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Ancient DNA Identification of Early 20th Century Simian T-Cell Leukemia
Virus Type 1

Sébastien Calvignac,* Jean-Michel Terme,� Shannon M. Hensley,� Pierre Jalinot,�
Alex D. Greenwood,� and Catherine Hänni*
*Université de Lyon, Paléogénétique et Evolution Moléculaire, Institut de Génomique Fonctionnelle, INRA, CNRS, UCB-Lyon I,
Ecole Normale Supérieure de Lyon, Lyon, France; �Université de Lyon, Contrôle de l’Expression Génétique et Oncogénése Virale,
Laboratoire de Biologie Moléculaire de la Cellule, CNRS, UCB-Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France; and
�Department of Biological Sciences, Old Dominion University

The molecular identification of proviruses from ancient tissues (and particularly from bones) remains a contentious issue. It
can be expected that the copy number of proviruses will be low, which magnifies the risk of contamination with
retroviruses from exogenous sources. To assess the feasibility of paleoretrovirological studies, we attempted to identify
proviruses from early 20th century bones of museum specimens while following a strict ancient DNA methodology.
Simian T-cell leukemia virus type 1 sequences were successfully obtained and authenticated from a Chlorocebus
pygerythrus specimen. This represents the first clear evidence that it will be possible to use museum specimens to better
characterize simian and human T-tropic retrovirus genetic diversity and analyze their origin and evolution, in greater detail.

Introduction

Three retroviruses, the human T-cell leukemia virus
type 1 (HTLV-1) and the human immunodeficiency viruses
type 1 and 2 (HIV-1 and HIV-2), are known to be human
pathogens (Barre-Sinoussi et al. 1983; Gessain et al. 1985;
Clavel 1987). These viruses originated from cross-species
transmissions of simian T-cell leukemia viruses (STLV)
and simian immunodeficiency viruses (SIV) from a yet un-
identified Asian Primate (Van Dooren et al. 2007), the
chimpanzee (Pan troglodytes; Keele et al. 2006) and the
gorilla (Gorilla gorilla; Van Heuverswyn et al. 2006),
and the sooty mangabey (Cercocebus atys; Hirsch et al.
1989). SIV and STLV infect a wide range of nonhuman
African primates at a naturally high rate (VandeWoude
and Apetrei 2006). Their cross-species transmission to hu-
mans may be frequent in Central Africa (Kalish et al. 2005;
Wolfe et al. 2005), constituting a potentially serious threat
to human health. Investigating STLV and SIV genetic di-
versity, which will allow for a better understanding of their
evolution, is thus of prime interest. Such investigations
have previously relied on the use of blood or scat samples,
which are difficult to obtain from wild individuals. A poorly
explored alternative is the use of the bones from the numer-
ous museum specimens gathered over the last 2 centuries.

In contrast to mitochondrial or nuclear DNA, which
can be found in any nucleated cell of the bone, proviral
DNA of T-cell tropic retroviruses such as SIV or STLV
is only expected to be found in a tiny fraction of all cells
present in bones (i.e., CD4þ T-cells and macrophages).
This makes proviral DNA amplification from bones an un-
usually challenging task. Furthermore, the only ancient pro-
viral sequences published at this time (HTLV-1 sequences
from a 1,500-year-old mummy bone; Li et al. 1999; Sonoda
et al. 2000) are highly controversial (Gessain et al. 2000;
Vandamme et al. 2000). Thus, the question of the feasibility
of paleoretrovirological studies remains unanswered.

The authenticity of ancient sequences can be ascer-
tained by using standards widely accepted by the ancient

DNA community (Hofreiter et al. 2001; Pääbo et al.
2004). Following a strict, yet classical, ancient DNA meth-
odology based on these standards, this study aimed to assess
whether it is feasible to retrieve and authenticate ancient pro-
viral DNA sequences from the bones of museum specimens.
To address this question, we focused on museum specimens
of a convenient model, the species complex Chlorocebus sp.
(their vernacular name African green monkeys [AGM] will
be used hereafter). Numerous populations belonging to this
complex are indeed infected at high rates of prevalence with
2 retroviruses (SIVAGM and STLV-1; Meertens et al. 2001;
VandeWoude and Apetrei 2006). Attempts to extract and
identify proviral DNA from AGM samples were successful
in unambiguously authenticating STLV-1 pX and long ter-
minal repeat (LTR) sequences from an early 20th century
specimen. These results open up museum specimen–based
studies of retroviral genetic diversity and evolution.

Materials and Methods

The following section reports experimental conditions
in Lyon, France. The latter are essentially similar to those
that were followed in Norfolk, VA. Noteworthy, the repli-
cation in Norfolk was fully independent and performed
from samples that never transited by any of Lyon molecular
labs. For a complete description of both experimental con-
ditions and results obtained in Norfolk, refer to supplemen-
tary materials and methods S1 [Supplementary Material
online] and to MacPhee et al. (2005).

Sample Description

Bone fragments were sampled from 6 distinguishable
individuals identified as Cercopithecus aethiops (the genus
name has been changed to Chlorocebus and several cryptic
species have been defined recently; Groves C, personal
communication and Groves [2001]) in the catalog of
the Royal Museum of Tervuren (Belgium). All sampled
skeletons were complete or nearly complete and had
been stored at room temperature after an initial cleaning
by desiccation. All individuals came from Central
Africa, which is the putative geographical origin of both
retrovirus epizootics. Specimen characteristics are detailed
in table 1.

Key words: ancient DNA, STLV-1, SIV, Chlorocebus.
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Retrovirus-Targeting Primer Assay

TargetingproviralDNAfragmentsmeansapriori target-
ing very low-copy DNA fragments. DR4/DR5 (Clewley et al.
1998) and SK43/SK44 (Kwok et al. 1988) (2 primer pairs that
respectively amplify short fragments of SIV and STLV-1 ge-
nomes in all known groups of SIV and STLV-1) were first
assessed on a known, decreasing concentration of DNA tem-
plates by quantitative polymerase chain reaction (Q-PCR). Q-
PCR amplifications were performed in a building physically
isolated from the one in which the ancient DNA laboratory
was located. Assays were performed on 10 to 1,000 templates
using a kit (Light Cycler FastStart DNA MasterPLUS, Roche
Applied Science, Penzberg, Germany) following manufac-
turer’s instructions. Cycling conditions were as follows: 95
�C for 15 min and 60 cycles at 94 �C for 15 s, 45–58 �C
for 25 s, and 72 �C for 25 s. As DR4/DR5 did not fulfil
our requirements (very low-copy DNA amplification, i.e.,
1 to 10 copies per reaction), DR5 was used with a newly de-
signed primer, SIVintf2 (see supplementary table S1, Supple-
mentary Material online), with which good performance were
shown under the same conditions than above.

Ancient DNA Handling

Ancient DNA Extraction

Extractions and manipulations were performed in spe-
cific ancient DNA facilities. Chlorocebus sp. bones were first
reduced to a powder in liquid nitrogen. The powder obtained
(0.5–1 g) was then digested for 18 h with proteinase K (1 mg/
mL) in buffer (0.5 M ethylenediaminetetraacetic acid, 0.5%
N-lauroyl-sarcosine) under constant agitation at 55 �C
(Loreille et al. 2001). Following this treatment, samples were
centrifuged (1200 � g) and supernatants washed 3 times
with phenol–chloroform–isoamylalcohol (25:24:1) (Orlando
et al. 2002). Finally, DNA was concentrated on a Centricon
30 column and eluted in an ultrapure water volume of 80
and 100 lL. A further DNA purification was done using
Qiaquick kit (Qiagen, Hilden, Germany) when too much in-
hibition of the PCR reaction was detected (Hänni et al. 1995).

Specific Ancient DNA Controls

Two kinds of controls specific to ancient DNA anal-
yses were included in our experiments. When several
AGM individuals were extracted at the same time, cross-

contamination was monitored. This entailed monitoring ad-
ditional samples from other species (lemurs and sheep) that
were extracted with the AGM samples. To monitor airborne
contaminations, an aerosol control was also included in all
PCR assays. It consisted of a tube which was kept open
throughout the manipulation (Loreille et al. 2001). Both
controls were used in amplification attempts with all
AGM and retrovirus primer pairs.

Ancient DNA Amplification and Sequencing

Nine different short (,300 bp) fragments (AGM 12S,
AGM CD4, SIVAGM pol and STLV-1 pX, and STLV-1
LTR fragments) were targeted using the 9 primer pairs de-
scribed in supplementary table S1 (Supplementary Material
online). All amplifications from ancient specimens were
performed from 1 lL of 10-fold diluted DNA extract in a to-
tal volume of 25 lL using AmpliTaq Gold (PerkinElmer,
Wellesley, MA). Cycling conditions were as follows: 94 �C
for 5 min; 50–60 cycles at 94 �C for 30 s, 45–58 �C for 30 s,
and 72 �C for 45 s; and at 72 �C for 7 min. PCR products
were then subcloned using Topo TA cloning kit for se-
quencing (Invitrogen, Hamburg, Germany). To test insert
size, clones were picked and amplified by PCR with Mas-
termix (Eppendorf, Hamburg, Germany) using the follow-
ing cycling conditions: 40 cycles at 94 �C for 30 s, 55 �C for
30 s, and 72 �C for 30 s; and at 72 �C for 5 min. Products of
the expected size were sequenced on both strands by Ge-
nome Express, Grenoble. The sequence of a given PCR
product was determined as the consensus of the sequences
of its clones. The sequence of a given fragment for a given
individual was determined as the consensus of the PCR
product sequences.

Quantification of the Nuclear DNA Content of Ancient
Specimens

Q-PCR was performed on 10-fold diluted samples us-
ing primer pair SCCD4-f5/SCCD4-r5 (see supplementary
table S1, Supplementary Material online) and the same
kit as described above. Bovine serum albumin was added
to the reaction so that the concentration would be 1 mg/mL.
Cycling conditions were as follows: 95 �C for 15 min and
60 cycles at 94 �C for 15 s, 58 �C for 25 s, and 72 �C for
25 s. Ten-fold serial dilutions of known concentration CD4
PCR product (from 100,000 to 100 copies) served to define

Table 1
Sample Description and Results of the Various PCR Attempts

Sample
Name
(Lyon
laboratory)

Sample
Name

(Tervuren
museum) Sample Provenance

Date of
Sampling

Mitochondrial
DNA (12S)

Nuclear
DNA (CD4)

Nuclear
DNA Copies

(103) per Gram
of Tissue

Proviral
DNA
(SIV)

Proviral
DNA

(STLV-1)

CH351 RG4023 Kerio (0�40#N–35�35#E) May–June 1914 þ þ 23.2 ± 8.4a � �
CH352 RG2149 Lume (3�31#S–37�43#E) June 1913 þ þ 42 ± 3.7 � þ
CH353 RG23452 Busumba (11�19#S–27�18#E) July 1955 þ þ 603 ± 60 � �
CH354 RG22087 Kakkanda (10�40#S–26�36#E) December 1953 þ þ 244 ± 35 � �
CH356 RG37479 Ngamba (0�24#N–29�34#E) May 1953 þ þ 382 ± 129 � �
CH357 RG36970 Utukuru (4�21#N–29�53#E) February 1952 þ þ 170 ± 49 � �

NOTE.—All specimens belong to the genus Chlorocebus. Numbers of nuclear CD4 copies are expressed as mean ± standard deviation. The symbol ‘‘þ’’ indicates that

PCR attempts yielded at least 2 independent PCR products that delivered clones whose sequences corresponded to the correct species or viral group.
a This number takes into account a negative assay (.36 cycles).
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the linear regression from which ancient extracts content in
nuclear DNA was deduced.

Sequence Alignment and Analysis

Sequences were aligned by eye using the software
SEAVIEW (Galtier et al. 1996). In order to identify the
different consensus sequences, a Blast analysis was then
performed.

Phylogenetic analyses were performed to infer rela-
tionships of all AGM 12S sequences obtained in this study
with previously published Cercopithecus erythrotis, Cerco-
pithecus mona, and Cercopithecus preussi and AGM se-
quences (van der Kuyl et al. 1995) as well as to infer
relationships of the CH352 LTR sequence with 2 Asian
HTLV-1/STLV-1 sequences and 43 African HTLV-1/
STLV-1 sequences (Van Dooren et al. 2001). The appro-
priate model of evolution was determined using MrModelt-
est 2.0 (Nylander 2004), a Modeltest-modified version
(Posada and Crandall 1998) adapted to options available
with Bayesian analysis softwares. According to MrModelt-
est, the best-fitting models of substitution were, respec-
tively, HKY þ I and HKY þ I þ G. For each data set,
3 maximum likelihood (ML) analyses were performed with
PHYML (Guindon and Gascuel 2003) using the online in-
terface http://atgc.lirmm.fr/phyml/ (Guindon et al. 2005).
The transition/transversion ratio and the proportion of in-
variable sites were estimated and the starting tree was de-
termined by a BioNJ analysis of the data sets (default
settings). Using optimization options, 500 bootstrap (Bp)
replicates were performed. For both data sets, all 3 runs
gave similar tree topologies and Bp values. Bayesian anal-
yses were also performed using MrBayes v3.1 (Ronquist
and Huelsenbeck 2003). Four independent runs of, respec-
tively, 1,000,000 generations and 2,000,000 generations
each were performed under the models described above.
Burn-in periods of respectively 100,000 generations and
50,000–350,000 generations were determined graphically
using Tracer 1.2 (Rambaut and Drummond 2003), a soft-
ware that allows easy plotting of all parameters against the
number of generations. For both data sets, all 4 runs gave
similar tree topologies and posterior probability (pp) values.

Results

Ancient DNA analyses requires a precise strategy to
control for contamination from modern sources (Hofreiter
et al. 2001; Pääbo et al. 2004). The one adopted is described
step by step, together with the obtained results, in the fol-
lowing paragraphs.

DNA extraction and pre-PCR protocols (preparation
of PCR mixes) were performed in isolated, positive pres-
sure, regularly bleached, and UV-irradiated rooms. None
of the rooms used had ever contained AGM or provirus
samples or DNA extracts prior to the experimentation.
To further exclude the possibility of contamination with ex-
ogenous modern DNA, each extraction included a blank
and, when necessary, a cross-contamination control (see
Materials and Methods and Loreille et al. [2001]). The var-
ious PCR assays reported here always included the neces-
sary controls including a classical PCR control and an

aerosol one (see Specific Ancient DNA Controls and
Loreille et al. [2001]). Importantly, all controls were con-
sistently negative.

Replication of the results is the basis of any ancient
DNA experiment. It allows for the detection of inconsistent
sequence changes that may result from the process of decay
DNA unavoidably undergoes postmortem (Hofreiter et al.
2001; Pääbo et al. 2004). Thus, samples were only consid-
ered positive for a given PCR if a minimum of 2 PCR prod-
ucts could be obtained (see Ancient DNA Amplification
and Sequencing). To highlight and identify artifactual mu-
tations induced by ancient DNA modifications, all PCR
products were also subcloned (see Ancient DNA Amplifi-
cation and Sequencing).

As explained in the introduction, proviral DNA is less
than a single copy per cell (as not every cell is infected in
a given population). In contrast, mitochondrial DNA is
present in thousands of copies per cell while all nucleated
cells contain 2 copies of the nuclear genome. To strengthen
the probability that the proviral sequences we hoped to ob-
tain would be authentic, the AGM bone extracts were
screened for their mitochondrial DNA content (12S
rRNA–encoding gene; see supplementary table S2, Supple-
mentary Material online) and nuclear (CD4 gene; see sup-
plementary table S2, Supplementary Material online) DNA
fragments. As success rates on ancient templates are known
to increase when targeting fragments of decreasing lengths
(Pääbo et al. 2004), the nuclear DNA was purposely chosen
for being shorter than the mitochondrial one (248 bp from
the mitochondrial 12S rRNA gene, 201 bp from the nuclear
CD4 gene). The latter was also used to quantify the amount
of nuclear DNA in all of the 6 samples. All 6 samples
yielded mitochondrial and nuclear sequences that matched
AGM sequences available in GenBank (see supplementary
alignment S3, Supplementary Material online). Phyloge-
netic analyses of the mitochondrial sequences also con-
firmed the expected phylogeography of AGM species
(Colin Groves, personal communication and Groves
[2001]; Supplementary fig. S4, Supplementary Material on-
line). The quantification of nuclear DNA from each extract
by Q-PCR (using the same primer pair as above) revealed
a clear time dependency: the 2 oldest specimens (captured
in 1913 and 1914) contained less nuclear DNA than the 4
youngest (captured in 1952, 1953, and 1955). However, all
6 samples were considered good candidates for proviral
DNA research as nuclear DNA could be detected.

In order to be confident that the amplification would be
successful from any infected individual, highly conserved
parts of the SIVAGM and STLV-I progenomes (respectively
pol and pX genes) were targeted. One primer pair per virus
was used to try amplifying fragments shorter than those that
had already been amplified from the AGM genomes (143 bp
from the pol gene and 159 bp from the pX gene). These 2
primer pairs had previously been shown to allow amplifi-
cation from very low concentration targets (see Retrovirus-
Targeting Primer Assay and supplementary table S1,
Supplementary Material online). Thirty-one PCR attempts
per extract were performed with each primer pair. No
PCR-positive individualcouldbe identifiedwith theSIVAGM

targeting pair. One individual (CH352, see table 1) was iden-
tified as PCR positive with the STLV-1 targeting pair. Four
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subcloned PCR products allowed for the determination of
a consensus pX sequence (see Ancient DNA Amplification
and Sequencing) that exhibited 100% identity with modern
STLV-1/HTLV-1 sequences (as determined by BlastN
analysis).

Targeting conserved regions increases the probability
of successful amplification of very divergent retroviruses.
However, it only allows the recovery of poorly informative
sequences (see the criticisms of Li et al. [1999] in Gessain
et al. [2000]; Vandamme et al. [2000]). Those might be dif-
ficult to distinguish from potential contaminants. To further
exclude the possibility of a contamination with a modern
STLV-1/HTLV-1 strain, it was thus necessary to obtain
phylogenetically informative sequences from CH352. Five
fragments of the LTR, covering a total of 467 bp, were tar-
geted (see supplementary table S2 and alignment S5, Sup-
plementary Material online). A total of 184 clones obtained
from 21 PCR products allowed for the determination of
a consensus sequence that differed by at least one substitu-
tion to all available HTLV-1/STLV-1 sequences (according
to a BlastN analysis). This is in agreement with both the low
rate of substitution of HTLV-1/STLV-1 (103–104 lower
than the rate of substitution of HIV-1; Lemey et al. 2005)
and the number of substitutions observed in a pedigree-
based study (5 substitutions for a 419- to 1,109-year period;
Van Dooren et al. 2004). Phylogenetic analyses performed
on a 46-sequence alignment of the LTR region (see
Sequence Alignment and Analysis; Van Dooren et al. 2001)

confirmed1)theAfricanoriginoftheCH352provirusbecause
the latter nests into the African STLV-1/HTLV-1 (fig. 1,
node A; ML Bp: 95, Bayesian pp: 1), 2) its accurate geo-
graphical origin (Kenya, see table 1) because the CH352
LTR sequence belonged to the Congo, Kenya, Tanzania,
and South Africa endemic clade HTLV-1e (fig. 1, node B;
Bp: 74, pp: 0,99), and 3) the species designation of its
carrier because the CH352 LTR sequence was most closely
related to a sequence obtained from a modern C. aethiops
individual (accession number AF012730; fig. 1, node C;
Bp: 86, pp: 0,99). Thus, the phylogenetic analyses of the
CH352 provirus LTR sequence confirms the information
available about the sample CH352.

Finally, the sequences of 2 of the LTR fragments were
replicated in an independent laboratory from an indepen-
dent sample of CH352 (see Materials and Methods). A
BlastN analysis of the 176-bp-long sequence revealed that
only 2 sequences were 100% similar to that of the CH352
provirus (AY026848 and AF117282), both having been
identified from individuals belonging to the complex
Chlorocebus sp.

Discussion

Both technical and phylogenetical reasons argue in
favor of the authenticity of the proviral sequences described
here. Experiments were performed in ancient DNA

FIG. 1.—Phylogenetical analyses of 467-bp-long LTR. Bp and pp values are shown above nodes corresponding to S/HTLV-1 groups. STLV-1
sequences obtained from Chlorocebus sp. individuals are labeled with an AGM picture. The part of the clade S/HTLV-1e containing the CH352 LTR
sequence is magnified on the right of the phylogenetic tree. Just above, countries in which at least 1 HTLV-1e virus has been described are shaded blue
on a map of Africa. The arrow indicates the geographical origin of CH352 (near the border between Kenya and Tanzania).
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dedicated facilities following an adapted methodology
which included 1) the use of specific ancient DNA controls,
2) the replication of the results in the laboratory, 3) the
screening of samples by targeting templates of expectedly
decreasing concentrations, 4) the identification of provirus-
positive individuals by using primer pairs targeting con-
served regions, 5) the determination of phylogenetically
informative sequences, and finally 6) the replication of a part
of the results in an independent laboratory. Li et al. (1999)
controversial sequences did not fulfil requirements (1), (5),
and (6). We therefore provide the first clear evidence that
amplifying proviral DNA from early 20th century bones is
possible if a systematic strategy to ascertain the authenticity
of the isolated sequences is followed. Other related sub-
strates such as bone marrow or dental pulp (which were al-
ready used for the search of other pathogens, reviewed in
Drancourt and Raoult [2005]) could contain even higher
concentrations of proviral DNA and should also be consid-
ered for future studies.

Only one sample was PCR positive for STLV-1 pro-
viral DNA and none for SIVAGM. This is far lower than
the expected high rates of prevalence of both infections
(Meertens et al. 2001; VandeWoude and Apetrei 2006).
One could conclude that very few of the museum specimens
were well enough preserved to detect proviruses. However,
there are at least 2 reasons to be optimistic about the future
rate of success of comparable experiments. First, most of
the sampling could well have been composed of uninfected
individuals (or alternatively of infected individuals with
low proviral loads). Only 6 individuals were sampled
and this is too small a collection to be considered represen-
tative. In addition, the Q-PCR results show that the only
STLV-1-positive individual is 1 of the 2 samples with
the least concentrated nuclear DNA. The failure to amplify
STLV-1 DNA fragments from the 4 other individuals there-
fore does not reflect the fact that they did not contain
enough DNA to still yield amplifiable proviral DNA but
rather that these individuals were probably uninfected. Sec-
ond, the primer pairs that we used to detect infected indi-
viduals may not have been efficient enough for amplifying
the proviral DNA present in the extracts. Their detection
threshold was shown to be very low in the ‘‘ideal’’ condi-
tions of a Q-PCR on modern templates (see Retrovirus-
Targeting Primer Assay) but it might well be that inhibitory
molecules present in the extract of ancient bones hamper
this ability. Furthermore, although we targeted conserved
viral regions, the possibility of unexpected mismatches with
the templates cannot be ruled out.

Museum specimens provide a unique opportunity to
gather information about T-cell tropic retrovirus genetic di-
versity and evolution. Our results should thus encourage
research aimed at obtaining proviral sequences from addi-
tional museum specimens.

Supplementary Material

Supplementary materials and methods S1, tables S1
and S2, alignment S3, figure S4, and alignment S5 are avail-
able at Molecular Biology and Evolution online (http://
mbe.oxfordjournals.org/).
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