–9). Nanopores life-
time are in the order of seconds or minutes (7, 8, 10). We pre-
viously reported that nanopores are not “plain holes” in the
plasma membrane such as larger pores generated by longer
pulses. They have peculiar conductive properties analogous to
ion channels, such as voltage sensitivity, current rectification,
and ion selectivity (8, 11, 12). The inward rectification, which is
regarded by some authors as a hallmark of nanopore formation
(12), is manifested by a non-linear enhancement of the inward
current at the most negative membrane potentials in nsPEF-
treated cells. Nanopores display preferential permeability to
cations (8, 11, 12), which is consistent with expectations that
they are lined up with negatively charged hydrophilic phos-
phate groups of the membrane phospholipids (13).

Nanoporation initiates a plethora of downstream physiolog-
ical changes including rapid phosphatidylserine (PS) external-
ization (13, 14), cytoskeleton disassembly (15–18), cell swelling
and blebbing (19 –21), modulation of endogenous ion channels
(22, 23), and necrosis and apoptosis (24 –26). The diversity of
these effects suggests that plasma membrane nanoporation
may be the initial step in a complex chain of signaling cascades
leading to deregulation of multiple physiological functions.
Indeed, nanopore opening causes an immediate rise in the
intracellular free Ca2� concentration. Ca2� is a versatile signal
that triggers processes as diverse as cell motility, gene transcrip-
tion, muscle contraction, and membrane trafficking (27). Cells
may interpret nsPEF-induced Ca2� transients as authentic
Ca2� signals and amplify them by the Ca2�-induced Ca2�-re-
lease process (3, 4, 6, 28, 29).

Among proteins directly modulated by Ca2�, the TMEM16
family of membrane proteins, also known as anoctamins, plays
key roles in a variety of physiological functions that range from
ion transport, to phospholipid scrambling and to regulating
other ion channels (30 –32). In particular, TMEM16F, or
Anoctamin 6 (ANO6), was found to be an essential effector for
the Ca2�-dependent exposure of PS on the cell surface (33).
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Suzuki and colleagues (33) reported that knockdown of
Tmem16f in the Ba/F3 cells decreases the rate of PS externaliza-
tion induced by the Ca2� ionophore, whereas TMEM16F over-
expression strongly enhances PS exposure. Sequencing of chro-
mosomal DNA also demonstrates that Scott’s syndrome
patients carry loss-of-function mutations in the gene encoding
TMEM16F (33, 34). Scott’s syndrome is a congenital bleeding
disorder caused by the loss of Ca2�-dependent PS exposure
(29). This syndrome is accompanied by other cellular defects
such as impaired bleb formation in platelets and absence of
microvesicles shedding in both platelets and erythrocytes (35,
36).

Following the discovery that TMEM16F is a Ca2�-dependent
scramblase defective in patients with Scott’s syndrome, Yang et
al. (37) proposed that the increase in Ca2� required to induce
PS externalization depends on the Ca2�-permeable non-selec-
tive cation channel activity of TMEM16F itself. The properties
of ion channels associated with TMEM16F are a matter of
debate. In addition to a non-selective cation channel activity,
TMEM16F has been reported to function as a swelling-acti-
vated Cl� (38), outwardly rectifying Cl� (39), and Ca2�-acti-
vated Cl� channel (40 – 43). These results have been obtained
under different experimental conditions, which may explain
some of these differences. Overall the data support the idea that
TMEM16F has a non-selective pore or, as proposed by Whit-
lock and Hartzell (44), the existence of multiple open confor-
mations with different ion permeability.

There is also controversy regarding the link between ion
channel and scramblase activity of TMEM16F. It is not known
if anions, cations, and phospholipids move through one pore,
different pores formed by TMEM16F dimers, or whether addi-
tional accessory proteins are required. Whitlock and Hartzell
(44) recently proposed that TMEM16F-mediated PS external-
ization is associated with leakage of ions through the lipid
scrambling pathway between the protein and the scrambling
lipid head groups.

TMEM16F activation has also been associated with pro-
grammed cell death. Several studies reported that TMEM16F is
activated during apoptosis (39, 40, 45). Martins and colleagues
(39) found that cell death induced by staurosporine in Jurkat
cells was reduced in Tmem16f-silenced cells. They also showed
that TMEM16F facilitates apoptotic cell shrinkage (39).

Because TMEM16F functions closely mirror nsPEF-induced
bioeffects, in the present study we asked whether TMEM16F is
a downstream effector of nanoporation. Using confocal micros-
copy and whole-cell patch clamp we show that TMEM16F
expression affects PS externalization, cell blebbing, calcium
influx, nanopore currents, and cell death induced by nsPEF.
These results demonstrate that TMEM16F is activated in
response to nsPEF, and that TMEM16F activation facilitates
diverse cellular effects downstream from nanoporation.

Results

TMEM16F activation contributes to nsPEF-induced
phosphatidylserine externalization

Fig. 1A shows that a single 300-ns pulse (25.5 kV/cm) causes a
sustained externalization of PS on the plasma membrane of HEK

293 cells. Similarly to what has been already reported (46), we
found that PS appears more at the anode-facing pole of the cell and
within minutes distributes uniformly on the cell membrane. Exter-
nalization of PS can occur through the activation of scramblases,
which are Ca2�-dependent. Therefore, to gain insight into the
mechanism involved in PS exposure after nsPEF, we studied its
dependence on extracellular Ca2�. HEK 293 cells were treated
with nsPEF in bath solutions containing either 2 or 0 mM Ca2� and
PSexternalizationwasmeasuredovertimeusingthecalcium-inde-
pendent binding with FITC-tagged Lactadherin. Fig. 1B shows
that in the absence of Ca2�, one 300-ns pulse (25.5 kV/cm) did not
trigger PS externalization pointing at the involvement of a Ca2�-
dependent scramblase activity. The identification of TMEM16F as
an essential component for the Ca2�-dependent exposure of PS
on the cell surface (33) prompted us to investigate whether this
scramblase is relevant for nsPEF-induced PS externalization. To
block TMEM16F scramblase activity we used the Ca2�-activated
chloride channel inhibitor-AO1 (CaCCinh-AO-1). This inhibitor
was reported to block both the Ca2�-dependent Cl� channel and
scramblase activities (47). HEK 293 cells were pre-treated with 25
�M CaCCinh-AO-1 for 5 min in the presence of Cy5-labeled
Annexin V. In control samples, cells where preincubated with the
same dilution of the inhibitor vehicle DMSO. After this incubation
time, a single 300-ns pulse (25.5 kV/cm) was delivered to a small
group of cells and the PS exposure on the cell surface was moni-
tored by confocal microscopy. At 8 min post-nsPEF, blocking
TMEM16F decreased nsPEF-induced PS exposure by 42% as com-
pared with control samples (Fig. 1C).

To further prove the involvement of TMEM16F in nsPEF-in-
duced PS externalization, the expression of the endogenous
Tmem16f in HEK 293 was knocked down by specific siRNA. As
shown in Fig. 1D, transfecting two different Tmem16f siRNA
(siRNA Tmem16f-I and -II) decreased the expression level of the
messenger RNA (mRNA) to 26 and 11% of that in the siRNA con-
trol cells, respectively. The rate of nsPEF-induced PS exposure was
decreased in both siRNA Tmem16f transformants (Fig. 1E). At 5.5
min after treatment, PS externalization in siRNA Tmem16f-I and
-II cells was reduced by 33 and 49%, respectively. Notably, the
impairment in the scramblase activity efficiency correlated with
the level of Tmem16f silencing.

To summarize, we found that nsPEF-induced PS externaliza-
tion is dependent on extracellular Ca2�, and that both chemical
and expression block of TMEM16F reduced PS exposure. Our
results suggest that Ca2� coming through nanopores activates
TMEM16F.

Tmem16f knockdown affects both nsPEF-induced membrane
blebbing and rise in cytosolic free Ca2�

In addition to the PS externalization, nsPEF initiates rapid
membrane blebbing (20, 21). Morphologically these blebs
resemble pseudopods and exhibit a fast directional growth
toward the anode (20, 21). Fig. 2A shows that nsPEF induced
pseudopod-like blebs in cells transfected with the control
siRNA, whereas knockdown of Tmem16f gene expression sig-
nificantly impaired this response. After nanoporation, only 20%
of silenced cells developed blebs compared with 53% of the
control ones (Fig. 2B, left graph). Moreover, among the actively
blebbing cells, Tmem16f expression affected the development

Nanosecond pulsed electric fields activate TMEM16F
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of the blebs with the average bleb length for silenced cells
decreased to 9.1 � 0.9 �m compared with 12.9 � 0.8 �m in
control cells (p � 0.01, Fig. 2B, right graph). Notably, membrane
blebbing in response to P2X purinergic receptor 7 (P2X7R) acti-
vation was found to be dependent on Tmem16f expression (48)
and cell bleb formation is compromised in platelets from Scott’s
syndrome patients (35, 36).

A downstream effect of nanoporation by nsPEF is the tran-
sient mobilization of calcium ions that involves both Ca2�

uptake from the outside and release from the endoplasmic
reticulum (3, 4, 49, 50). A rise in cytosolic free calcium [Ca2�]i
has been shown to have a pivotal role in bleb formation (51–53).
We therefore asked whether the defects in membrane blebbing
seen in Tmem16f-silenced cells correlated with an impairment
in nsPEF-induced rise of [Ca2�]i. In the presence of 2 mM exter-
nal Ca2�, HEK 293 cells responded to one 300-ns pulse, 25.5
kV/cm with an immediate rise in [Ca2�]i (Fig. 2C), which lasted
for minutes after the treatment. In silenced cells, the shape of
the transients was similar to the control cell ones but reduced
by 25%.

These results show that TMEM16F serves as a Ca2�-perme-
able channel in nsPEF-treated cells. Both calcium influx and
cell blebbing, two characteristic immediate responses to nsPEF,
are reduced in Tmem16f-silenced cells.

Interplay between nanopore- and TMEM16F-conducted
currents

Next, we explored if nsPEF increases Cl� permeability of the
cell membrane, and whether it is mediated by Ca2�-mediated
TMEM16F activation. In Fig. 3A, the whole-cell configuration
was established 2 min prior the delivery of one 300-ns pulse at
4.2 kV/cm. The current-voltage (I-V) dependence was mea-
sured by applying the same voltage step protocol (�100 to �80
mV) at 30 s prior to nsPEF and again at 60 s after it. nsPEF
increased the membrane conductance at both positive and neg-
ative potentials (Fig. 3A, left I-V curve). Substitution of the bath
NaCl with sodium gluconate reduced the Cl� concentration
from 152.4 to 12.4 mM, thereby attenuating currents at the most
positive membrane potentials with little or no impact on
inward currents at negative potentials (Fig. 3A, right I-V curve).
This result shows that nsPEF induces Cl� currents. In principle
these currents can flow through both nanopores and endoge-
nous ion channels (including Ca2�-dependent TMEM16F
channel), although our previous studies showed that nanopores
are cation-selective, with about 10-fold higher conductivity to
K� than to Cl� (12). To separate between Ca2�-activated Cl�

current (presumably through TMEMF16) and other pathways
of Cl� influx, we varied the Ca2� chelator load into the pipette.

Figure 1. nsPEF-induced phosphatidylserine externalization (A), its dependence on Ca2� (B), and on TMEM16F activity (C–E). HEK 293 were treated with a single
300-ns 25.5 kV/cm pulse, and PS externalization was monitored by time lapse confocal microscopy using either Cy5-labeled Annexin V (A, C, and E) or
lactadherin-FITC (B). The nsPEF treatments were done at 87 s into the experiment (black arrows), after acquiring 3 pre-exposure images as a baseline. Panel A
shows for a group of cells treated with nsPEF, DIC and Annexin V fluorescence images taken at the indicated time points. Panel B shows the lack of PS
externalization in the absence of extracellular Ca2�. Cells were treated with nsPEF in either 2 or 0 mM CaCl2 bath solutions. DIC and lactadherin-FITC fluores-
cence images were taken at the indicated time points. In panel C, the scramblase activity of TMEM16F was blocked by incubation of cells with 25 �M

CaCCinh-AO-1 for 5 min. In control samples, the inhibitor vehicle DMSO was diluted the same way. Sham-exposed cells were not exposed to nsPEF but
subjected to all the same manipulations. In panel D cells were transfected with two siRNA targeting Tmem16f transcripts (siRNA Tmem16f-I and -II) or scrambled
siRNA and specific silencing was verified by real-time quantitative PCR. Tmem16f mRNA levels were normalized to b-act mRNA and are shown as relative
expression. Panel E shows that silencing Tmem16f with two different siRNA sequences, Tmem16f-I (left) and -II (right), reduced the Annexin V emission curve in
response to nsPEF. Mean � S.E., 35– 46 (B), 35– 40 (D), and 25–35 (E) cells per each group from 3 to 5 independent experiments.

Nanosecond pulsed electric fields activate TMEM16F
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With 2 mM extracellular Ca2�, the cell cytoplasm was dialyzed
using pipette solutions containing either 0.5 or 5 mM EGTA, or
5 mM BAPTA. At 30 s after one 300-ns pulse at 4.2 kV/cm, the
I-V curves from cells dialyzed with the three solutions were very
similar (Fig. 3B), suggesting that nanoporation was not affected
by the availability of cytosolic free Ca2�. This situation, how-
ever, changed over time: at 150 s after nsPEF, the current at the
most positive membrane potentials in 0.5 mM EGTA cells was
similar to the one at 30 s, whereas in 5 mM EGTA cells was
significantly reduced. This difference became even more pro-
nounced when using BAPTA which, compared with EGTA, has
much faster Ca2�-binding kinetics (54). In the subsequent
experiments, we proved that this Cl� current was indeed de-
pendent on Tmem16f expression (Fig. 4). Using a pipette solu-
tion containing 0.5 mM EGTA, at 30 s after treatment with a
single 300-ns pulse we recorded in both control and Tmem16f-
silenced cells similar I-V curves. However, at 270 s after nsPEF,
whereas the inward currents were still very similar, the out-
wardly ionic current of silenced cells was significantly reduced
compared with control cells. These results show that the
TMEMF16-mediated Cl� conductance is activated by nsPEF in
a Ca2�-dependent manner with a few minutes delay after
nsPEF exposure.

TMEM16F overexpression increases nsPEF cytotoxicity

The cytotoxicity of nsPEF have been demonstrated in multi-
ple cell types in vitro (24, 25, 55–58). Because TMEM16F acti-

vation by nsPEF exacerbates cellular responses that have been
linked to cell death such as PS externalization and cell blebbing
(59), we anticipated that TMEM16F overexpression would
increase nsPEF cytotoxity. First we studied the sensitivity to
nsPEF of HEK 293 exposed in suspension in electroporation
cuvettes. Fig. 5A shows the effect of the increasing pulse num-
ber on cell survival, whereas other treatment parameters were
fixed (20 Hz, 300-ns pulse duration, 6 kV/cm). A train of 120
pulses, which caused a 45% decrease of viability, was chosen to
study the effect of TMEM16F overexpression on cell survival
after nsPEF. Cells were exposed to nsPEF 48 h after transfection
with either TMEM16F or a control construct. TMEM16F over-
expression dropped cell survival to 34% compared with 51% in
control samples (Fig. 5C). Considering that, on average, only
about 50% of cells overexpressed the construct (Fig. 5B), the
survival in the overexpressing cell subpopulation was estimated
to be at �17%.

Discussion

In the present study we show that TMEM16F, a protein that
functions as a Ca2�-dependent phospholipid scramblase and
Ca2�-activated Cl� channel, is a downstream effector of nsPEF.

In light of our results, a key question is how nsPEF activates
TMEM16F. Nanopores can remain open for minutes before
being resealed (7, 8, 10), thus leading to rapid influx of Ca2�,
ionic imbalance, and cell swelling (24, 60). Notably, both intra-
cellular Ca2� elevation and cell swelling have been linked to

Figure 2. Silencing Tmem16f expression inhibits membrane blebbing (A and B) and reduced calcium transient (C) induced by nsPEF. HEK 293 cells
silenced for Tmem16f expression were treated with one 300-ns 25.5 kV/cm pulse in the presence of 2 mM extracellular Ca2�. Panel A shows the DIC images taken
at the indicated time points of two representative groups of control (black) and Tmem16f-silenced (red) cells. At 360 s post-nsPEF, the yellow arrows indicate the
pseudopod-like blebs. Quantification of the effects seen in A is shown in B. Blebs were measured at 360 s after nsPEF. Cells were considered bleb-positive when
the length of the bleb exceeded the cell radius. In cells considered positive for blebbing, the maximum bleb length was calculated by measuring the longest
bleb in each cell. Mean � S.E., 100 –120 cells per each group from 3 independent experiments. *, p � 0.01. Panel C compares Ca2� transients evoked by nsPEF
in cells silenced for Tmem16f expression and control cells. The nsPEF treatment was done at 27 s into the experiment, after acquiring 3 pre-exposure images as
a baseline, changes in cytosolic free calcium concentration were measured using Fluo-4. Each trace is the average from 50 cells.

Nanosecond pulsed electric fields activate TMEM16F
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Figure 4. Silencing Tmem16f expression suppresses currents at positive membrane potentials. I-V curves for control and Tmem16f-silenced cells mea-
sured at 30 and 270 s after nsPEF (one 300-ns, 4.2 kV/cm). Values were corrected for their parallel sham exposure measurements. Mean � S.E., 14 –16 cells per
each group from 4 independent experiments. *, p � 0.05 for the difference between control and Tmem16f-silenced samples.

Figure 3. Nanopore current dependence on extracellular Cl� (A) and intracellular free Ca2� (B). HEK 293 cells were bathed with 2 mM extracellular CaCl2
and, 2 min after the establishment of the whole cell configuration, subjected to one 300-ns pulse at 4.2 kV/cm. Panel A shows the effect on Cl� replaced by
Gluconate� on membrane currents in nsPEF-exposed cells. Currents were measured at 30 s prior to nsPEF and then after at 60 s. Mean � S.E., 15 cells per each
group from 2 independent experiments. Inset shows the position of the PEF-delivering electrodes relative to the exposed cell and the recording pipette.
Calibration bar: 20 �m. In panel B, the cytoplasm of the patched cells was dialyzed using pipette solutions containing either 0.5 or 5 mM EGTA, or 5 mM BAPTA.
Currents were measured at the indicated time points relative to the moment of nsPEF delivery. Mean � S.E., 10 cells per each group from 3 independent
experiments. *, p � 0.05; **, p � 0.001 for the difference between �30 and �150 s.

Nanosecond pulsed electric fields activate TMEM16F
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TMEM16F activation. Ionomycin, P2Y2 receptors activation,
and direct elevation of cytosolic Ca2� using specific patch
pipette solutions as well as hypotonic bath solutions all activate
TMEM16F-dependent Cl� currents (38, 40, 41, 48, 61). Our
results show that Ca2� coming through nanopores is sufficient
to activate TMEM16F. We found that depletion of the extracel-
lular Ca2� completely abolished PS exposure in nanoporated
cells and that the cytosolic chelation of Ca2� coming through
nanopores reduced TMEM16F-mediated Cl� conductance.
The relevance of the osmotic cell swelling for TMEM16F chan-
nel activation in nanoporated cells has yet to be explored.

Permeabilization of the cell membrane by nsPEF causes rapid
PS externalization (13, 14). Results from both experiments and
molecular dynamics simulations support the idea that nsPEF-in-
duced PS translocation is a result of an electrophoretic migration
of the negatively charged PS head group alongside the lipid–water
interface of nanopores (62–64). Our results point, for the first
time, to the involvement of activated scramblase in nsPEF-
induced PS externalization. Both chemical inactivation of
TMEM16F and gene silencing significantly reduced nsPEF-in-
duced PS exposure. We also show that PS externalization is abol-
ished when cells are treated with nsPEF in the absence of extracel-
lular Ca2�. These results suggest that PS exposure in nanoporated
cells happens exclusively in a scramblase-dependent manner.
However, Ca2� affects the plasma membrane electroporation
itself. We previously reported that pore formation and evolution
are dependent on external Ca2�(65). In particular, we found that
Ca2� first stabilizes the pores but facilitates their delayed expan-
sion (65). Therefore one should consider that, in addition to acti-
vating TMEM16F, in nanoporated cells Ca2� may affect PS expo-
sure by modulating the structure and stability of the pores. Indeed,
direct blockage of TMEM16F did not abolish PS externalization
suggesting that both scramblase activation and lateral drift
throughout nanopores may drive nsPEF-induced phospholipid
perturbation. The balance between these two mechanisms may

depend on the pulse parameters and on whether the influx of Ca2�

through the nanopores is sufficient to stimulate scramblase
activity.

We also found that TMEM16F gene silencing markedly
reduced cell blebbing occurring in response to nsPEF. Blebs are
a result of actomyosin contraction, which causes transient
detachment of the cell membrane from the actin cortex. Their
expansion is rapid and dependent on actin polymerization (66).
Cortical contractility is associated with cyclic intracellular cal-
cium transients (67, 68). Although it has been reported that
Scott’s syndrome patients have cell blebbing and microvesicles
shedding defects, the mechanisms by which TMEM16F con-
trols these processes are unknown. One can speculate that the
TMEM16F non-selective cation channel activity is responsible
for the rise in cytosolic free Ca2� crucial for bleb formation.
Indeed, we found a 25% calcium transient reduction in
Tmem16f-silenced cells. However, whether this difference is
enough to explain the blebbing impairment seen in silenced
cells, as well as the direct role of the TMEM16F cation channel
activity needs to be further investigated.

To assess the activation of the TMEM16F channel, we
focused on the Cl� currents. Using both overexpression and
silencing approaches, several groups showed that TMEM16F
can conduct Cl� currents in response to the elevation of the
intracellular Ca2� concentration (40 – 43, 69).

nsPEF caused a long-lasting increase of cell membrane con-
ductance, both at positive and negative membrane potentials.
Removal of the extracellular Cl�, chelating of the cytosolic Ca2�,
and changing Tmem16f expression affected the current at the pos-
itive but not negative membrane potentials. Considering our ear-
lier data that nanopore currents are maximized at negative mem-
brane potentials (8, 11, 12), and that nanopores are strongly
selective for cations (8, 11, 12), these new findings provide strong
evidence that nsPEF activates TMEMF16 function as a Cl� chan-
nel. Moreover, this activation was observed minutes after the

Figure 5. The effect of pulse number (A) and TMEM16F overexpression on HEK 293 cell death (B and C). A, cells were treated with increasing numbers of
300-ns pulses (20 Hz at 6 kV/cm). Exposures were performed in 1-mm gap electroporation cuvettes and cell survival was assessed in 24 h. Results are expressed
in % to sham-exposed parallel control at 24 h. Mean � S.E. for 9 independent experiments. B, expression level of TMEM16F-3xFLAG analyzed by Western blot
and FACS analyses at 48 h after transfection. Extracts of cells were immunoblotted with an anti-FLAG and, as a control, with �-actin antibody. TMEM16F is seen
as a broad band around 120 kDa. To measure the % of TMEM16F-positive cells, control and overexpressing cells were permeabilized, stained with an anti-FLAG
antibody, and analyzed by FACS. Cells in the gated area were considered positive for TMEM16F expression. C, overexpression of TMEM16F increases the
cytotoxicity of exposure to 120 pulses (300-ns width, 6 kV/cm, 20 Hz). The survival was measured at 24 h after nsPEF exposure and expressed in % to
sham-exposed parallel control. Mean � S.E. for 6 independent experiments. *, p � 0.001.
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mobilization of cytosolic Ca2�, which is consistent with earlier
reports that Ca2�-dependent Cl� current through TMEM16F
channel takes minutes to develop (41, 43, 69).

TMEM16F is not the first ion channel found to respond to
nsPEF. Indeed, several groups including ours reported activa-
tion of voltage-gated calcium channels in response to nsPEF as
well as a long lasting inactivation of both voltage-gated calcium
channels and voltage-gated sodium channels by an unknown
mechanism (23, 29, 70 –73).

Activation of ion channels is an important step for regulated
cell death (74). Our data show that nsPEF cytotoxicity is
increased when TMEM16F is overexpressed in nanoporated
cells. Depending on the pulse parameters, exposure method,
and cell type used, in vitro studies showed that nsPEF can acti-
vate apoptosis, necrosis, a combination of these mechanisms,
and autophagy (24, 55, 75). Although it is not uncommon that a
death stimulus activates more than one cell death pathway, it is
not clear how nsPEF does it. Notably, TMEM16F was reported
to be activated during both apoptosis and necroptosis, a pro-
grammed form of necrosis (39, 40, 45, 76). Activation of
TMEM16F by a mild increase of intracellular Ca2� induces
Cl�-selective currents, cell shrinkage, and apoptosis (39, 40,
45). At strong activation, e.g. by stimulation of purinergic P2Y7
receptors, TMEM16F participates in pore formation, massive
membrane blebbing, cell swelling, and necroptotic cell death
(48). Based on these findings, one could expect that the mech-
anism and level of TMEM16F activation may influence the cell
death mode in nsPEF-treated cells.

Taken together, we demonstrate that TMEM16F is an
important regulator of the cellular effects of downstream nano-
poration. Our results provide new insight into the mechanisms
of action of nsPEF stimulation.

Experimental procedures

Cell culture, chemicals, and solutions

HEK 293 cells were kindly provided by Dr. John Catravas
(Old Dominion University, Frank Reidy Research Center for
Bioelectrics, Norfolk, VA). Cells were cultured in Eagle’s mini-
mum essential medium with L-glutamine (ATCC), supple-
mented with 10% (v/v) fetal bovine serum (certified OneShot
format, FBS-OneShot, Life Technologies). One day prior to the
experiments, cells were passaged and transferred onto glass
coverslips (number 0 thickness, 10 mm diameter) pretreated
with 20 ng/ml of Laminin (Sigma) to improve cell adhesion.

The composition of solutions utilized in different experiments
is described below. Chemicals were purchased from Sigma and
Life Technologies. The osmolality of the solutions was between
290 and 310 milliosmole/kg, as measured by a freezing point
microosmometer (Advanced Instruments, Inc., Norwood, MA).
All experiments were performed at room temperature (22 � 2 °C).

nsPEF exposure methods

nsPEF was delivered to cells either attached to glass cover-
slips or in suspension in electroporation cuvettes. Both meth-
ods have been previously described (8, 77). For cells on glass
coverslips, nearly rectangular 300-ns pulses were generated by a
Mosfet-switch-based circuit upon delivery of a TTL trigger
pulse from pClamp software via a Digidata 1322A output

(Molecular Devices). The same software and Digidata output
were used to synchronize nsPEF exposure, image acquisition,
and whole-cell recordings. nsPEF were delivered to a selected
cell or small group of cells with a pair of tungsten rod electrodes
(100 �m diameter, 140 �m gap). The electrodes were posi-
tioned precisely 30 �m or, for the electrophysiology experi-
ments, 40 �m above the coverslip using a robotic manipulator
(MP-225, Sutter Instruments, Novato, CA). In most experi-
ments we delivered one 300-ns pulse at 25.5 kV/cm; for elec-
trophysiology experiments pulse intensity was reduced to 4.25
kV/cm. The E field at the cell location was calculated as
described previously (78), by 3D numerical simulations using a
finite element analysis software COMSOL Multiphysics�,
release 5.0 (COMSOL Inc., Stockholm, Sweden).

For cells in suspension, trains of trapezoidal pulses of 300 ns
duration (20 Hz, 6 kV/cm) from an AVTECH AVOZ-D2-
B-ODA generator (AVTECH Electrosystems, Ottawa, Ontario,
Canada) were delivered to 1-mm gap electroporation cuvettes
(BioSmith, San Diego, CA) via a 50- to 10-ohm transition mod-
ule (AVOZ-D2-T, AVTECH Electrosystems) modified into a
cuvette holder. To produce pulse trains of predetermined dura-
tion at selected repetition rates, the generator was triggered
externally from a model S8800 stimulator (Grass Instrument
Co., Quincy, MA). The pulse amplitude and shape were moni-
tored in all experiments using a 500 MHz, 5 GS/s TDS 3052B
oscilloscope (Tektronix, Wilsonville, OR).

PS externalization and calcium imaging

To study both PS externalization and Ca2� influx in response
to nsPEF, a coverslip with cells was placed in a glass-bottomed
chamber (Warner Instruments, Hamden, CT) mounted on an
Olympus IX81 inverted microscope equipped with an FV 1000
confocal laser scanning system (Olympus America, Center Val-
ley, PA). The chamber was filled with a physiological solution
containing (in mM): 140 NaCl, 5.4 KCl, 1.5 MgCl2, 2 CaCl2, 5
HEPES, 10 glucose (pH 7.4 with NaOH).

To detect PS externalization we used either a Ca2�-depen-
dent Cy5-labeled Annexin V (BD Biosciences, San Jose, CA) or
a Ca2�-independent bovine lactadherin-FITC (Hematologic
Technologies, Essex, VT). Cy5-labeled Annexin V was diluted
1:100 in the physiological solution. Lactadherin-FITC was used
at 0.25 �g/ml in physiological solutions containing either 2 mM

CaCl2 or 0 mM CaCl2 and 2 mM EGTA. To block TMEM16F, we
used CaCCinh-AO-1 from Sigma. The inhibitor was resus-
pended in 50 mM DMSO and diluted 1:2000 to a final concen-
tration of 25 �M. In control samples DMSO was diluted the
same way. Differential interference contrast (DIC) and fluores-
cent images were taken with a �40, NA 0.95 dry objective as a
time series (1 image/30 s) beginning 87 s before nsPEF exposure
and continuing for up to 8 min after. Cy5-labeled Annexin V
was excited with a red laser (635 nm) and the emission of the
dye was detected between 655 and 755 nm. Lactadherin-FITC
was excited with a blue laser (488 nm) and the emission of the
dye was detected between 505 and 605 nm.

The cytosolic Ca2� was monitored by fluorescence imaging
with Fluo-4 (Invitrogen). To load the cells with the dye, the
coverslips were incubated for 15 min in the physiological solu-
tion containing 5 �M Fluo-4/AM and 0.02% of Pluronic F-127
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(Life Technologies), in the dark at room temperature. The cov-
erslips were rinsed twice and then left for 15 min in the physi-
ological solution before being transferred into the glass-bot-
tomed chamber.

DIC and fluorescence images were taken as a time series (1
image/10 s) starting at 27 s before nsPEF treatment and con-
tinuing for 4.8 min. Fluo-4 was excited with a green laser (488
nm) and the emission of the dye was detected between 505 and
605 nm. Images were quantified using MetaMorph Advanced
version 7.7.0.0 (Molecular Devices, Foster City, CA).

Electrophysiology

Whole-cell patch clamp recordings were conducted similarly
to what was previously described (8, 10, 79). Recording pipettes
were pulled from borosilicate glass (BF150-86-10, Sutter
Instruments, Novato, CA) to a tip resistance of 1.5–3 M	 using
a Flaming/Brown P-97 puller (Sutter Instruments).

HEK 293 cells plated on coverslips were placed in the same
microscope setup as was used for cell imaging. In most experi-
ments the bath solution contained (in mM): 140 NaCl, 5.4 KCl, 1.5
MgCl2, 2 CaCl2, 5 HEPES, and 10 glucose. For experiments
described in Fig. 3A, 140 mM NaCl was replaced with 140 mM

sodium gluconate. The pipette solution contained (in mM): 140
cesium acetate, 4 MgCl2, 10 HEPES and either 0.5 (Figs. 3B and 4)
or 5 cesium-EGTA (Fig. 3, A and B), or 5 cesium-BAPTA (Fig. 3B).
In the experiment described in Fig. 3B, we blocked the 2 mM Ca2�

coming through the nanopores by using pipette solutions with
different Ca2� buffering efficiency. We used a solution with low
Ca2� binding capacity, 0.5 mM EGTA (1.5 mM free Ca2�), and two
solutions with comparable high Ca2� binding capacity, 5 mM

EGTA (60 mM free Ca2�) and 5 mM BAPTA (160 mM free Ca2�),
but different binding kinetics. BAPTA, compared with EGTA, has
much faster Ca2�-binding kinetics (54). The free calcium concen-
tration was calculated with Ca/Mg, ATP/EGTA Calculator ver-
sion 2.2b (web.stanford.edu/�cpatton/webmaxcS.htm).3 The pH
of both bath and pipette solutions was adjusted to 7.4.

Two minutes after the whole-cell configuration was estab-
lished, membrane currents were recorded at specific times
before and after nsPEF exposure by applying the same voltage-
step protocol (200 ms steps from �100 to 70 mV in 10-mV
increments); the holding potential between the sweeps was set
at �70 mV. Data were collected using a Multiclamp 700B
amplifier, Digidata 1322A A–D converter, and pCLAMP 10
software (Molecular Devices). All voltage values reported in the
graphs were corrected for respective junction potentials.

Tmem16f expression knockdown and overexpression

To silence Tmem16f expression, we used two different stealth
siRNA: HSS153251 (siRNA Tmem16f-I) and HSS176378 (siRNA
Tmem16f-II) (Invitrogen). To transfect the siRNA we used Lipo-
fectamine RNAiMAX (Invitrogen) according to the manufactu-
rer’s instructions. Control samples were transfected with stealth
siRNA negative control medium GC duplex (Invitrogen).

To overexpress TMEM16F, we used a mouse TMEM16F-
3xFLAG (80) construct kindly provided by Dr. Criss Hartzell

(Emory University School of Medicine, Department of Cell
Biology, Atlanta, GA). The construct was transfected in HEK
293 using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions. Control samples were treated the
same way and transfected with an empty control vector. Exper-
iments with both silenced and overexpressing cells were done
at 48 h post-transfection.

RT-PCR, Western blot, and FACS analyses

Total RNA was extracted from �5 � 105 cells using TRI-
zolTM (Invitrogen) following the manufacturer’s protocol. RNA
quantity and quality were assessed by absorbance at 260/280
nm using a NanoDrop 2000 (Thermo Fisher, Waltham, MA),
with 260/280 ratios between 1.8 and 2.0. Residual genomic
DNA was degraded from 1 �g of total RNA using DNase I,
Amplification Grade (Thermo Fisher). One �g of each experi-
mental sample was reverse transcribed into cDNA using a High
Capacity cDNA Reverse Transcription Kit (Applied Biosys-
tems, Foster City, CA) according to the suggested manufactu-
rer’s protocol. Gene expression analysis was conducted on sam-
ples using TaqMan Gene Expression Assays for Tmem16f
(Hs03805835_m10.51), and the endogenous housekeeping
gene b-act (Hs99999903_m1). Real-time quantitative PCR was
conducted with a StepOnePlusTM Real-time PCR System
(Applied Biosystems) using TaqManTM Fast Advanced Master
Mix (Life Technologies) and 10 ng of cDNA for each sample. All
experimental reactions were performed in triplicate. Negative
controls were included for all reactions, with nuclease-free
water substituted for cDNA samples. Each cDNA sample was
subsampled 3 times during each quantitative PCR. Relative
fold-changes were calculated using the 2�

Ct method. Signif-
icance was determined by comparing the 2�
Ct value using a
one-way analysis of variance with a Dunnett’s post hoc. Error
bars represent the standard deviation of the relative-fold
expression between samples.

The Western blot procedure was described previously (81). At
48 h after transfection, cells were lysed in a buffer containing 20
mM HEPES (pH 7.5), 200 mM NaCl, 10 mM EDTA, 1% Triton
X-100, supplemented with the SIGMAFAST mixture of protease
inhibitors (Sigma). Proteins in the lysate were separated by elec-
trophoresis on a NuPAGE 4–12% BisTris SDS-polyacrylamide gel
(Life Technologies) and then transferred to Immune-Blot Low
Fluorescence PVDF membrane (Bio-Rad). The membranes were
blocked in the Odyssey blocking buffer for 1 h at room tempera-
ture (LI-COR Biosciences, Lincoln, NE). The primary mouse anti-
FLAG M2 monoclonal antibody (Sigma) was diluted to a final con-
centration of 1 �g/ml in the Odyssey blocker with 0.2% Tween 20.
The secondary goat anti-mouse IgG (H�L) antibody, conjugated
with an infrared fluorophore IRDye-680LT (LI-COR Biosciences),
was diluted 1�20,000 in the same buffer. The membranes were
incubated at room temperature with primary and secondary anti-
bodies for 2 and 1 h, respectively. The membranes were imaged
using the Odyssey 9120 Infrared Imaging System (LI-COR Biosci-
ences) in the 700-nm channel.

Quantification of the cells overexpressing TMEM16F was
done by FACS analysis. At 48 h after transfection, 1 � 106 HEK
293 cells per sample were fixed and permeabilized using the Fix
and Perm cell permeabilization reagent (Molecular Probes,

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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Eugen, OR) according to manufacturer’s instructions. The pri-
mary anti-FLAG M2 (Sigma) and secondary Alexa Fluor 488
goat anti-mouse IgG (H�L) (Life Technologies) antibodies
were diluted to a final concentration of 2 and 1 �g/ml, respec-
tively, and incubated for 30 min at room temperature. Samples
were acquired using a MACSQuant Analyzer 10 flow cytometer
(Miltenyi Biotec, Bergisch Gladbach, Germany) and analyzed
with FlowJo software (FlowJo, Ashland, OR).

Viability assay

At 48 h after transfection, cells were detached by treatment
with 0.5 mg/ml of trypsin-EDTA, resuspended at 1.2 � 106

cell/ml in fresh medium, and 100-�l samples of this suspension
were aliquoted to electroporation cuvettes for nsPEF expo-
sures. Immediately following the exposures, the samples were
diluted with fresh medium to 3 � 105 cells/ml and aliquoted
into a 96-well plate, in triplicates at 30 � 103 cell/well and left at
37 °C in the incubator. At 24 h after the exposure, 10 �l of
Presto Blue reagent (Life Technologies) was added to each well
and the incubation continued for 1 h at 37 °C. The plate was
read with a Synergy 2 microplate reader (BioTek, Winooski,
VT), with excitation/emission settings at 530/590 nm. The trip-
licate data were averaged, corrected for the background, and
considered as a single experiment.

Statistical analysis

Unless specified otherwise, data are presented as mean � S.E.
for n independent experiments. Statistical analyses were per-
formed using a two-tailed t test where p � 0.05 was considered
statistically significant. Statistical calculations, including data
fits, and data plotting were accomplished using Grapher 11
(Golden Software, Golden, CO).
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