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Abstract
Auscultation, the act of listening to the heart and lung sounds, can reveal substantial information about patients’ health
and other cardiac-related problems; therefore, competent training can be a key for accurate and reliable diagnosis.
Standardized patients (SPs), who are healthy individuals trained to portray real patients, have been extensively used for
such training and other medical teaching techniques; however, the range of symptoms and conditions they can simulate
remains limited since they are only patient actors. In this work, we describe a novel tracking method for placing virtual
symptoms in correct auscultation areas based on recorded ECG signals with various stethoscope diaphragm orienta-
tions; this augmented reality simulation would extend the capabilities of SPs and allow medical trainees to hear abnormal
heart and lung sounds in a normal SP. ECG signals recorded from two different SPs over a wide range of stethoscope dia-
phragm orientations were processed and analyzed to accurately distinguish four different heart auscultation areas, aortic,
mitral, pulmonic and tricuspid, for any stethoscope’s orientation. After processing the signals and extracting relevant fea-
tures, different classifiers were applied for assessment of the proposed method; 95.1% and 87.1% accuracy were
obtained for SP1 and SP2, respectively. The proposed system provides an efficient, non-invasive, and cost efficient
method for training medical practitioners on heart auscultation.
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1. Introduction

Cardiac examination (CE) can accurately detect most

structural cardiac abnormalities in a differential diagnosis

if performed properly. Ensuring proper examination

requires competent training in cardiac inspection, palpa-

tion, and auscultation. However, nowadays most hospital

admissions are short and intensely focused with fewer

opportunities for trainees to learn and practice bedside

examination skills.1 Hence, sophisticated manikins have

been widely used as patient simulators mimicking a num-

ber of cardiovascular indices and improving CE training,

but cannot replace contact with actual patients.1 Over the

past few decades, standardized patients (SPs), who are

healthy individuals trained to portray real patients with

specific illnesses and conditions, have been widely used in

clinical training.2 SP-based encounters have shown to

improve patient assessment, counseling, and clinical skills

of medical trainees.2–5 However, the range of symptoms

and syndromes they can physically portray stays limited

since they are typically healthy patient actors. Augmenting

SPs with the ability to simulate a large number of abnorm-

alities would enhance the experience and variety of symp-

toms medical students can encounter.6 For cardiac

auscultation (CA) for instance, this is achieved by modify-

ing the stethoscope.

Electrocardiography (ECG) detects and records physio-

logical signals generated by electrical changes that occur

in the body. Most ECG related research focus on auto-

mated signal processing for physiological states
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monitoring and diagnosis of heart abnormalities;7–10 how-

ever, using ECG for virtual pathology stethoscope (VPS)

tracking has not been much investigated. VPSs are devices

that substitute normal heart or lung sounds with abnormal

auscultatory findings from actual patients with a variety of

diseases. McKenzie et al.11 designed a VPS that can auto-

matically play abnormal sounds by tracking the location

of the stethoscope over the SP’s torso. The prototype uti-

lized a tiny magnetic sensor attached on the chest piece of

the VPS for tracking purposes; however, the system was

complex, noisy, and very costly.

The goal of our research is to improve CA skills of

medical students with virtual pathology simulation using

modified stethoscopes in tandem with SPs. A cost-efficient

and orientation-invariant tracking method for simulating

virtual symptoms in desired auscultation areas would

extend SPs capabilities allowing medical student trainees

to perform a more realistic CA.

In this work, we aim to detect the stethoscope location

at four auscultation areas: aortic, pulmonic, mitral and tri-

cuspid. We have previously shown that ECG can distin-

guish these areas when limiting the orientation of the

stethoscope to only one angle.6 Here, we prove that ECG

can further be used for identifying the four areas even with

a wide range of stethoscope orientations, which is more

practical since trainees would evidently hold the stetho-

scope differently during auscultation. The method involves

preprocessing ECG signals, extracting a multitude of attri-

butes, and identifying a subset of relevant features. Five

different classifiers, naive Bayes, Bayes network, k-nearest

neighbor, multilayer perceptron, and C4.5 decision tree,

are utilized for VPS tracking assessment of the discrimina-

tive abilities and orientation invariability of the system.

The proposed tracking method is considered to be non-

invasive, natural and cost-effective.

The remainder of this paper is organized as follows.

Section 2 provides background information on ausculta-

tion areas and ECG mechanics. Next, Section 3 reviews

the state of the art in auscultation training simulation, and

compares various simulators underlining the benefits of

hybrid simulation, such as our proposed VPS system.

Section 4 describes the proposed methodology and imple-

mentation steps; it includes data collection, preprocessing,

feature extraction, feature selection, and classification.

Section 5 reports on the results. Finally, Section 6 con-

cludes with a summary discussion and possible directions

for future work.

2. Background
2.1. Auscultation areas

CA, or listening to the heart’s sound, provides vital clues

for diagnosing most cardiac anomalies. Cardiac diseases

and conditions, such as congestive heart failure, systemic

arterial hypertension, coronary artery disease, and valvular

heart disease can be detected through abnormal ausculta-

tory findings.12 Although most of these diseases are now

identified using advanced technologies, such as echocar-

diography, auscultation remains the safest, most conveni-

ent, and least expensive diagnosis method.12

Points of auscultation over the precordium, which is the

portion of the body over the heart and lower chest, are

generally correlated with cardiac valves (Figure 1).12

Placement of the stethoscope’s diaphragm on these areas

may reveal heart murmurs associated with valvular

abnormalities.

2.2. ECG mechanics

The electrical activities of the cells generate current flow

within the body and results in a potential difference on the

surface of the skin.13 These potential differences can be

measured by surface electrodes attached to the outer body

surface. An electrocardiograph amplifies and records these

signals as they travel throughout the body.

Normal ECG recoding produces distinct waveforms that

represent the cardiac cycle phases, as shown in Figure 2.

The deflections in ECG signal are marked alphabetically

by P, Q, R, S, and T. The P wave represents the atrial

depolarization; QRS complex represents ventricular depo-

larization; and T wave represents ventricular repolariza-

tion. U wave may follow the end of the T wave, but it is

either absent or difficult to identify on typical ECG read-

ings.7,13 The vertical displacement, referred to as ampli-

tude, represents the magnitude of the electrical signal

propagated by the myocardium, while the horizontal dis-

placement, referred to as duration, represents the time

duration of the electrical activity.

Figure 1. Points of auscultation. AO = aortic area; LV = left
ventricle; PA = pulmonic area; RV = right ventricle; 1 = right
second intercostal space; 2 = left second intercostal space; 3 =
midleft sternal border (tricuspid); 4 = fifth intercostal space,
midclavicular line (mitral).12
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3. State of the art

The teaching of CA has been an area of recognized impor-

tance since the inception of the stethoscope.14,15 Various

simulation technologies, with varying degrees of sophisti-

cation, have been developed and adapted in CA training

and evaluation. For instance, diverse computer based simu-

lators ranging from simple CD-ROM recordings to highly

interactive web-based virtual patients (VPs) are regularly

utilized for CA teaching. Several studies16–18 investigating

the performance of such simulators have shown significant

improvement on medical students’ CA abilities; however,

auscultation requires processing multiple senses simultane-

ously, such as listening and palpating for correct ausculta-

tion areas, which cannot be effectively taught with passive

hearing or limited software interaction.

Computer-enhanced manikins consisting of full or par-

tial replications of the human anatomy offer enhanced

modalities for teaching both active and passive CA skills.

Most mid- to high-fidelity manikins allow the learner to

hear pre-recorded heart/lung sounds by placing a stetho-

scope at the external landmark over their plastic torsos.19

The cardiology patient simulator (CPS) or ‘Harvey’ is the

earliest of this type; it is a high-fidelity, partial-body trai-

ner fixed in the supine position.19,20 Harvey can simulate

30 pre-recorded heart and lung sounds through a speaker

mounted inside the plastic chest wall.21,22 The educational

efficacy of Harvey has been rigorously tested by many

researchers21 and has shown significant improvement on

CA training. Many other similar upright partial body man-

ikins are commercially available, such as Lung Sound

Auscultation Trainer (LSAT), Student Auscultation

Manikin (SAM), and Life/form� auscultation trainer and

SmartscopeTM system.21,22 CA can also be taught with

high-fidelity full-body manikins, such as Laerdal’s

Medical SimMan 3G, which contains sophisticated

mechanics for simulating palpable pulse, spontaneous

breathing and altered speech.19

All of these various types of simulators may enable clini-

cians at any level to learn, practice and master their CA

skills, although they each have their own limitations. As

mentioned by Ward and Wattier,19 most speaker-based man-

ikins lack in the range and accuracy of anatomical sounds

they produce; the sounds played are ‘read-only’ and cannot

be replaced in real-time by other sounds. Furthermore,

speakers are limited in number and require exact stethoscope

placement to work properly. Environmental noises can also

lead to distractions and hinder the realism of the simulation

scenarios. In addition to the built-in limitations, these simu-

lators are inanimate objects.

A hybrid simulation using SPs and virtual pathology

simulators would drastically add realism to auscultation

training. The feasibility of such integrated simulations has

been studied in other clinical settings23,24 and has shown

considerable improvement in trainees’ patient interaction

and assessment skills. McKenzie et al.11 applied a hybrid

simulation to augment abnormal auscultatory findings in

real-time using VPS across common auscultation areas on a

healthy SP. However, their magnetic-based VPS tracking

system was complex, expensive and susceptible to electri-

cal and metallic interference. Such system consisting of live

and virtual training allows a more realistic CA simulation.

In the past two decades, several studies have assessed

the potential of ECG in human biometrics25–27 and emo-

tion modeling.8,9 Nevertheless, the potential of ECG sig-

nals for VPS tracking has not been elsewhere investigated.

In our previous study,6 we carried out initial preliminary

work on the feasibility of such an ECG based approach for

VPS tracking. The previous proposed method involved

analyzing ECG signals recorded at the four aforemen-

tioned auscultation areas of a single SP with the stetho-

scope diaphragm positioned at the same orientation. The

proposed method was accurately able to distinguish

between the different areas; however, having the dia-

phragm at the same orientation is not practical for medical

training as different individuals would obviously hold and

place a stethoscope differently. In this work, we propose a

stethoscope orientation-invariant method for identifying

the four heart auscultation areas on the human body based

on ECG signal analysis.

4. Methods

The composition of the proposed system procedure is

shown in Figure 3. The respective descriptions are pro-

vided in this section.

4.1. Data collection

Two direct-contact electrodes fixed on an acoustic stetho-

scope recorded ECG signals from the auscultation

Figure 2. Typical fudicial points and possible features for a
normal ECG signal.13
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landmarks of a SP’s chest. Although using multi-lead sys-

tems may increase signal- to-noise ratio, noise rejection,

and redundancy for accurate diagnostic evaluation,7 they

are inconvenient and uncomfortable for non-clinical appli-

cations, as is the case for our research. Our intent is to pro-

vide high realism to increase the likelihood of trainees to

suspend disbelief; therefore, the least number of leads

allows us to better hide the encroaching technology. Our

setup comprises a single-lead ECG configuration, which

have shown promising results on biometric applications

and delivers relative accuracy for non-diagnostic monitor-

ing applications.25,27

Two male SPs aged 25 and 27, from Eastern Virginia

Medical School’s Sentara Center for Simulation and

Immersive Learning, were recruited for data collection.

Using WelchAllyn Meditron analyzer, ECG signals

were acquired at 44.1 kHz with 16 bits per sample. For

angular variations, signals were collected by rotating the

stethoscope diaphragm clockwise with increments of 45�,
producing 8 different orientations for each auscultation

area. In addition, 5 runs were collected from each angle;

thus, resulting in a total of 40 ECG signals for each aus-

cultation area. Each run composed of about 10 pulses;

however, first and last pulses were always removed since

they tend not to contain entire segments and waves. For

instance, the recording may start within a P wave as it

may also end within a T wave. This condition will later

ensure extracting equal number of features for all pulses.

All recordings were performed in a quiet room with the

subjects maintaining a relaxed seated upright position.

4.2. ECG preprocessing

ECG frequency ranges from DC to 1 kHz;7 therefore, our

initial preprocessing step was to reduce the over-sampled

temporal data. Considering Nyquist sampling criterion,

which mandates sampling at a rate of at least twice the

highest desired frequency to avoid aliasing, the recorded

ECG signals were down-sampled from 44.1 kHz to 2 kHz.

ECG signals are often contaminated by various kinds of

noises and artifacts, which may have similar morphological

behavior and frequency range as the characteristic wave-

forms.7 The main noise categories are low-frequency base-

line wandering caused by respiration and body movements,

and high-frequency random noises (50–60 Hz) caused by

power line interference and muscle contraction.28 These

artifacts severely limit the utility of recorded ECG signals;

therefore, denoising is vital for ECG analysis.

To remove the high-frequency power line noise, an

eighth-order zero-phase (bidirectional) Butterworth low-pass

filter with 40 Hz cut-off frequency was utilized.28 On the

other hand, for baseline wandering noises and low-frequency

artifacts, we applied a high-pass first-order FIR filter with a

cut-off frequency of 0.7 Hz.28 Figure 4 shows an original

ECG run (top plot) recorded at the pulmonic area of SP1

and the resulting signal after filtering (bottom plot).

4.3. Feature extraction

Feature extraction provides fundamental attributes (ampli-

tudes and intervals) to be used in subsequent ECG analy-

sis. The QRS complex is a well-recognized wave from

within the ECG and serves as the starting point for auto-

mated diagnosis and classification schemes.29 There are

several diverse and sophisticated algorithms for QRS

detection; Kohler et al.28 investigated the performance of

various QRS detection methods and classified them based

on their detection accuracy and computational cost. Based

on these latter results, Pan–Tompkins algorithm29 was

selected for our detection; it is a relatively low computa-

tional yet highly accurate QRS-detection method. The

Figure 3. System overview.

Figure 4. A sample ECG run of pulmonic region of SP1 before
and after filtering, top and bottom plots, respectively.

Kidane et al. 1453



obtained results consisted of Q, R, and S peaks along with

their corresponding time indexes. Consequently, the beat

interval was measured from each R peak to the next (RR).

A wave segmentation method30 was then used to find P

and T wave peaks by searching for local maxima within a

pre-defined distance from QRS peaks. The search intervals

for P and T were heuristically identified. The P wave peak

is assumed to be located within a third of RR interval to

the next QRS onset, while the T wave peak is located

within half the RR interval from QRS offset. Additional

points representing onset and offset of T and P waves were

also detected using the minimum radius of curvature,

which is more robust to noise and artifacts than derivative

search methods. Figure 5 illustrates the different identified

fiducial points (P, Pon, Poff, Q, R, S, T, Ton, and Toff) along

with possible extracted features in reference to the promi-

nent peak R.

4.4. Feature selection

From the detected fiducial points, various amplitude and

interval features can be extracted; however, the curse of

dimensionality can inherently affect classification and

redundant attributes may lead to higher computational cost

and complexity. Therefore, feature selection seeks to

reduce the number of attributes by selecting minimal effi-

cient feature subsets from the identified fiducial points.

We utilized filter-based methods to select features

namely Fischer score and information gain, which are

independent assessment approaches based on characteris-

tic data. The methods rank each feature according to some

metric and select the features with highest scores; these

scores show the discriminative power of each attribute.

The Fisher score selects features that assign similar values

to the samples from the same class and different values to

samples from different classes. The Fischer score method

ranks features based on the following score function:

Fr =
Pc

i= 1 li μi
r � μr

� �2
Pc

i= 1 li σi
r

� �2 ð1Þ

where li denote the number of samples in class i, and mr
i

and sr
i are the mean and standard deviation of class i, (i =

1,., c) corresponding to the rth feature.

Information gain evaluates features by measuring their

information gain with respect to the class, which is calcu-

lated by entropy. The joint entropy about attribute X and

class Y is calculated as follows:

I(i)=
X

xi

X
y

P(X = xi, Y = y)log
P X = xiY = yð Þ

P X = xið ÞP Y = yð Þ ð2Þ

Using these two methods, we eliminated common extra-

neous features with the lowest scores. However, it was also

important to check for correlation between features to pre-

vent feature redundancy and to lower computational cost.

We used Pearson correlation coefficient (PCC) to measure

the linear dependency between features, which is calcu-

lated as follows:

correl X , Yð Þ=
P

x� �xð Þ y� �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x� �xð Þ2

P
y� �yð Þ2

q ð3Þ

For each of the ECG signal intervals, PR interval, QRS

interval and RT interval, highly correlated features were

reduced to only one. For instance, the correlated intervals

RPonset, RP, and RPoffset were substituted by RP; and the

correlated amplitudes RPonset-amp, RPamp, and RPoffset-amp

by RPamp. The resulting subset contained eight features

Figure 5. Extracted interval (a) and amplitude (b) features from ECG fiducial points.
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highly correlated with the class, yet uncorrelated with each

other; the selected features are shown in Figure 6.

4.4. Classification

Classification aims to map instances of the 8th dimen-

sional selected feature vector to the appropriate ausculta-

tion classes. Numerous machine learning methods have

been employed for supporting decision making in medical

research and diagnosis based on probabilistic or statistical

models.31

The first classifier is naive Bayes, which assumes a

strong conditional independence among the features.

Second is Bayes’ network classifier with augmented edges

to the simple naive Bayes classifier; this classifier was

constructed by the Tree Augmented Naı̈ve Bayes (TAN)

algorithm. Another classifier used is k-nearest neighbor

(KNN), which is instance-based. It uses the Euclidean dis-

tance to find closest training instances to the test sample

and predicts the class. A C4.5 decision tree classifier,

which is one of the most widely used and practical meth-

ods for inductive inference, was also tested. This decision

tree classifier is for approximating discrete-valued func-

tions; it is known to be robust to noisy data and capable of

learning disjunctive expressions. Lastly, we used multiple

layer perceptron (MLP), which is an artificial neural net-

work (ANN) based classifier consisting of a simple

neuron-like processing unit interconnected to simulate

human neurons. All classifiers were implemented in a

freely available software package WEKA,32 an open-

source data mining application with large collection of

classification, clustering and feature processing

algorithms.

5. Results and discussion

Each single ECG run had a duration of 10 seconds result-

ing in approximately 10 heart pulses per signal; however,

to preserve complete heart beat signals, the first and last

pulses were removed, as detailed in Section 4.1. After

recording 5 runs at each orientation, each auscultation area

consisted of about 320 pulses. Thus, ECG analysis of each

SP comprised a total of 1280 pulses.

The preprocessing of ECG signals, which consisted of

denoising and filtering, successfully preserved the ECG

signal boundaries, even in the existence of strong power-

line and baseline wandering noises, as previously illu-

strated in Figure 4. ECG fiducial points were identified

after using the Pan–Tompkins algorithm for QRS complex

detection and wave segmentation for P and T wave deli-

neation. The numerous features extracted from the fiducial

points were then reduced using feature selection methods,

keeping only relevant and non-redundant information.

In our previous work,2 we were able to accurately clas-

sify the four auscultation areas with the stethoscope dia-

phragm fixed at the same orientation. The orientation

comprised of the two electrodes positioned horizontally,

considered as 0o angle. Here, we first extended the previ-

ous work to classify the four auscultation areas with the

stethoscope diaphragm positioned at several orientations

with 45o increments. Based on the selected eight features

of each pulse, a three-fold cross-validation of the naive

Bayes classifier was conducted. Highly accurate results

were obtained as shown in table 1; hence, it was not

required to utilize any other classifier at this step.

To account for trainee’s distinctive stethoscope head

placement and assess orientation-invariability, we com-

bined all instances collected at different diaphragm posi-

tions. For data visualization, the selected features were

reduced to two using principle component analysis (PCA)

and all instances of the four auscultation areas for both

SPs were plotted as illustrated in Figure 7.

Figure 6. Selected amplitude and interval features.

Table 1. Auscultation areas classification of all various angles
using naive Bayes.

Lead angle
(degrees)

Orientation
Diagram

Classifier accuracy (%)
(three-fold cross-validation)

Standardized
Patient 1

Standardized
Patient 2

0o 100 100

45o 100 100

90o 100 100

135o 97 99

180o 98.8 98.2

225o 100 96.5

270o 99.4 100

3150 99 99.4
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For classification, we applied a 10-fold cross-validation

on several classifiers, naive Bayes, Bayes network, KNN,

MLP and C4.5 decision tree; the obtained results are illu-

strated in Table 2. The C4.5 decision tree performed the

best with an accuracy of 95.1% and 87.1% for SP1 and

SP2, respectively; this method was a one-step look ahead

and non-backtracking search through the space of all pos-

sible decision trees. The Bayes network with TAN also

produced adequate results with an accuracy of 92.2% and

86.9% for SP1 and SP2, respectively. Confusion matrices

of our best classifier, C4.5 decision tree, for both SPs are

shown in Tables 3 and 4.

6. Conclusion

In this work, we have investigated the application of an

orientation invariant ECG-based virtual pathology stetho-

scope tracking method for placing virtual symptoms in cor-

rect auscultation landmarks of SPs. Two electrodes attached

on the stethoscope diaphragm were used to collect ECG

Figure 7. Data visualization of all ECG pulses using PCA for SP1 and SP2.

Table 2. Auscultation areas classification for any stethoscope diaphragm orientation.

SP Classifier accuracy (%)(10-fold cross-validation)

Naive Bayes Bayes network k-nearest neighbor (5-NN) Decision tree (C4.5) Multilayer perceptron (MLP)

1 60.40 92.20 89.03 95.14 84.17
2 60.03 86.89 79.94 87.11 79.94

1456 Simulation: Transactions of the Society for Modeling and Simulation International 89(12)



from four auscultation regions, aortic, mitral, pulmonic, and

tricuspid, of two male SPs. Since trainees may place the

stethoscope head at different angles when performing aus-

cultation, ECG signals were collected rotating the stetho-

scope diaphragm clockwise with 45o increments, producing

eight different orientations for each auscultation area.

ECG signals were first preprocessed to remove noise

and other artifacts. Numerous features were then extracted

and relevant features were selected for classification.

Several classifiers, using various algorithmic approaches,

were utilized to assess the discriminative abilities and

orientation -invariability of the system. Imposing results of

95.1% accuracy for SP1 and 87.1% for SP2 were obtained

establishing accurate classification of the four different

auscultation areas. These results are impressive since they

do not yet consider the prior information of trainees hold-

ing the stethoscope in a particular auscultation area for

several seconds before moving to another; this knowledge

can be useful to calculate the a posteriori probabilities.

The promising findings would significantly aid in extend-

ing the capabilities of SPs and allow medical student trai-

nees to perform realistic auscultation and hear abnormal

heart or lung sounds in otherwise healthy patient actors.

For future work, we will consider real-time applications

utilizing sequential beat classification leveraging intermit-

tent movement of the stethoscope. Also, a larger pilot

study with diverse SPs, including female test subjects, is

to be conducted to investigate population invariability.

The work can be further extended to cover additional car-

diac and pulmonary auscultation regions.
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