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a b s t r a c t

In this paper,we present a newpopulation-basedMonte Carlomethod, so-calledMOMCMC
(Multi-Objective Markov Chain Monte Carlo), for sampling in the presence of multiple
objective functions in real parameter space. The MOMCMC method is designed to address
the ‘‘multi-objective sampling’’ problem, which is not only of interest in exploring
diversified solutions at the Pareto optimal front in the function space of multiple objective
functions, but also those near the front. MOMCMC integrates Differential Evolution
(DE) style crossover into Markov Chain Monte Carlo (MCMC) to adaptively propose
new solutions from the current population. The significance of dominance is taken into
consideration in MOMCMC’s fitness assignment scheme while balancing the solution’s
optimality and diversity. Moreover, the acceptance rate in MOMCMC is used to control
the sampling bandwidth of the solutions near the Pareto optimal front. As a result, the
computational results of MOMCMC with the high-dimensional ZDT benchmark functions
demonstrate its efficiency in obtaining solution samples at or near the Pareto optimal
front. Compared to MOSCEM (Multiobjective Shuffled Complex Evolution Metropolis),
an existing Monte Carlo sampling method for multi-objective optimization, MOMCMC
exhibits significantly faster convergence to the Pareto optimal front. Furthermore, with
small population size, MOMCMC also shows effectiveness in sampling complicated multi-
objective function space.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In many scientific and engineering applications, two or more potentially conflicting objectives coexist, where optimal
solutions in the presence of tradeoffs among these objectives are of particular interest. The collection of these optimal
solutions is called the Pareto optimal front [1]. Correspondingly, the process of systematically optimizingmultiple objective
functions to obtain a good coverage of the Pareto-optimal solutions is referred to as Multi-Objective Optimization (MOO).
A variety of evolutionary algorithms, such as NSGA-II (Nondominated Sorted Genetic Algorithm II) [2], SPEA-II (Strength
Pareto Evolutionary Algorithm II) [3], PAES (Pareto-Archived Evolution Strategy) [4], and many others have been developed
to addressMOO problems and have been effectively used in awide variety of applications. Deb [2] and Coello Coello et al. [5]
provide excellent surveys and introductions to the early evolutionary algorithms for solving MOO problems. More recently,
multi-objective evolutionary algorithmswith enhanced strategies, such as ϵ-domination basedmulti-objective evolutionary
algorithm [6], multi-objective evolutionary algorithm based on decomposition (MOEA/D) [7], hypervolume-based multi-
objective optimization [8], auto-adaptive multi-objective evolutionary computing [9], and AMALGAM (multialgorithm,
genetically adaptive multiobjective) [10], have demonstrated further efficiency improvement in various MOO problems.

Nevertheless, in many applications, one may not only be interested in optimal solutions, but also in their uncertainty
distributions. For example, in drug design, chemical compounds near the optimum of the design objectives are often
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considered to be good candidates for further screening due to the fact that the design objectives are usually vague
and uncertain [11]. Protein structure modeling is another application example. One desires to sample the structurally
diversified models close to the optima of the simplified and potentially inaccurate backbone scoring (energy) functions
with reduced protein representation to discover near-native conformations [12,13]. Therefore, different from MOO, this
paper is particularly interested in the ‘‘multi-objective sampling problem’’, i.e., to explore the diversified solutions at the
Pareto optimal front as well as those near the front in the function space of multiple objective functions.

Most available Markov Chain Monte Carlo (MCMC) methods, such as Metropolis–Hastings [14,15], Simulated Anneal-
ing [16], Simulated Tempering [17], configuration-biased Monte Carlo [18], and Parallel Tempering [19], are applied to ap-
plications with only a single objective (energy) function. In 2002, Vrugt et al. extended MCMCmethods to applications with
multiple objective functions by taking advantage of the concept of Pareto dominance, where the resulting Multiobjective
Shuffled Complex Evolution Metropolis (MOSCEM) method [20] has demonstrated certain effectiveness and efficiency in
multi-objective optimization of hydrologic models. However, recent study [21] has shown that, in a set of standardized
test functions and in a few hydrologic calibration cases, the MOSCEM method is inferior to genetic algorithm-based multi-
objective optimization algorithms, such as NSGA-II [2] and SPEA-II [3], in finding solutions at the Pareto optimal front. This
is based on measurement of both the capability of reaching Pareto optimal solutions and the computational time. One main
reason is that the stochastic search operator in MOSCEM depends on the prior distribution, which requires the covariance
calculation of the parameters in the population. Due to this, the stochastic search inMOSCEM using complex shuffling ‘‘does
not scale well for problems of increasing size and/or difficulty’’ [21].

In this paper, we present a Multi-Objective Markov Chain Monte Carlo (MOMCMC) method for sampling the optimal
as well as near-optimal solutions in the presence of multiple objective functions over real parameter space. We want to
emphasize that MOMCMC intends to tackle the multi-objective sampling problem, i.e., we are not only interested in the
Pareto optimal solutions, but also the near Pareto optimal solutions. This is different from the MOO problem where only
Pareto optimal solutions are of interest. MOMCMC is a population-based MCMC approach which incorporates several novel
improvements overcoming the deficiencies in MOSCEM. First of all, a Differential Evolution (DE) [22] style crossover among
solutions in a population is used to implement the proposal function in MCMC with appropriate scale and orientation.
Secondly, a fitness assignment approach is developed to distinguish dominated and non-dominated solutions and to
measure the significance of dominancewhile preserving solution diversity. Thirdly, the acceptance rate inMOMCMC is used
as a tuner to control the sampling bandwidth of the solutions near the Pareto optimal front. We use a set of real parameter
benchmark functions for multi-objective optimization to show the sampling effectiveness of the MOMCMC method.

The rest of the paper is organized as follows. Section 2 discusses the general MCMC methods when multiple objective
functions are present. The implementation of the MOMCMC method is described in detail in Section 3. Section 4 presents
the computational results of MOMCMC on the ZDT benchmark functions [23] and other test functions in comparison with
NSGA-II and MOSCEM. Finally, Section 5 concludes our summary and future research directions.

2. Monte Carlo methods in the presence of multiple objective functions

Suppose that we are interested in exploring solutions x that minimize an objective function f (x) ∈ R, where x =

(x1, . . . , xn) ∈ Rn. The fundamental formulation of MCMC is to construct a probability distribution:

π(x) ∝ e−f (x)/T , T > 0,

where T is the simulated temperature. Then, a Markov chain is constructed to sample π(x). Typically, the solutions in the
vicinity of the global minimum of f (x) are most likely to be drawn in the sampling process. Therefore, MCMC can also be
used for optimization purposes.

In multi-objective sampling, when M objective functions, f1(x), . . . , fM(x), are presented, the probability distribution
π(x) is converted to

π(x) ∝ e−dom(x)/T , T > 0,

where dom(x) is the dominance function. Without loss of generality by assuming that all objectives are for minimization,
the definition of dominance function is based on the concept of Pareto dominance [1]. A solution u is said to Pareto dominate
another solution v(u ≺ v) if both following conditions (i) and (ii) are satisfied:

(i) for each objective function fi(.), fi(u) = fi(v) holds for all i; and
(ii) there is at least one scoring function fj(.) where fj(u) < fj(v) is satisfied.

Consequently, the dominance function, dom(x), can be measured as the area containing all possible solutions that dom-
inate x. Fig. 2.1 shows the schematic illustration of the dominance function values of a Pareto optimal solution (A) and a
non-Pareto optimal solution (B) in the function space of two objective functions f1 and f2.

As a result, MCMC for multi-objective sampling can be formulated as a sampling problem of the dominance function,
where a collection of Pareto optimal solutions corresponds to the global minimum of the dominance function with value
0 while the near Pareto optimal solutions yield relatively small dom(x) values. Unfortunately, in practice, since the Pareto
optimal front is usually unknown, it is very difficult to explicitly calculate the exact dominance function value for a solution.
Instead, a population of solution samples is created and the Pareto dominance relationship is evaluated between each pair of
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Fig. 2.1. Dominance function in the function space of two objective functions f1 and f2 . A is a Pareto optimal solution, with dom(A) = 0.0. B is not at the
Pareto optimal front, where the dominance function value dom(B) is measured by the gray area shown in the figure.

the solutions, which can be used to estimate the dominance function value for each solution. By sampling and minimizing
the dominance function, the MCMC sampler evolves the population of Markov chains toward the solutions at the Pareto
optimal front in the objective function space.

3. Multi-objective Markov Chain Monte Carlo (MOMCMC)

MOMCMC is a population-based Markov Chain Monte Carlo method. Differential Evolution (DE) is used to propose new
solutions inMCMC transition. A fitness assignment scheme balancing optimality and diversity is adopted inMOMCMCwhile
dominance significance is taken into consideration. The MCMC acceptance rate is used to control the solution sampling
bandwidth. Traditional convergence analysis based on autocorrelation can also be applied to analyze convergence in
MOMCMC.

3.1. Population-based MCMC

MOMCMC is a population-based method where the population P includes N individual solutions, c1, . . . , cN .
Correspondingly, N parallel Markov chains are constructed to evolve whilst allowing genetic algorithm style crossover
among solutions. The main advantage of the population-based MCMC for multi-objective sampling is that the population,
P , simultaneously represents various characteristics of the solution space, which can be used to estimate the dominance
function based on the dominance relationship among the solutions in P .

3.2. Differential Evolution

Differential Evolution (DE) [22] is a genetic algorithm-based global optimization method popularly used in a variety of
scientific and engineering applications for continuous function optimization. Because of its fast convergence, Ter Braak [24]
has incorporated DE into the MCMC scheme to improve the sampling capability of a target distribution in the randomwalk
Metropolis method [24].

In MOMCMC, DE is used to propose new solutions based on the current population. In the DE scheme [22], for each
solution, ci = (x1, . . . , xn), a trial parameter vector v is typically formed by

v = cr1 + F(cr2 − cr3),

where r1, r2, and r3 are mutually distinct, different from i, and uniformly distributed integer random numbers in the
interval [1,N], and F > 0 is a tunable amplification control constant as described in [22]. Other forms of trial parameter
vector generation are described in [22], which can also be employed in MOMCMC as well. Then, a proposed new solution
c ′

i = (x′

1, . . . , x
′
n) is generated by the crossover operation on v and ci:

x′

j =


vj j = ⟨k⟩n, ⟨k + 1⟩n, . . . , ⟨k + L⟩n
xj otherwise,

where ⟨.⟩n denotes the modulo operation with modulus n, k is a randomly generated integer from the interval [0, n− 1], L
is an integer drawn from [0, n− 1] with probability Pr(L = l) = (CR)l, and CR ∈ [0, 1) is the crossover probability. Practical
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advice suggests that CR = 0.9 and F = 0.8 are suitable choices in the DE scheme [22]. These parameter values are also
adopted in our MOMCMCmethod. The acceptance of new solution c ′

i into new population P ′ will be determined later by the
Metropolis–Hastings rule [14,15].

The fundamental idea behind DE is to generate trial parameter vectors by crossing over several randomly selected
solutions within the current population. The trial parameter vectors represent random deviations based on the distance
and direction information extracted from the population, which can be used to form an adaptive proposal function to guide
the generation of new solutions in MOMCMC. Compared to the proposal function used in MOSCEM [20], generating new
solutions using DE style crossover no longer relies on predefined probability distribution functions. Moreover, the DE-based
proposal function takes advantage of the distance and direction information in the current population, which leads to more
precise jumps and thus results in faster MCMC convergence compared to MOSCEM’s randomwalk-based proposal function.

3.3. Fitness assignment

Multi-objective functions sampling has two equally important goals: (1) optimality—finding the Pareto optimal and
near Pareto optimal solutions; and (2) diversity—obtaining diversified coverage of the Pareto optimal front. Because the
dominance function does not take diversity into consideration, sampling the dominance function may result in clustering
of solutions in certain regions of the objectives while missing the other near Pareto optimal solutions. To preserve
diversity in sampling, a fitness function is designed in MOMCMC to replace the dominance function by giving preference
to the undersampled solutions. Consequently, the MOMCMC sampler evolves based on the fitness function instead of the
dominance function.

MOSCEM [20] uses a fitness assignment which is based on to the number of external non-dominated points. Considering
a population P with N individual solutions, c1, . . . , cN , the MOSCEM fitness calculation is based on the strength s(ci) of each
solution ci. The strength s(ci) is defined as the proportion of solutions in P dominated by ci. Then, the fitness of an individual
solution ci is defined as

fitMOSCEM(ci) =


s(ci) ci is non-dominated

1 +

ci≻cj
j

s(cj) ci is dominated.

Fitness value of 1.0 separates the dominated and non-dominated solutions in a population—the solutions with fitness less
than 1.0 are non-dominated while the others are dominated. The fitness function biases to the non-dominated solutions
with less dominated ones while those with a lot of neighbors in their niche are penalized [20].

The fitness assignment proposed in MOSCEM nicely balances optimality and diversity. However, the key disadvantage
of this fitness assignment scheme is that the calculation of the strength of a dominated solution is not able to differentiate
the significance of dominance. Consider the example shown in Fig. 3.1 with three solutions A, B, and C under two objective
functions f1 and f2, where B and C are both dominated by A. According to the MOSCEM fitness assignment scheme, the
MOSCEM fitness values of A, B, and C are 0.67, 1.67, and 1.67, respectively, since B and C are not dominating other solutions.
As a result, the fitness function cannot differentiate the favorability between B and C , although compared to B, C seems to
be more ‘‘significantly’’ dominated by A and should be less favorable.

The MOMCMC method improves the fitness assignment scheme in MOSCEM by measuring the solution pair-wise
hypervolume to estimate the significance of dominance. If a solution ci is dominated by another solution cj, i.e., cj ≺ ci,
the significance of the domination can be measured by the pair-wise hypervolume between ci and cj,HYP(ci, cj), which is
defined as

HYP(ci, cj) = VOL(ci, cj),

where VOL(.) is the Lebesgue measure. Then, the fitness function in MOMCMC is defined as

fitMOMCMC(ci) =


s(ci) ci is non-dominated

1 +

cj≺ci
j

HYP(ci, cj) ci is dominated.

For the non-dominated solutions, we keep the same fitness definition as MOSCEM so that those solutions dominating
less other solutions are biased so as to favor diversity. For each dominated solution, we calculate the significance of
domination by accumulating the hypervolumes between it and the solutions dominating it. For the example shown in
Fig. 3.1, fitMOMCMC(B) is 1.24 and fitMOMCMC(C) is 1.56, where the favorability between B and C can be distinguished by the
MOMCMC fitness function.

3.4. Markov Chain Monte Carlo

TheMetropolis–Hastings acceptance rule is employed to determine acceptance of the proposed solution generated by DE
in MOMCMC. The transition probability depends on the difference of the fitness function values. For each proposed solution
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Fig. 3.1. A schematic example for comparison of the fitness functions in MOSCEM and MOMCMC. The MOSCEM fitness function cannot differentiate the
two dominated solutions B and C (fitMOSCEM(B) = fitMOSCEM(C) = 1.67) by simply counting the number of solutions B or C dominating. By measuring the
pair-wise hypervolumes between B, C and the non-dominated solution A, solution B (fitMOMCMC(B) = 1.24) ismore favorable than C (fitMOMCMC(C) = 1.56)
in the MOMCMC fitness function.

c ′

i generated from ci, the Metropolis–Hastings ratio is calculated by:

w(ci → c ′

i ) = e
−(fitMOMCMC(c′i )−fitMOMCMC(ci))

T .

The new solution c ′

i is accepted with the probability
min(1, w(ci → c ′

i )).

T is the simulated temperature, which can be used to control the acceptance rate of the Metropolis–Hastings transitions.
Since in the DE scheme, the three random integers, r1, r2, and r3, used in producing the trial parameter v are uniformly

distributed, transition from ci to c ′

i and the reverse transition have the same probability in producing v, i.e., the transition
probability from ci to c ′

i is equal to that of its reverse transition. With acceptance probability min(1, w(ci → c ′

i )), the DE
transitions inMOMCMC satisfy detailed balance. A rigorous proof can be found in [24]. Therefore, the resultingMarkov chain
is reversible and thus the MOMCMC sampler can lead to a stationary distribution, where the global minimum corresponds
to the population of solutions diversely and uniformly covering the Pareto optimal front of the function space composed of
multiple objective functions.

3.5. Acceptance rate

As mentioned in Section 1, in multi-objective sampling, we are not only interested in finding the solutions at the Pareto
optimal front, but also those close to the Pareto optimal front with diversified configurations. The solution bandwidth
near the Pareto optimal front is controlled by the acceptance rate in MOMCMC, which is maintained by adjusting the
simulated temperature T during the sampling process. Higher acceptance rates allow theMOMCMC sampler a higher chance
of exploring solutions far away from the Pareto optimal front whilst a lower acceptance ratemore likely prevents MOMCMC
from further deviating from the Pareto optimal front.

3.6. Convergence estimation

An important question is when MOMCMC will converge. Similar to the other MCMC methods, one can evaluate the
autocorrelation function in MOMCMC to estimate the number of iterations to reach equilibrium (convergence). Given some
‘‘observable’’ Ot at iteration time t in the Markov process, the autocorrelation function is defined as

Γ (T ) =
E[(Ot − µ)(Ot+T − µ)]

σ 2
,

where µ is the mean and σ 2 is the variance. Then, the Integrated Autocorrelation Time (IAT) [25] can be evaluated as

τ ∼=
1
2

+

∞
T=1

Γ (T ).
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Fig. 3.2. Pseudocode of the MOMCMC method.

Studies [26] in MCMC suggest that the number of iterations, NUM, for the MCMC sampler to settle in equilibrium should be,
NUM ≫ τ.

3.7. MOMCMC pseudocode

By putting all the pieces together, the MOMCMCmethod is described as the pseudocode shown in Fig. 3.2. It is important
to notice that, similar to MOSCEM, the MOMCMC method is particularly suitable for parallel implementation because the
computations on the new solutions, including generation, objective functions evaluation, fitness assignment, and acceptance
determination, can be carried out independently.

4. Computational results

We apply the MOMCMC method to a variety of multi-objective benchmark problems in real parameter space. In
Section 4.1, theMOMCMCsampling results on a simplemulti-objective problemwith three objective functions are compared
with those generated by multi-objective optimization using NGSA-II. We also analyze the performance of MOMCMC and
compare the speed of convergence between MOMCMC and MOSCEM on ZDT benchmark functions [23] in Sections 4.2 and
4.3, respectively. Furthermore, in Section 4.4, we useMOMCMCwith relatively small population size to sample themodified
ZDT3 functions, which have more separated Pareto optimal front segments than population size, to show its effectiveness
on complex multi-objective problems with complicated function space. The computational experiments were carried out
on a serverwith an Intel i7 CPU 920@ 2.67 GHz, 8MB cache, and 6Gmemory. Our program implementation of theMOMCMC
is written in C++ and is compiled by GNU g++ compiler.

4.1. Multi-objective sampling vs. multi-objective optimization

We apply the MOMCMC method to a simple multi-objective problem with two variables and three objective functions,
which is used to show the effectiveness of MOSCEM in [20]. The three objective functions in this simple multi-objective
problem are defined as:

f1(x1, x2) = x21 + x22
f2(x1, x2) = (x1 − 1)2 + x22
f3(x1, x2) = x21 + (x2 − 1)2,
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Fig. 4.1. Comparison between NSGA-II and MOMCMC in a simple 2D multi-objective problem. NSGA-II serves the optimization purpose where most
solutions obtained are at the Pareto optimal front. MOMCMC serves the sampling purpose, which is not only interested in sampling solutions at the Pareto
optimal front, but also those near the front.MOMCMCalso covers the Pareto optimal front in the solution spacemore uniformly thanNSGA-II. (a) Population
of 4096 solutions generated by NSGA-II after 100 iterations. (b) Population of 4096 solutions generated by MOMCMC after 100 iterations.

where the Pareto optimal solutions lay in the triangular-shaped area with the corner points (0, 0), (0, 1), and (1, 0) in the
solution space. Fig. 4.1(a) shows the scatter plot of the population of 4096 solutions in NSGA-II after 100 iterations, where
most of these solutions are located in the Pareto optimal front. This is because NSGA-II is an optimization algorithm, which
tries to eliminate all the non-dominated solutions during the optimization process. In contrast, Fig. 4.1(b) shows a snapshot
of a population sample with the 4096 solutions in MOMCMC after 100 iterations with 15% acceptance rate. MOMCMC has
demonstrated uniform coverage of the Pareto optimal solutions in this simple multi-objective problem, which is similar
to that of MOSCEM. Compared to NSGA-II, MOMCMC also explores solutions near the Pareto optimal front, as shown in
Fig. 4.1(b). MOMCMC serves on the sampling purpose, which is interested in sampling the Pareto optimal solutions as well
as those near Pareto optimal. The closer the solutions are to the Pareto optimal front, the higher chance they are to be
sampled and thus have higher density. This is due to the fact that, for sampling purpose, MOMCMC not only accepts good
moves with better fitness, but also accepts bad moves leading to non-dominated solutions with certain probability. The
acceptance probability for solutions near the Pareto optimal front is higher than those far away deviated. It is also interesting
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Fig. 4.2. Computational results of MOMCMC on 100 dimensional ZDT1. (a) Solutions in a sample with HYP = 0.662 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 0.653. (c) Solutions in a sample with HYP = 0.645.

to notice that the 4096 solutions found in NSGA-II are clustered in the two acute angles of the triangle-shape Pareto optimal
front while the area near the hypotenuse is undersampled. Compared with NSGA-II, MOMCMC leads to a more uniform
coverage of the Pareto optimal front in the solution space. In many applications such as drug design [11], protein structure
modeling [12,13], and circuit design [27], finding a diverse range of solutions close to the Pareto optimal front is typically
concerned. The uniform coverage of the Pareto optimal front in the solution space can lead to highly diversified solutions
for these applications.

4.2. ZDT multi-objective problems

We test the MOMCMC method on a set of benchmark functions [23] with different Pareto optimal front characteristics,
which has beenused broadly in themulti-objective optimization literature. These test functions include ZDT1 (convex Pareto
optimal front), ZDT2 (nonconvex Pareto optimal front), ZDT3 (Pareto optimal front with several noncontiguous convex
parts), ZDT4 (Pareto optimal front with multimodality), and ZDT6 (nonuniform search space),1 which have been used to
study MOSCEM in recent work [21]. MOSCEM has been found to have unsatisfactory performance on these test functions
which include poor convergence to the Pareto optimal front as well as using a significant amount of computational time.

Wemeasure the dominated volume of the non-dominated solutions using the hypervolume indicator [28]. Considering a
set of solutions SwithN solutions, c1, . . . , cN , the hypervolume indicator, HYP(S), relative to an arbitrarily selected reference

1 ZDT5 is in discrete parameter space.
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Fig. 4.3. Computational results of MOMCMC on 100 dimensional ZDT2. (a) Solutions in a sample with HYP = 0.328 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 0.310. (c) Solutions in a sample with HYP = 0.302.

point r , is defined as

HYP(S) =


i

VOL(f (ci), r),

where VOL(.) is the Lebesgue measure and f (ci) is the corresponding point of ci in the objective function space. Based on
the definition of the hypervolume indicator, the hypervolume value is solely determined by the non-dominated solutions
and the reference point while the dominated solutions do not contribute. Typically, a higher hypervolume value indicates
that the set of solutions S is closer to the Pareto optimal front and/or more diversified.

Figs. 4.2–4.6 illustrate the computational results of MOMCMC on 100 dimensional versions of ZDT1-4 and ZDT6. The
computation adopts the suggested DE parameters (CR = 0.9 and F = 0.8), a 15% acceptance rate in MCMC and uses a
population of 1024. The reference point is at (1.0, . . . , 1.0). Figures (a) in Figs. 4.2–4.6 show the sets of solutions with the
maximum hypervolume values found during MOMCMC sampling, which exhibit diversified coverage of the Pareto optimal
fronts in all ZDT benchmark functions. Figures (b) and (c) in Figs. 4.2–4.6 depict two samples of solutions with smaller
hypervolume values obtained in MOMCMC sampling after equilibrium is reached, which show that MOMCMC can also
sample solutions near the Pareto optimal front, and the hypervolume values indicate how far the solutions in the sample are
deviated from the Pareto optimal front. Table 4.1 summarizes the sampling performance ofMOMCMCon the ZDT benchmark
functions.

The samples obtained in MOMCMC also reveal the characteristics of the function space formed by the multiple objective
functions. For example, in ZDT6, unlike the other ZDT test functions, solutions inMOMCMC sampleswith lower hypervolume
values aremostly deviated from the Pareto optimal front. This is due to the fact that the distribution of the solutions in ZDT6
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Fig. 4.4. Computational results of MOMCMC on 100 dimensional ZDT3. (a) Solutions in a sample with HYP = 1.042 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 1.028. (c) Solutions in a sample with HYP = 1.017.

Table 4.1
Summary of sampling performance of MOMCMC on
ZDT benchmark functions with population size of 1024.
Reference point is at (1.0, . . . , 1.0).

MaxHYP MeanHYP Standard deviation

ZDT1 0.662 0.653 0.003
ZDT2 0.328 0.310 0.008
ZDT3 1.042 1.027 0.010
ZDT4 0.665 0.660 0.002
ZDT6 0.316 0.300 0.009

functions are non-uniform, where the solution density is lowest at the Pareto optimal front and increases when being away
from the front [23].

4.3. Convergence comparison between MOMCMC and MOSCEM

Fig. 4.7 compares the 100-lag autocorrelation plot of the sample time series produced by MOMCMC and MOSCEM in
100 dimensional ZDT6. The autocorrelation indicates the ‘‘stickiness’’ of the MCMC sampler in local modes [29]. One can
observe that, in the 100-lag plot, the autocorrelation function value in MOMCMC decreases to less than 0.1 while that in
MOSCEM is still as high as about 0.6. One reason is the DE-based proposal scheme produces more adaptive jumps by taking
advantage of current population’s distance and direction information than that of MOSCEM. The other reason is that the
MOMCMC fitness function can differentiate the dominated solutions more precisely by taking dominance significance into
consideration. Consequently, MOMCMC yields a better convergence rate (mixing rate) [30] than MOSCEM.

Better convergence in MOMCMC leads to faster exploration of the solutions near the Pareto optimal front thanMOSCEM.
Fig. 4.8 compares the standard deviations of the best hypervolume values in 10 independent runs using MOMCMC and
MOSCEM in 100 dimensional ZDT1. MOMCMC approaches the optimal hypervolume value (0.6667–1024 points uniformly
distributed on the Pareto optimal front with reference point at (1.0, 1.0)) in much less iterations than MOSCEM, which
indicates significantly more efficient sampling capability in MOMCMC than MOSCEM. Fig. 4.9 shows that MOMCMC also
outperforms MOSCEM in computational time. The main reason is MOMCMC can avoid the costly covariance calculation in
MOSCEM.
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Fig. 4.5. Computational results of MOMCMC on 100 dimensional ZDT4. (a) Solutions in a sample with HYP = 0.665 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 0.661. (c) Solutions in a sample with HYP = 0.656.

4.4. Sampling on complicated function space using small population size

In real-life applications, multiple objective functions can form complex function space with complicated Pareto optimal
front shape. The population size used in themulti-objective sampling/optimization algorithm is a critical parameter. Usually,
a large population size is required in population-based algorithms in order to sufficiently cover the Pareto optimal front in
a complicated multi-objective optimization problem. Unfortunately, employing a large population in sampling is rather
costly. For example, the computation complexity of evaluating domination count requires O(MN2) comparisons in worse
case with population size of N and M objective functions [1]. One of the key advantages of multi-objective sampling is to
enable one to use a relatively small population size to sample the complex function space and obtain multiple independent
samples of solutions to obtain good coverage of the complicated Pareto optimal front.

We consider the following modified ZDT3 functions

f1(x1, . . . , xN) = x1

g(x2, . . . , xN) = 1 + 9 ·

N
i=2

xi
N − 1

h(f1, g) = 1 −

f1/g − (f1/g) sin(200π f1)

f2(x1, . . . , xN) = g · h(f1, g),

whose Pareto optimal front contains 100 separated segments. Fig. 4.10(a) shows one sample obtained fromMOMCMCwith a
small population size of 64 after equilibrium is reached. Since the population size is less than the number of separated Pareto
optimal front segments, a single sample generated by MOMCMC cannot fully cover all Pareto optimal front segments. The
autocorrelation plot in Fig. 4.10(b) shows that the autocorrelation function value decreases to −0.02 at lag 100, suggesting
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Fig. 4.6. Computational results of MOMCMC on 100 dimensional ZDT6. (a) Solutions in a sample with HYP = 0.316 (largest hypervolume found in
sampling). (b) Solutions in a sample with HYP = 0.303. (c) Solutions in a sample with HYP = 0.279.

Fig. 4.7. Comparison of autocorrelation functions between MOSCEM and MOMCMC in 100-dimensional ZDT6.

that the samples generated in MCMC every 100 iterations can be deemed as independent samples. Fig. 4.10(c) shows the
solutions of 10 samples chosen in every 100 lags, which covers all separated Pareto optimal front segments in the modified
ZDT3 functions.
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Fig. 4.8. Comparison of the best hypervolume values in 10 runs using MOMCMC and MOSCEM in 100-dimensional ZDT1.

Fig. 4.9. Comparison of computational times of MOMCMC and MOSCEM in 100-dimensional ZDT1. Both MOMCMC and MOSCEM use a population size
of 1024.

5. Conclusions

In this paper, we present the MOMCMC method, a new Monte Carlo method to address the multi-objective sampling
problem. MOMCMC is a population-based method incorporating a DE-based proposal function into MCMC and measuring
the significance of dominance when estimating fitness of dominated solutions. The acceptance rate is used to control the
solution sampling bandwidth near the Pareto optimal front, so that the MOMCMC sampler cannot only explore solutions at
the Pareto optimal front, but also those close to the front. TheMOMCMCmethodhas demonstrated its sampling effectiveness
in the ZDT test functions, where MOSCEM has certain deficiency. The MOMCMC method is also capable of using small
population size to sample complicated function space.

By using DE to propose new solutions, MOMCMC can avoid costly calculation of parameter covariance of a population
and thus is scalable with the size of population without imposing significant computational overhead to multi-objective
sampling. Therefore, in many multi-objective sampling applications where the most computationally costly part is
calculating the objective functions, the bottleneck lies on objective functions evaluation. Fortunately, in most of these
applications, evaluation of the objective function values of members in a population can usually be carried out in parallel.
As a result, another potential advantage of MOMCMC is its parallelism. Due to the independence of evolving each
individual solution in a population, MOMCMC is particularly suitable for the newly emerging high performance computing
architectures, such as multicore and general purpose GPU [31], in large-scale multi-objective sampling applications. Our
recent implementation of MOMCMC on GPU [32] has shown a speedup of ∼100 by taking advantage of the GPU Single-
Instruction-Multiple-Threads (SIMT) architecture.
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Fig. 4.10. Using MOMCMCwith small population size to sample complicated function space. (a) Solutions of a single sample generated by MOMCMCwith
population size of 64 on themodified ZDT3 functions with 100 separated Pareto optimal front segments. (b) Autocorrelation plot of MOMCMC onmodified
ZDT3 functions with population size of 64. (c) Solutions of 10 samples chosen in every 100 lags usingMOMCMCwith population size = 64 on themodified
ZDT3 functions, which lead to good coverage of the 100 separated Pareto optimal front segments.
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