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a b s t r a c t

In this paper we study the lattice Boltzmann equation (LBE) with multiple-relaxation-time
(MRT) collision model for incompressible thermo-hydrodynamics with the Boussinesq
approximation. We use the MRT thermal LBE (TLBE) to simulate the following two flows
in two dimensions: the square cavity with differentially heated vertical walls and the
Rayleigh–Bénard convection in a rectangle heated from below. For the square cavity, the
flow parameters in this study are the Rayleigh number Ra = 103–106, and the Prandtl
number Pr = 0.71; and for the Rayleigh–Bénard convection in a rectangle, Ra = 2 · 103,
104 and 5 · 104, and Pr = 0.71 and 7.0.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann (LB)modeling of thermo-hydrodynamic flows has been an active area of research since the creation
of the lattice Boltzmann equation (LBE) (cf., e.g., reviews [1,2] and references therein). The initial effort of thermo-LBE
(TLBE) was focused on the energy-conserving LB models [3–7]. However, the energy-conserving LB models suffer severe
numerical instability [6], which is due to spurious coupling in the energy-conserving LB models and cannot be completely
removed [8].

To overcome the numerical instability inherent to the energy-conserving TLBE models [8], the approach to treat the
temperature as a passive scalar was proposed [9]. In this approach the temperature is independently modeled by an
advection–diffusion equation which is equivalent to the Boussinesq approximation valid for incompressible flows. The
passive-scalar TLBE uses two sets of distribution functions—one for mass and momentum and the other for temperature.
Similar to the LBE for only the mass and momentum conservations [10,11], the passive-scalar TLBE can be directly derived
from the continuous Boltzmann equation [12–14]. A slightly different approach of passive-scalar TLBE is the hybrid
approach which solves the temperature equation by finite difference scheme [8,15]. We note that most previous TLBE
schemes [9,12–14] are based on the lattice Bhatnagar–Gross–Krook (BGK) model with one relaxation time which tunes
all transport coefficients and higher-order dissipation in the LBE [16,8]. The single-relaxation-time (SRT) collision model
directly results in two inherent defects of the lattice BGK (LBGK) model: its numerical instability and inaccurate boundary
conditions [16,17,8,18].

The passive-scalar TLBE used in this work is based on the framework of the LBE with multiple-relaxation-time (MRT)
model due to d’Humières [19] and the LBmodel for the advection–diffusion equation due to Ginzburg [20–23] and Ginzburg
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and d’Humières [24]. It has been unequivocally demonstrated that the MRT-LB models are superior over their LBGK
counterparts in terms of accuracy, numerical stability, and computational efficiency [16,17,8,18]. In addition, the MRT
formalism is imperative to accurately treat boundary conditions in the LBE simulations [25,17,26,18] and inaccuracy of
boundary conditions is one of the most severe defects inherent to the LBGK model [27,17,1,28,18].

To demonstrate the efficacy of the MRT-TLBE scheme, we will simulate the two following thermal flows in two
dimensions. The first one is the square cavity with differentially heated vertical walls; and the parameters for this flow are
the Rayleigh number Ra = 103–106 and the Prandtl number Pr = 0.71. The second one is the Rayleigh–Bénard convection in
a rectangle heated frombelow and subject to gravity; and the flowparameters are Ra = 2·103, 104 and 5·104, and Pr = 0.71
and 7.0. Both these flows have been studied previously. In this paperwe intend to systematically investigate the convergence
behavior, the effect of the Mach number and the influence of different boundary conditions, and the computational speed
of the MRT-TLBE. We also intend to provide benchmark quality results which can be compared with the existing data.

The remainder of this paper is organized as follows. Section 2 succinctly describes the MRT-TLBE scheme in two-
dimensions, its boundary conditions, as well as its implementations. Sections 3 and 4 present the numerical results for
the square cavity with differentially heated vertical walls and the Rayleigh–Bénard convection in a rectangle heated from
below, respectively. Finally, Section 5 concludes the paper.

2. MRT-LB model

We consider the lattice Boltzmann (LB) model for thermal fluids in two dimensions (2D). The discrete velocity set is that
of D2Q9 model:

ci =


(0, 0), i = 0,
(1, 0)c, (0, 1)c, (−1, 0)c, (0,−1)c, i = 1–4,
(1, 1)c, (−1, 1)c, (−1,−1)c, (1,−1)c, i = 5–8,

(1)

where c := δx/δt , and δx and δt are the lattice spacing and discrete time step size, respectively. The thermo-LB (TLB) model
consists of two sets evolution equations: one for the mass and momentum conservation, and the other for the temperature.

The evolution equation for the mass and momentum conservations can be succinctly written as the following:

f(xj + cδt, tn + δt) = f(xj, tn)+ Q(xj, tn)+ F(xj, tn), (2a)

Q = −M−1
· S ·


m(xj, tn)− m(eq)(xj, tn)


, (2b)

where the following convenient notations have been used:

f(xj, tn) := (f0(xj, tn), f1(xj, tn), . . . , f8(xj, tn))Ď,

f(xj + cδt, tn + δt) := (f0(xj, tn + δt), f1(xj + c1δt, tn + δt), . . . , f8(xj + c8δt, tn + δt))Ď,

m(xj, tn) := (m0(xj, tn),m1(xj, tn), . . . ,m8(xj, tn))Ď,

m(eq)(xj, tn) := (m(eq)
0 (xj, tn),m

(eq)
1 (xj, tn), . . . ,m

(eq)
8 (xj, tn))Ď,

F := (0, F1, F2, . . . , F8)Ď,

in which Ď denotes transpose, fi is the distribution function corresponding to ci, mi and m(eq)
i are (velocity) moments and

their equilibrium functions, respectively, and Fi is the component of the forcing projected to the direction of ci. The forcing
term F in the LBE (2a) is implemented by using a splitting scheme [8,29], of which the details will be described later in
Section 2.2.

The transformation matrix M transforms the distributions {fi} to their (velocity) moments {mi}. To determine the
transformation matrix M, the ordering of the moments must be prescribed first. The ordering of the moments we use
here is:

m = (m0,m1,m2,m3,m4,m5,m6,m7,m8)
Ď

= (ρ, jx, jy, e, pxx, pxy, qx, qy, ε)Ď, (3)

where ρ is the mass density, j := (jx, jy) = ρ(u, v) := ρu is the flow momentum and u is flow velocity, e, pxx and pxy are
the second-order moments corresponding to energy and two off-diagonal components of the stress tensor, respectively,
qx and qy are the third-order moments corresponding to x and y components of the energy flux, respectively, and ε is the
fourth-order moment of energy square. With the ordering of the moments specified as the above, the transformmatrix can
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be easily constructed:

M =



1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

−4 −1 −1 −1 −1 2 2 2 2
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1
0 −2 0 2 0 1 −1 −1 1
0 0 −2 0 2 1 1 −1 −1
4 −2 −2 −2 −2 1 1 1 1


. (4)

Note that the product ofM and its transposeMĎ,M·MĎ, is a diagonalmatrix, thusM−1 can be trivially obtained. The elements
of the second and third rows of M correspond to the x and y components {ci}, respectively, it thus uniquely determines the
ordering of the discrete velocity set {ci}.

There are three conserved quantities in this model: the mass density ρ and the two components of the momentum
j = ρu. Since we are only interested in incompressible fluids in this work, we will use the following approximations:

ρ = ρ0 + δρ, ρ0 = 1, δρ =

8
i=0

fi, (5a)

j = ρ0u = ρ0(u, v), ρ0u =

8
i=0

cifi. (5b)

That is, we shall only consider fluctuations of ρ and u about ρ0 = 1 and u = 0, respectively. This helps to significantly reduce
round-off errors in simulations, especially with single-precision arithmetic on graphic processing units (GPUs). Accordingly,
the equilibrium moments are then defined as:

m(eq)
3 = −2δρ + 3ρ0u · u, (6a)

m(eq)
4 = ρ0(u2

− v2), m(eq)
5 = ρ0uv (6b)

m(eq)
6 = −ρ0u, m(eq)

7 = −ρ0v, (6c)

m(eq)
8 = δρ − 3ρ0u · u. (6d)

Note that the equilibria of the conserved moments are themselves, thus m(eq)
0 = δρ, m(eq)

1 = ρ0u, and m(eq)
2 = ρ0v. With

the above choice of the equilibria, the speed of sound waves in the unit of c := δx/δt = 1 is

cs =
1

√
3
. (7)

With the ordering of {mi} given in Eqs. (3), the diagonal relaxation matrix is given by:

S = diag(0, 1, 1, se, sν, sν, sq, sq, sε), (8)

where si ∈ (0, 2) for non-conserved modes, and specifically [30,26],

sν =
2

6ν + 1
, sq = 8

(2 − sν)
(8 − sν)

. (9)

The shear viscosity ν and bulk viscosity ζ in the model are

ν =
1
3


1
sν

−
1
2


, ζ =

1
3


1
se

−
1
2


. (10)

Unless stated otherwise, we will use se = sε = sν , i.e., the two-relaxation-time (TRT) model [20,31,32].
The temperature T is modeled by the following evolution equation

g(xj + cδt, tn + δt) = g(xj, tn)− N−1
· Q ·


n(xj, tn)− n(eq)(xj, tn)


, (11)

where the notations are similar to the evolution Eq. (2) for {fi}, but with only five discrete velocities: {ci|i = 0, 1, . . . , 4} and
corresponding distribution functions {gi|i = 0, 1, . . . , 4}. The transformation matrix N is given by

N =


1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1

−4 1 1 1 1
0 1 −1 1 −1

 . (12)
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The temperature T is the only conserved quantity in the system of {gi} and is computed by

T =

4
i=0

gi. (13)

The equilibrium moments {n(eq)i |i = 0, 1, . . . , 4} corresponding to {gi|i = 0, 1, . . . , 4} are

n(eq)0 = T , n(eq)1 = uT , n(eq)2 = vT , n(eq)3 = aT , n(eq)4 = 0, (14)

where the velocity field (u, v) = u is obtained from the evolution Eq. (2) of {fi} and a is a constant to be determined later.
The diagonal relaxation matrix Q in Eq. (11) is given by

Q = diag(0, σκ , σκ , σe, σν). (15)

The relaxation rate σκ determines the heat diffusivity κ:

κ =
(4 + a)

10


1
σκ

−
1
2


. (16)

To attain the isotropy for the fourth-order (error) term resulting from Eq. (11), σκ and σν must satisfy the following
relationship similar to Eq. (9) between sq and sν :

1
σν

−
1
2

 
1
σκ

−
1
2


=

1
6
. (17)

In addition, there exists a relationship between σe and σκ . If we fix σκ as

1
σκ

−
1
2

=

√
3
6
, (18)

then additional constraints can be obtained:

1
σe

−
1
2

=
1
σν

−
1
2

=

√
3
3
. (19)

The above values of σe and σν will be used throughout the presentwork. The stability of the D2D5model has been studied by
Ginzburg et al. [33,34] and Ginzburg [35]. To avoid ‘‘checkerboard’’ type instability along the diagonal directions (±1,±1),
we must maintain a < 1. This limits the value of κ and thus one has to release previous conditions on the relaxation rates
to simulate low Prandtl number fluids. With the above choice of σκ , the thermal diffusivity κ is given by

κ =

√
3 (4 + a)

60
. (20)

2.1. Macroscopic equations

In this work, we will study the 2D Rayleigh–Bénard (RB) convection of fluids in a rectangular box which is driven by
buoyancy effect in the vertical direction. As usual, fluids are assumed to be incompressible thus the pressure influence
on the density variation is neglected. The density variation due to temperature T is approximated by the following linear
relationship

ρ = ρ0[1 + α(T − T0)], α :=
1
ρ0

∂ρ

∂T


p
, (21)

where ρ0 and T0 are reference density and temperature, respectively, and α is the thermal expansion coefficient.
Furthermore, the transport coefficients in the system, i.e., the shear viscosity ν and the thermal diffusivity κ , and the thermal
expansion coefficient α are treated as constants. Consequently we only consider the effect of density difference in the
buoyancy term, and neglect the viscous heat dissipation and compression work due to the pressure, that is, the Boussinesq
approximation.

In the thermal lattice Boltzmann equation described in the previous section, the temperature T is treated as a passive
scalar which is transported by the velocity field but does not affect the velocity field except through the buoyancy force.
Thus, the macroscopic equations derived from the TLBE are:

∂tu + u · ∇u = −
1
ρ0

∇p + ν∇2u + α(T − T0)g, (22a)

∇ · u = 0, (22b)

∂tT + u · ∇T = κ∇2T . (22c)
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In the coordinate system we use, the buoyancy force is given by

F = ρ0α(T − T0)g = −ρ0α(T − T0)g ŷ, (23)

where g is the gravity, g = 9.81 (ms−2), and ŷ is the unit vector in vertical direction or y axis. Thus the projection of the
force F onto the velocity space, Fi, in Eq. (2a) is given by Luo [36]:

Fi = −3wi
ci · F
c2

= 3wiρ0α(T − T0)g
ci · ŷ
c2

, (24)

wherew0 = 0,w1,2,3,4 = 1/9 andw5,6,7,8 = 1/36.
Two dimensionless numbers characterize the system of thermo-hydrodynamic equations (2): the Prandtl number, Pr,

and the Rayleigh number, Ra, which are defined as

Pr =
ν

κ
, Ra = Gr · Pr, Gr =

αg∆TL3

ν2
, (25)

where Gr is the Grashof number, and ∆T and L are the characteristic temperature and length in the system, respectively.
With the following scalings,

x →
x
L
, t →

tκ
L2
, u →

uL
κ
, p →

pL2

ρ0κ2
, θ :=

(T − T0)
∆T

the thermo-hydrodynamic equations (2) can be written in dimensionless form,

∂tu + u · ∇u = −∇p + Pr∇2u + Ra Pr θ ĝ, (26a)
∇ · u = 0, (26b)

∂tθ + u · ∇θ = ∇
2θ, (26c)

where ĝ is unit vector in the direction of the gravitation. The speed of sound cs has to be rescaled, i.e., cs → csL/κ . However,
the Mach number Ma remains the same.

The shear viscosity ν and thermal diffusivity κ are determined in terms of Pr and Ra and other parameters in simulations:

ν =


Prαg∆TL3

Ra
, κ =

ν

Pr
=


αg∆TL3

Pr · Ra
. (27)

In a given system, Pr, Ra,∆T , and L are specified, therefore the above equations lead to two equations forαg depending on the
relaxation rate sν (through ν) and parameter a in the equilibrium of n(eq)3 in Eq. (14) (through κ), respectively. Consideration
of numerical stability affects the choices of the value of sν . Once the value sν , so is the value of αg , and in turn the value of the
parameter a. In this way the values of all the necessary parameters in the TLBE system are fully determined so simulations
can be carried out.

The characteristic velocity in thermal convective flows is

U =

αg∆TL =


Ra
Pr
ν

L
. (28)

The Mach number based on U should be small in order to comply with incompressible approximation of the flow and also
the stability criterion on ν. Suppose that U/cs < Ma∗ for some critical Mach number Ma∗ (usually Ma∗ < 0.3), then the
viscosity ν has the following upper bound

ν <
Ma∗

√
3


Pr
Ra

L, (29)

where the length L is measured in the lattice unit δx = 1.

2.2. Implementation of TLBE and its boundary conditions

In the TLBE model boundary conditions are needed for both velocity u and temperature T . For the velocity field, we use
no-slip boundary conditions which can be accurately realized by the bounce-back (BB) boundary conditions (BCs). For an
impenetrable rigid wall aligned with a grid line and at the rest, the BB-BCs are:

fı̄(xf , tn + δt) = f ∗

i (xf , tn), (30)

where xf is a fluid node adjacent to a boundary, fı̄ corresponds to cı̄ = −ci, f ∗

i (xf , tn) denotes post-collision value of fi(xf , tn),
and cı̄ is not parallel to the wall. Thus, the incoming distribution function (from domain outside of the wall) fı̄(xf , tn + δt) is
equal to the outgoing distribution function (from the fluid domain) f ∗

i (xf , tn).
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As for the temperature field, two types of boundary conditions are needed: constant temperature and adiabatic, i.e.,
n̂ ·∇θ = 0, where n̂ is unit vector out-normal to the wall. For a wall with the (dimensionless) temperature θw , the following
‘‘anti-bounce-back’’ boundary conditions for gi are used:

gı̄(xf , tn + δt) = −g∗

i (xf , tn)+
(4 + a)

10
θw

= −g∗

i (xf , tn)+ 2
√
3κθw, (31)

where Eq. (16) has been substituted and, again, and cı̄ is not parallel to the wall. An adiabatic wall, which is the Neumann
boundary condition, can be realized with the bounce-back boundary conditions:

gı̄(xf , tn + δt) = g∗

i (xf , tn). (32)

Periodic boundary conditions in the horizontal direction can also be used.Wewill study the effects due to different boundary
conditions.

Wewould like to emphasize that it is imperative to use theMRT-TLBE in the simulations.With the bounce-back boundary
conditions, we must use the relationships between the relaxation rates, that is sq(sν) of Eq. (9) and σν(σκ) of Eq. (17). These
relationships ensure that the imposed boundary conditions for u and T are satisfied coincidentally at the location δx/2
beyond the last fluid node, and the location of the boundary conditions is independent of the transport coefficients. For the
single-relaxation-time or lattice Bhatnagar–Gross–Krook (LBGK) models, the boundary location depends on the relaxation
time τ , which is a significant source of error in the LBGK model.

The MRT-TLBE including the forcing term in Eq. (2) is implemented as follows:

1. Advection of {fi} and {gi};
2. Compute conserved quantities δρ and u from {fi}, T from {gi}, and other moments of {fi} and {gi};
3. Compute u∗

= u + a(T )δt/2, where a(T ) := F(T )/ρ0, and F is given by Eq. (23);
4. Compute equilibrium moments {m(eq)

} using δρ and u∗, and {n(eq)} using T ;
5. Relax the moments {mi} and {ni};
6. Update u∗∗

= u∗
+ a(T )δt/2 = u + a(T )δt;

7. Map moments {mi} (which include u∗∗) and {ni} to distribution functions {fi} and {gi}, respectively;
8. Compute the post-collision distributions.

Two remarks are in order here. First, the relaxation rate for the momentum ρ0u is unity in the MRT-LBE implementation
regardless the values of the other relaxation rates, as implied S of Eq. (8), consequently there is no need to correct the
artifacts in the LBGKmodel due to the inadvertent yet inevitable factor τ−1 in the forcing term [37], which affects the stress
in the following time step. And second, the splitting of the forcing in two halves is similar to Strang splitting which ensures
the second-order accuracy of the LBE scheme [29].

The flow domain used in this work is a rectangle of size L × H . The mesh is a uniform Cartesian grid of size (Nx + 2) ×

(Ny + 2), so that 0 ≤ i ≤ (Nx + 1) and 0 ≤ j ≤ (Ny + 1). The fluid nodes are those of 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny. Thus
we have Lx,y = Nx,yδx in lattice units. The external nodes of the mesh, i.e., i = 0, i = (Nx + 1), j = 0, and j = (Ny + 1), are
used as storage cells for the outgoing distribution functions during the advection step. Because the boundary conditions are
satisfied at the location δx/2 beyond the last fluid nodes.

3. Square cavity with differentially heated vertical walls

3.1. Flow configurations and conditions

The first case to be simulated by the MRT-TLBE is the natural convection in a two-dimensional square cavity heated
differentially on the vertical side walls. The flow configuration is illustrated in Fig. 1 and detailed as the following. The flow
domain is a square of unit dimensions, i.e., (x, y) ∈ [0, 1] × [0, 1]. The direction of gravity is vertical and downward. The
left and right vertical boundaries are maintained at a constant high temperature θ = +0.5 and a constant low temperature
θ = −0.5, respectively; and the top and bottom boundaries are adiabatic, ∂yθ = 0. All boundaries are impenetrable, rigid
and no-slip. Thus, for {gi}, the BCs for constant-temperature and adiabatic walls are applied to the vertical and horizontal
walls, respectively; and for {fi}, the bounce-back boundary conditions are applied to all walls.

The initial state of the flow is quiescent and isothermal, i.e., u = 0, δρ = 0, and θ = 0. The criteria of attaining a steady
state are:

i,j
∥u(i, j, tn+1000)− u(i, j, tn)∥2

i,j
∥u(i, j, tn+1000)∥2

< 10−12, (33a)

max
i,j

|θ(i, j, tn+1000)− θ(i, j, tn)| < 10−6, (33b)

where ∥ · ∥2 denotes the L2 norm.
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Fig. 1. Illustration of the flow domain for the square cavity (H = L) with differentially heated side walls.

Unless otherwise stated, the parameter a in κ of Eq. (16) and the viscosity ν are determined by the following formulas:

a =
20MaNx
√
Ra Pr

− 4, ν =


3.6
Ra

cδx, (34)

where the formula of a is derived from Eq. (27) for κ , and the formula for ν is obtained based on the following considerations.
To ensure the stability with the smallest mesh size N = 41 in our simulations, we use Pr = 0.71 and a reasonable value of
the Mach number in Eq. (29) to obtain the above upper-bound for ν.

3.2. Quantities under study

This flow has been extensively studied as a bench-mark flow [38] with various numerical methods including finite-
difference (FD) [39,40], finite-element (FE) [41], finite-volume (FV) [42,43], and pseudo-spectral (PS) [44–46], spectral-
element (SE) [47], and other methods [38]. The paper by De Vahl Davis [39] is a comprehensive review of this flow, which
provides a guide to our work. We will compute some quantities of interest and compare our results with existing data. We
will use Pr = 0.71 (for air) and Ra = 103, 104, 105, and 106. The quantities to be computed include averaged and local
Nusselt numbers. The local heat flux in the horizontal (x) direction is

qx = uθ − ∂xθ, (35)

which will be used to compute Nusselt numbers. The first is the volume average Nusselt number ⟨Nu⟩,

⟨Nu⟩ =
1

LH∆θ

 L

0
dx

 H

0
dy qx ≈

1
NxNy∆θ

Nx,Ny
i,j=1

qx(i, j), (36)

where ∆θ = 1. The second and third ones are the average Nusselt numbers along the hot wall at x = 0 and the vertical
mid-plane of the cavity at x = 1/2:

⟨Nu⟩0 ≈
1

Ny∆θ

Ny
j=1

qx(i, j)|x=0, (37a)

⟨Nu⟩1/2 ≈
1

Ny∆θ

Ny
j=1

qx(i, j)|x=1/2. (37b)

In addition, we also identify the maximum and minimum local Nusselt number, Numax and Numin, at the left wall (x = 0)
and their (normalized) vertical coordinates y. Note that in Eq. (37a), x = 0 is the location of the left vertical wall, which is
located at δx/2 beyond the last fluid nodes, {i = 1,Nx|1 ≤ j ≤ Ny} and {j = 1,Ny|1 ≤ i ≤ Nx}, as discussed previously.
The derivative ∂xθ needed for the Nusselt numbers is approximated by the finite difference formula involving nine points
including (i, j), (i ± 1, j), (i, j ± 1), and (i ± 1, j ± 1).

The values of some hydrodynamic variables and their locations are of interest, too; they include themaximumhorizontal
velocity umax on the vertical mid-plane of the cavity and its y coordinate, the maximum vertical velocity vmax on the
horizontal mid-plane and its x coordinate, the maximum absolute value of the stream function and its location, |ψ |max,
and the absolute value of the stream function in the center of the cavity, |ψmid|. In the ensuing simulations, the velocity field
u is normalized by κ/Ly.
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Table 1
Ra dependence of L2-normed grid convergence of flow fields. Pr = 0.71 and Ma = 0.01.

Ra 103 104 105 106

N2
∥δu∥2

412 2.523 · 10−3 4.359 · 10−3 1.341 · 10−2 4.580 · 10−2

812 6.378 · 10−4 1.118 · 10−3 3.483 · 10−3 1.178 · 10−2

1612 1.317 · 10−4 2.329 · 10−4 7.334 · 10−4 2.494 · 10−3

n 2.1589 2.1420 2.1246 2.1278

∥δp∥2

412 3.111 · 10−3 2.832 · 10−3 4.329 · 10−3 9.929 · 10−3

812 8.615 · 10−4 8.214 · 10−4 1.164 · 10−3 2.859 · 10−3

1612 1.949 · 10−4 1.919 · 10−4 2.579 · 10−4 6.000 · 10−4

n 2.0254 1.9681 2.0621 2.0520

∥δθ∥2

412 3.590 · 10−4 1.158 · 10−3 4.831 · 10−3 1.564 · 10−2

812 8.555 · 10−5 2.785 · 10−4 1.154 · 10−3 3.819 · 10−3

1612 1.713 · 10−5 5.603 · 10−5 2.312 · 10−4 7.709 · 10−4

n 2.2247 2.2144 2.2224 2.2008

3.3. Grid convergence of flow fields

We use a uniform mesh of size Nx × Ny = N2 with N2 between 412 and 3212 to investigate the convergence behavior
of the MRT-TLBE. The grid spacing h is then 1/N . Another parameter considered here is the Mach number Ma, which is
effectively equivalent to the Courant–Friedrichs–Lewy (CFL) number as far as the time step size is concerned [18]. Of course,
the Mach number is also directly related to the compressibility error in the LBE [48–50,18]. We first study the convergence
behavior of the MRT-TLBE with a fixed Mach number Ma = 0.01. The error in the velocity field is computed as follows,

∥δu∥2 :=


j

∥u(xj)− u∗(xj)∥2
j

∥u∗(xj)∥2
, (38)

where u∗(xj) is the reference solution of the velocity field. The errors for the pressure p and temperature θ are similarly
defined. We use the solutions obtained with N2

= 3212 as the reference solutions. It should be noted that, because the
boundary conditions are satisfied h/2 beyond the last fluid nodes, the meshes of different size N2 have no overlapping grid
points. Thus, the flow fields obtained with the largest mesh size N2

= 3212 are interpolated to coarser meshes with a
second-order interpolation in both x and y direction to compute the differences of flow fields.

In Table 1 we tabulate the L2-normed errors of the velocity u, pressure p, and (normalized) temperature θ , as well as the
rates (n) of convergence of these flow fields. The rates of convergence for the flow fields are all about 2.0. However, if we
do not interpolate the flow fields and simply compute the difference of the flow fields with different meshes on the closest
grid points, the rates of convergence would be between 1.3 and 1.4. We also notice that the errors of the flow fields depend
on the Rayleigh number Ra. With a fixed resolution N , the errors in the velocity u, the pressure p, and the temperature θ
increase with Ra except for the case of ∥δp∥2 with Ra = 104.

3.4. Convergence of Nusselt numbers

We study convergence behaviors of the local and averaged Nusselt numbers. For various Nusselt numbers, we need to
compute the heat flux qx of Eq. (35) at boundaries, which are located at δx/2 beyond the last fluid nodes. Since the vertical
walls are no-slip ones, the Nusselt number Nu at the left wall is given by −∂xθ ; the temperature gradient ∂xθ along each
horizontal lattice line is evaluated at x = 0 with the temperature θ at x = 0, and i = 1 and 2. The temperature θ at the
horizontal walls is unknown and is obtained by fitting the first four points next to the walls along each vertical lattice line
with a second-order polynomial a + b(y − y0)2, where y0 is the vertical position of a horizontal wall.

Fig. 3 shows the Nusselt number averaged over vertical grid lines, ⟨Nu⟩y, and the local Nusselt number at the left (hot)
wall x = 0, with Ra = 106. Note that the average Nusselt number ⟨Nu⟩y is symmetric about the vertical center line of the
cavity x = 1/2, we only show ⟨Nu⟩y in the interval of 0 ≤ x ≤ 1/2. We can see that ⟨Nu⟩y oscillates severely near the wall
when the mesh size N2 is small. With the largest mesh size N2

= 3212, ⟨Nu⟩y converges to a constant. However a small
oscillation remains near the wall. The Nusselt number Nu at the hot wall should have a minimum at the top left corner
(x, y) = (0, 1). It can be seen that Nu oscillates slightly near the top left corner when the mesh size is small.

We tabulate average and local Nusselt numbers and their locations depending on the Rayleigh number Ra and mesh
size N2 in Table 2. The value of Numax is found by using the least-square fit of five points about Numax with a third-order
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Table 2
Convergence behavior of the Nusselt numbers with Pr = 0.71 and Ma = 0.01. The asymptotic values of the Nusselt numbers obtained by Eq. (39) and
order of convergence are given in the rows with ∞ and n, respectively. The data marked with ‘‘∗’’ are not used in the calculations of the corresponding
asymptotic values.
Ra N2

⟨Nu⟩ Nu0 Nu1/2 Numax y Numin

103

412 1.1172 1.1177 1.1176 1.5099∗ 0.09381∗ 0.6905
572 1.1175 1.1177 1.1177 1.5082 0.09036 0.6910
812 1.1176 1.1178 1.1177 1.5072 0.08922 0.6911
1132 1.1177 1.1178 1.1178 1.5068 0.08877 0.6912
1612 1.1178 1.1178 1.1178 1.5065 0.08858 0.6912
2252 1.1178 1.1178 1.1178 1.5064 0.08850 0.6912
3212 1.1178 1.1178 1.1178 1.5064 0.08846 0.6912
∞ 1.1178 1.1178 1.1178 1.5063 0.08843 0.6912
n 1.9907 1.8058 1.9440 2.0086 2.4485 2.7541

104

412 2.2407 2.2476 2.2393 3.5857 0.1395 0.5869
572 2.2427 2.2460 2.2419 3.5583 0.1414 0.5863
812 2.2437 2.2453 2.2434 3.5441 0.1428 0.5858
1132 2.2443 2.2450 2.2440 3.5375 0.1435 0.5854
1612 2.2445 2.2449 2.2444 3.5342 0.1439 0.5852
2252 2.2447 2.2449 2.2446 3.5326 0.1440 0.5851
3212 2.2447 2.2448 2.2447 3.5318 0.1441 0.5850
∞ 2.2448 2.2448 2.2448 3.5310 0.1443 0.5849
n 1.9739 2.3282 2.0193 2.0369 1.7297 1.6019

105

412 4.5051 4.5511 4.5063 8.2585 0.07487 0.7853
572 4.5128 4.5348 4.5135 8.0027 0.07495 0.7601
812 4.5171 4.5270 4.5175 7.8549 0.07738 0.7449
1132 4.5193 4.5239 4.5195 7.7861 0.07952 0.7375
1612 4.5205 4.5226 4.5206 7.7512 0.08082 0.7325
2252 4.5210 4.5220 4.5211 7.7355 0.08146 0.7302
3212 4.5213 4.5218 4.5214 7.7275 0.08179 0.7290
∞ 4.5216 4.5214 4.5216 7.7161 0.08238 0.7279
n 1.9424 2.1385 1.9620 1.9106 1.3529 1.9237

106

412 8.8106 9.0356 8.8600 21.1647∗ 0.04086∗ 1.0019∗

572 8.8138 8.9487 8.8400 20.0506∗ 0.03738∗ 1.1912∗

812 8.8183 8.8840 8.8317 18.9821∗ 0.03747∗ 1.1227
1132 8.8213 8.8518 8.8283 18.3065 0.03539 1.0582
1612 8.8232 8.8362 8.8267 17.9028 0.03650 1.0182
2252 8.8241 8.8299 8.8259 17.7147 0.03769 0.9988
3212 8.8247 8.8272 8.8256 17.6196 0.03846 0.9886
∞ 8.8253 8.8192 8.8254 17.5274 0.03952 0.9769
n 1.5421 1.6861 2.5344 2.0471 1.3224 1.8474

polynomial of y locally. The value of Numin is always located at 2–3 grid spacings away from the top left corner, thus wemay
assume the location converges to y = 1 and do not list it in Table 2. In Table 2 we also give the asymptotic values of Nusselt
numbers, which are obtained by the least-square fit with the following third-order polynomial:

f (h) = a0 + a2h2
+ a3h3, (39)

where h := 1/N is the (normalized) grid spacing, and a0 is the asymptotic value of f (h) in the limit of h → 0 (or N → ∞).
The asymptotic values of the Nusselt numbers are then used to compute the rates of convergence n. It should be noted that
for both Numax and Numin, the rates of convergence are measured with L∞ norm.

As shown in Table 2, all the average and local Nusselt numbers exhibit monotonic behavior as themesh sizeN2 increases.
This monotonicity is preserved by the polynomial of Eq. (39) in the relevant range of h. In the case of the lowest Rayleigh
number, Ra = 103, it can be seen clearly that the Nusselt numbers quickly reach their asymptotic values independent of
grid-size h. In some cases the data obtained with the coarsest meshes do not fit well with the polynomial (39), thus these
data are excluded in the least-square fitting. We observe that in most cases, a second-order convergence is achieved for the
Nusselt numbers. Theworst rate of convergence corresponds to the vertical location y of Numax with Ra = 105 and 106. Also,
the convergence rates for ⟨Nu⟩ and Nu0 with Ra = 106 are less than 2.0.

3.5. Convergence of hydrodynamic quantities

In Table 3 we tabulate the value of the stream-function at the center of the cavity, |ψmid|, and the maximum value of
the stream-function, |ψ |max, and its location, the maximum x velocity on the vertical center line x = 1/2, umax, and its y
coordinate, and the maximum y velocity on the horizontal center line y = 1/2, vmax, and its x coordinate, as well as the
asymptotic values of |ψmid|, |ψ |max, umax, and vmax, and the corresponding rates of convergence n. The asymptotic values
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Table 3
Convergence behavior of the hydrodynamic variables with Pr = 0.71 and Ma = 0.01. The data marked with ‘‘∗’’ are not used in the calculations of the
corresponding asymptotic values.
Ra N2

|ψmid| |ψ |max (x, y) umax y vmax x

103

412 1.1702 – – 3.6439 0.8133 3.6935 0.1788
572 1.1724 – – 3.6466 0.8133 3.6954 0.1786
812 1.1735 – – 3.6480 0.8132 3.6964 0.1784
1132 1.1741 – – 3.6487 0.8132 3.6969 0.1784
1612 1.1744 – – 3.6491 0.8132 3.6972 0.1784
2252 1.1745 – – 3.6493 0.8132 3.6973 0.1783
3212 1.1746 – – 3.6494 0.8132 3.6974 0.1783
∞ 1.1746 – – 3.6494 0.8132 3.6974 0.1783
n 2.0140 – – 1.9833 1.9180 1.9587 1.9183

104

412 5.0590 – – 16.1848 0.8231 19.6052 0.1195
572 5.0662 – – 16.1839 0.8232 19.6160 0.1192
812 5.0701 – – 16.1836 0.8232 19.6221 0.1190
1132 5.0718 – – 16.1835 0.8232 19.6250 0.1190
1612 5.0728 – – 16.1834 0.8232 19.6266 0.1189
2252 5.0732 – – 16.1834 0.8232 19.6274 0.1189
3212 5.0735 – – 16.1834 0.8232 19.6278 0.1189
∞ 5.0737 – – 16.1833 0.8232 19.6282 0.1189
n 2.0269 – – 3.0339 1.6742 1.9684 1.9594

105

412 9.0598 9.5781 (0.2970, 0.5962) 34.9560∗ 0.8525∗ 68.4396 0.06708
572 9.0876 9.5900 (0.2919, 0.5988) 34.7997∗ 0.8531∗ 68.5277 0.06648
812 9.1022 9.6019 (0.2881, 0.6001) 34.7837 0.8539 68.5819 0.06618
1132 9.1089 9.6094 (0.2864, 0.6008) 34.7586 0.8542 68.6070 0.06602
1612 9.1123 9.6136 (0.2854, 0.6012) 34.7495 0.8544 68.6212 0.06594
2252 9.1139 9.6151 (0.2850, 0.6013) 34.7456 0.8545 68.6280 0.06590
3212 9.1148 9.6160 (0.2847, 0.6014) 34.7430 0.8546 68.6318 0.06588
∞ 9.1157 9.6179 (0.2843, 0.6015) 34.7424 0.8546 68.6358 0.06586
n 2.0328 1.5571 (1.7293, 1.9795) 2.8793 1.7545 1.8989 2.0363

106

412 16.2422 16.6153∗ (0.1779, 0.5455)∗ 64.4482 0.8421 218.1669∗ 0.04161∗

572 16.3184 16.7160∗ (0.1636, 0.5473)∗ 64.6332 0.8459 220.4276∗ 0.03916∗

812 16.3553 16.7254 (0.1587, 0.5453) 64.7319 0.8481 220.4059 0.03843
1132 16.3716 16.7614 (0.1548, 0.5457) 64.7810 0.8490 220.4684 0.03807
1612 16.3797 16.7885 (0.1525, 0.5462) 64.8077 0.8495 220.5105 0.03791
2252 16.3832 16.8012 (0.1514, 0.5466) 64.8206 0.8497 220.5363 0.03783
3212 16.3849 16.8057 (0.1509, 0.5466) 64.8277 0.8498 220.5506 0.03779
∞ 16.3868 16.8149 (0.1503, 0.5468) 64.8336 0.8499 220.5658 0.03776
n 2.1299 1.7145 (1.9074, 1.4639) 2.0167 1.9639 1.7157 2.2580

are obtained by the least-square fitting with the third-order polynomial of Eq. (39), similar to what we did with the data
in Table 2. Note that when Ra = 103 and 104, the position of |ψmid| coincides with that of |ψ |max, as exhibited by the
corresponding streamlines in Fig. 2.

The values of both |ψmid| and |ψ |max increase monotonically as the mesh size N2 increases. The rate of convergence for
|ψmid| is about 2.0, while that for |ψ |max and its coordinates are lower. As for umax and vmax as well as their locations, the
rates of convergence are about 2.0 in most cases. The data in Tables 1–3 clearly indicate that the MRT-TLBE scheme has a
second-order rate of convergence.

3.6. Mach-number effect

The LBE is based on small-Mach-number expansions of the Maxwellian equilibrium [10,11] and the errors in flow fields
depend on theMach numberMa indicating the presence of compressibility effect [48–50,18]. Wewill study the effect of the
Mach number Ma on the flow fields and other quantities under study. We will fix Ra = 106 and Pr = 0.71 in what follows
unless otherwise stated.

First, we use the flow fields obtained with the smallest Mach number Ma = 0.01 and the largest mesh size N2
= 3212

as the reference fields to compute the errors in the velocity u, pressure p, and temperature θ , i.e., the reference field u∗ in
Eq. (38) is the one obtained with Ma = 0.01 and N2

= 3212. The results are tabulated in Table 4. We observe that the errors
in u, p, and θ are independent of Ma for N2 < 3212, and the rates of convergence for all flow fields are about 2.0, clearly
indicating a second-order convergence.

To further investigate the effect of Ma on the flow fields, we compute the relative flow field differences with respect to
their solutions obtained with Ma = 0.01 and a fixed mesh size N2. That is, with a fixed mesh size N2, we compute the flow
fields depending on Ma, then compute the flow field differences with the same resolution with respect to the solutions of
Ma = 0.01. The results are tabulated in Table 5. As can be seen clearly, the flow field differences with an equal resolution
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Fig. 2. Flow fields in the square cavity with differentially heated vertical walls and Pr = 0.71: the streamlinesψ (left), isotherms (middle), and pressure p
(right). From top to bottom: Ra = 103, 104, 105 , and 106 . Mesh sizes: N2

= 1612 for Ra = 103 and N2
= 3212 for Ra ≥ 104 . Solid (red) lines: Ma = 0.01,

and dashed (black) lines: Ma = 0.02 for Ra = 103 , Ma = 0.05 for Ra = 104 , and Ma = 0.15 for Ra ≥ 105 . (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

N and different Mach number Ma are rather weak—they all remain in the order of 10−7 or smaller. It can also be seen that
except for the case of ∥δu∥ with N2

= 412, the differences between flow fields increase when both N and Ma increase,
although the effect of Ma on the temperature field θ seems to be weaker.

In Table 6 we show the effect of Mach number Ma on local hydrodynamic quantities umax and vmax as well as the local
Nusselt number Numax. TheMach number Ma has very little, if any, effect on these quantities. With a fixedmesh size N2, the
effect of Ma on umax appears in the seventh significant digit, and that on vmax and Numax appears in the eighth significant
digit. This clearly suggests that Mach number effects on these quantities are insignificant and negligible. We observe that
the rates of convergence for both umax and Numax are about 2.0, while that for vmax is only about 1.7. We also notice that
the magnitude of vmax is the largest among umax, vmax, and Numax. Because the Mach number in the LBE is effectively the
CFL number [18], which affects the time step size thus the computational speed, one should use as large a Mach number as
possible to enhance computational efficiency, so long as both accuracy and stability are maintained.
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a b

Fig. 3. (a) Distribution of the Nusselt number ⟨Nu⟩y averaged over y as a function of x. ⟨Nu⟩y is symmetric about x = 1/2. (b) Distribution of the heat flux
qx(y) on the left (hot) wall x = 0. Ra = 106 and Ma = 0.01.

Table 4
Mach-number dependence of the errors in flow fields u, p, θ with L2-norm. Ra = 106 and Pr = 0.71. The flow fields with N2

= 3212 and Ma = 0.01 are
used as the reference solutions to compute the errors.

Ma 0.01 0.02 0.05 0.10 0.15

N2
∥δu∥2

412 4.5799504 · 10−2 4.5799509 · 10−2 4.5799515 · 10−2 4.5799514 · 10−2 4.5799513 · 10−2

812 1.1777526 · 10−2 1.1777518 · 10−2 1.1777514 · 10−2 1.1777512 · 10−2 1.1777509 · 10−2

1612 2.4943359 · 10−3 2.4943174 · 10−3 2.4943087 · 10−3 2.4943045 · 10−3 2.4942981 · 10−3

3212 – 1.7684115 · 10−7 2.6032163 · 10−7 3.0046556 · 10−7 3.6062902 · 10−7

n 2.1278332 2.1278387 2.1278414 2.1278426 2.1278445

∥δp∥2

412 9.9289858 · 10−3 9.9289837 · 10−3 9.9289814 · 10−3 9.9289817 · 10−3 9.9289821 · 10−3

812 2.8593464 · 10−3 2.8593493 · 10−3 2.8593507 · 10−3 2.8593514 · 10−3 2.8593525 · 10−3

1612 5.9995930 · 10−4 5.9996560 · 10−4 5.9996862 · 10−4 5.9997015 · 10−4 5.9997277 · 10−4

3212 – 6.2892469 · 10−8 1.0319561 · 10−7 1.2599556 · 10−7 1.3729586 · 10−7

n 2.0520076 2.0519997 2.0519959 2.0519940 2.0519909

∥δθ∥2

412 1.5640836 · 10−2 1.5640836 · 10−2 1.5640835 · 10−2 1.5640836 · 10−2 1.5640836 · 10−2

812 3.8188514 · 10−3 3.8188519 · 10−3 3.8188522 · 10−3 3.8188524 · 10−3 3.8188525 · 10−3

1612 7.7092667 · 10−4 7.7092763 · 10−4 7.7092821 · 10−4 7.7092843 · 10−4 7.7092888 · 10−4

3212 – 2.8141413 · 10−8 4.7069431 · 10−8 5.6457606 · 10−8 6.1130623 · 10−8

n 2.2007881 2.2007872 2.2007866 2.2007864 2.2007860

Clearly, theMach number has little effect on the accuracy of theMRT-TLBE simulations for incompressible thermal flows
with the Boussinesq approximation. This is in sharp contrast to athermal flows (cf., e.g., [48,18]) inwhich the errors are of the
order ofMach number square. The reason for this insensitivity of thermal flows to theMach number is that, in thermal flows,
the buoyancy force due to the temperature is driving flow, while the buoyancy force is realized through density variation,
it is inherently different from the density fluctuations which are responsible for acoustic waves in athermal flows.

3.7. Computational efficiency

Our code is written in FortranwithMPI and runs on an IBM p5 575 systemwith nodes of 16 duo-core 1.9 GHz processors.
With a mesh size N2

= 3212, the speed of our code on one processor is about 7.3 · 106 and 9.9 · 106 sites update per second
with or without MPI.

Since the Mach number Ma has very little quantitative effect on the flow fields and hydrodynamic quantities under
study, as shown in the previous section, the only concern is the numerical stability for computational efficiency. Because
Mach number Ma is equivalent to the CFL number [18], thus the greater the Mach number, the larger the time step size, and
hence the faster the computational speed. In Table 7 we show the number of iterations to achieve the steady state criteria
given by Eqs. (33) depending on theMach number Ma and themesh size N2. Clearly, with the Rayleigh number Ra fixed, the
number of iterations Nt is proportional to the mesh size N and to Ma−1.
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Table 5
The Mach-number dependence of L2-norm differences in flow fields with equal mesh size
N2 . The flow fields obtained with Ma = 0.01 are used as the reference solutions.

Ma 0.02 0.05 0.10 0.15

N2
∥δu(Ma)∥2 · 107

412 0.20222368 0.43706473 0.41168471 0.39348873
812 0.36606726 0.54019218 0.62654639 0.74492363
1612 0.82486307 1.21813015 1.40795718 1.68678479
3212 1.76841156 2.60321632 3.00465563 3.60629020

∥δp(Ma)∥2 · 107

412 0.15852664 0.29812073 0.34574955 0.36421706
812 0.23645841 0.39160877 0.48417119 0.51853590
1612 0.38663073 0.63573719 0.78335873 0.84284211
3212 0.62892469 1.03195616 1.25995569 1.37295864

∥δθ(Ma)∥2 · 107

412 0.07039132 0.13246378 0.15329471 0.16184793
812 0.10665124 0.17819453 0.21795092 0.23075655
1612 0.17341850 0.28760317 0.35006790 0.37356528
3212 0.28141413 0.47069431 0.56457606 0.61130623

Table 6
The Mach-number dependence of the convergence of umax , vmax and Numax for Ra = 106 and Pr = 0.71.

Ma 0.01 0.02 0.05 0.10 0.15

N2 umax

412 64.44819215 64.44819357 64.44819531 64.44819498 64.44819462
572 64.63320164 64.63319843 64.63319472 64.63319509 64.63319567
812 64.73194665 64.73194324 64.73194161 64.73194074 64.73193963
1132 64.78099738 64.78100152 64.78100338 64.78100584 64.78100465
1612 64.80770630 64.80769867 64.80769502 64.80769316 64.80769061
2252 64.82063061 64.82063999 64.82064420 64.82064625 64.82064975
3212 64.82765313 64.82763694 64.82762932 64.82762546 64.82762006

∞ 64.83357823 64.83357433 64.83357298 64.83357185 64.83356989
n 2.01669407 2.01623400 2.01598194 2.01588233 2.01578058

vmax

412 218.16693306 218.16693330 218.16693370 218.16693342 218.16693314
572 220.42757268 220.42757111 220.42756935 220.42756928 220.42756945
812 220.40585471 220.40585314 220.40585235 220.40585184 220.40585132
1132 220.46842291 220.46842364 220.46842381 220.46842431 220.46842382
1612 220.51054480 220.51054158 220.51053998 220.51053903 220.51053799
2252 220.53629632 220.53629845 220.53629905 220.53629937 220.53630051
3212 220.55058072 220.55057425 220.55057119 220.55056936 220.55056729

∞ 220.56575230 220.56574691 220.56574425 220.56574241 220.56574132
n 1.71573997 1.71573860 1.71573946 1.71574888 1.71572896

Numax

412 21.16471995 21.16471988 21.16471980 21.16471979 21.16471978
572 20.05064995 20.05064990 20.05064986 20.05064983 20.05064981
812 18.98214565 18.98214559 18.98214555 18.98214552 18.98214552
1132 18.30649044 18.30649032 18.30649025 18.30649017 18.30649017
1612 17.90277648 17.90277642 17.90277636 17.90277632 17.90277632
2252 17.71471420 17.71471401 17.71471390 17.71471383 17.71471378
3212 17.61963289 17.61963284 17.61963277 17.61963273 17.61963273

∞ 17.52743014 17.52743005 17.52742996 17.52742990 17.52742990
n 2.04712483 2.04712463 2.04712448 2.04712430 2.04712430

Nextwe consider the Rayleigh-number dependence of the number of iterations to achieve steady state. TheMach number
Ma is fixed at 0.01 and the results are given in Table 8. Clearly, with the resolution N and the Mach number Ma fixed, the
number of iterations Nt doubles approximately as Ra increases ten fold. Hence, asymptotically the number of iterations to
reach steady state depends approximately on N , Ra and Ma as follows:

Nt ∝ N · Ralg 2 · Ma−1. (40)
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Table 7
The Mach-number dependence of the number of iterations to achieve steady state. Ra = 106 and Pr = 0.71.

N2 Ma = 0.01 Ma = 0.02 Ma = 0.05 Ma = 0.10 Ma = 0.15

412 1,489,000 778,000 332,000 173,000 120,000
572 2,061,000 1,056,000 450,000 235,000 160,000
812 2,859,000 1,495,000 626,000 326,000 222,000
1132 3,891,000 2,038,000 853,000 445,000 309,000
1612 5,412,000 2,837,000 1,189,000 621,000 431,000
2252 7,377,000 3,871,000 1,623,000 849,000 590,000
3212 10,267,000 5,394,000 2,312,000 1,209,000 824,000

Table 8
The Rayleigh-number dependence of the number of iterations to
achieve steady state. Ma = 0.01 and Pr = 0.71.

N2 Ra = 103 Ra = 104 Ra = 105 Ra = 106

412 153,000 344,000 712,000 1,489,000
572 204,000 461,000 985,000 2,061,000
812 277,000 629,000 1,341,000 2,859,000
1132 370,000 845,000 1,863,000 3,891,000
1612 502,000 1,149,000 2,528,000 5,412,000
2252 668,000 1,550,000 3,522,000 7,377,000
3212 915,000 2,116,000 4,796,000 10,267,000

3.8. Benchmark solutions

We now compare our results for the square cavity with differentially heated vertical walls in 2D with existing data. The
results of de Vahl Davis [39] were obtained by using the finite-difference method with uniform meshes of rather modest
sizes up to 812. The local results of de Vahl Davis [39] were fitted with polynomials and extrapolated asymptotically thus
they still remain to be among the most comprehensive and accurate benchmark results. The results of Hortmann et al. [42]
were obtained by using the finite-volume method accelerated with multi-grid method on non-uniform meshes up to the
size of 6402, and grid-independent results were obtained by extrapolations.Mayne et al. [41] used h-adaptive finite-element
method which relies on error-estimation to refine mesh adaptively and very fine mesh was used near boundaries. Le Quéré
and de Roquefort [44] and Le Quéré [45] used the Chebyshev pseudo-spectral method up to 1282 spectral resolution, which
also yields very accurate results.

In Table 9, we compile our results of the Nusselt numbers, which are extracted from Table 2 unless otherwise stated, and
existing data obtained by using finite difference (FD) [39,40], finite-element (FE) [41], finite-volume (FV) [42], and pseudo-
spectral (PS) [44,45] methods. In Table 9, our results of the Nusselt numbers are the asymptotic values fixed with the third-
order polynomial of Eq. (39). We also include in Table 9 some recent results obtained by using the LBmethod. Guo et al. [13]
used the LBGKmodelwith double-distributions and a relatively coarsemesh of size 1282. Mezrhab et al. [51] used the hybrid
MRT-LBE [8,15], which solves the temperature equation with finite-difference technique, and a fine mesh of size 4112.

As shown in Table 9, our results of average Nusselt numbers, i.e., ⟨Nu⟩, ⟨Nu⟩0, and ⟨Nu⟩1/2, agree with the best existing
data to at least three significant digits. Our results of local Nusselt numbers, i.e., Numax and Numin, as well as their positions,
agree with the most accurate results to at least two or three significant figures. Our results are also consistent with the
previous results obtained by using the LB methods [13,51].

In Table 10we compile the results of the local values of hydrodynamic variables including |ψmid|, |ψ |max, umax, and vmax, as
well as their positions. For the hydrodynamic variables, our results agreewith the best existing data at least three significant
figures. As for the positions, our results agree with the existing data to at least two significant figures.

The data in Tables 9 and 10 show that, with a reasonable resolution, our results agree very well with the most accurate
data and the MRT-TLBE can yield very accurate benchmark quality results.

4. Rayleigh–Bénard convection in a rectangular cavity heated from below

4.1. Flow configuration and parameters

The flow domain is a rectangle of an aspect ratio L/H = 2, i.e., (x, y) ∈ [0, 2] × [0, 1], as illustrated in Fig. 4. The
temperatures at the bottom and top walls are θ = +0.5 and θ = −0.5, respectively, thus ∆θ = 1. The left and right
vertical walls are stress free. The boundary conditions (bounce-back for {fi} and ‘‘anti-bounce-back’’ for {gi}) are applied for
the top and bottom horizontal walls, while periodic boundary conditions are applied in the x direction. The parameters for
the convective flow are: Ra = 2 · 103, 104, and 5 · 104; Pr = 0.71 and 7.0. We will also investigate the effects of the Mach
number Ma and the boundary conditions for the vertical side walls.
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Table 9
Benchmark solutions of the Nusselt numbers.

Ra Method ⟨Nu⟩ ⟨Nu⟩0 ⟨Nu⟩1/2 Numax y Numin

103

Present 1.1178 1.1178 1.1178 1.5063 0.08843 0.6912
PS [44] – 1.1178 1.1178 1.506 0.088 0.691
FD [40] – 1.1178 – 1.5064 – 0.6912
FD [39] 1.118 1.117 1.118 1.505 0.092 0.692
FE [41] – 1.1149 – 1.5062 0.08956 0.6913
LB [13] – 1.1168 – 1.5004 0.09375 –

104

Present 2.2448 2.2448 2.2448 3.5310 0.1443 0.5849
PS [44] – 2.245 2.245 3.531 0.144 0.585
FD [40] – 2.2449 – 3.5313 – 0.5850
FD [39] 2.243 2.238 2.243 3.528 0.143 0.586
FE [41] – 2.2593 – 3.5305 0.1426 0.5850
FV [42] 2.24475 – – 3.53087 0.14601 –
LB [13] – 2.2477 – 3.5715 0.1406 –

105

Present 4.5216 4.5214 4.5216 7.7161 0.08238 0.7279
PS [44] – 4.522 4.523 7.720 0.082 0.728
FD [40] – 4.5214 – 7.7216 – 0.7280
FD [39] 4.519 4.509 4.519 7.717 0.081 0.729
FE [41] – 4.4832 – 7.7084 0.08353 0.7282
FV [42] 4.52164 – – 7.72013 0.08233 –
LB [13] – 4.5345 – 7.7951 0.0781 –
LB [51] 4.521 – – – – –

106

Present 8.8253 8.8192 8.8254 17.5274 0.03952 0.9769
PS [45] 8.8252 – 8.8244 17.5343 0.039 0.97948
SE [47] 8.825 8.824 8.825 17.539 0.039 0.9796
FD [40] 8.8091 – – 17.4752 – 0.9798
FD [39] 8.800 8.817 8.799 17.925 0.0378 0.989
FE [41] – 8.8811 – 17.5308 0.03768 0.9845
FV [42] 8.82513 – – 17.536 0.03902 –
LB [13] – 8.7775 – 17.4836 0.0312 –
LB [51] 8.824 – – – – –

Table 10
Benchmark solutions of the hydrodynamic variables.

Ra Method |ψmid| |ψ |max (x, y) umax y vmax x

103

Present 1.1746 – – 3.6494 0.8132 3.6974 0.1783
PS [44] 1.1746 – – 3.6494 0.813 3.6974 0.178
FD [39] 1.174 – – 3.649 0.813 3.697 0.178
FE [41] – – – 3.6493 0.8125 3.6962 0.1790
LB [13] – – – 3.6554 0.8125 3.6985 0.1797

104

Present 5.0737 – – 16.1833 0.8232 19.6282 0.1189
PS [44] 5.0736 – – 16.183 0.823 19.629 0.119
FD [39] 5.071 – – 16.178 0.823 19.617 0.119
FV [42] – – – 16.1802 0.82551 19.6295 0.12009
LB [13] – – – 16.0761 0.8203 19.6368 0.1172

105

Present 9.1157 9.6179 (0.2843, 0.6015) 34.7424 0.8546 68.6358 0.06586
PS [44] 9.119 9.619 (0.285, 0.601) 34.75 0.855 68.64 0.066
FD [39] 9.111 9.612 (0.285, 0.601) 34.73 0.855 68.59 0.066
FV [42] – – – 34.7399 0.85535 68.6396 0.06719
LB [13] – – – 34.8343 0.8594 68.2671 0.0625
LB [51] – – – 34.74 – 68.73 –

106

Present 16.3868 16.8149 (0.1503, 0.5468) 64.8336 0.8499 220.5658 0.03776
PS [45] 16.386 16.811 (0.150, 0.547) 64.83 0.850 220.6 0.038
FD [39] 16.32 16.750 (0.151, 0.547) 64.63 0.850 219.36 0.0379
FV [42] – – – 64.8367 0.85036 220.461 0.03887
LB [13] – – – 65.3606 0.8516 216.415 0.0391
LB [51] – – – 64.86 – 220.3 –

The volume average Nusselt number ⟨Nu⟩ is defined as follows

⟨Nu⟩ = 1 +
⟨vθ⟩H
κ∆θ

. (41)

The heat flux in the vertical direction is

qy = vθ − ∂yθ. (42)
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Fig. 4. Illustration of the flow domain for the Rayleigh–Bénard convection in the rectangle (L = 2H) heated from below.

a b

Fig. 5. The Rayleigh–Bénard convection with Ra = 5 · 104 , Pr = 0.71 and Ma = 0.01. (a) Distribution of the Nusselt number ⟨Nu⟩x averaged over x as a
function of y. ⟨Nu⟩x is symmetric about y = 1/2. (b) Distribution of the heat flux qy(x) at the hot bottom wall x = 0.

We compute the volume average Nusselt number ⟨Nu⟩, the Nusselt number at the bottom boundary, Nu0, and the Nusselt
number Nu1/2 at the horizontal center line y = 1/2, and the maximum and minimum Nusselt numbers, Numax and Numin,
at the bottom. We also compute some hydrodynamic quantities in the flow including the maximum value of the stream-
function, |ψ |max, the maximum horizontal velocity umax at x = 1/2 and its position, and themaximum vertical velocity vmax
at y = 1/2. In addition, we compute the critical Rayleigh number Rac .

4.2. Grid convergence of flow fields

We use the following mesh sizes to study the convergence behavior of the Rayleigh–Bénard convection flow: 82 ×

41, 162 × 81, 322 × 161, and 642 × 321. The solution with the largest mesh size of 642 × 321 is used as the reference
solution to compute errors in flow fields. The flow fields on the finest mesh (642 × 321) are interpolated to the grid points
of a coarser mesh with a second-order interpolation in two dimensions to compute errors in the flow fields.

Table 11 compiles the errors of flow fields u, p, and θ with L2-norm, for Pr = 0.71 and 7.0. The Mach number is fixed
at 0.01. The data in Table 11 show that the convergence rates n for all flow fields are 2.0, indicating that the MRT-TLBE
scheme is second-order accurate for all flow fields. If the flow fields are not interpolated to the same grid points, the rates
of convergence for all flow fields are about 1.4, similar to the previous case.

4.3. Convergence of the Nusselt numbers

In Fig. 5 we show the convergence behaviors of the Nusselt number averaged over horizontal grid lines, ⟨Nu⟩x, and the
heat flux qy at the hot bottom wall for the case of Ra = 5 · 104 and Pr = 0.71. We use a second-order polynomial to fit
the temperature θ along each vertical grid line, which is used in turn to compute its derivative ∂yθ in qy. We observe that
with coarse mesh sizes, ⟨Nu⟩x oscillates near the boundary y = 0. The heat flux at the hot bottom wall seems to converge
to grid-size independent results quicker than ⟨Nu⟩x.

Table 12 compiles the results concerning the convergence behaviors of Nusselt numbers depending on Ra and Pr, with
a fixed Ma = 0.01. The average Nusselt numbers, ⟨Nu⟩, Nu0, and Nu1/2, agree with each other for at least two significant
digits even in the case of the smallest mesh size 82 × 41, and in most cases they agree with each other for three or more
significant digits. Note that, without interpolations, the value of Numax is always located at the first fluid node at the bottom
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Table 11
Convergence of flow fields u, p, and θ with L2-norm. Ma = 0.01.
Ra 2 · 103 104 5 · 104

Pr Nx × Ny ∥δu∥2

0.71

82 × 41 1.8235123 · 10−3 1.6662503 · 10−3 2.4985370 · 10−3

162 × 81 4.5477030 · 10−4 4.1009633 · 10−4 6.0755183 · 10−4

322 × 161 9.3105636 · 10−5 8.3432755 · 10−5 1.2313076 · 10−4

n 2.1750164 2.1892687 2.2009012
∥δp∥2

82 × 41 7.8884782 · 10−4 1.6097741 · 10−3 3.1967885 · 10−3

162 × 81 1.9080679 · 10−4 3.9130467 · 10−4 7.7196536 · 10−4

322 × 161 3.8460740 · 10−5 7.9254493 · 10−5 1.5638540 · 10−4

n 2.2087398 2.2016116 2.2062784
∥δθ∥2

82 × 41 7.0435664 · 10−4 2.0207005 · 10−3 5.4430297 · 10−3

162 × 81 1.7118507 · 10−4 4.7893200 · 10−4 1.2717761 · 10−3

322 × 161 3.4601087 · 10−5 9.5578827 · 10−5 2.5148566 · 10−4

n 2.2032327 2.2308896 2.2480329

7.0

∥δu∥2

82 × 41 1.9122279 · 10−3 1.9493835 · 10−3 3.4416128 · 10−3

162 × 81 4.7629506 · 10−4 4.7715646 · 10−4 8.3752414 · 10−4

322 × 161 9.7572924 · 10−5 9.6257877 · 10−5 1.6955373 · 10−4

n 2.1754817 2.1994687 2.2011312
∥δp∥2

82 × 41 6.8784479 · 10−4 1.3773027 · 10−3 3.4770364 · 10−3

162 × 81 1.6637820 · 10−4 3.3417353 · 10−4 8.4000603 · 10−4

322 × 161 3.3555042 · 10−5 6.7236855 · 10−5 1.6946493 · 10−4

n 2.2083303 2.2078132 2.2089964
∥δθ∥2

82 × 41 7.3461000 · 10−4 2.0946577 · 10−3 5.1380574 · 10−3

162 × 81 1.7842903 · 10−4 4.9466298 · 10−4 1.1923695 · 10−3

322 × 161 3.6105038 · 10−5 9.8327861 · 10−5 2.3523463 · 10−4

n 2.2028709 2.2364387 2.2547114

boundary, i.e., (i, j) = (1, 1/2), where j = 1/2 means δx/2 beyond the last fluid node at j = 1 while Numin is always located
at the mesh center, i.e., (i, j) = (Nx/2, 1/2). As mesh size Nx ×Ny goes to infinity, the locations of Numax and Numin will go to
(x, y) = (0, 0) and (x, y) = (1, 0), respectively. Except for the case of Numin, the rate of convergence n is about 2.0. It should
be noted that for both Numax and Numin, the norm is L∞ which is the most stringent.

Table 13 compiles the results concerning the convergence behaviors of the hydrodynamic quantities under study,
depending on Ra and Pr, with Ma = 0.01. These hydrodynamic quantities include the maximum of the absolute value
of the stream function, |ψ |max, which is always located at (x, y) = (1/2, 1/2), the maximum x-velocity at the vertical line
x = 1/2, and the maximum y-velocity at the horizontal center line y = 1/2, which is always located at the center of the
line x = 1. In all cases, the results have agreement of at least two significant digits with the smallest mesh size of 82 × 41,
indicating that mesh-size independent results have been obtained. Overall the results show the MRT-TLBE scheme is of
second-order convergence.

The asymptotic values of the Nusselt numbers in Table 12 and those hydrodynamic quantities in Table 13 are obtained by
using the least-square fit to the third-order polynomial of Eq. (39). We should mention that in some cases the data obtained
with the coarsest mesh of 82× 41 are excluded in the least-square fitting. These cases for which the data are excluded from
the fitting are marked with ‘‘∗’’ in both tables.

Table 14 shows the convergence behavior of the average Nusselt number ⟨Nu⟩ depending on the Mach number Ma. The
data clearly show that the Mach number has no effect at all on the Nusselt number ⟨Nu⟩. This observation indicates that the
Mach number is equivalent to the CFL number for the incompressible TLBE with Boussinesq approximation, thus varying
Ma amounts to changing the time-step size, which has no effect on the accuracy of the steady flows studied in this work.

4.4. Flow fields

Fig. 6 illustrates the streamlines, isotherms, and pressure contours for the Rayleigh–Bénard convection with Pr = 0.71,
and Ra = 2 · 103, 104, and 5 · 104. When the Rayleigh number is below the critical value of Rac ≈ 1707.762 [52],
the temperature has no horizontal gradient—the only heat transfer mechanism is thermal conduction. Consequently the
isotherms are straight horizontal lines. The values of Ra we use are all greater than the critical value Rac ≈ 1707.762,
thus convection takes place as a heat transfer mechanism in addition to conduction. The convective motion due to two
counter-rotating vortexes can be clearly seen in the flow patterns shown in Fig. 6. The horizontal temperature gradient
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Table 12
Convergence behaviors of Nusselt numbers. Ma = 0.01.The data marked with ‘‘∗’’ are excluded from the least-square fitting to obtain asymptotic values.
Pr Ra Nx × Ny ⟨Nu⟩ Nu0 Nu1/2 Numax Numin

0.71

2 · 103

82 × 41 1.2113916 1.2115122 1.2131327 1.7762356 0.62197443
162 × 81 1.2107538 1.2107701 1.2111999 1.7721196 0.62278374
322 × 161 1.2105862 1.2105883 1.2106991 1.7711165 0.62296531
642 × 321 1.2105431 1.2105434 1.2105715 1.7708707 0.62300764
∞ 1.2105286 1.2105285 1.2105286 1.7707886 0.62302137
n 1.9850927 2.0358459 1.9950204 2.0389039 2.1056930

104

82 × 41 2.6621453 2.6646292 2.6644154 4.4128023 0.79251933∗

162 × 81 2.6569340 2.6572746 2.6575124 4.3536217 0.79270573
322 × 161 2.6555886 2.6556329 2.6557349 4.3395338 0.79258856
642 × 321 2.6552461 2.6552517 2.6552830 4.3361637 0.79253953
∞ 2.6551312 2.6551282 2.6551316 4.3350273 0.79251930
n 1.9979442 2.1098972 1.9998832 2.0544574 1.6131396

5 · 104

82 × 41 4.1890216 4.2054264 4.1886300 7.9635650 0.96295756∗

162 × 81 4.1708705 4.1732783 4.1707507 7.6086004 0.96283936
322 × 161 4.1662151 4.1665341 4.1661836 7.5225797 0.96250197
642 × 321 4.1650342 4.1650752 4.1650262 7.5024015 0.96238446
∞ 4.1646388 4.1645918 4.1646398 7.4952083 0.96233878
n 2.0026672 2.1581222 2.0058891 2.0332152 1.7386379

7.0

2 · 103

82 × 41 1.2138056 1.2139259 1.2155964 1.7637933 0.61674958
162 × 81 1.2131324 1.2131487 1.2135912 1.7600144 0.61782582
322 × 161 1.2129558 1.2129578 1.2130719 1.7590917 0.61807162
642 × 321 1.2129103 1.2129105 1.2129397 1.7588648 0.61812938
∞ 1.2128951 1.2128949 1.2128952 1.7587893 0.61814835
n 1.9866559 2.0349335 1.9954716 2.0381289 2.0898421

104

82 × 41 2.6170260 2.6189246 2.6197594 3.9213957 0.84034065
162 × 81 2.6115803 2.6118381 2.6122784 3.8847917 0.84648953
322 × 161 2.6101782 2.6102127 2.6103540 3.8760752 0.84773176
642 × 321 2.6098247 2.6098272 2.6098706 3.8739729 0.84799025
∞ 2.6097046 2.6097018 2.6097055 3.8732735 0.84807592
n 1.9979049 2.0880535 1.9977474 2.0562383 2.1916472

5 · 104

82 × 41 3.8836213 3.8928928 3.8825115 6.4560756 1.0908378
162 × 81 3.8652480 3.8665374 3.8649553 6.2703465 1.1260297
322 × 161 3.8605636 3.8607326 3.8604890 6.2267504 1.1337171
642 × 321 3.8593770 3.8593986 3.8593582 6.2164291 1.1353876
∞ 3.8589814 3.8589675 3.8589819 6.2129528 1.1359736
n 2.0074310 2.1210690 2.0091889 2.0650939 2.1156290

increases with Ra, as indicated by the increasing steepness of the isotherms around the vertical centerline of the rectangle,
x = 1. When Ra = 5 · 104, the isotherms near x = 1 are almost vertical, indicating that the convection is the dominant
heat transfer mechanism. Also, as Ra increases, the streamlines become more and more asymmetric with respect to the
horizontal centerline y = 1/2. In Fig. 6 we also show the flow fields obtained by using different Mach numbers, which
indicates the fact that the Mach number has little effect on the flow fields.

Fig. 7 shows the flow fields for Pr = 7.0, and Ra = 2 · 103, 104, and 5 · 104. The viscous effect for Pr = 7.0 is about 10
times of that for Pr = 0.71. Consequently, the convection is considerably weaker when Pr = 7.0. With Ra = 2 · 103, the
average Nusselt numbers with Pr = 7.0 are slightly larger than their counterparts with Pr = 0.71, while the differences
(Numax − Numin) are slightly larger in the case of Pr = 0.71, as shown by the data in Table 12. However, in the cases of
Ra = 104 and 5 · 104, the Nusselt numbers with Pr = 0.71 not only are larger than their counterparts with Pr = 7.0,
but also increase faster with Ra. Nevertheless, the isotherms for both cases of Pr = 7.0 and 0.71 are rather similar to each
other qualitatively, although the isotherms with Pr = 0.71 do show larger curvatures in the case of the largest Rayleigh
number Ra = 5 · 104. We also observe that as Ra increases, the streamlines in the cases of Pr = 7.0 maintain the symmetry
with respect to the horizontal centerline y = 1/2 relatively better than the corresponding cases of Pr = 0.71. Also, as Ra
increases, the vortexes become more square than circular, and the streamlines are more conformed to two square boxes
defined by the boundaries of flow domain and the vertical centerline x = 1.

The temperature fields for Pr = 0.71 and 7.0 with equal Rayleigh number Ra, as shown in Figs. 6 and 7, respectively,
do not exhibit a significant difference. This is further illustrated in Fig. 8 which compares the temperatures for Ra = 104

and Pr = 0.71 and 7.0 at two different horizontal lines y = 1/4 and 3/4. Clearly, in most places the magnitude of the
temperature for Pr = 0.71 is larger than that for Pr = 7.0, but not significantly. Overall, the temperature for Pr = 7.0 is
slightly flatter than that for Pr = 0.71.

Fig. 9 shows the contours of the vertical (y) velocity v(x, y) for Ra = 104 and Pr = 0.71 and 7.0. Clearly, the v(x, y) for
Pr = 7.0 is more symmetric with respect to the horizontal centerline y = 1/2 than that for Pr = 0.71. The contours of
v(x, y) = 0 for Pr = 0.71 converge from the bottom to the top, while those for Pr = 7.0 diverge only slightly.
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Fig. 6. Contours of flow fields of the Rayleigh–Bénard convection in the rectangle. Pr = 0.71. From left to right: the stream-function, the isotherms, and
the pressure. From top to bottom: Ra = 2 ·103, 104 , and 5 ·104 . Solid (black) lines:Nx×Ny = 642×321 andMa = 0.01. Dashed (red) lines: for Ra = 2 ·103 ,
Nx × Ny = 322 × 161 and Ma = 0.05; and for Ra = 104 and 5 · 104 , Nx × Ny = 642 × 321, and Ma = 0.05 and 0.1, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Similar to Fig. 6. Pr = 7.0 and Nx × Ny = 642 × 321. Solid (black) lines: Ma = 0.01. Dashed (red) lines: for Ra = 2 · 103 , Ma = 0.05; and for
Ra = 104 and 5 ·104 , Ma = 0.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. θ(x, y) at two horizontal lines y = 1/4 and 3/4. Ra = 104 .
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Table 13
Convergence behaviors of hydrodynamic variables. Ma = 0.01. The data marked with ‘‘∗’’ are excluded from the least-square fitting to obtain asymptotic
values.
Pr Ra Nx × Ny |ψ |max umax y vmax

0.71

2 · 103

82 × 41 1.5645398∗ 4.8255910 0.20699909 4.9130905
162 × 81 1.5643061 4.8212220 0.20701752 4.9058434
322 × 161 1.5642185 4.8200616 0.20702374 4.9039308
642 × 321 1.5641924 4.8197615 0.20702504 4.9034388
∞ 1.5641829 4.8196603 0.20702578 4.9032726
n 1.8605040 1.9784776 1.7726971 1.9821850

104

82 × 41 9.0975682∗ 29.185548∗ 0.17607948∗ 30.630719
162 × 81 9.0976171 29.163358 0.17603327 30.608401
322 × 161 9.0975174 29.157681 0.17602864 30.602512
642 × 321 9.0974752 29.156237 0.17602823 30.601000
∞ 9.0974577 29.155754 0.17602759 30.600488
n 1.6053941 2.0021411 1.5778553 1.9818841

5 · 104

82 × 41 23.385572 83.727706 0.13425853 88.734612
162 × 81 23.378048 83.606805 0.13401480 88.816569
322 × 161 23.375886 83.575881 0.13397970 88.838675
642 × 321 23.375285 83.568009 0.13397128 88.844345
∞ 23.375091 83.565397 0.13397089 88.846228
n 1.9351737 2.0059524 3.1176058 1.9481354

7.0

2 · 103

82 × 41 1.5744575 4.8509071 0.20816094 4.9776755
162 × 81 1.5740952 4.8461445 0.20818166 4.9699493
322 × 161 1.5739747 4.8448840 0.20818824 4.9679132
642 × 321 1.5739400 4.8445576 0.20818966 4.9673891
∞ 1.5739280 4.8444482 0.20819041 4.9672126
n 1.8418261 1.9815514 1.8129577 1.9836670

104

82 × 41 8.9356742 27.805819 0.19771741 34.217912
162 × 81 8.9323398 27.776768 0.19774395 34.186997
322 × 161 8.9313824 27.769307 0.19775255 34.178852
642 × 321 8.9311334 27.767434 0.19775580 34.176790
∞ 8.9310434 27.766794 0.19775646 34.176076
n 1.9188748 1.9988445 1.9562843 1.9798167

5 · 104

82 × 41 21.600066 68.686006∗ 0.17721526∗ 117.11480
162 × 81 21.569192 68.547241 0.17721600 117.03686
322 × 161 21.561009 68.512220 0.17722439 117.01454
642 × 321 21.558896 68.503380 0.17722749 117.00868
∞ 21.558184 68.500417 0.17722872 117.00660
n 1.9796398 2.0044751 1.6954514 1.9234752

Table 14
Dependence of convergence behavior of ⟨Nu⟩ on the Mach number Ma. Ra = 5 · 104 .

Ma 0.01 0.05 0.10

Nx × Ny Pr = 0.71

82 × 41 4.1890216 4.1890216 4.1890216
162 × 81 4.1708704 4.1708704 4.1708704
322 × 161 4.1662151 4.1662151 4.1662151
642 × 321 4.1650342 4.1650342 4.1650342

∞ 4.1646387 4.1646387 4.1646387
n 2.0026672 2.0026661 2.0026661

Pr = 7.0

82 × 41 3.8836213 3.8836213 3.8836213
162 × 81 3.8652479 3.8652479 3.8652479
322 × 161 3.8605635 3.8605635 3.8605635
642 × 321 3.8593769 3.8593769 3.8593769

∞ 3.8589814 3.8589814 3.8589814
n 2.0074310 2.0074324 2.0074324

Fig. 10 shows the vertical velocity v(x, y) at three horizontal lines: y = 1/4, 1/2, and 3/4. Clearly, the maximum value
of v(x, y) for Pr = 0.71 is about one order of magnitude larger than that for Pr = 7.0, as expected.
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Fig. 9. The contours of the y-velocity v(x, y). Ra = 104 and Nx × Ny = 642 × 321. Pr = 0.71 (left) and 7.0 (right). Thin solid, dashed, and thick solid lines
correspond to positive, negative, and zero values of v(x, y), respectively.

Fig. 10. Vertical (y) velocity v(x, y) at y = 1/4, 1/2, and 3/4. Ra = 104 , Pr = 0.71 (left) and 7.0 (right).

4.5. The critical Rayleigh number for the case of Pr = 0.71

We use the MRT-TLBE scheme to determine the critical Rayleigh number Rac , beyond which the Rayleigh–Bénard
convection occurs. The procedure to determine the onset of the convection is the following. The initial velocity and density
fields are quiescent, i.e., u0 = 0 and δρ0 = 0, and the initial temperature is uniform in the x-direction and has a linear profile
in the y-direction:

θ(i, j) =
1
2

−
(2j − 1)

2Ny
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, (43)

so θ ∈ [−0.5,+0.5] and it satisfies the boundary conditions. The linear profile of θ is close to its steady state solution when
Ra < Rac . We measure the evolution of the maximum y-velocity in the system vmax(t) for a given Ra. The magnitude of
vmax(t)will decay if Ra < Rac and will grow if Ra > Rac . After an initial equilibration, vmax will grow or decay exponentially
in a period of time before it is saturated, depending on Ra. We compute the grow rate γ of vmax(t) as a function of Ra. The
critical Rayleigh number, Rac , is determined by γ (Rac) = 0 by linearly fitting γ (Ra) with the least-square method. Note
that the growth rate γ is computed with the dimensionless time tnκ/N2

y .
In Fig. 11 (left) we show the evolution of vmax(t) after the initial equilibration in semi-log scale for Pr = 0.71, Ra = 1685,

1700, 1715, and 1730, and Nx × Ny = 642 × 321; we also show the growth rates γ (Ra) computed from vmax(t) in Fig. 11
(right). It seems clear that lg[vmax(tn)] varies linearly in time.We compute the growth rate γ versus the rescaled time tnκ/N2

y
as a function of Ra, which also fits a linear function of Ra very well, as shown in Fig. 11 (right).

We compute the critical Rayleigh number Rac as a function of the mesh size Nx × Ny and the results are tabulated in
Table 15. The asymptotic value of Rac is obtained by using the least-square fit with the third-order polynomial of h = 1/Ny
of Eq. (39). For the 2DRayleigh–Bénard convection considered here, the exact value of Rac based on the linear stability theory
is about 1707.762 [52]. Our results agree with the exact value of Rac for 4 significant digits except for the case of the coarsest
mesh size Nx × Ny = 22 × 11. The asymptotic value of Rac differs from its theoretical value by about 0.012%.

4.6. Effects of boundary conditions

We use the periodic boundary conditions to represent the stress-free boundary conditions in the lateral direction. Other
boundary conditions for the verticalwalls are the rigidwallswith the adiabatic boundary condition.Wewill study the effects
due to different boundary conditions.

We consider the case of Pr = 0.71 and Ra = 104. The rigid adiabatic lateral walls are represented by the bounce-back
boundary conditions for both distributions {fi} and {gi}, corresponding to themass density and the temperature, respectively.
The contours of the flow fields are shown in Fig. 12.
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Fig. 11. Determination of the critical Rayleigh number Rac . The dependence of the evolution of vmax(tn) on the Rayleigh number Ra (left) and the
corresponding Ra-dependence of the growth rate γ (Ra) of vmax(tn) (right). The symbols are the computed values of γ and the solid straight line is the
least-square fit of the computed data. The x-coordinate of the intersection of the solid and dashed lines is the value of Rac .

Fig. 12. The Rayleigh–Bénard convection in the 2D rectangle with rigid adiabatic vertical walls. Pr = 0.71, Ra = 104 , Nx × Ny = 642 × 321. From left to
right: streamlines (left), isotherms (middle), and pressure contours (right).

Table 15
The dependence of the critical Rayleigh number Rac on themesh sizeNx ×Ny . Pr = 0.71. The asymptotic
value of Rac is obtained by using the least-square fit with the third-order polynomial of 1/Ny of Eq. (39).
The data marked with ‘‘∗’’ are excluded from the least-square fitting to obtain asymptotic values.

Nx × Ny Rac

22 × 11 1708.272437 ± 13.7155∗

42 × 21 1707.463181 ± 1.04389
82 × 41 1707.786862 ± 0.466368
162 × 81 1707.918852 ± 0.426070
322 × 161 1707.957846 ± 0.389717
642 × 321 1707.966558 ± 0.386651

∞ 1707.968375 ± 0.379130
n 2.068206673

Theory [52] 1707.762

In contrastwith the flow fieldswith the same Ra and Pr butwith the stress-free boundary conditions shown in themiddle
row of Fig. 6, the flow fields are not affected by the boundary conditions significantly, however, the streamlines do exhibit
an observable difference due to different boundary conditions. The streamlines with the rigid adiabatic boundary conditions
are more symmetric with respect to the horizontal centerline y = 1/2 than the streamlines with the stress-free boundary
conditions.

To quantify the effects due to the boundary conditions, we show in Fig. 13 the comparison of temperature profiles θ(x)
at two horizontal lines y = 1/4 and 3/4 with different boundary conditions. The temperature profiles θ(x, y) at different
horizontal lines with the rigid adiabatic vertical walls are similar to those with the stress-free vertical walls, except in the
regions near the two lower corners bounded by the rigid adiabatic vertical walls and the hot bottom wall. This is clearly
shown in the temperature profile θ(x) at y = 1/4.

We compare the contours of the vertical (y) velocity v(x, y) in Fig. 14. Clearly, the rigid vertical walls force the contours
of v(x, y) = 0 to be more parallel to the vertical walls thus make the contours of v(x, y) more symmetric with respect to
the horizontal centerline y = 1/2. The overall effect of the rigid adiabatic walls is flow confinement which inhibits heat
convection—the maximum magnitude of the stream-function, |ψ |max, with the stress-free vertical walls is larger than that
with the rigid-adiabatic vertical walls and the average Nusselt numbers ⟨Nu⟩ corresponding to the stress-free and the rigid-
adiabatic vertical walls are 2.6551 and 2.4049, respectively.
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Fig. 13. The effect the boundary conditions on the temperature θ(x, y) at two horizontal lines y = 1/4 and 3/4 for the Rayleigh–Bénard convection with
Ra = 104 , Pr = 0.71, and Nx × Ny = 642 × 321.

Fig. 14. The effect the boundary conditions on the vertical (y) velocity v(x, y) for the Rayleigh–Bénard convection with Ra = 104 , Pr = 0.71, and
Nx × Ny = 642 × 321. Left: the rigid adiabatic vertical walls with the bounce-back boundary conditions. Right: the stress-free vertical walls with the
periodic boundary conditions.

Table 16
Benchmark solutions of the Nusselt numbers for the Rayleigh–Bénard convection in a 2D rectangle.

Pr Ra Method ⟨Nu⟩ Nu0 Nu1/2 Numax , Numin

0.71

2 · 103 Present 1.2105286 1.2105285 1.2105286 1.7707886 0.62302137
SP [53] 1.212

104 Present 2.6551312 2.6551282 2.6551316 4.3350273 0.79251930
SP [53] 2.661

5 · 104 Present 4.1646388 4.1645918 4.1646398 7.4952083 0.96233878
SP [53] 4.245

7.0

2 · 103 Present 1.2128951 1.2128949 1.2128952 1.7587893 0.61814835
SP [53] 1.214

104 Present 2.6097046 2.6097018 2.6097055 3.8732735 0.84807592
SP [53] 2.618

5 · 104 Present 3.8589814 3.8589675 3.8589819 6.2129528 1.1359736
SP [53] 3.894

4.7. Benchmark solutions

Although the Rayleigh–Bénard convection in a 2D rectangle is a well studied case, unlike the previous case of the
differentially heated square, there exist scarcely any benchmark results. The only data we could find are the average Nusselt
numbers obtained by Clever and Busse by using pseudo-spectral method [53]. We thus compile the results of Clever and
Busse [53] and ours in Table 16. Our results in Table 16 are the asymptotic values of the Nusselt numbers given in Table 12.

With the Prandtl number of Pr = 0.71, our result of the average Nusselt number ⟨Nu⟩ agrees with the SP one in three
significant digits when Ra = 2 · 103, and the relative difference is about 0.12%. The relative difference increases to ca. 0.22%
and 1.9% for Ra = 104 and 5 · 104, respectively. With the Prandtl number of Pr = 7.0, the relative differences between the
values of ⟨Nu⟩ obtained by the LB and SP methods are 0.091%, 0.32%, and 0.90%, corresponding to Ra = 2 · 103, 104, and
5 ·104, respectively. The data in Table 16 clearly show that the LBmethod systematically under-predicts the average Nusselt
number ⟨Nu⟩. This is understandable because the LBE is a second-order method and is more dissipative than the SPmethod.

We tabulate the hydrodynamic quantities in Table 17. Table 17 only has data obtained by using the LB method in the
present work because we have not been able to find other data available in the literature. The data in Table 17 are the
asymptotic values in Table 13. The data in Table 17 have at least four significant digits accuracy, as clearly shown in Table 13.
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Table 17
Benchmark solutions for the hydrodynamics variables.

Pr Ra |ψ |max umax y vmax

0.71
2·103 1.5641829 4.8196603 0.20702578 4.9032726
104 9.0974577 29.155754 0.17602759 30.600488
5·104 23.375091 83.565397 0.13397089 88.846228

7.0
2·103 1.5739280 4.8444482 0.20819041 4.9672126
104 8.9310434 27.766794 0.19775646 34.176076
5·104 21.558184 68.500417 0.17722872 117.00660

5. Conclusions

In this work we employ the lattice Boltzmann equation with multiple-relaxation-time collision model to simulate
thermo-hydrodynamics in two dimensions. The MRT-TLBE consists of two sets of distributions: one with nine
velocities (D2Q9) for the mass and momentum conservation equations, and other with five velocities (D2Q5) for the
advection–diffusion equation for the temperature. This approach is valid under the Boussinesq approximation. The
MRT-TLBE model is used to simulate the following two flows. The first is the square cavity with differentially heated
vertical walls for Rayleigh number Ra = 103, 104, 105 and 106, and Prandtl number Pr = 0.71. The second case is the
Rayleigh–Bénard convection in a rectangle heated from below and under the influence of gravity for Ra = 2 · 103, 104 and
5 · 104, and Pr = 0.71 and 7.0.

We systematically study the convergence behavior of the MRT-TLBE scheme, the effect of the Mach number, and the
effects due to the stress-free and rigid-adiabatic wall boundary conditions. We compute various Nusselt numbers and
hydrodynamic quantities and compare them with existing benchmark data. The results show that the MRT-TLBE scheme
can yield benchmark quality results.

Our results demonstrate that the MRT-TLBE scheme is second-order accurate for incompressible thermo-hydrodynamic
flows with the Boussinesq approximation. We also find that the Mach number, which is equivalent to the CFL number, has
little effect on the accuracy of the MRT-TLBE simulations. This significantly differs from the incompressible athermal flows
without the advection–diffusion equation for the temperature, for which the error is of second-order in Mach number. The
MRT-TLBE scheme is stable so long as the Mach number is kept below a certain critical value, and the larger the Mach
number, the larger the effective time step size, hence the more efficient computationally. We note that it is imperative to
use the MRT-TLBE scheme so the boundary conditions for the velocity and temperature fields can be accurately realized,
which is impossible for the LBGK-type of scheme with a single relaxation time to achieve.

We also investigate the effects of the relaxation rates se and sε to the MRT-TLBE simulations and find that they have little
effect. We thus use the two-relaxation-time (TRT) model, because, unlike the athermal flows, the stability is not severely
affected by the acoustic waves in the system.
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