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In this paper, we conduct a careful global stability analysis for a generalized cholera epidemiological
model originally proposed in [J. Wang and S. Liao, A generalized cholera model and epidemic/endemic
analysis, J. Biol. Dyn. 6 (2012), pp. 568–589]. Cholera is a water- and food-borne infectious disease
whose dynamics are complicated by the multiple interactions between the human host, the pathogen, and
the environment. Using the geometric approach, we rigorously prove the endemic global stability for the
cholera model in three-dimensional (when the pathogen component is a scalar) and four-dimensional (when
the pathogen component is a vector) systems. This work unifies the study of global dynamics for several
existing deterministic cholera models. The analytical predictions are verified by numerical simulation
results.

Keywords: cholera modelling; global asymptotic stability; geometric approach

1. Introduction

Cholera, a severe water- and food-borne infectious disease caused by the gram negative bacterium
Vibrio cholerae, remains a significant public health burden in the developing world, despite a
large body of clinical and theoretical studies [1,10,12,20,33,36–38,45] and tremendous efforts in
prevention and intervention [48]. This is partly due to the limited understanding at present on the
complex infection dynamics of cholera, which involve both direct human-to-human and indirect
environment-to-human transmission pathways.

Over the last decade, quite a few mathematical models have been published to investigate the
transmission dynamics of cholera. For example, Codeço in 2001 proposed a model [5] that explic-
itly accounted for the environmental component, i.e. the V. cholerae concentration in the water
supply, into a regular SIR epidemiological model. The incidence (or the infection force) was mod-
elled by a saturating function aS(B/(K + B)) to represent the effect of saturation, where S is the

*Corresponding author. j3wang@odu.edu
Author Emails: yuanji.cheng@mah.se; yangxiuxiang2000@yahoo.com.cn
This paper is based on an invited talk given at the 3rd International Conference on Math Modeling & Analysis, San
Antonio, USA, October 2011.

ISSN 1751-3758 print/ISSN 1751-3766 online
© 2012 J. Wang
http://dx.doi.org/10.1080/17513758.2012.728635
http://www.tandfonline.com



Journal of Biological Dynamics 1089

susceptible population, B is the pathogen concentration, a is the contact rate with contaminated
water, and K is the half saturation rate (i.e. the infectious dose in water sufficient to produce
disease in 50% of those exposed). Hartley et al. [13] in 2006 extended Codeço’s work to include
a hyperinfectious (HI) state of the pathogen, representing the ‘explosive’ infectivity of freshly
shed V. cholerae, based on the laboratory observations [1,33]. They modelled the incidence factor
by βLS(BL/(κL + BL)) + βHS(BH/(κH + BH)) where βH and βL are the HI and less-infectious
(LI) ingestion rates, and κH and κL are the HI and LI half saturation rates. This model was rigor-
ously analysed in [30]. Joh et al. [18] in 2009 modified Codeço’s model by a threshold pathogen
density for infection, with a careful discussion on human–environment contact and in-reservoir
pathogen dynamics. More recently, Mukandavire et al. [34] proposed a model to study the 2008–
2009 cholera outbreak in Zimbabwe. The model explicitly considered both human-to-human and
environment-to-human transmission pathways. The incidence was represented by βeS(B/(K +
B)) + βhSI with I denoting the infected population and βe and βh being the rates of vibrio ingestion
from the environment and the human–human interaction, respectively. The results in this work
demonstrated the importance of the human-to-human transmission in cholera epidemics, espe-
cially in such places as Zimbabwe, a land-locked country in the middle of Africa. Moreover, Tien
and Earn [44] in 2010 published a water-borne disease model which also included the dual trans-
mission pathways, with bilinear incidence rates employed for both the environment-to-human and
human-to-human infection routes. No saturation effect was considered in Tien and Earn’s work.

The afore-mentioned work has certainly made important contribution to the understanding
of cholera dynamics. Some limitations of these models, however, are that they only considered
bilinear or saturating incidence functions, and they all assumed that the bacterial growth outside
of human hosts follows linear dynamics. Practically, the multiple interactions between human
population, cholera pathogen, and the environment could be much more complicated. For example,
in a cholera model published by Jensen et al. [17], the incidence was represented as π(B/(Ck +
B))7S, a highly nonlinear function, and the growth of V. cholerae was also nonlinear (a quadratic
function in B). Also, in a recent paper by Shuai and van den Driessche [39], the incidence function
is a summation of the form fj(S, Ij) + gj(S, Bj) with nonlinear functions fj and gj for different
infection stages and pathogen concentrations, and the bacterial growth is determined by a nonlinear
shedding rate from the infectious human population.

Building on these studies, Wang and Liao [47] in 2011 proposed a generalized cholera epidemi-
ological model which incorporates general incidence and pathogen functions into the multiple
transmission pathways, and which unifies many of the existing cholera models. Careful equi-
librium analysis has been conducted in [47] and the results are summarized in Theorem 2.2 in
Section 2 of the present paper. In particular, the local and global dynamics of the disease-free
equilibrium, as well as the existence, uniqueness, and local dynamics of the endemic equilibrium,
have been established.

The global stability of the endemic equilibrium for this general model, however, has not been
resolved. In fact, to our knowledge, very few studies on cholera modelling have addressed the
endemic global dynamics [43]. Thus, some important epidemiological questions, e.g. whether
the long-term disease dynamics approaches an equilibrium and how this depends on the initial
size of the infection, remain to be answered. The study of the endemic global stability is not
only mathematically important, but also essential in predicting the evolution of the disease in
the long run so that prevention and intervention strategies can be effectively designed, and public
health administrative efforts can be properly scaled. The challenge, however, in the global analysis
of cholera models is that due to the incorporation of the environmental components, the mod-
els usually constitute high-dimensional nonlinear autonomous systems for which the classical
Poincaré–Bendixson theory [14] is no longer valid. The method of monotone flow [23,24,40–42]
can be applied to a class of high-dimensional dynamical systems which possesses monotonicity
(e.g. competitiveness). Unfortunately, this technique is not applicable to most cholera epidemic
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models which are non-monotone. The method based on Lyapunov functions [19,21] is well known
for stability analysis, though the fact that there is no systematic way to find Lyapunov functions hin-
ders the application of this approach to many nonlinear systems. Finally, the geometric approach
for stability analysis, originally developed by Li and Muldowney [9,25,28], has gained much pop-
ularity in recent years, especially in dealing with mathematical epidemic models. Nevertheless,
the majority of the applications of the geometric approach is concerned with regular epidemio-
logical models such as SIR, SEIR, SIS, SIRS, or the like. In the present paper, we aim to extend
this approach to the endemic global stability analysis of the general cholera model, which is a
combined human–environment epidemiological model coupling a SIR model with the pathogen
components. Such an extension is nontrivial and, to our knowledge, has not been achieved for
epidemiological models of this type before.

We organize the remainder of this paper as follows. In Section 2, we briefly present the
generalized cholera model and summarize the results established in [47]. In Section 3, we apply
the geometric approach based on the second compound matrix to analyse the three-dimensional
system, where the pathogen component is a scalar. In Section 4, we deal with the four-dimensional
model where the pathogen component is a vector. The analysis for higher dimensional system is
usually more challenging, and the global stability of our four-dimensional system is established
by using the geometric approach based on the third compound matrix. In addition, we verify the
analytical predictions in Sections 3 and 4 by numerical simulation results. Finally, we close the
paper by conclusions in Section 5.

2. Mathematical model

The model consists of the following differential equations:

dS

dt
= bN − Sf (I , B) − bS, (1)

dI

dt
= Sf (I , B) − (γ + b)I , (2)

dB

dt
= h(I , B), (3)

together with
dR

dt
= γ I − bR. (4)

Here S, I , and R denote the susceptible, the infected, and the recovered populations, respectively,
and B denotes the concentration of the pathogen in the environment (typically the contami-
nated water). The total population N = S + I + R is assumed to be a constant. The parameter b
represents the natural human birth/death rate, and γ represents the rate of recovery from cholera.
The function f (I , B) represents the essential part of the incidence which determines the rate of
new infection, whereas the function h(I , B) describes the rate of change for the pathogen in the
environment which can be either linear or nonlinear. Both f and h are assumed to be sufficiently
smooth to ensure the existence and uniqueness of solutions to the system with non-negative initial
conditions. In addition, the component B can be either a scalar or a vector. For example, if we
consider both the HI and LI states [13] of the vibrios, then we may write B = [BH, BL]T.

Based on biological feasibility, the following conditions for f (I , B) and h(I , B) are assumed for
I ≥ 0, B ≥ 0:

(a) f (0, 0) = 0, h(0, 0) = 0;
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(b) f (I , B) ≥ 0;

(c)
∂f

∂I
(I , B) ≥ 0,

∂f

∂B
(I , B) ≥ 0,

∂h

∂I
(I , B) ≥ 0,

∂h

∂B
(I , B) ≤ 0;

(d) f (I , B) and h(I , B) are concave; i.e. the matrices D2f and D2h are negative semi-definite.

Here and in what follows, we write a vector V ≥ 0 (≤ 0) if each component of V is ≥ 0 (≤ 0);
we write a matrix A ≥ 0 (≤ 0) if A is positive (negative) semi-definite.

The article [47] conducted some analysis on this model. Based on the next-generation matrix
approach [8], the basic reproduction number R0 was found by

R0 = N

γ + b

[
∂f

∂I
(0, 0) − ∂f

∂B
(0, 0)

(
∂h

∂B
(0, 0)

)−1
∂h

∂I
(0, 0)

]
. (5)

Remark 2.1 We note that the last inequality in assumption (c) above is based on the experimental
observation that the pathogen V. cholerae cannot maintain a stable population in the environment
in the absence of the inflow from contaminated sewage [5]. This assumption has been used in
several existing cholera models (e.g. [5,13,34,44]). In addition, when B is a vector, ∂h/∂B is
a matrix. To ensure that R0 is positive, we will further assume that −∂h/∂B is an M-matrix
(i.e. a non-singular square matrix with non-positive off-diagonal entries and all principal minors
positive). It is known that the inverse of an M-matrix has all its entries being non-negative [2,7].

Under these assumptions, the equation h(I , B) = 0 implicitly defines a function B = g(I) with
g′(I) ≥ 0, and Equation (5) yields

R0 = N

γ + b

∂f

∂I
(0, 0) + N

γ + b

∂f

∂B
(0, 0)g′(0) � Rhh

0 + Reh
0 . (6)

Biologically speaking, R0 measures the average number of secondary infections that occur when
one infective is introduced into a completely susceptible host population [8,16,46]. Equation (6)
shows that R0 depends on two factors: one is due to human-to-human transmission (Rhh

0 ) and
the other is due to environment-to-human transmission (Reh

0 ). The term 1/(γ + b) represents the
expected time of the infection, (∂f /∂I)(0, 0) represents the unit human-to-human transmission
rate, and (N/(γ + b))(∂f /∂I)(0, 0) measures the total number of secondary infections caused by
the human-to-human transmission. Similarly, the product (∂f /∂B)(0, 0)g′(0) represents the unit
environment-to-human transmission rate, and (N/(γ + b))(∂f /∂B)(0, 0)g′(0) measures the total
number of secondary infections caused by the environment-to-human transmission.

It is also shown that there exists a forward transcritical bifurcation at R0 = 1 for this model.
Specifically, the following theorem summarizes the dynamics known for the system (1)–(4).

Theorem 2.2 [47] When R0 < 1, there is a unique DFE, which is both locally and globally
asymptotically stable; when R0 > 1, the DFE becomes unstable, and there is a unique positive
endemic equilibrium which is locally asymptotically stable.

3. Three dimensional system

We will now focus our attention on the global asymptotic stability of the endemic equilibrium for
R0 > 1. We first consider the case when B is a scalar; i.e. there is only one infectious state (which
is assumed to be homogeneous) for the pathogen in the environment. Most cholera models in the
literature (e.g. [5,18,34,44]) fall into this category. With the pathogen component being a scalar,
the system (1)–(3) is three-dimensional.
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The assumption (d) implies that the surface h = h(I , B) is below its tangent plane at any point
(I0, B0) ≥ 0; that is,

h(I , B) ≤ h(I0, B0) + ∂h

∂I
(I0, B0)(I − I0) + ∂h

∂B
(I0, B0)(B − B0). (7)

Particularly, setting (I0, B0) = (0, 0) and using the assumption (a), we obtain

h(I , B) ≤ ∂h

∂I
(0, 0)I + ∂h

∂B
(0, 0)B. (8)

Thus, Equation (3) yields

dB

dt
≤ ∂h

∂I
(0, 0)I + ∂h

∂B
(0, 0)B ≤ ∂h

∂I
(0, 0)N + ∂h

∂B
(0, 0)B, (9)

which implies for any initial value B0 ≤ ωN ,

0 ≤ B(t, B0) ≤ ωN where ω = − (∂h/∂I)(0, 0)

(∂h/∂B)(0, 0)
. (10)

Therefore, it is clear to see the region

� = {(S, I , B)|S ≥ 0, I ≥ 0, 0 ≤ S + I ≤ N , 0 ≤ B ≤ ωN} (11)

is a positive invariant domain of the system (1)–(3).
We employ the geometric approach based on the second compound matrix [9,25,28] to analyse

the endemic global stability of this system. A brief summary of this technique is provided in
Appendix A.

Based on Theorem 2.2, the DFE, X0 = (N , 0, 0), is unstable when R0 > 1. Since the DFE is
on the boundary of the domain �, this implies the uniform persistence [11]; i.e. there exists a
constant c > 0 such that

lim inf
t→∞ {S(t), I(t), B(t)} > c.

Consequently, the uniform persistence and the boundedness of � imply that the system has a
compact absorbing subset of � [4]. Together with Theorem 2.2, we obtain the following result:

Proposition 3.1 When R0 > 1, the system (1)–(3) is uniformly persistent, and satisfies the
assumptions (H1) and (H2) listed in Appendix A.

We proceed to verify the Bendixson criterion q̄2 < 0 (see Theorem A.1). The Jacobian matrix
of the system (1)–(3) is

J =

⎛
⎜⎜⎜⎜⎜⎝

−b − f (I , B) −S
∂f

∂I
−S

∂f

∂B

f (I , B) S
∂f

∂I
− (γ + b) S

∂f

∂B

0
∂h

∂I

∂h

∂B

⎞
⎟⎟⎟⎟⎟⎠ .

The associated second compound matrix (see Appendix A) is given by

J [2] =

⎛
⎜⎜⎜⎜⎜⎝

−(γ + 2b) − f (I , B) + S
∂f

∂I
S

∂f

∂B
S

∂f

∂B
∂h

∂I
−b − f (I , B) + ∂h

∂B
−S

∂f

∂I

0 f (I , B) S
∂f

∂I
+ ∂h

∂B
− (γ + b)

⎞
⎟⎟⎟⎟⎟⎠ .
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We set the matrix function P by

P(S, I , B) = diag

{
1,

I

B
,

I

B

}
.

Then

PFP−1 = diag

{
0,

I ′

I
− B′

B
,

I ′

I
− B′

B

}
,

and

PJ [2]P−1 =

⎛
⎜⎜⎜⎜⎜⎝

−(γ + 2b) − f (I , B) + S
∂f

∂I

SB

I

∂f

∂B

SB

I

∂f

∂B
I

B

∂h

∂I
−b − f (I , B) + ∂h

∂B
−S

∂f

∂I

0 f (I , B) S
∂f

∂I
+ ∂h

∂B
− (γ + b)

⎞
⎟⎟⎟⎟⎟⎠ .

The matrix PFP−1 + PJ [2]P−1 defined in Equation (A2) can then be written in a block form:

Q =
[

Q11 Q12

Q21 Q22

]
,

with

Q11 = −(γ + 2b) − f (I , B) + S
∂f

∂I
, Q12 =

[
SB

I

∂f

∂B
,

SB

I

∂f

∂B

]
,

Q21 =
⎡
⎣I

B

∂h

∂I
0

⎤
⎦ , Q22 =

⎡
⎢⎣−b − f (I , B) + ∂h

∂B
+ I ′

I
− B′

B
−S

∂f

∂I

f (I , B) −(γ + b) + S
∂f

∂I
+ ∂h

∂B
+ I ′

I
− B′

B

⎤
⎥⎦ .

Now we define a norm in R
3 as

|(u, v, w)| = max{|u|, |v| + |w|}
for any vector (u, v, w) ∈ R

3. Let m denote the Lozinskiǐ measure with respect to this norm. We
can then obtain

m(Q) ≤ sup{g1, g2}, (12)

with

g1 = m1(Q11) + |Q12|,
g2 = |Q21| + m1(Q22),

where |Q12| and |Q21| are matrix norms induced by the L1 vector norm, and m1 denotes the
Lozinskiǐ measure with respect to the L1 norm. Specifically,

m1(Q22) = I ′

I
− B′

B
− b + ∂h

∂B
+ sup

{
2S

∂f

∂I
− γ , 0

}

and

g2 = I

B

∂h

∂I
+ I ′

I
− B′

B
− b + ∂h

∂B
+ sup

{
2S

∂f

∂I
− γ , 0

}
.
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Note that Equation (3) provides
B′

B
= 1

B
h(I , B).

Also, based on the concavity of h(I , B) (assumption d), it is easy to observe that

I
∂h

∂I
(I , B) + B

∂h

∂B
(I , B) ≤ h(I , B)

at any point (I , B). We thus obtain

g2 = 1

B

[
I
∂h

∂I
+ B

∂h

∂B
− h(I , B)

]
+ I ′

I
− b + sup

{
2S

∂f

∂I
− γ , 0

}

≤ I ′

I
− b + sup

{
2S

∂f

∂I
− γ , 0

}

≤ I ′

I
− b,

provided that

max
(S,I ,B)∈�

[
2S

∂f

∂I
(I , B)

]
≤ γ . (13)

In particular, the condition (13) will be satisfied if

2N max
∂f

∂I
(I , B) ≤ γ .

Meanwhile,

g1 = −(γ + 2b) − f (I , B) + S
∂f

∂I
+ SB

I

∂f

∂B
.

Based on Equation (2) and the concavity of f (I , B), we have

I ′

I
= S

I
f (I , B) − (γ + b)

and

I
∂f

∂I
(I , B) + B

∂f

∂B
(I , B) ≤ f (I , B).

We then obtain

g1 = I ′

I
− S

I
f (I , B) − b − f (I , B) + S

∂f

∂I
+ SB

I

∂f

∂B

= I ′

I
− b − f (I , B) + S

I

[
I
∂f

∂I
+ B

∂f

∂B
− f (I , B)

]

≤ I ′

I
− b.

Therefore,

m(Q) ≤ I ′

I
− b. (14)

Since 0 ≤ I(t) ≤ N and ln I(t) ≤ ln N , there exists T > 0 such that when t > T , (1/t)[lnI(t) −
ln I(0)] < b/2; consequently,

1

t

∫ t

0
m(Q) dt ≤ 1

t

∫ t

0

(
I ′

I
− b

)
dt = ln I(t) − ln I(0)

t
− b < −b

2
, (15)

which implies q̄2 ≤ −b/2 < 0.
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Figure 1. A phase portrait of S vs I for the cholera model (16)–(19). The total population is N = 10, 000, and the
initial condition is I(0) = 1000, S(0) = 9000 and R(0) = B(0) = 0. The curve converges to the endemic equilibrium at
S∗ ≈ 1510, I∗ ≈ 2.68. Similar pattern is observed for various different initial conditions.

Hence, we have established the following theorem:

Theorem 3.2 When R0 > 1, the unique endemic equilibrium of the three-dimensional system
(1)–(3) is globally asymptotically stable in � under the assumptions (a)–(d) and (13).

Remark 3.3 Theorem 3.2 establishes the global endemic stability for the unified three-
dimensional cholera model. In particular, the result can be directly applied to several existing
cholera models in the literature, such as those in [5,34,44].

To quantify the analysis, we consider the cholera model proposed by Mukandavire et al. [34]:

dS

dt
= bN − βeS

B

κ + B
− βhSI − bS, (16)

dI

dt
= βeS

B

κ + B
+ βhSI − (γ + b)I , (17)

dB

dt
= ξ I − δB, (18)

dR

dt
= γ I − bR. (19)

Clearly, this is a special case of the general model (1)–(4). Figure 1 shows a typical phase portrait
of S vs I for this model, based on numerical simulation. The parameter values are taken from
[34] with R0 ≈ 6.62. The total population is normalized as N = 10, 000, and the initial infection
is set as I(0) = 1000. We observe a stable spiral and the solution curve eventually converges
to the endemic equilibrium at S∗ ≈ 1510, I∗ ≈ 2.68. We have also tested many different initial
conditions including I(0) = 1, 10, 100, and 2000, and all these solution curves (not shown here)
approach the endemic equilibrium over time, with very similar pattern to that in Figure 1.

4. Four-dimensional system

We now consider the model (1)–(3) in the case when B is a vector; i.e. there are heterogeneous
and multiple states of infectivity for the pathogen outside the human hosts. The representation
of pathogen dynamics in multiple states can possibly provide a deeper insight into the pathogen
ecology and the complex interaction between the human hosts and the environment, and reflect



1096 Y. Cheng et al.

better the nature of heterogeneity in disease transmission. Without loss of generality, we assume
B = [B1, B2] , where B1 and B2 represent two different infectious states of the bacterial concen-
trations. A similar formulation of B was used in [13], where the HI and LI states of the vibrios
were modelled. Multiple states of cholera bacterial concentrations were also studied in [39].

We consider the following four-dimensional system corresponding to the model (1)–(3):

dS

dt
= bN − Sf (I , B1, B2) − bS, (20)

dI

dt
= Sf (I , B1, B2) − (γ + b)I , (21)

dB1

dt
= h1(I , B1, B2), (22)

dB2

dt
= h2(I , B1, B2). (23)

The functions f and h = [h1, h2]T have to satisfy conditions (a)–(d), noting that ∂f /∂B and
∂h/∂I are vectors and that −∂h/∂B is an M-matrix (see Remark 2.1). It is easy to observe that
the mass action bilinear incidence f (I , B1, B2) = βI + β1B1 + β2B2 and the saturated incidence
f (B1, B2) = β1B1/(K1 + B1) + β2B2/(K2 + B2) satisfy these assumptions. Meanwhile, we note
that conditions (c) and (d) imply

h(I , B) ≤ h(N , B) ≤ h(N , 0) + ∂h

∂B
(N , 0)B (24)

for all I , B ≥ 0.
Let

B0 = −
(

∂h

∂B
(N , 0)

)−1

h(N , 0) > 0, (25)

due to fact that −(∂h/∂B)(N , 0) is an M-matrix. From Equations (22), (23) and the inequality
(24), we see that if (B1(0), B2(0)) ≤ BT

0 , then (B1(t), B2(t)) ≤ BT
0 for all t ≥ 0. Hence, the feasible

region

� = {(S, I , B1, B2)|S ≥ 0, I ≥ 0, S + I ≤ N , 0 ≤ (B1, B2) ≤ BT
0 } (26)

is invariant under the flow of (20)–(23). Moreover, we have

Proposition 4.1 For any ε > 0 and any initial value B1(0), B2(0) > 0, there is a constant T =
T(ε, B1(0), B2(0)) > 0 such that

(B1(t), B2(t)) ≤ BT
0 + ε (27)

for all t > T.

Similar to Proposition 3.1, the instability of the DFE (N , 0, 0, 0), which is on the boundary of
the domain �, implies uniform persistence [11]. Based on Theorem 2.2, we thus obtain

Proposition 4.2 When R0 > 1, the system (20)–(23) is uniformly persistent.

We now prove the main result in this section, i.e. the global stability of the endemic equilibrium,
using the geometric approach based on the third compound matrix (see Appendix B). To simplify
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our notations, we will adopt the abbreviations

f ′
0 = ∂f

∂I
, f ′

1 = ∂f

∂B1
, f ′

2 = ∂f

∂B2
, h′

i0 = ∂hi

∂I
, h′

ij = ∂hi

∂Bj
, i, j = 1, 2.

We will also need the following inequalities, which can be easily derived based on the assumptions
(a)–(d):

If ′
0 + B1f ′

1 + B2f ′
2 ≤ f , (28)

Ih′
10 + B1h′

11 + B2h′
12 ≤ h1, (29)

Ih′
20 + B1h′

21 + B2h′
22 ≤ h2, (30)

for all I , B ≥ 0. In particular, we have

If ′
0 ≤ f , B1f ′

1 ≤ f , B2f ′
2 ≤ f . (31)

Theorem 4.3 If R0 > 1 and

f ′
0 ≤ b

N
, (32)

then the unique endemic equilibrium of the four-dimensional system (20)–(23) is globally
asymptotically stable in � provided that the conditions (a)–(d) hold.

Proof The Jacobian matrix of the system (20)–(23) is given by

J =

⎛
⎜⎜⎜⎝

−b − f −Sf ′
0 −Sf ′

1 −Sf ′
2

f Sf ′
0 − b − γ Sf ′

1 Sf ′
2

0 h′
10 h′

11 h′
12

0 h′
20 h′

21 h′
22

⎞
⎟⎟⎟⎠ .

The third additive compound matrix of J is

J [3] =

⎛
⎜⎜⎜⎜⎝

Sf ′
0 + h′

11 − 2b − γ − f h′
12 −Sf ′

2 −Sf ′
2

h′
21 Sf ′

0 + h′
22 − 2b − γ − f Sf ′

1 Sf ′
1

−h′
20 h′

10 h′
11 + h′

22 − b − f −Sf ′
0

0 0 f h′
11 + h′

22 + Sf ′
0 − b − γ

⎞
⎟⎟⎟⎟⎠

and the associated linear compound system is

X ′ = (Sf ′
0 + h′

11 − 2b − γ − f )X + h′
12Y − Sf ′

2W − Sf ′
2Z , (33)

Y ′ = h′
21X + (Sf ′

0 + h′
22 − 2b − γ − f )Y + Sf ′

1W + Sf ′
1Z , (34)

W ′ = −h′
20X + h′

10Y + (h′
11 + h′

22 − b − f )W − Sf ′
0Z , (35)

Z ′ = fW + (h′
11 + h′

22 + Sf ′
0 − b − γ )Z . (36)

As in [26,27] (also see Appendix B), we need to show the uniform global stability of the linear
compound system (33)–(36). To this end, we choose an associated Lyapunov function

V(t, X , Y , W , Z) = max{V1, V2, V3},
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where

V1 = B2|X|, V2 = B1|Y |, V3 =
{

I|W + Z|, WZ ≥ 0,

max{I|W |, I|Z|}, WZ < 0.

It is easy to see that the following estimate holds:

I|W + Z| ≤ V3, (W , Z) ∈ R
2. (37)

Based on Propositions 4.1 and 4.2, we see that there exist positive constants C1 and C2 such that

C1(|X| + |Y | + |W | + |Z|) ≤ V ≤ C2(|X| + |Y | + |W | + |Z|). (38)

Meanwhile, by Equation (32) and the uniform persistence of the system, we can choose a (small)
constant k > 0 such that

f , b, γ ≥ k. (39)

Next, we calculate the total derivative of V along the trajectory of the compound system
(33)–(36). We will separate the discussion for the several cases below.

Case I: V = V1, then V2, V3 ≤ V1 and

D+V ≤ B′
2|X| + B2D+|X|

≤ B′
2|X| + (h′

11 + Sf ′
0 − 2b − γ − f )B2|X| + h′

12B2|Y | + SB2f ′
2(|W + Z|)

≤
[

B′
2

B2
+ B1h′

11 + B2h′
12

B1
+ Sf ′

0 − 2b − γ − f + SB2f ′
2

I

]
B2|X|

≤
[

B′
2

B2
+ h1

B1
+ Sf ′

0 − 2b − γ − f + Sf

I

]
B2|X|

=
[

B′
2

B2
+ B′

1

B1
+ I ′

I
+ Sf ′

0 − b − f

]
V

≤
[

B′
2

B2
+ B′

1

B1
+ I ′

I
− k

]
V , (40)

since I|W + Z| ≤ V3 by Equation (37), (B1h′
11 + B2h′

12)/B1 ≤ (Ih′
10 + B1h′

11 + B2h′
12)/B1 ≤

h1/B1 = B′
1/B1 by Equation (29), SB2f ′

2/I ≤ Sf /I = b + γ + I ′/I by (31), Sf ′
0 − b ≤ 0 by

Equation (32), and f ≥ k by Equation (39). Here and in what follows D+ denotes the right-hand
(total) derivative with respect to t.

Case II: V = V2, then V1, V3 ≤ V2. In a way similar to Case I, we can obtain the estimates

D+V ≤ B′
1|Y | + B1D+|Y |

≤ B′
1|Y | + h′

21B1|X| + (h′
22 + Sf ′

0 − 2b − γ − f )B1|Y | + SB1f ′
1(|W + Z|)

≤
[

B′
1

B1
+ B1h′

21 + B2h′
22

B2
+ Sf ′

0 − b − f + SB1f ′
1

I

]
B1|Y |

≤
[

B′
1

B1
+ h2

B2
+ Sf ′

0 − 2b − γ − f + Sf

I

]
V

=
[

B′
2

B2
+ B′

1

B1
+ I ′

I
+ Sf ′

0 − b − f )

]
V

≤
[

B′
2

B2
+ B′

1

B1
+ I ′

I
− k

]
V , (41)
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where (B1h′
21 + B2h′

22)/B2 ≤ (Ih′
20 + B1h′

21 + B2h′
22)/B2 ≤ h2/B2 = B′

2/B2 by Equation (30),
and SB1f ′

1/I ≤ Sf /I = b + γ + I ′/I by Equation (31).
Case III-a: V = I|W + Z|, then V1, V2 ≤ I|W + Z| = V3 and

D+V ≤ I ′(|W + Z|) + ID+(|W + Z|)

≤
(

I ′

I
+ h′

11 + h′
22 − b

)
V3 + h′

20I|X| + h′
10I|Y | − γ I|Z|

≤
(

I ′

I
+ h′

11 + h′
22 − b

)
V3 + h′

20I|X| + h′
10I|Y |

≤
(

I ′

I
+ h′

11 + h′
22

)
V3 + h′

20I|X| + h′
10I|Y | − kV3

≤
[

I ′

I
+ Ih′

10 + B1h′
11

B1
+ Ih′

20 + B2h′
22

B2
− k

]
V3

≤
[

I ′

I
+ h1

B1
+ h2

B2
− k

]
V

=
[

I ′

I
+ B′

1

B1
+ B′

2

B2
− k

]
V , (42)

since (Ih′
10 + B1h′

11)/B1 ≤ h1/B1, (Ih′
20 + B2h′

22)/B2 ≤ h2/B2 by Equations (29) and (30), and
k ≤ b by Equation (39).

Case III-b: V = I|W |, then WZ < 0, V1, V2, I|Z| ≤ I|W | = V3, and

D+V ≤ I ′|W | + ID+|W |

≤
(

I ′

I
+ h′

11 + h′
22 − b − f

)
V3 + h′

20I|X| + h′
10I|Y | + Sf ′

0I|Z|

≤
(

I ′

I
+ h′

11 + h′
22 − b − f + Sf ′

0

)
V3 + h′

20I|X| + h′
10I|Y |

≤
[

I ′

I
+ Ih′

10 + B1h′
11

B1
+ Ih′

20 + B2h′
22

B2
− k

]
V3

≤
[

I ′

I
+ h1

B1
+ h2

B2
− k

]
V

=
[

I ′

I
+ B′

1

B1
+ B′

2

B2
− k

]
V . (43)

Case III-c: V = I|Z|, then WZ < 0, V1, V2, I|W | ≤ I|Z| = V3. Using similar estimates and the
condition γ ≥ k, we obtain

D+V ≤ I ′|Z| + ID+|Z|

≤
(

I ′

I
+ h′

11 + h′
22 + Sf ′

0 − b − γ

)
V3 − fI|W |

≤
(

I ′

I
+ h′

11 + h′
22 − b − f + Sf ′

0

)
V3

≤
[

I ′

I
+ Ih′

10 + B1h′
11

B1
+ Ih′

20 + B2h′
22

B2
− k

]
V3
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≤
[

I ′

I
+ h1

B1
+ h2

B2
− k

]
V

=
[

I ′

I
+ B′

1

B1
+ B′

2

B2
− k

]
V . (44)

Now, let K(t) = ln(IB1B2). Then it follows from (40) to (44) that the following estimate holds:

D+V ≤ [(K(t))′ − k]V . (45)

In view of Propositions 4.1 and 4.2, there is a constant C > 0 such that

C ≥ K(t) ≥ C−1, (46)

for sufficiently large t. Therefore, we conclude from Equations (38), (45), (46) and Theorem A.2
(see Appendix B) that the endemic equilibrium of the system (20)–(23) is globally asymptotically
stable. Indeed, there exists s > 0 such that for all t ≥ s,

V(t) ≤ K(t)

K(s)
V(s) e−k(t−s) ≤ C2V(s) e−k(t−s),

implying the uniform global stability of the associated linear compound system. The proof is thus
complete. �

Remark 4.4 Theorem 4.3 establishes the global endemic stability for a general four-dimensional
cholera model. As a special case, the result can be directly applied to the cholera model in [13].
We note, however, that the assumption in (32) is a sufficient condition for the global stability and
it might restrict the applicability of the result.

Remark 4.5 The analysis presented here can be easily extended to the case with variable host pop-
ulation, where we incorporate immigration and disease-related mortality into the model (20)–(23).
Thus, Equations (20) and (21) will be replaced by

dS

dt
= N0 − Sf (I , B1, B2) − bS, (47)

dI

dt
= Sf (I , B1, B2) − (γ + b + b0)I , (48)

where N0 is the immigration rate and b0 is the disease caused death rate (for cholera, this is usually
lower than 1% [48]). In this case, the total human population N = S + I + R is not a constant but
satisfies

dN

dt
= N0 − bN − b0I ≤ N0 − bN .

If we define

B̃0 = −
(

∂h

∂B

)−1

h

(
N0

b
, 0

)
,

then the feasible domain becomes

�̃ =
{
(S, I , B1, B2)|S ≥ 0, I ≥ 0, S + I ≤ N0

b
, 0 ≤ (B1, B2) ≤ B̃T

0

}
.
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Figure 2. A phase portrait of S vs I for the cholera model (49)–(53). The total population is N = 10, 000, and the initial
condition is I(0) = 1000, S(0) = 9000, and R(0) = BH(0) = BH(0) = 0. The curve converges to the endemic equilibrium
at S∗ ≈ 7666 and I∗ ≈ 0.92. Similar pattern is observed for various different initial conditions.

Correspondingly, the constraint on f ′
0 in Theorem 4.3 is replaced by

f ′
0 ≤ b2

N0
.

Then the same analysis as presented in this section can be applied to establish the global asymptotic
stability of the endemic equilibrium for this variable population model.

Finally, we present an example to verify the analytical prediction in Theorem 4.3. We consider
the cholera model of Hartley et al. [13]:

dS

dt
= bN − βLS

BL

κL + BL
− βHS

BH

κH + BH
− bS, (49)

dI

dt
= βLS

BL

κL + BL
+ βHS

BH

κH + BH
− (γ + b)I , (50)

dBH

dt
= ξ I − χBH, (51)

dBL

dt
= χBH − δLBL, (52)

dR

dt
= γ I − bR. (53)

Using numerical simulation, we obtain a typical phase portrait of S vs I for this model, shown in
Figure 2. The parameter values are taken from [13,30] with R0 ≈ 1.31. Again the total population
is normalized as N = 10, 000, and the initial infection is set as I(0) = 1000. The solution curve
approaches the endemic equilibrium at S∗ ≈ 7666, I∗ ≈ 0.92 over time. It is also observed (though
not shown here) that solutions with various different initial conditions converge to the same
endemic equilibrium, a verification of its global asymptotical stability.

5. Conclusions

The present work aims to understand the global dynamics of cholera epidemiology in a general
mathematical model which has a potential to incorporate different factors of the human host,
the environment, and the pathogen ecology into a unified framework. Such an understanding is
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important for the effective prevention and intervention strategies against cholera outbreak. The
unified global stability results established in this paper can be applied to many published cholera
models, including (but not limited to) those in [5,13,18,34,44,47].

Due to the incorporation of the environmental component and the coupling of multiple trans-
mission pathways, the cholera model considered in this paper distinguishes itself from regular
SIR and SEIR epidemiological models whose global dynamics have been extensively stud-
ied [15,16,22–24,27,29,32,49]. Using the geometric approach, we have carefully investigated
both three-dimensional and four-dimensional systems under general settings. The analysis and
results presented in this paper not only extend the application of the geometric approach, but also
provide a framework for modelling and analysing other infectious diseases such as typhoid fever,
amoebiasis, dracunculiasis, giardia, cryptosporidium, and campylobacter [31,44] which involve
environmental components (e.g. water-borne pathogen).
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Appendix A

We briefly describe below the geometric approach based on the second additive compound matrix, developed by Li and
Muldowney [9,25,28].

For a 3 × 3 matrix A = [aij], the second additive compound matrix is defined as

A[2] =
⎛
⎝a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

⎞
⎠ .

We refer to [35] for a survey of general compound matrices.
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Now consider the dynamical system

dX

dt
= F(X), (A1)

where F : D 
→ R
n is a C1 function and where D ⊂ R

n is a simply connected open set. Let X(t, X0) denote the solution
of Equation (A1) with the initial condition X(0) = X0. We assume:

(H1) There exists a compact absorbing set K ⊂ D;
(H2) The system (A1) has a unique equilibrium point X∗ in D.

It is shown in [9,25,28] that X∗ is globally asymptotically stable if (A1) satisfies (H1)(H2) and a Bendixson criterion
that is robust under C1 local perturbations of F at all non-equilibrium non-wandering points. This criterion is obtained as
follows.

Let X 
→ P(X) be a ( n
2 ) × ( n

2 ) matrix-valued C1 function in D. Set

Q = PF P−1 + PJ [2]P−1, (A2)

where PF is the derivative of P (entry-wise) along the direction of F and J [2] is the second compound matrix of the
Jacobian J(X) = DF(X). Let m(Q) be the Lozinskiǐ measure of Q with respect to a matrix norm [6], i.e.

m(Q) = lim
h→0+

|I + hQ| − 1

h
. (A3)

Define a quantity q̄2 as

q̄2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0
m(Q(X(s, X0))) ds. (A4)

Then the Bendixson criterion is given by

q̄2 < 0. (A5)

In summary, we have the following theorem:

Theorem A.1 Assume that D is simply connected and the assumptions ( H1) and (H2) hold. Then the unique equilibrium
X∗ of (A1) is globally asymptotically stable in D if q̄2 < 0.

Appendix B

In what follows, we outline the geometric approach based on the third additive compound matrix [26,27].
The third additive compound matrix for a 4 × 4 matrix A = [aij] is defined as

A[3] =
⎛
⎜⎝

a11 + a22 + a33 a34 −a24 a14
a43 a11 + a22 + a44 a23 −a13

−a42 a32 a11 + a33 + a44 a12
a41 −a31 a21 a22 + a33 + a44

⎞
⎟⎠ .

For a solution X(t, X0) of any initial value problem of the dynamic system (A1), the linearized system is

Y ′ = J(X(t, X0))Y ,

and the associated third compound system is

Z ′ = J [3](X(t, X0))Z , (A6)

where J [3] is the third compound matrix of the Jacobian J for equation (A1).

Theorem A.2 Assume that (H1) and (H2) hold and there are a Lyapunov function V(X , Z), a function K(t), and positive
constants c, k, and C such that

(i) c|Z| ≤ V(X , Z) ≤ C|Z|, c ≤ K(t) ≤ C,
(ii) V ′ ≤ (K ′(t) − k)V ,

where the total derivative V ′ is taken along the direction of Equation (A6), then the interior equilibrium X∗ of Equation (A1)
is globally asymptotically stable.

Proof If K(t) = Const., this is the Corollary 3.2 in [27]. For a general differentiable function K(t), the conclusion follows
from the Corollary 3.2 in [27], since the modified Lyapunov function Ṽ = V(X , Z)/K(t) satisfies all the conditions. �
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