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The causes of the late Pleistocene megafaunal extinctions are
poorly understood. Different lines of evidence point to climate
change, the arrival of humans, or a combination of these events as
the trigger. Although many species went extinct, others, such as
caribou and bison, survived to the present. The musk ox has an
intermediate story: relatively abundant during the Pleistocene, it is
now restricted to Greenland and the Arctic Archipelago. In this
study, we use ancient DNA sequences, temporally unbiased
summary statistics, and Bayesian analytical techniques to infer
musk ox population dynamics throughout the late Pleistocene and
Holocene. Our results reveal that musk ox genetic diversity was
much higher during the Pleistocene than at present, and has
undergone several expansions and contractions over the past
60,000 years. Northeast Siberia was of key importance, as it was
the geographic origin of all samples studied and held a large
diverse population until local extinction at ≈45,000 radiocarbon
years before present (14C YBP). Subsequently, musk ox genetic
diversity reincreased at ca. 30,000 14C YBP, recontracted at ca.
18,000 14C YBP, and finally recovered in the middle Holocene.
The arrival of humans into relevant areas of the musk ox range
did not affect their mitochondrial diversity, and both musk ox and
humans expanded into Greenland concomitantly. Thus, their pop-
ulation dynamics are better explained by a nonanthropogenic
cause (for example, environmental change), a hypothesis sup-
ported by historic observations on the sensitivity of the species
to both climatic warming and fluctuations.

climate change | human impact | quaternary | megafauna extinctions

The late Pleistocene saw significant changes in the geographic
distribution and composition of the Beringian megafauna.

Although many iconic Beringian herbivores, such as mammoths
(Mammuthus primigenius) and woolly rhinoceroses (Coelodonta
antiquitatis) became extinct, others, such as horses (Equus cab-
allus), saiga (Saiga tatarica), caribou (Rangifer tarandus), and
bison (Bison bison) survived into the present. The reasons for
these markedly different survival patterns have been widely
debated, with the extinctions predominantly attributed to either
human impact (1) or climate change associated with the last
glacial cycle (2). The relative contribution of the two remains a
key evolutionary debate (cf. 3, 4). For example, it is well known
that global climate fluctuated significantly throughout the

Pleistocene (5–7); the Eurasian fossil record indicates that late
Pleistocene climatic changes reduced the range of several species,
and the last glacial-interglacial transition appears to correlate
with major extinction events. However, none of the previous
Pleistocene glacial cycles appear to have caused widespread
extinction events (3, 8), and the demise of the Beringian mega-
fauna also appears to coincide neatly with the arrival and spread
of modern human populations (9, 10). Similar evidence of a
human-driven effect can be seen in central North America, where
the arrival of Clovis-style hunters, extinction of megafauna, and
marked climate change all cluster closely together (11, 12).
Ancient DNA (aDNA) analyses of temporally and geogra-

phically distributed megafaunal remains offer a means to address
the relative roles of humans versus the climate in the Beringian
megafaunal extinctions. The capacity of this technique to detect
changes in genetic diversity within populations over geologically
significant time scales provides the means to examine past pop-
ulation variation and to explore directly how populations respond
to climate and environmental changes (13). Geographic and
temporal discontinuity in the genetic data can be compared to
past climate reconstructions and specific ecological events, such
as advancing ice sheets, a volcanic eruption, or human colo-
nization. Previous large-scale aDNA studies of this kind have
focused on herbivores, such as bison and horses that survived to
the present in relatively large numbers and are thus relatively
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abundant today (13, 14), or others, such as the mammoth that
are now extinct (15, 16). We focus on the musk ox, Ovibos
moschatus, one of the few large mammals adapted to a high arctic
environment, and which has a distinctly different pattern of sur-
vival than the previously studied species. Although the musk ox
was holarctically distributed at the beginning of the Holocene,
only small, relict natural populations isolated on Greenland and
the North American Arctic Archipelago survive to the present
day. The Pleistocene musk ox went extinct over most of its Eur-
asian range at the beginning of the Holocene. In Europe, the
latest known occurrences are in late glacial deposits in Scandi-
navia, and in the Taimyr Peninsula and the Lena River mouth at
the Bykovsky Peninsula (Northeast Siberia) they survived until
around 2,500 years before present (YBP) (17, 18), extending the
survival of this species in northern Russia well in to the
Holocene epoch.
Whether musk ox population decline can be attributed to

human or other effects is unclear. In North America, the decline
of related ovibovines appears to correlate closely with the arrival
of humans, whereas longer human-ovibovine cohabitation is
observed in northern Eurasia (3, 19). Given the conflicting evi-
dence, a principal aim of this study was to further investigate the
question, through reconstruction of past musk ox population
dynamics using aDNA, and comparison of the findings against
human and climatic records from the late Pleistocene and Hol-
ocene and known biological characteristics of the species.

Results and Discussion
To investigate changes in genetic diversity among musk ox since
the late Pleistocene, we analyzed 682 bp of the mitochondrial
control region, obtained from 149 radiocarbon dated specimens
that range in age from 56,900 radiocarbon (14C) YBP to the
present (Fig. 1). Specimens were sampled from their previous
geographic range, spanning from the Urals (n = 26) and the
Taimyr Peninsula (n= 54) in the west, through Northeast Siberia
(n = 12) and into North America (n = 14) and across to
Greenland (n= 43) in the east. Our data demonstrate continuous

presence of musk ox in Eurasia and North America throughout
radiocarbon time until their extinction in Eurasia (∼2,500 YBP)
and demographic retraction in North America (∼10,000 YBP).

Loss of Mitochondrial DNA Diversity. Modern musk ox harbor little
genetic diversity at both the nuclear and mitochondrial levels
(20–22). Our data indicate that total past genetic diversity
(samples older than 100 14C YBP), as measured by temporally
unbiased π (23), was significantly higher than present (Table 1
and Fig. S1), with Serial SimCoal (SSC) simulations indicating
that this decrease in genetic diversity cannot be explained by
genetic drift in a constant-sized population. This observation is
consistent with the results of a smaller, previous aDNA study
(24) and with paleontological evidence, which suggests a large
decrease in musk ox geographic range and population size during
the late Pleistocene. To investigate whether the arrival of
humans into the musk ox range played any effect on the species’
genetic diversity, a similar analysis was performed on the Taimyr
and Canada datasets (the only two with a meaningful number of
musk ox on either side of the entry). In neither case was human
arrival associated with any statistically significant change in
genetic diversity (Table 1 and Fig. S1).

Three Geographically Structured Clades. Phylogenetic analyses of
the data subdivides musk ox into three, well-supported and tem-
porally structured clades (clades 1–3) (Fig. 2). The phylogeny is
consistent with that recovered when (i) 13 radiocarbon-infinite
sequences are added to the alignment, or (ii) the analysis is
restricted to a subset of 60 samples for which the complete control
region sequence was obtained (Figs. S2 and S3). Clade 1 com-
prises samples that range in age from beyond the 14C limit to
42,550 14C YBP, originating predominantly in Northeast Siberia
but also in the Taimyr Peninsula. By≈45,000 14CYBP,most of the
diversity present before this time had been lost.
Clade 2 consists of specimens almost exclusively originating from

the Urals and Taimyr region, ranging in age from beyond the 14C
limit to ca. 13,000 14CYBP (although a single outlier in this study is
associated with a much more recent date of 3374 14C YBP). The
geographic distribution of samples belonging to clade 2 suggests: (i)
that these regions were either independently populated from a
mixed source population, (ii) that no significant physical barriers to
gene flow were present across this wide geographic expanse, or (iii)
a combination of these. During the Quaternary, ice sheets over the
Barents and Kara seas expanded several times onto mainland
Russia, blocking north-flowing rivers such as the Yenissei, Ob,
Pechora, and Mezen. Large ice-damned lakes formed a barrier

Fig. 1. Bayesian Skyride derived from the geospatial analysis of 135 ancient
and 14 modern musk ox mtDNA control region sequences. The x axis is in
units of radiocarbon years in the past, and the y axis is equal to Ne*τ (the
product of the effective population size and the generation length in radi-
ocarbon years). The colors represent the relative contribution of each of the
geolocations to the overall estimated effective population size. Colors
indicate geographical origins of the samples: blue, Greenland; red, North-
east Siberia; orange, Taimyr; green, Urals; light blue, Canada. The bar graph
shows the number of radiocarbon-dated samples in bins of 2,000 radio-
carbon years. No relation is apparent between the absolute number of
samples and the estimated effective population size or transition time.

Table 1. Observed nucleotide diversity and polymorphic sites of
data subsets

Data subset π* Significance† M PM

All modern samples (<100 14C YBP) 0.008 6,417 26 9
All ancient samples (>100 14C YBP) 0.021 9,993‡ 575 549
Canada, prehuman contact§ 0.026 4,801 70 Na
Canada posthuman contact§ 0.019 6,689 45 Na
Taimyr prehuman contact§ 0.025 4,006 136 Na
Taimyr posthuman contact§ 0.017 6,815 39 Na

M, number of polymorphic sites; Na, Not applicable; PM, number of pri-
vate mutations.
*Temporally unbiased π calculated following Depaulis et al. (23).
†Rank (of 10,000, of uncorrected π) among data generated through Serial
SimCoal simulations of a constant population in which gene frequencies are
changing only through genetic drift. Placement of the observed value out-
side of the 95th percentile (i.e., outside of rank 250–9,750) can be considered
as significant at <5% level.
‡Significant at P = 0.0007.
§Contact time as shown in Fig. 3.
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between the Urals and the Taimyr Peninsula between 90,000 and
80,000 YBP [marine isotope stages (MIS) 5] and 60,000 and 50,000
YBP (MIS 4/5) (25, 26). However, we note that from 50,000 YBP
into the last glacial maximum (LGM) the Barents–Kara Ice Sheet
was too small to block these eastern rivers, so no lakes were formed
and no barrier was present between the Urals and the Taimyr
Peninsula, allowing gene flow to occur between the two regions at
least since 50,000 YBP.
Clade 3 is comprised predominantly of ancient specimens from

North America and Greenland, and includes all modern musk ox.

Greenland was the last land mass colonized by musk ox, and the
data clearly demonstrate that North America is the source of the
Greenlandic populations, as it is also suggested for caribou (27).
This finding is consistent with the complete glaciation of Green-
land during the LGM (18–21,000 YBP). Any areas that remained
ice-free during this period were very small and isolated (28),
making it unlikely for any mammal to survive on the island.

Geospatial Demographic Analyses. To explore the geographic ori-
gin, spatial distribution, and demographic history of the musk ox,
we performed combined temporal and spatial analysis including
all finite-dated musk ox (149 specimens) from across the sam-
pling range. These analyses provide insights into the geographic
origin of the clades, their interrelationships, and the dynamics of
local populations and the species as a whole, and allow addi-
tional inference into the possible causative agents of observed
changes in genetic diversity. These analyses were performed
using a geospatial inference package incorporated within the
Bayesian phylogenetic inference software, BEAST (29).
A Bayesian skyride (30) reconstruction of changes in genetic

diversity through time (Fig. 1) shows that after an increase in
diversity during MIS 4 and 5, diversity declined during MIS 3,
between 50,000 and 33,000 14C YBP. This decline was followed
by a subsequent rapid increase in overall diversity, followed by a
steep decline circa 18,000 14C YBP. Finally, this decrease in
diversity begins to reverse during the mid-Holocene, associated
with increase in population size following the establishment on
Greenland. This finding is unlikely to be a sampling artifact, as
both an analysis of a randomly chosen subset of samples from the
whole distribution (n = 40) and an analysis of 78 samples with
equal temporal distribution (0–5,000; 15,000–20,000; 20,000–
25,000 14C YBP) recovers the same pattern (Figs. S4 and S5).
The dynamics reported here differ substantially from the two

previously published aDNA datasets that are sufficiently large for
comparable demographic analysis, mammoth (16) and bison (31)
(Figs. S6 Inset and Fig. S7). Although bothmusk ox andmammoth
experience an increase in diversity during the MIS 4 glacial, fol-
lowed by decline during theMIS 3 interstadial, genetic diversity in
mammoth begins to decline much earlier than in musk ox (65,000
14CYBPvs. 48,000 14CYBP), and appears to be reduced by amuch
larger extent. Clear differences are also observed between the
musk ox and bison datasets, in particular with the bison starting to
decline around 30 to 35,000 14C YBP, coincident with a period of
increase in musk ox diversity (Fig. S7).
These fluctuations may reflect either the degree of impact of

human hunting on each species, their natural abilities to respond
to changes in the Beringian ecosystem (both in overall temper-
ature, but also rate of temperature fluctuation), or a combination
of both. In contrast to bison, musk ox are adapted to high arctic,
thus extremely cold, environments, preferring dry and cold
continental climates where winter snow cover is either shallow or
patchy with areas of accessible forage (cf. 32, 33). Over historic
time-scales, musk ox abundance and distribution in both
Greenland and Arctic Canada have fluctuated significantly in
response to both long- (32, 34) and short-term shifts in climate.
For example, Miller et al. (35) reported a 76% decrease in musk
ox abundance on Bathurst Island in just 1 year, between 1973
and 1974, because of deep and persistent snow cover and icing.
The climatic fluctuations in the High Arctic are also responsible
for periodic reproductive failures (35, 36).
Given these biological insights, it is tempting to speculate on

whether environmental, and in particular climatic change, might
have been the driving force behind the ancient musk ox pop-
ulation dynamics. Although difficult to test directly, because
neither our dataset nor available climatic reconstruction datasets
for the relevant period are temporally or geographically dis-
tributed in enough detail to enable statistically supported com-
parison, the Bayesian skyride provides some tantalizing insights.

Fig. 2. Maximumcladecredibility tree summarized fromthegeospatialBayesian
analysisofmtDNAcontrol regionsequenceof135ancientand14modernmuskox,
including the postmortem DNA damage model. The colors of the branches cor-
respond to their probable geographic location as calculated using the geospatial
analysis. Labels on the tips of the branches correspond to the age of the sample.
Bayesian posterior probabilities above 0.9 are shown (color code as in Fig. 1).
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The periods during which musk ox populations are seen to
increase are, in general, those of global climatic cooling (in
particular as peak diversity coincides with the LGM). Fur-
thermore, the musk ox populations decline during the warmer
and climatically unstable interstadials (Fig. S6), such as MIS 3,
and in the postglacial warming following the LGM (Fig. 1 and
Fig. S7). Although this is by no means conclusive evidence, a role
of the environment as opposed to humans as the driving force is
also supported by several other observations drawn from both
our, and previously published data, as discussed below.
The results of the geospatial analyses point to a significant role

of Northeast Siberia in the species’ population history. This
region not only harbored the greatest mitochondrial genetic
diversity, but also the most recent common ancestor of all
sampled musk ox [≈96,009 years ago (95% highest posterior
density [HPD] 103,249–82,780 years ago)] and was the geo-
graphic source of all three clades. Despite its key role in musk ox
history, both the time of extinction of clade 1 and the temporal
distribution of the 14C dated specimens (Figs. 2 and 3) indicate
that a major reduction in musk ox diversity occurred in this
region at ca. 45,000 14C YBP. There is no archaeological evi-
dence of human presence this far north at this time; the first well-
supported evidence of human settlements in Northeast Siberia
are at a Paleolithic site in the Yana River basin at 27,000 14C
YBP (37). Thus, an alternate explanation for the loss is required.
Intriguingly, the loss of a distinct mtDNA clade for mammoths
has also been observed in this region at this time (15, 16, 38),
suggesting the cause was not species-specific. Given that during
MIS 3 both polar ice-core records and pollen, plant macrofossils,
mammal, and insect remains indicate that the climate started to
both fluctuate significantly and become increasingly warmer and
wetter (39–41) (Fig. S7), and that, as discussed above, musk ox
are sensitive to both climate warming and fluctuations (32, 42),
climatic-driven environmental change is a plausible hypothesis.
The distribution of the 14C dated samples in both the Taimyr

and Urals indicates a widespread loss of musk ox in these regions
following theLGM, culminating by around 13,000 14CYBP (Fig. 3).
There is no evidence for the presence ofmodern humans in the area
until the very end of the Pleistocene or earlyHolocene (43–45), and
as mentioned above, the human arrival in the Taimyr is associated
with no statistically significant change in genetic diversity (Table 1).
However, this time does coincide with the Bølling/Allerød period,
during which the climate became more humid and a general deg-
radation of permafrost started, accompanied by a dramatic change
in vegetation from tundra-steppe to wet tundra and forest tundra

(7). Thus, once again, the data directly suggest that these fluctua-
tions were driven by nonanthropogenic factors.
Further evidence of the competing roles of humans versus

environment is provided by the Greenlandic data. Although
musk ox were present in the Americas throughout the Pleisto-
cene, they did not colonize Greenland until very recently.
Although other species, such as caribou, are known to have been
present in Greenland during the last interglacial (46), the fossil
record shows that musk ox first arrived in Greenland during the
mid-Holocene, with the oldest samples dated to 4,500 14C YBP,
from Paleoeskimo Independence I archeological sites in North-
east and Northwest Greenland (47). The fossil record and the
modern geographical range of the musk ox suggest that dispersal
into Greenland took place from Ellesmere Island in Canada by
way of the Robeson Channel to Northwest Greenland, followed
by dispersal along the east coast into central East Greenland (48,
49). Our results are consistent with this pattern, and support a
single colonization event followed by population expansion.
Bayesian skyline analysis of the restricted Greenlandic dataset

suggests rapid population growth following this initial dispersal
into Greenland (Fig. S8). This theory is consistent with the
expected dynamics of a species entering virgin terrain in the
absence of competition and the fact that musk ox thrive during
climatically stable periods (42), such as those reconstructed for
the last ca. 10,000 years in Greenland using GISP2 records (Fig.
S7) (50, 51). This finding, plus the contemporaneous arrival and
colonization of Greenland by humans and musk ox, and the fact
that musk ox genetic diversity in Canada did not change sig-
nificantly following human arrival in the Americas (Table 1),
provides further evidence of a negligible effect of humans onmusk
ox.Arguments thatmusk oxwere not of interest to thefirst humans
as prey can also be discounted, as the Independence I culture are
known to have been expert musk ox hunters, as demonstrated by
the large number of musk ox bones recovered from archeological
sites across the high Arctic of Canada and Greenland that have
been associated with this culture (52).
In summary, although humans may have played a significant

role in the history of other large Beringian mammalian herbi-
vores, to our knowledge this example is unique in showing there is
no evidence that humans drovemusk ox demographic fluctuations
over the last 60,000 years. We argue that an alternate cause,
possibly environmental change driven by the climate (53), was the
major force behindmusk ox population dynamics over this period,
and expect that with the arrival of future aDNA and climatic
reconstructions, this hypothesis can be more explicitly tested.
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Materials and Methods
DNA Extraction and Amplifications. We collected samples from 447 bone,
teeth, or horn core-fossil specimens from the North Sea, Ukraine, Urals,
Taimyr Peninsula, Northeast Siberia, Alaska, Canada, and Greenland (Fig. 4).
Stringent aDNA protocols were followed to avoid contamination from
modern DNA and assure reliability of the results. For full details see SI
Materials and Methods and Table S2.

The absence of any clearly identifiable alternative sequence among these
clones, coupled with the absence of any mismatch when the heavily over-
lapping primers in our amplification strategies were used, suggests that
nuclear-encoded copies of mitochondrial sequences were not recovered,
although they have been obtained from ancient and modern musk ox (54).
Sequences were found to be totally consistent between fragments gen-
erated by different primer pairs and replicable between amplifications when
the same primer pairs were used.

Mitochondrial control region DNA was successfully amplified and
sequenced from 216 of 447 specimens (49%), including specimens mor-
phologically identified as Ovibos moschatus, Ovibos pallantis, and Praeovi-
bos sp. For 60 specimens we were able to recover the complete control
region sequence. For 162 samples we were able to recover the 682 bp
sequence that comprises the main focus of the analyses. For an additional 52
specimens we were only able to amplify part of the 682 bp targeted, and
thus they were excluded from the subsequent phylogenetic analyses.

Data Analyses. Phylogenetic relationships among the 162 specimens that
yielded 682 bp of sequence were estimated using Bayesian Markov chain
Monte Carlo (MCMC) as implemented in the phylogenetic analysis software
MrBayes 3.1 (55). In each analysis, four chains (with heating according to
default settings) were run for 2 million generations, with parameters writ-
ten to file every 1,000 generations. Two separate runs of 2 million gen-
erations were conducted simultaneously under the best-fit model of
molecular evolution (HKY+G) as identified by MODELTEST v3.7 (56). Tracer
1.4 (57) was used to check for stabilization and convergence between runs.
The first quarter (25%) of the trees was discarded as burn-in, and the
remaining trees were summarized with the majority-rule consensus
approach, using posterior probability as a measure of clade support.

Genetic relationships among the dated specimens were estimated using
BEAST v1.4.8 (58), with simultaneous estimation of tree topology, evolu-
tionary model parameters, and demographic parameters. The HKY+G
nucleotide substitution model was assumed along with the Bayesian skyline
plot demographic model (31). Two MCMC chains were run for 50 million
iterations, with parameters written to file every 1,000 iterations. Con-

vergence and mixing were evaluated using Tracer (57), and maximum clade
credibility trees were compiled from the posterior samples using TreeAn-
notator. Separate analyses were performed for the whole dataset, for the
Taimyr+Urals clade and for Greenland. A mutation rate of 8.7 × 10−7 was
obtained from this dataset (95% HPD: 6.53 × 10−7 to 1.0 × 10−6).

Previous authors have argued that the presence of postmortem DNA
damage-driven lesions (PMD) in ancient DNA sequences may complicate the
interpretation of population genetic studies based on aDNA, inflating esti-
mates of diversity (e.g., refs. 59 and 60). To assess for the robustness of the
data, several additional analyses were performed. First, the analysis was
performed as above; however, also including the PMD model (61), which
allows each segregating transition to be the result of postmortem damage
rather than evolution within a probabilistic framework. Analyses were per-
formed in BEAST, as described above. Damage levels were shown to be very
low (95% HPD: 2.27 × 10−12 and 1.2 × 10−8). The results of the PMD analysis
were not significantly different from those of the analysis excluding the PMD
model, and a Bayes factor test (62) indicated that the PMDmodel provided no
improvement of fit over the simpler model (Bayes factor = 8.482, with pref-
erence for the analysis without the damage model). Second, as postmortem
damage is likely to only be observed as singletons in the dataset, the analysis
was also performed on the dataset after removing all singletons. Again,
genetic relationships among the dated specimens were estimated using
BEAST with evolutionary and coalescent models, as described above. The
results do not differ from the previous analysis (with or without PMD) except
that the effective population (Ne) size decreased as it was expected because
we removed diversity when we discarded the singletons (Fig. S9).

We used SSC (63, 64) to model several aspects of the data (Fig. S10). First,
the results of the phylogenetic analysis indicate that mtDNA phylogenetic
structure existed in themusk ox population (Fig. 2), with particular distinction
between the Taimyr/Ural individuals, and the rest. As demographic parame-
ters are estimated by BEAST under the assumption of a single population, SSC
was used to explorewhether the population dynamics recovered in the BEAST
analyses (Fig. 1) could arise simply as a consequence of population sub-
structure combined with our sampling strategy. Second, we used SSC to
model whether the observed nucleotide (π) diversities of the modern (< 100
14C YBP), ancient (> 100 14C YBP), and pre- and posthuman contact samples
(from Canada and Taimyr) differed significantly, or could be explained solely
as a result of our sampling scheme in a single, constant-sized, population. Full
details of the simulations are described in SI Materials and Methods.

To assess the geospatial distribution of musk ox through time, an addi-
tional BEAST analysis was performed with the full dataset of finite radio-
carbon-dated specimens. In this analysis, in addition to the parameters
described above, the probability distribution of the geographic locations of
each node in the tree were also inferred. Briefly, this discrete geospatial
model (65) assigns each sequence to a fixed location in space (here, five
locations were assumed: Greenland, Northeast Siberia, Taimyr, Urals, and
Canada). Rates of diffusion between each of these sites are then estimated
according to a continuous-time Markov chain. Under the continuous-time
Markov chain model, the unobserved location at the root of the tree derives
from a uniform distribution over all sampled locations. Dispersal then pro-
ceeds conditionally independently along each branch in the tree according
to a memory-less transition process and ultimately gives rise to the observed
locations at the tips. An infinitesimal-rate matrix Q characterizes this Markov
model and we estimate these rates from the data using Bayesian stochastic
variable selection to achieve statistical efficiency as the data represent only a
single realization from the process. The posterior probabilities of a given
node in tree existing at each possible location are simultaneously estimated
along the tree and evolutionary model in BEAST. This simultaneous infer-
ence also assumes the Bayesian skyline plot coalescent prior over the tree
and incorporates the PMD model to account for possible damaged sites. Two
MCMC chains were run for 100 M iterations, with subsamples recorded from
the posterior every 10 K iterations.
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