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1 Introduction

The TMDs [1-3] (also called unintegrated parton distributions) are widely used in the
analysis of various scattering processes like SIDIS or Drell-Yan. The TMD generalizes
the usual concept of parton density by allowing PDFs to depend on intrinsic transverse
momenta in addition to the usual longitudinal momentum fraction variable. At low energies
the relevant quantities are quark TMDs and there is a vast literature on the application



of quark TMDs for analysis of cross sections of processes measured at JLab and elsewhere
(see e.g. refs. [4-18], for review see also refs. [19-21]). However, since at the future EIC
accelerator the majority of the produced particles will be gluons one needs to study also the
evolution of gluon TMDs. Moreover, the EIC energies may be in the intermediate region
between hard physics described by linear CSS evolution [22] and low-x physics described
by non-linear BK/JIMWLK evolution [23-33] so one needs to study the transition of the
evolution of gluon TMDs between these two regimes.!

The gluon TMD (unintegrated gluon distribution) is defined as [36]

D(ZL‘B, kLa 77) :/dQZL ei(kVZ)LD(:L‘By 21 77)7 (11)
-1
o D(ep, 21,0) = g0 / du e PPN (P FE(z) + un)z) — oon, —oon]** F*(0)| P)

where | P) is an unpolarized target with momentum p (typically proton) and n is a light-like
vector. Hereafter we use the notation

Fe(zL +un) =ntgFjg(un + 2z )[un + 21, —oon + 2, | (1.2)
where [z, y] denotes straight-line gauge link connecting points x and y:

[ZL’, y] = Peld Jdu (z—y)* Ay (uz+(1—u)y) (1.3)

There are more involved definitions with eq. (1.1) multiplied by some Wilson-line factors [3,
37] following from CSS factorization [22] but we will discuss the “primordial” TMD (1.1).

It is well known, however, that gluon TMDs are not universal in a sense that the di-
rection of gauge links providing gauge invariance depends on the type of processes under
consideration, see ref. [38]. For example, TMDs entering the description of processes par-
ticle production have light-like gauge links starting at minus infinity as in eq. (1.2), but
TMDs which appear in the analysis of semi-inclusive processes have gauge links stretch-
ing to plus infinity (so the corresponding expression for TMDs is obtained by replacement
—00 > 00 in eq. (1.2)). For a more complicated processes the structure of gauge links may
be even more involved, see e.g. ref. [39].

In our recent paper [40] we have obtained the leading-order evolution equation for gluon
TMDs for semi-inclusive processes like semi-inclusive deep inelastic scattering (SIDIS). The
obtained equation describes the rapidity evolution of gluon TMDs in the whole region of
small to moderate Bjorken zp and for any transverse momentum. It interpolates between
the linear DGLAP and Sudakov evolution equations at moderate xp and the non-linear
BK equation for small . In this paper we extend our analysis to the case of gluon TMDs
appearing in particle production processes with gauge links extending to minus infinity in
the light-cone (LC) time direction. The analysis is very close to the study of our paper [40]
so we will streamline the presentation of technical details paying attention to differences
between these two cases (with links going to plus or minus infinity). The final evolution
equations are similar (but in general not the same!) to TMDs with gauge links extending
to plus infinity.

!For the study of quark TMDs in the small-x regime, see refs. [34, 35].



The paper is organized as follows. In section 2 we remind the logic of rapidity factor-
ization for the inclusive particle production and rapidity evolution. In section 3 we discuss
rapidity evolution of gluon TMDs and calculate the leading-order kernel of the evolution
equation. We present the final form of the evolution equation in section 4 and discuss BK,
Sudakov and DGLAP limits in section 5 and linearized equation in section 6. Section 7
contains conclusions and outlook. The necessary formulas for propagators near the light
cone and in the shock-wave background can be found in appendices.

2 TMDs in particle production

To simplify the description of particle production, let us consider the model where a (col-
orless) scalar particle can be produced by gluon-gluon fusion through the vertex coming
from the Lagrangian

Sp =\ / d*z F,(2) F" (2)(2) (2.1)

One may consider this as a model of Higgs production by gluon fusion in the region where
transverse momentum of produced Higgs boson is smaller than the mass of the top quark.

Let us consider the production of this ®-boson in the high-energy scattering of a
virtual photon with virtuality ~ few GeV off the hadron target. As demonstrated in
the appendix A the cross section of ®-boson production can be represented by a double
functional integral

N itk [T s v’
O = 27r/d wd xd ye'? y/ DADvYDyDADY Dy (2.2)
X WA (A(t;), (t;))e19acn (A0 iSaep (V)G () F2(2) F2 (1), (0) W, (A(t:), b (t:))

where ¥, are proton wave functionals at the initial time ¢; - —oo. (The boundary condi-
tion A(Z,t; — 00) = A(&,t; — oo) and similar condition for quark fields reflects the sum
over all intermediate states X).

We will analyze the energy dependence of this cross section using the high-energy
OPE in Wilson lines. To this end, we integrate over rapidities greater than the rapidity
of the produced ®-boson Y > 14 and leave the fields with Y < 74 to be integrated over
later. The result of the integration over Y > 14 is the coeflicient function (called “impact
factor”) in front of the Wilson-line operator(s) made of gluons (and quarks) with rapidities
Y < ng. (Strictly speaking, we integrate over rapidities Y > 74 —e€ so the vertex of ®-boson
production is included into the impact factor). To make connections with parton model
we will have in mind the frame where target’s velocity is large and call the small « fields
by the name “fast fields” and large « fields by “slow” fields. Of course, “fast” vs “slow”
depends on frame but we will stick to naming fields as they appear in the projectile’s
frame. (Note that in refs. [23, 24] the terminology is opposite, as appears in the target’s
frame). As discussed in refs. [23, 24], the interaction of “slow” gluons of large Y with “fast”
fields of small Y is described by eikonal gauge factors and the integration over slow fields
results in Feynman diagrams in the background of fast fields which form a thin shock wave



due to Lorentz contraction.? In the spirit of high-energy OPE, the rapidity of the gluons
is restricted from above by the “rapidity divide” 7 separating the impact factor and the
matrix element so the proper definition of U, is

(o]
Ul = Pexp [zg/ du phf Al (upr + 1) |,
(o]

4
Ap(a) = [ 0~ e * A, (0 (23

where the Sudakov variable « is defined as usual, k = api+8p2+k, . We define the light-like
vectors p; and po close to projectile and target’s momenta g and p so that ¢ = p; + gpg and
D =p2+ mTQpl. We use metric g"” = (1,1, -1, —1) so that p-q = (pfBq+aefBp)5 — (P, q) L.
For the coordinates we use the notations ze = z,p} and z, = z,p} for dimensionless light-
cone coordinates (2, = \/3x4 and x4 = \/52_).

In accordance with general background-field formalism we separate the gluon field into
the “classical” background part and “quantum” part

Ay = A+ AL Y o gy

where the “classical” fields are fast (¢ <o =€) and “quantum” fields are slow (>0 = e").
It should be emphasized that our “classical” field does not satisfy the equation D*F ﬁfj =0
rather, (D“Fﬁ},)“:—g&'y,,taq/} where 1 are the “classical” (i.e. fast) quark fields.

m

¢ In quantum

The first-order term in the expansion of the operator F}} (ys, y1 )[y«, —00]
fields has the form
s 0
2 0yx
[V 2
— AT Y, Y1) [y, —00] ] + 2/ A2 3 (e y 1) (9 2]y AS L w1 [ oy

—00

ma st

FoH (o, Y1) [ys, —o0]y't = P

Yo Y1) [Yses _OO]Zw (2.4)
)ma
(to save space, we omit the label ¢ from classical fields).

In the leading order the impact factor is given by the diagram shown in figure 1.
The quark propagator in the external field has the form

(@) (y)) (2.5)

Z, Y= <0 Cda (e —iiz - z‘i
Y < / et y)-(xﬂe o “(api+ p1) ¢2UTU(Q¢1+ b1)e "Ly, u1)

2a2s

where o = e is the lower rapidity cutoff for the impact factor (and upper cutoff for a’s in
Wilson lines). Hereafter we use Schwinger’s notations

(0 |f (pu)lys) = / E2p, PV E(p)), (wylpy) = P (2.6)

2An exceptional case discussed later is when the transverse momenta of the external field are much
smaller than the characteristic transverse momenta in the impact factor. In this case the “shock wave” is
no longer narrow and one needs the light-cone approximation rather than the shock-wave one. However, if
the virtuality of the photon is ~ few GeV the characterisic transverse momenta of the impact factor and of
the fast “external fields” are of the same order of magnitude so the shock-wave approximation is applicable.



Figure 1. Rapidity factorization for particle production. The dashed lines denote gauge links.

Note that unlike the case of total cross section, here we consider particle production so
the gluon lines in figure 1 terminate at the ®-boson emission point leading to gluon TMDs
rather than proper Wilson lines (stretching from minus to plus infinity in LC-time di-
rection). Indeed, the gluon propagator with one point in the shock wave has the form
of the free propagator multiplied by the gauge link going from point y to —oo in the p;
direction [40]:

i [Fda —ia(y—=z —ii —z
A Pslu)) = 5 [ et (o e 00 sl 4 2paup ) -oc, ], (2)

Since the propagators (2.5) and (2.7) have simple structure one can calculate the integrals
in figure 1 and the result has the form

A0, = (2.8)

= /dQZudQZmdledzyL I (21, 20, w0,y ym)el e /dx*dy* e~ tPB (@ —ys)

A(oo):A(oo) o~ B . . I
x / DADYDPDADG DY Wi( A, )]s,=— oo €~ a0V giSacn(A)
X tr{UZQ [ZQL ) xL]—OO[_OO*u ZU*]Q;F.Z'(CC*, xl)[m‘*, _OO*]J?[:L‘JJ le]—OOUJl
X Uzl [ZIL 5 yJ_]—OO[_OO*a y*]yF°j (y*a yl_)[y*a _00*]3/[91_» ZQL]—OOU;LQ}\IIP(/L Q[)) ’tz‘Z—OO

where tr{. ..} is the color trace in the fundamental representation and Iff,', (21,,22,,%1,Y1;0)
is the impact factor with the lower rapidity cutoff n = Ino.?> Hereafter we use the short-

3Both impact factor and matrix element of Wilson-line operators depend on the “rapidity divide” ¢ but
this dependence is canceled in their product.



hand notations for gauge links

2 2
[T, Za)w = [;x*pl +xz, g + ] (2.9)
and
2 2
(21, 21]-00 = [_goo*pl oL, —200upr + z1] (2.10)

As discussed in refs. [23, 24], the fast fields at light-cone time 400 are pure gauge so the
precise form of the contour in eq. (2.10) is irrelevant.

The calculation of the impact factor IZJ,', (21,,22,,21,y1;n) is similar to the calculation
of the NLO photon impact factor for the DIS structure functions carried out in refs. [41, 42].
Since the explicit form of 1 ffl, is irrelevant for our purpose of finding the evolution of gluon
TMDs and since in the real life the contribution of the diagram shown in figure 1 is a
tiny correction to the total cross section of Higgs production in DIS we did not attempt
to calculate this impact factor. In the case of proton-proton scattering the impact factor
should be given by another gluon TMD made of Wilson lines stretched in py direction. We
intend to discuss the obtained factorization in a separate publication.

As demonstrated in appendix A (see eq. (A.8)), the double functional integral (2.8)
represents the matrix element

)\720W =
= / Az, Az, dPx d?y) T, (21, 20, w0, yy;m)el o)L / da,dy, e 8@y

tl"<p|T{Uz2 [ZQJ_ ) SUL]—OO[_OO*? $*]IF'i($*’ xL) [x*v _oo*]l[ll’ ZlJ_]—OOU;}

X T{U, (21,5 Y1 ]—o0[=00w, Yl Faj (e, y1) [y, —00ulylyL, 22, |- UL, Hp) (2.11)

Note that all the gluon operators in the r.h.s. of this equation are separated either by
space-like or by light-like distances. In both cases, the operators commute® so one can
erase T and T signs and get the matrix element

tr(pl[22, s T 1] 0o [—00k, Tu]a Foi(Ta, 1) [T4, —00x]z[T 1, 21, |00

X [21,, YLl o00[—00u; Ysly Foj (Yss YL ) [Ys, —00xly [y L, 22, | —oo|P) (2.12)

Moreover, as we mentioned above, for the fast gluons the precise form of gauge link at
infinity does not matter so we can connect points x| and y, by a straight-line gauge link

[1,y1]-0o (instead of [z, 21 |-co[21,,¥1]-o0) and obtain the matrix element

tl"<p| [yLa xL]—OO[_OO*v x*]xFoi (-77*, xL) [x*a _OO*]x

X @1, Y1 ]—o0[ =00, Yuly Foj (Y, Y1) [Ys, —00x]y[P) (2.13)

proportional to gluon TMD (1.1). Note, however, that forward matrix element of this oper-
ator has an unbounded integration over z, — y,. It is convenient to introduce the notation

4For the space-like separations this is trivial whereas the commutation of operators on the light ray is
proven in ref. [43].



{(p|O|p)) for the forward matrix element of the operator O stripped of this integration

(Pl T (BB, 2L) F* (BB, 0.1)|p + &p2)
=216 () (pIF{" (Br, L) F* (BB, 01)|p) (2.14)

With this notation the unintegrated gluon TMD (1.1) can be represented as
(pl 7" (BB, 2L)F“"(B5,01)|p) = —27Brg*D(BB, 2.1,7) (2.15)

Returning to eq. (2.13), since the dependence on z;, is gone from the matrix element, we
can integrate the impact factor over 2z, and 2z, and get the cross section as a convolution
of the new impact factor Z,, (z,y1;n) with the gluon TMD

A 20, (2.16)
= /dzxﬂlzw T (z 1,y 5m)eBr =L (p| F(Bp, 2 1) [z, y1 ) Fr (BB, y1) D)
where®
T 2 —iBpx« TQ
Fi(Bp,;x1) = 5 dx, e "B Fi(xy,21)

9 .
Fi(BB,yL) = s/dy* BV F (y,, 1) (2.17)

Note that the Wilson-line operators Ul and U, in eq. (2.11) cancel only when we take a
sum over all intermediate states. If we are interested in, say, production of another particle
(at lower rapidity), we need to consider the full double functional integral (2.8).

3 Rapidity factorization and evolution of TMDs in the leading order
We will study the rapidity evolution of the operator

FBpyw1) (w1, y1] e F(Bs, L) (3.1)
Matrix elements of this operator between unpolarized hadrons can be parametrized as [36]

/dzﬂ B (p| F (Bp, 21 ) F" (B, 00)Ip)" = > Ri; (Bp, k15 m)

2kik;
Rij(Bp,k1;n) = —9iiBD(BB, kL, n) + <

]{22
)ﬁBH(ﬁB, ki,n) (3.2)

where m is the mass of the target hadron (typically proton). The reason we study the
evolution of the operator (3.1) with non-convoluted indices ¢ and j is that, as we shall see
below, the rapidity evolution mixes functions D and H. It should be also noted that our final
equation for the evolution of the operator (3.1) is applicable for polarized targets as well.

SHereafter the notation F is just a reminder of different signs in the exponents of Fourier transforms in
the definitions (2.17).



(a) (b)

Figure 2. Typical diagrams for production (a) and virtual (b) contributions to the evolution kernel.
The dashed lines denote gauge links.

In the spirit of rapidity factorization, in order to find the evolution of TMD

(pIFf ey ) [ 1, Y1 ]2 F (s y 1) D) (3.3)

with respect to rapidity cutoff n (see eq. (2.3)) one should integrate in the matrix ele-
ment (3.3) over gluons and quarks with rapidities n > Y > n’ and temporarily “freeze”
fields with Y < 7/ to be integrated over later. (For a review, see refs. [44, 45].) In this case,
we obtain functional integral of eq. (A.8) type over fields with n > Y >/ in the “external”
fields with Y < /. In terms of Sudakov variables we integrate over gluons with o between
o =¢"and ¢/ = ¢" and, in the leading order, only the diagrams with gluon emissions are
relevant — the quark diagrams will enter as loops at the next-to-leading (NLO) level.

To calculate diagrams, one needs to return to a double functional integral representa-
tion of gluon TMD (3.3):

(DI Ff (e, 2 )1,y 120 F (g, y ) 1P

A(oo)=A(c0) L. _ B . ) -
= / DADYDYDADYDY Wh( A, )|4y—oo ¢ Sac(At)

ﬁia('r*axJ_)[xlnyL]gboo eiSQCD(A,w)‘F;?(yMyl)qlp/(A7¢)|ti:—oo (34)

Now, in accordance with general background-field formalism we separate the gluon field
into the “classical” background part with Y < n’ and “quantum” part with n > Y > o/
and integrate over quantum fields. In the leading order there are two types of diagrams:
with and without gluon production, see figure 2 (we assume that there are no gluons with
n>Y > 1 in the proton wave function).

3.1 Production part of the LO kernel

ma

y' ¢ in quantum

The first-order term in the expansion of the operator F}}(y«,y1)[y«, —00]
fields has the form

Foi (Y, y1) [y, —00f* = §£Azmq(?/*7 Y1) [Ys, —00];" (3.5)

Y2 m ma
- 8114?1(](3/*7 yJ_)[y*7 _OO]ZM + Z/ dngk Foi (y*a yl.)([y*a sz]yA(o](me yJ_)[kau _Oo]y)

—00
(to save space, we omit the label ¢ from classical fields). As it was proved in ref. [40], to
find the evolution kernel in the leading order in «; it is sufficient to consider the classical



background field of the form
2
Azl = gpQMA.(l'*,.'L'J_) (3.6)
where the absence of x, in the argument corresponds to o = 0.
Using the gluon propagator (B.23) from section B.3 we obtain the result for the diagram
in figure 2a in the form

<]:-ia($*7 xL)]:q(yw yL)>77>Y>”7/

2

da A
- _4/ 2a3T[ 00, Ty |:(xL|(p2Lgik: + 2pipk)e s *Oa(pL, Ty, 0) (3.7)

/ 0, For (2,1 ) [0, ) (2L [P~ iatwi@am,x;,oo)}

2
Pl
X [Oa(oo,y*,m)el a5 ¥+ (p3 65 + 2p;p¥)|yL)

4 Y 3,
+ EOa(oo, voonl) | Ayl et a Y pPly ) W, vy Foj (ys, yﬁ] [y, —00]y

—0o0
where (O) denotes the expectation value of operator O in the external field. Note that
in this paper we perform calculations of diagrams in the background field (3.6) in the
light-like gauge
PhAL () =0 (3.8)

We will make necessary comparisons with the background-Feynman gauge calculations of
ref. [40] in appendix D.

Let us consider now the remaining integral over “classical” fields with Y < 7. It has
the form

)=A(o0) - ' o
/ 5o / DADGDIDADGDY e—iSacn(A9) ciSacn(4v)
o
PQ ~
* {4 ¥)lemoo Trl 00, 7] [(x”(pigik + 2pip)e a7 O (p, T, 00) (3.9)

4 Tx i ;) o~
+/ dz’ F.l(x*,:vL)[x*,x] (z1|pre” Zatx*Oa(pL,x;,oo)}

—00

2
a
X {Oa(oo,y*,m)el a5 ¥+ (p3 65 + 2p;p¥)|yL)

4 Yx 3
+ SOa(oo,yi,m)/ dy, e'as y*pk!yL)[yi,y*]yF.j(y*,yL)] (Y, =00y Wy (A, ) |t;=— o0
—0oQ

where Tr(...) is the trace in the adjoint representation. As discussed in appendix A, the
double functional integral (3.9) represents the matrix element

2

7da 2 —i%Lly
- 4 908 (| Tr[—o00, il | (x L] (P gik + 2pipk)e™" @™ Oa(pL, T+, 20) (3.10)

/

4 [ i
+/ dr, Foi(xs, ) )@y, 2] (21 |pre” ’as””*(’)a(pbx;,oo)]

$J-—c

iiy* 2 ¢k k
X |Oa(00, s, p1)e"as ¥ (p167 + 2pip”)|yL)

4 . Y
+ gOa(omy*,m)

—00

/ iiy’ k / /
dy € sV PPy 1) [y, Ysly Foj (U, yL) | [y, =00y |D')

-9 —



As we mentioned above, all operators in the r.h.s. of eq. (3.10) commute since they are sep-
arated either by space-like or by light-like distance. In addition, from eq. (B.6) we see that

Oa(pl_vx*a OO)OOL(OO7y*7pJ_) = Oa(x*vy*) = Oa(plnx*? _OO)OOC(_OO7y*7pJ-) (311)

Substituting eq. (3.11) in eq. (3.7) we get

(I 77 (@ w 1) T (g, 1) P (3.12)
1 (7da 03
= —4/ ﬁ((MTT[—OO,SU*]m [(fﬂﬂ(pigik + 2pipp)e” "o P On(pL, 24, —00)
o—/
4 [ / / 7iix’ /
+S/ dx*FOi(‘r*’xJ_)[x*ax*]$(xl|pke s *Ooé(pl_ax*a_oo)
—0o0

2

Pl
x [Oa(—oo,y*,m)e’ a5V (6% + 2p;p")lyL)

Yx

4
+ goa(_ooa y>/k7pJ_)/

—0o0

2
P
e I3y g ) | e o611
At this point we compare (3.12) to the evolution equation for (p|EF}}(x«, x| )[xx, 0o]™®
[00, Y] " F1% (yx, y1 )|p)). Repeating steps which lead us from eq. (3.7) to eq. (3.12) we obtain

J

n.

o0, y*]anFo] (y*7 yi)|p>>n

(DI Fei (e, 21 )[4, 00]™

2

1 (7 da Pl
- _4/1 ﬁ<<p|TI‘[oo,l’*]x |:($L|(p2Lgik + 2pipk)€ Vas w*Oa(pL,x*,oo)

4 [ / / —z’ix’ /
_8/ dl;*F'i(x*amL)[$*?$*]$($l|pk€ «s *Oa(pL,:L‘*,OO)
Tk
2

X | Oa (00, Yu, p)e as ¥ (p7 07 + 2p;p")|yL) (3.13)

4 / o / ii !k /
- SOa(oo,y*,m)/ dy, € as ¥ p |y ) [Yss Yuly Foj (Y Y1) | [y, 01y )
Yx

We see that the production part of the evolution equation (3.12) can be obtained from
eq. (3.13) by formally replacing +o0o by —oo everywhere. Consequently, the final expression

for the production part of the evolution equation for the matrix element (3.3) can be

obtained from eq. (4.28) from ref. [40] by replacement oo > —00.%

3.2 Virtual part of the evolution kernel

The virtual part of the kernel comes from the diagrams of the figure 2b type. The second-

ma

order term in the expansion of the operator I (y«, y1)[y«, —ooly

in quantum fields has

5In the appendix D we show that the eq. (3.13), obtained in the light-like gauge, agrees with the
calculations in ref. [40] performed in the background-Feynman gauge.
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the form (cf. eq. (3.5))

]ma 2nd

Fﬁ(y*,yL)[y*a —O00]y

:i/ 422, (DeA™ — 0, AT9) () [, 2] AL ()2, —o0]™ + oL AT Ay, , —o]ma

y* ma
/ a2 / 0220 B (e, ) ([yer 21 AL 2L, 2 AL () 2L —oc)) (3.14)

Using gluon propagator (B.18) we get

ond [V ; 1
F3 (Yo, y L) [y, —00)y® = S/ dy, TrT*[— ooy*](yL,y*\(piéi+2pip])ij
1 4’L Y 1 a /
+p QPQPLIyL,y*) Yu, =00 dy* dy TeT*[—00, yu] Foi (Y, Y.L ) [y Yily
1
X (yL, vy’ ~apaPi ~ IyL, Dy, —ooly

Y= .
/ 2a3/ dyl, TrT*[—o00, y«](yLle” Zasy*{(p 87 + 2pip” ) Oa(ys, Yl );
P 43 Yx
+pi(9a(y*,yi)pi}ezaty*lyL)[yi,—OO]+2/ dy*/ dyy TrT*[=00, y.] Fai(ys, y1)

1 1
X [y, Uiy (s P 55505 = —5ly s gy, —ocly (3.15)

Let us start with the last term in the r.h.s. of the above equation. We will prove that

1 1 1
(1, YolV —pzps — 2\yL, 0 = [y vy (ybyi\ﬂangpj—@\yL,yi’) (3.16)

in our approximation. Indeed, in the “light-cone” case (when the characteristic transverse
momenta of background field [, are much smaller than the momenta of the “quantum”
fields p ) it is evident since

1
(ymyl_’ ‘y*vyJ_) (yfk7yJ_|ﬁ‘y>/kl7yJ_)[y>/k7y:k/]y +O(F°J) (317)

and terms ~ O(F,;) exceed our accuracy. (The second term in the Lh.s. of eq. (3.16) is
proportional to §(y,, —y/) and [y}, y}], = 1 is introduced for convenience.)

In the “shock—wave case when [| ~ p,, if the points ¢ and y” are outside of the
shock wave, the formula is trivial (3 and y” can only be both to the right of the shock
wave since y lies inside). If 3 or both of them are inside the shock wave, one can again use
the light-cone expansion (see the discussion in ref. [40]) and get the result (3.17). Thus, in
both cases we can use eq. (3.16) so

¥ / d / d S (3.18)
y*ayl Y y* yJ_vy* (p +Z€) pj— a2 YL,y .
2N F( Ty [ ay [daap B0 b
=—2i y*,yL/ y/ y/ adf e” o (aﬁs—piﬂ'e)"“)

- 11 -



where we used formula TrT[—00, Y| Fei (Ys, Y1) [Ys, —00ly = NeF (Y, y1 ). It is convenient
to change a <> —a and 3 <> —f (which is equivalent to changing vy, <> y”) and get

Yx
~iNF o) [ dilay! [dadp B | ——ly)
oo a(afs —p; +ie)
da 1 1
= —iNFH (Y, —dp V.p.= _ 3.19
iNFi (y yL)/a B pﬁ(yﬂaﬁs_pi“elyu (3.19)
where V.p. means principle value: V.p. % = %(xEZE + = +Z€) Thus, we obtain the result for
the last term in the r.h.s. of eq. (3.15) in the form

y- 1 1
/ dy*/ dyy TrT* (=00, Y| Fai(ye) 9o, YLy (w1, YolP —5553p5 — =51y, v il —o0ly

_ —fﬁ“(y*,yﬂ(yﬂfz‘yl) [/OOOM _/0 da]

«a oo
*do

= NPy ) [ (320)
J_ 0

Next we turn our attention to the first term in the r.h.s. of eq. (3.15) and start with
the light-cone case [} < p:

1 ‘
SA 20[3/ dy* TI'TG’[ o0 y*}(yj_’ff as y*{(pJ_(S] +2pzp]) (y*yy;)p]

2
+ iO0a (s, ¥%) pi}elwy*\m)[yi,—w]

2

do L, , o
N s/ 203 dy* TrT*[—o00, ) (y.le™ @ W= (5] 6] + 2pip? ) OF (y, 92 )ps
0

2
_ Pl
+ piOY (yu, i )P e s WYy [y, —oc] (3.21)

where Og/* is defined in eq. (B.9). The first term in the r.h.s. of this equation yields

Yx Pl Y Yx 9
| e [ ke S0 (G 20 [ a2 oo sl o),
0 Vi
4Zg 2 /
vt [ "z (2 = 1[0, 2 a2z~ ) ) (3.22)

2
. P (y—o
B _19/ 43/ dy. (yolpte e ¥y, )
0 @°8"J_
Yx
X / dzi (z — ¢ ) TrT4[—00, 2| Fei(24) 24, —00)y

*

so one obtains

(DT = 0. e —ocl™ = [ 5 o 5[ mrece)

X (yLle” iwy*(p 5J+2pzp7) (y*,y*)pge aby*!yL)[y*, o] (3.23)

Yx
ZQN/ / dz, (yole™ _2)*|yL)F$(z*)[z*,—oo};m

- 12 —



As to the second term in the r.h.s. of eq. (3.21), it vanishes

Y e /
/0v 20&3/ dy* TI'TG‘[ o0 y*](yﬂpz (y*,y*)pj_e i S(y_y )*|yl)[y:k,7oo]

Yo Y 2
:/ 2a3/ dyl, TrT*[—00, ys] yJ_|/ A= 2 [V, 2] Foi (YL, 24) |20, Y9 €™ s (=9«

419

2
T o), dz* (2 = 9)e[Yer 2] Fa(22) [0, v 0% pipP e 55 0 |y )y, —o0)]

Y= P2
Zg/ / dz, ( yL| 1,¥>6—17§(y—2)*|yﬂ

X TrT[—00, 2| Foi(2+) 24, —00]y = 0

SO
Fret AL ATy, —o0]™ = 0 (3.24)

in our approximation. Thus, the first term in r.h.s. of eq. (3.15) in the light-cone case has
the form

(DA — ;AT + g fmchch?lq)(y*, Y1) [y, =00l )

y
Ys 2
ng/ / dzy (yile” s

Y1) Fei (24) (24, =00y (3.25)
Let us now consider the shock-wave case. It is convenient to start with the representation

Y

of this term by the second line in eq. (3.15)

(DoAY — 0 AT + g f™ AZ AT (g, y1 ) [y, —00]) = (3.26)

i [V / 2 <J j 1 1 2 ! /
= 3/—oody* TrT[—00, y«) (YL, y+| (P10 +2pipj)ﬁpj +pi@pﬂyl,y*)[y*, —00]

i (v , 1
= _S/Oody* TI'Ta[—OO,y*](yJ_,y*’ [pjv [pj7 W]]pl

1 1
=2[pi, [V, —551]pi + i W]pilybyi)[x/i,—m]

Using eq. (B.5) for Feynman propagator one obtains

m m mc Ci ma 1 ooda Yr
(DA =047 + 0" AL A ()=o) = =5 [ 55 [,

2 . )
X TeT®[—o00, g (yo e~ @ ¥ { (5707 + 20,09) Oy, y.)p;
)y, —o0] (3.27)

If the point y, is outside the shock wave this gives

. 'p7J_ /
+i0;0(ys, Y, )p1 be'as s

d TrT“UT(yJ_]e asy*{éjalUp]+2883Upj—i—zaUpJ_}e asy*\yl)

d- a —ii 1 ; Di .
- zG(y*)/O @TrT Uj(yole"as y*{(agai + Qaiaﬂ)Ué + z@iU}]yL) (3.28)

~13 -



If the point y is inside the shock wave we can again use the light-cone expansion and
get eq. (3.25). It is easy to see that in both cases we can approximate the first term in
eq. (3.15) by

(Do AT — AT + g f™ AL AL (g, y1 ) [y, —00]I)

0 d— ) 2
—iﬂ(y*)/ —TrT“UT(yHe iGeys (6]82U+28 8JU)§J Iy )
1

Yx
+29N/ / dz, (yo|e o W2y ) FI i (2:) [24, —00] (3.29)

with our accuracy. Adding the contribution (3.20) of the second term in r.h.s. of eq. (3.15)
we finally obtain the second-order virtual correction in the form

m maznd m Uda
o (Yo, Y1) [y, =00l = —NeFgf! (Y, Y1) [y, —00]y" (yﬂ ‘?JJ_) — (3.30)

o @
. Sda [Y* _-7 ol
+ngc/ ags/ dyf, (yole " as W0 |y )V FR (v 1) [yl —oo]
o’ —

i) [ 5 L0 e (g e (313U + 200°0) B )
o’/ J_

where we put upper and lower cutoffs for the rapidity integrals, see the discussion following
eq. (3.3). After Fourier transformation eq. (3.30) turns to

2nd Tda OéﬁBS
o nd NS (B, :
F (BB yL) Fi (BB yJ.)/U 5 — (v 12 (aBps — 1% 1 ic

/ —TrT“UT (y.|

)IyL)

bj
(5103 U+20,00U) L |y.) (3.31)
afBp 8_pJ_+ pJ_

Note that this equation can be obtained from eq. (4.56) from ref. [40] by reversing the
sign of Bp. In doing so one should go around the singularity at afSps = pi according to
Feynman rules since it corresponds to the diagram in figure 2b with cut gluon propagator.

The virtual part in the complex conjugate amplitude can be similarly obtained from
eq. (4.60) from ref. [40] by replacement Sp — —fp. The singular denominators should

look like W as appropriate for the complex conjugate amplitude.

4 Evolution equation for gluon TMDs

Now we are in a position to assemble all leading-order contributions to the rapidity evo-
lution of gluon TMDs. As we discussed, in the production part of the evolution equation
for the matrix element (3.3) can be obtained from eq. (4.28) from ref. [40] by replacement
00 ¢+ —o0o. Adding the virtual correction to the amplitude (3.31) and its complex conjugate

— 14 —



we obtain the evolution equation for gluon TMD operator (3.1) in the form:

d
dlno

Fi(Bp,x 1) F{ (BB, yL) (4.1)

1 oBBSsgui — 2k ki
= —asTrd [ @%k (2 | U ——(Uky, + ppU K
{/ i L|{ ofRs +pi( k+pU) oBps—+k?

kg U — U —2g, U P U+2ktg~ Fr( B +ﬁ k1)
w Jik oBps+p? k oBps+p? k2 ik BT s )M

k2 06355;‘ — 2k‘j_k‘j
) oBps + k:i

x (k1| F'(Bp + (Ut + UTpy)

oL -
s oBBs +]92l

1 D; K
—2%kH g Ul ——— U — 26MUT—L—— U + 2g,—= |y
L9 s U Y s U P ()

2.F; P ¥ 208 8L — gimg*UT !
+ 2Fi(BB, 1) (YLl Fr(Bp) (i 01 +U1) (205,65 — gjmg™ )U — 5
py UﬁBS pJ_+ze
ofps
+ Fj
](BB)pi(aﬂBs_pi‘f’Ze)‘yl)
1 , o m
2z, |- U U(2670%, — gimg™)(i0k — U R
+2(z | Bs — 1% —ic (2670, — Gimg™") (10, k)]:l(ﬁB)pgl
~ O'/BBS 2
i j ) @) s
+]:(ﬁ3)pi(0638 o ie)\iﬂ)}_ﬂ(ﬂB 3/1_)} + O(e;)
Here the operators F;(53) and F;(8) are defined as
@ulF@)hs) =2 [do, Filosy)emieriton
s
2 y 71'
(e FB)s) = - [dye 00 ) (4.2

Again, this equation can be reconstructed from eq. (5.2) from ref. [40]. It should be
emphasized that the reconstruction is by no means trivial: one should change cop; <> —oop;
in the production part of the amplitude and change cop; > —oop; and S < —fp in the
virtual part.”

"The difference between the changes in the real and virtual part of the kernel comes from the fact that in
the production part we insert the full set of out-states and use double functional integral (3.9) afterwards.
The “total” replacement of lightcone time oo <> —oo would imply also the insertion of the full set of in-
states. In this case the real part of the kernel will also undergo the replacement g <> —fp leading to

singularities %pz in the production part of the amplitude. In addition, there will be diagrams with
4

afps

both F,; and F,” on one side of the cut which will probably cancel these singularities. In any case, the
good way to avoid these complications is to insert full set of out-states but use “group law” (3.11) for O
operators to set the endpoints of gauge links to —oo.
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The evolution equation (4.1) can be rewritten in the form where cancellation of IR and
UV divergencies is evident

L B, ) 7 (B,01) (1.3

1 oBBsgu — 2k;iki
= —a,Trd [ @’k Ul'——— (Uky, + pU &
o {/ J_(JUJ_!{ UBBs—i- ( k T Dk ) 05384-7{3_

1 Di ~ k2
— 2kt g Ut ———— U —2g,U — U LV FF L)k
o Gik P57 9uU" o P } 5B+JS k1)

K2\ [oBpst! — 2Kk
XMW@#H 5

KUY+ Up)———U
aﬁBs k2 ~( pl)aﬁgs e

1 N k2
— 2kH -UTiU—%“UTi 2/@‘% F L)k
95 B+ 12 ohns 1 }|ZJJ_)+ L(zL|Fi| BB+ p, k1)

(kj_|~7'—l<6 +k>{k MU@UT—I—UTPZ)

k2 ofps+ k2 ofBBs+p?
ki Pj

- 2UT7U - Z—U —=L __u

ofBps +pJ_ s +pJ_ }|yj_)

1 k’ O',BBS + 2kL gik
—I—Z/dLQk UTi Uk +ppU)————5 [
ki k k2

—out Ptk p ki) (ko |F; AN

s + 1% kQ} (5 + >| 1)k <ﬁB+ GS)|Z/L)

= i ksl Kyt 1
+ 2&(537$L)(yi|7]:k(,83)(1 o1 +U1)(201,65 — gjmg™ )U s——Uly1)
i ofps —p] +ie
1 m
—2(z, |UT 5 U(25k5l — 9imd"™) (101, — Up) F1(B5) 2 5 |21)Fj (BB, Y1)
ofps —p] - py

a’k k k2 -
_4/ 2L (BB+ > j<,BB+J_7yL)€z(k’z_y)J‘

k7 s

g S ~

- V-P-LQ}}(@’B, z1)F;(Bp,yL)| ¢ +O0(a?)

ofps — k7

The evolution equation (4.3) is one of the main results of this paper. It describes the
rapidity evolution of the operator at any Bjorken zg = Sp and any transverse momenta.

When we consider the evolution of gluon TMD (1.1) given by the matrix element (3.3)
of the operator we need to take into account the kinematical constraint k% < a(1—f8pg)s in

the production part of the amplitude coming from the fact that matrix element (p|F; (B+
=)

gs

2
F;i(Be + %) |p)) vanishes outside of this region. (In other words, the initial hadron’s

2
momentum is ~ po and the sum of the fraction Bgps and the fraction %pg carried by
the emitted gluon should be smaller than ps.) It is convenient to display this kinematical

~16 —



restriction explicitly so we obtain (n =Ino)

dcf]«pﬁ@(ﬁB,ma@<ﬁB,yL>|p>>" (4.4)

k2 1
= —a,{(p|T k01— B — —L Ul———(Uk U
as{(p| 1"{/ 1 ( BB US)[(JUL’( UBBS+pJ_( k +peU)
i— 2k k;
« O—BBSg,U« 1]

1 ; k2
— 2k girUT———— U — 2gukUTp7 >]:k </BB + )Vﬁ)

aﬁBs—i-kQ oBps+p] aﬂBs—Fpl

K2\ [ oBpst — 2KkH k;
x (k| F! +>< J kU +Up)——
(ko1 (5 o Wi

1
kMg U ——— U — 6"UT7 )
Lol 5 7 P lyL)

k k‘ k; aﬁBs+2k2
ki) (k ! 2R L Ut Uty ——— U
+2(z 1 |F (ﬁBJr >\ L) (k| F <ﬁ +—= ><k2 P (ki U™+ pl)UﬁBerpi
Ky Dj
+2UT7U—2—U — Py )
UBBs—i-pL oBB s—l—pL lv1)

teu(v oot s
U,@BS+ J_

- (Uky + pxU) +2U
. 2 k2
—2UTpZ2U]]:§>JTk<5 —}—k>|kfj_)(klf <5B+>|ZJJ_)}

—U
ki ﬂBS—I—/{i ofBps +p3_

m

2F; —F 01 +U1) (265,64 — gjmg™UT
+ (ﬁBafL)(yL|pi k(ﬁB)(laH' 1)( m9% — 9j 9") UﬁBs—pi—FiE

1 . ~ m
5 U(25k5l — Gimg™) 10k — Uk)fl(ﬁB)pTWUfj(ﬁB,yl)
ofps — Py = b

a2k k:2 . k3 k2 4
_4/ S 10(1 - 85— L) F(Be+ =L, 00 ) Fi( Be + —L,yy |ehmv)e
kL gs s oS

ofps

— V.p.mfi(ﬁ& x1)F; (BB, yJ_)} }’P»n +0(a2)

UlyL)

—2(x|UT

This equation describes the rapidity evolution of gluon TMD (3.3) with rapidity cutoff (2.3)
in the whole range of fp = zp and k) (~ |z — y[l). In the next section we will consider
some specific cases.

5 BK, DGLAP, and Sudakov limits of TMD evolution equation

5.1 Small-x case: BK evolution of the Weizsacker-Williams distribution

First, let us consider the evolution of Weizsacker-Williams (WW) unintegrated gluon
distribution

N [ /duz PIFE(1 4+ un)| X) (XIFE0)p)  (5.1)

which can be obtained from eq. (4.4) by setting S = 0. Moreover, in the small-x regime it
is assumed that the energy is much higher than anything else so the characteristic transverse

N-2
momenta p? ~ (z —y)[? < s and in the whole range of evolution (1 > o > %) we
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2
have -~ <1, hence the kinematical constraint 9(1 — BB — k—g) in eq. (4.4) can be omitted.

Under these assumptions, all ]:i(/BB + %) and F;(8g) can be replaced by UTig;U (and
similarly for F;). After some algebra one obtains (cf. eq. (6.1) from ref. [40])

d k
P (@ 1)Uf (y1) = —daTr (xJ_‘UTpiU<pQUT Uil ) (U - U) Utp,Uly.)
dln il pL pL pL

Dk 1 1
(@ [UPPP U2 0 ) — (s o) Uiz 1) | Us(ye)
P 2 p
1 iR iR
k
Dip 1
—Uz‘(M)[(yﬂngT]gkUlyL) (y¢| IyL) (Y1) } (5.2)
a P 2

which agrees with ref. [46]. This equation can be rewritten as (17 =lno)
d

d—nUi“(zl)U]‘-l(zz) (5.3)

%
_ _gTr{(z'é?fl +Ui21)|:/d223(U;rle3 ~1) 2212 (UT U,, — )] (—1 8;2 —i—UJ’?z)}
s

213233

where all indices are 2-dimensional and Tr stands for the trace in the adjoint representation.
Note that the expression in the square brackets is actually the BK kernel [23-26]. One
should also mention that eq. (5.3) coincides with eq. (12) from ref. [47] after some algebra.

—2
Similarly to +oo case, the eq. (5.3) holds true also at small Sg up to S ~ %

(z

N2
since in the whole range of evolution 1 > ¢ > % one can neglect of8ps in comparison

to p? in eq. (4.4). This effectively reduces Bp to 0 so one reproduces eq. (5.3).

5.2 Large transverse momenta and the light-cone limit

Now let us discuss the case when 85 = 25 ~ 1 and (z — y)[® ~ s. At the start of the
evolution (at o ~ 1) the cutoff in p? in the integrals eq. (4.4) is ~ (v — y) . However, as
the evolution in rapidity (~ In o) progresses the characteristic pi become smaller due to the
kinematical constraint pi < o(1 = pBp)s. Due to this kinematical constraint evolution in o
is correlated with the evolution in p%: if ¢ > ¢’ the corresponding transverse momenta of
background fields p’L2 are much smaller than pi in quantum loops. This means that during
the evolution we are always in the light-cone case considered in section 3 and therefore the
evolution equation for fp = xp ~ 1 and (x — y)l2 ~ s takes the form

<<P’f (Bp, %) Fj (BB, yL)Ip) (5.4)
2 2
gN/dz { i(k,x— y)¢<< |ﬁg</83+]§_{;,$L>ﬂ <B3+k ,yL>Ip>>

y léfag. 26501 k3 OF Ok + 08 kik! + 01k kY — 6 kikh —6F ki k! — g kikj — gij kR K

dln

k2 ofps+k? (oBps + k?)?

e 5 20ikP K+ 0F kit + 0bkikF — 6K kikt — 0Lk kP kA giikF KL (1 5 k2 >
L (O’ﬁBS—f-kZi) (oBps+ k)4 B s
oBBs Fa
VD o (I (B ) B yL>|p>>}
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which reduces to the system of evolution equations for gluon TMDs D(fpg, |21 |,Ino) and

H(BB,|z1|,Inc) in the case of unpolarized hadron. The evolution equation (5.4) can be
!/ — _osBp ):

rewritten as a system of evolution equations for D and H" functions (2’ = 2
L+USﬂB

d
%asp(ﬁB, 21,1m) (5.5)

asN. [1dz 1—2 1 1 PB
=22 =< Jo|lzLl\/osBp— [( ,) +o - 2+Z’(1—Z/)} O‘SD<BJ/B’ZL’7’>
s BB z < -z + < o

4 2 1 - Z, /BB
+ W(l — 2221 (\Zﬁ osBp 7 )asHH <Z,,ZL77 ;

d

diT]aSH”(/BB? AR 77)

asN, [1d / 1—2 1

= SW C/ z’{JO <‘ZL| osBp i ) [(1 z’) - 1] 0457'[”<BZ],B,ZL77>

BB B +
2 ! ’

m°1—z 1—=2 BB

Q o J2 (‘Zﬂ osPp o )as’D<Z,7ZL77>}

where fxl dzf(2)g(2)+ = fxl dzf(2)g(z) — fol dzf(1)g(2).2 The above equation is our final
result for the rapidity evolution of gluon TMDs (1.1) in the near-light-cone case.

If we take the light-cone limit x; = y; (< z, = 0) we get the (one-loop) DGLAP
equation:

_|_

1 !

0D, 00m = 2N [ T K ! ) T 2+Z’(1z’)] %17(55‘,%77) (5.6)
n T 8y ? 1-2"), =z z

One immediately recognizes the expression in the square brackets as gluon-gluon DGLAP

kernel.

There is a subtle point in comparison of our rapidity evolution of light-ray operators
to the conventional u? evolution described by renorm-group equations: the self-energy dia-
grams are not regulated by our rapidity cutoff so the §-function terms in our version of the
DGLAP equations are absent.? Indeed, in our analysis we do not change the UV treatment
of the theory, we just define the Wilson-line (or light-ray) operators by the requirement
that gluons emitted by those operators have rapidity cutoff (2.3). The UV divergences
in self-energy and other internal loop diagrams appearing in higher-order calculations are
absorbed in the usual Z-factors. So, in a way, we will have two evolution equations for our
operators: the trivial ;2 evolution described by anomalous dimensions of corresponding
gluon (or quark) fields and the rapidity evolution. Combined together, the two should
describe the Q? evolution of DIS structure functions. Presumably, the argument of cou-
pling constant in LO equation (5.6) (which is u? by default) will be replaced by ofps in

8Careful analysis shows that virtual correction ~ V.p. ofps 5 leads to the same (...)+ prescription

k2 (oBps—k2

ofps 5 for the operator Fe;[y«, +00] so the eq. (5.5) coincides with eq. (3.29)

as the virtual correction ~ T (oBpetiD)

from ref. [40]
9For Eq. (5.6) the absence of these terms is accidental, due to an extra as in the definition (2.15).
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accordance with common lore that this argument is determined by characteristic transverse
momenta.'® We plan to return to this point in the future NLO analysis.

5.3 Sudakov logarithms

Finally, let us consider the evolution of D(x g, k| ,n = In o) in the region where xp = p ~ 1
and k% ~ (z —y)l2 ~ few GeV2. In this case the integrals over p? in the production part of
the kernel (4.4) are ~ (v —y) > ~ k? so that p? < oBps for the whole range of evolution

1>0> i For the same reason, the kinematical constraint 0(1 — BB — %) in the last
line of eq. (4.4) can be omitted and we get
d ~a aQ real
(Pl B 2 ) F Byl (57)

a? i(p,x— ra p2 a p2
- 4ach/£u6 Pa=9)s (p| F <BB - L,:EL)}"J- (53 + L,yj_> Ip)
ot oS gs

As to the virtual part
d

i <<P’~7: (Be, 2 1) F§ (B yL)lp) (5.8)
— a0, [T VIO B ) )
pi O'ﬁBS _ pi 7 9 7 9
20 Te(pl@ s U U858, — gimg™) (100 —Un) B (B) o[ ) F (B, )
ofps—p; —ie i
= FiBr v )| B Fe(B) (6 91 +U) (208 — gmg™ U —— Uy 1))
Py oBps —pi +i

the two last lines can be omitted. To prove this we follow the logic of ref. [40] and consider
two cases: the “light-cone case” lf_ < pi and the “shock-wave” situation when li ~ pi. It
is easy to see that in the light-cone case the two last terms in the r.h.s. of eq. (5.8) reduce
to the operators of higher collinear twist. In the shock-wave case we need to consider two
sub-cases: if pi < ofps and pi ~ ofps. In the first (sub)case the two last terms in the
r.hus. of eq. (5.8) are again trivially negligible in comparison to the first term in the r.h.s.
of that equation. In the second (sub)case (when p? ~ o3ps) one can expand the operator

0= }"k(ﬁB)(igl %—UZ)(Z@I‘;%(S;—gjmg"“)UJr as O(z1) = O(y1)+(y—2)i0;0(yL)+... and get

( | Plo ! ly1)
Yl O ars — o e
pm 1
=0 omo
(yL| Q(UBBS_pJ_‘i' )’yL)_FZ (yL| Q(JﬁBS—pL—FZE)“/L)—{_

The first term in the r.h.s. of this quuation is obviously zero while the second is
~ 8m(9ﬁ InoBps which is O(%) in comparison to the leading first term in the r.h.s.
of eq. (5.8) (the transverse momenta inside the hadron target are ~ my ~ 1GeV).

1ONote that while in the usual renorm-group DGLAP the argument of coupling constant is a part of LO
equation, with our cutoff this argument can be determined only at the NLO level, same as in the case of
NLO BK equation at low z [54-56]. This is not surprising since we use the rapidity cutoff borrowed from
the NLO BK analysis.
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Thus, we obtain the following rapidity evolution equation in the Sudakov region:

L\ P (8p,21) 3 (55, ) (59)

ap1 [ ipa . A i
= 4043NC/§L [eZ(W YL ((p| F2 </8B + ﬂ, IUL)}—;-L (53 + ﬂ? yL) Ip))
ot gs ags

~Vop Uﬂ"st« | F(Bp, 1) f(ﬁBny)‘p»]

-2
% and ofpgs >

Pl > (z - y)j_z In that region only the second term in the r.h.s. of eq. (5.9) survives so

Similarly to ref. [40], there is a double-log region where 1 > o >

the evolution equation reduces to

(0l F (B, 2 1) F} B,y )"~ (5.10)

2 2
_ g*N, d‘m PV L) (p| F(Bp, 1) FE (BB, y1 ) p)"

dln

which can be rewritten for the TMD (1.1) as

N, d? :
danD(:nB,zL,lna) = _04;2 CD(xB,zL,lna)/ p%?_J_ [1- ez(p’z)i] (5.11)
leading to the usual Sudakov double-log result
N k3
D(zp,k1,Ino) ~ exp {— oz;W In? Z; }D (ﬂsB,k‘L,ln s> (5.12)

2 os
K
dimension of two light-like Wilson lines going from point y to cop; and copsy directions (with

It is worth noting that the coefficient in front of In is determined by the cusp anomalous

our cutoff & < ), see the discussion in ref. [40].

6 Rapidity evolution of unintegrated gluon distribution in linear
approximation

It is instructive to present the evolution kernel (4.4) in the linear (two-gluon) approxima-
tion. Since in the r.h.s. of eq. (4.4) we already have F;, and F; (and each of them has at least
one gluon) all factors U and U in the r.h.s. of eq. (4.4) can be omitted and we get (n = Ino)

d

a a /
K i — 2%tk ki +pi
:—Oéch/d'Q]{J_ 9(1—5B_L> [< (p+k)k2 oBBSIu 2,u _ 9 w Jik pg;k)
oS UﬁBS—i—pL UﬂBs—i—kL 0638+p¢

y <053357 — 2Kk (pf + k), _ Mg+ o Pa)
oBps+ki  oBps—+pi oBps+

]{Ij oBps + 2]{7i (p/ + k‘)l QQﬂ B 2p;'kl )

+2g~k<
! k‘ﬁ_ O‘ﬁBS-i-ki oﬁBerp’ﬁ_ JﬁBSer’i ki(aﬁBerp’i)
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(p+k) ki oBps+2k? 2gik 2p;k,
+ 2915 2 12 L2 + 2 12 2
UBBS4‘pl T oBps + n 05834‘pL lKUBBS‘FpL)

- k2 k2
< (ol (ﬁB L m)fal (ﬁB LR m) )
gSs (o)

p [ (2K}, — kyp'")ok (2pik* — kipF)s!
oBps — (p + k)2 +ie oBps—(p+k)? —ie

] (I FE (B p) FE (B 7))

2 2 2
—,:;«p![@(l—ﬁjs—k)f“(ﬁ b= k)7 (B + it - )
1

- V.p. L}_a(ﬁ&pﬂ f(ﬁB,pD] ’p»}

JﬂBS k2

where we performed Fourier transformation to the momentum space. Also, the forward
matrix element (p|F;(p., 88)F; (P, Br)|p) is proportional to 5 (p, — p/,). Eliminating

this factor and rewriting in terms of R;; (see eq. (3.2)) we obtain (7 =1Ino)

d

%sz(ﬁB,pL; n) (6.2)

_ 2, 2p — k)i, 9BB5sgu —2(p — k) (p — k)i - k)a gk + nguk>

= —aslNe /d {[(aﬁgs—i—pL oBps+ (p—k)? 2 oBps+p?

<0B355“ “2p K-k @p—kp (- R)ign+ 51“1%‘)
oBps+ (p— k)% oBps+p% oBps+pi
4o ,k<(p k);(2p—k)i—2p;(p—k), (p—k);(2p — k)i 29,1 )
(p— k)3 (oBBs+p?) (cBps+(p—k)?)(oBps+pt) oBps+p?
2 ((p k)i(2p—Fk)x — 2pi(p—FK)i (p—k)i(2p — k) 29k >
! (p— k)3 (0BBs+p?) (0Bps+(p—k)?)(oBps+pl)  oBps+p?

><0<1—,BB—(]’M’“)>R’“(6 +( th k >

) 1
ki[Z(jp pa) + 6kt 2 Y oBas — (- k)2

9(1—,33_ (P;’Z)2 ) (p—k)% oBps ‘
_4[ (R U<53+ o, K ,7)> V.p m Rij(Be,p1in)

Ru(BB,p1in)

As we demonstrated in ref. [40] in the low-x limit g — 0 the above equation reduces to
the BFKL equation and the evolution of

5uD(3,n0) = 5 [Ep R (Bp.pilno) (63

is governed by the DGLAP equation (5.6). It would be interesting to find how the linear
evolution equation (6.2) is connected with other results on the combined small- and large-x
resummation, see refs. [48-53].
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7 Conclusions

We have described the rapidity evolution of gluon TMD (1.1) with Wilson lines going
to —oo in the whole range of Bjorken xp and the whole range of transverse momentum
k1. It should be emphasized that with our definition of rapidity cutoff (2.3) the leading-
order matrix elements of TMD operators are UV-finite so the rapidity evolution is the
only evolution and it describes all the dynamics of gluon TMDs (1.1) in the leading-log
approximation. In the next-to-leading order one should expect usual renorm-group on the
top of rapidity evolution so the coupling constant «; in our equation will become running
coupling, presumably dependent on some transverse momenta distances as in the NLO BK
equation [54-58].

It should be emphasized that rapidity evolution equations for gauge links to + and
— infinity are not identical: the virtual part of the kernel in eq. (4.4) is different from
eq. (5.5) from our previous paper [40] (the real part is the same). However, this difference
disappears in all interesting limits: DGLAP, Sudakov and small-x, so we think that it will
be important only for transition between linear and non-linear evolution where one should
take into account the whole eq. (4.4).

For completeness, let us present the description of various cases of linear vs nonlinear
evolution repeating the discussion in ref. [40].

The rapidity evolution of gluon TMD (1.1) with rapidity cutoff (2.3) is given by (4.4)
and, in general, is non-linear. Nevertheless, for some specific cases the equation (4.4)
reduces to linear equation. For example, if we consider the case when Bjorken x is not small

and ki ~ s, the non-linear terms can be neglected for the entire range of evolution 1 > o >
@ and we get the DGLAP-type equations (5.5). If xp ~ 1 but &k, is small (~ few GeV)
the evolution is again linear (and gives usual Sudakov factors (5.12)). However, if we
consider the intermediate case rg ~ 1 and s > ki > m?v the evolution at 1 > o > %

will be Sudakov-type (see eq. (5.9)) but the evolution at % >0 > @ will be determined
by the full non-linear equation (4.4).

2
For low-x region k; ~ few GeV and zg ~ l% we get the non-linear BK evolution
equation (5.3). If we now keep transverse momenta of order of few GeV? and take the

2
intermediate Bjorken x such that 1 > zp = 65 > kL

-, we get an interplay of linear and

2
non-linear evolutions. If we change the rapidity cutoff o (+» rapidity) from 1 to I% first

2
there will be Sudakov-type double logarithmic evolution (5.11) from o = 1to o = %, then
2
there will be a transitional region at o ~ %, and after that we will have the non-linear

2 2
evolution (5.3) at % >0 > % (the interplay of the non-linear evolution and Sudakov
double logarithms in this region was studied in refs. [59-61] at the NLO level). Needless to
say, the transition between the linear evolution (5.11) and the non-linear one (5.3) should

be described by the full equation (4.4).
2
Another interesting case is xp ~ % and s > k2 > m3,. In this case, if we change
2 2
o from 1 to %, first we will have the BK evolution (5.3) up to o ~ ’% and then for the
2 m2

evolution between o ~ % and 0 ~ =2 we will need the eq. (4.4) in full.
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In conclusion, let us mention that an obvious outlook project is to present the “impact
factor for the photon” in eq. (2.11) for the cross section as another TMD with gauge links
aligned along the proton’s momentum. The hope is to get kp-factorization in the form
of product of the two TMDs in the whole range of Bjorken x and make the connection
between kp-factorization and collinear factorization. This study is in progress.

The authors are grateful to G.A. Chirilli, J.C. Collins, Yu. Kovchegov, A. Prokudin,
A.V. Radyushkin, T. Rogers, and F. Yuan for valuable discussions. This work was sup-
ported by contract DE-AC05-060R23177 under which the Jefferson Science Associates,
LLC operate the Thomas Jefferson National Accelerator Facility, and by the grant DE-
FG02-97TER41028.

A Inclusive particle production as double functional integral

In this section we will prove that the amplitude of inclusive particle production is given by
the double functional integral (2.2).
The cross section of the production of ®-meson in deep inelastic scattering is given by

1 ; , ,
sl s) = 5 3 [ o™ (plj, (w2 + X)(@ + X]5,(0)p) (A1)
X
where )y denotes the sum over full set of “out” states. Using standard LSZ formula we
reduce eq. (A.1) to

2o (xR, s)

— Jim (K2 - m?)? / dhwd zdye o= S 1 (0) ()} X) (X T{@ ()70 (0)}p)

2 2
k?2—m X

=\ / d'wd wd'ye ™Ry S (p T, (w) F*(2) X)X T{F ()5 (0)} p) (A.2)
X

where F? = F%Fmaﬁ for brevity. Now, |X) and [p) may be considered as eigenstates of
the full QCD Hamiltonian

H|X) = Ex|X),  Hlp) = Eylp)
so one can rewrite (X |T{F?(y)j,(0)}|p) as
(XIT{E*(y)ju(0)}Ip) = ePX 7 (X0 (yo) (A.3)
x et =) 2 ()¢ 0, (0) e - 0(—yo)e = 111, (0)e 190 (g H (o= )

where t; — —oo is the initial time and ¢y — oo is the final time.
Similarly, (p|T{j,(w)F?(z)}|X) can be represented as

(| {ju(w) F? ()} X)
— efiEthJriEpti <p‘9(w0 - ‘ro)efﬂ:[(tifxo)FZ (f)e*il:f(l"()*wo)jy (u—}»)efilrl(woftf)

+ 9(1,0 _ wo)e—iﬁ(ti—wo)jy(w)e—iﬁ(wo—xo)F2 (j»)e—iﬁ(xo—tf) |X> (A4)
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so the cross section (A.2) takes the form

2 . . .
ouw(TB,8) = ;/d4wd4xd4yelqw_zkw+’k3’ (A5)
X Z<p’9(w0 — xo)e*iﬁ(ti*ffﬁo)}ﬂ(f)efifi(mofwo)jy(u—)»)efiﬁ(wo—tf)
X
+ 0(z0 — wo)e—if[(ti—wo)jy(u—;)e—iﬁ(wo—xo)FQ(f)e—iH(gco—tf)‘X>
(X |B(y)e 1) F2( )00 4, (0)eF 1% 4 0(—yp)e= s, (0)H B2 ()10 )

At this point it is convenient to switch to the sum over all states in the “coordinate
representation”

> 10X = /DADQElez‘T(f),¢(f)><z‘T(f),w(f)l
X

where |A(Z), (7)) is a state where gluon and quark fields take values A and v at the final
time t;. After this change one can rewrite the cross section (A.5) in terms of the double
functional integral (cf. refs. [62-64])

2 . . . —
ouw(xB,8) = ;Tr/d4wd4xd4ye’qwlkz“ky /DAfDl/Jwaf (A.6)

A(ty)=A -~ . 2 ~ . 7\~ ~
X/ ’ 'DADID Uy (At:), §(t:))e Sacr 07, (w) F2(x)

Altg)=Ay _ ” N 0. L. o
X/ DADYDpe v AV F2(y) 5, (0) W, (A(t:), (1))

22 L A(tp)=Alty) - _
=5 / drwd*zdtyelr—iketiky / DADY DY) DADY DY
T

X WE(A(t), (k) 5aon (A iSaop(A0) (1) B2(2) F2(y)j, (0) W, (A(t:), v(t:)

—

where W,(A(t;),%(t;)) is the proton wave function at the initial time .

In the same way one can demonstrate that a general matrix element

(plO1...0mO; ... 0nlp') = > (PIT{O1... O} XHX|T{O1 ... On}p) (A7)
X

can be represented by a double functional integral:
(P|O1 ... 00Oy ... Onlp)) = / DADYDY W (A(t;), (t:))eSacn(A) (A-8)

« / DADGDY e5acpANA, 0,0, ... 00 (Alt), b(t:))

with the boundary condition A(Z,t = co) = A(Z,t = o) (and similarly for quark fields)
reflecting the sum over all intermediate states X.
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B Propagators in fast background fields

In this section we will obtain propagators for the double functional integral (3.4) in external
low-« fields. As we proved in ref. [40], it is sufficient to consider the external field of the
type Ae(4,21) (and quark fields p1¢(z4, 1)) with all other components being zero.!!
Indeed, if the characteristic transverse momenta of fast fields (1) and slow fields (k) are
comparable, the usual rescaling of refs. [23, 24] applies so only Ae(z«,x ) of the type of
shock wave survives. Conversely, if k) > [, the fast fields do not necessarily shrink to a
shock wave but we can apply the light-cone expansion of propagators. The parameter of
the light-cone expansion is the twist of the operator and we will expand up to operators
of leading collinear twist two. Such operators are built of two gluon operators ~ F,;F,;
or quark ones v 19 and gauge links. To get coefficients in front of these operators it is

sufficient to consider the external gluon field of the type Ae(z«, 21 ) with A; = A, = 0.

B.1 Scalar Feynman propagator

For simplicity we will first perform the calculation for “scalar propagator” (m|P%+K|y) As
we mentioned above, we assume that the only nonzero component of the external field is
A, and it does not depend on z, so the operator a = ia%. commutes with all background
fields. The propagator in the external field Aq(z«, z1 ) has the form

1 , Cda . O da
(¢l 1) = [—z@(a:* ) [ G iot—a [ G2

_A — . x* 2 2
x e talx y)°(am_]Pexp{ — Z/ dzy []o}s - Sng(z*)} }’yl)

(B.1)

The Pexp in the r.h.s. of eq. (B.1) can be transformed to
2 Tx 9 p2 p2 2
(:);’l]e_zatx*Pexp{ig/ dgz* e’aLsZ*A.(z*)e_Zaﬁz*}ezﬁy*]yl) = /dQZJ_dQZl (B.2)

i, T2 A IS IR |

X (zole "o |z1 ) (21 |[Pexpqig | d=z €' as* Ag(zi)e™ as ™ o[z )(2]) [e"as ¥ [y 1)

S
Yx

Now we expand

iiz* —iiz* Zx ¢ Zz . i

e s A.e o :A’_g{p?Fﬂl}_2a282{pja{p7DjFoi}}+"'

2 . - - .

“(p'p! —ip DYD;jFe; +... (B.3)

a?s?

z

= Ay — 2 (2piFa;—iDFa;) — 2
as

This is an expansion around the light cone z; + %z*pl. We are keeping the first three
terms of the expansion which is sufficient in both shock-wave case I| ~ k; and “light-
cone” case || < k. In the shock-wave case it is obvious since the parameter of the

"The 2z, dependence of the external fields can be omitted since due to the rapidity ordering a’s of the
fast fields are much less than «o’s of the slow ones.
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expansion ~ %U* < 1 (recall that o, ~ ‘l%s) As to the light-cone case, it is almost
evident since the expansion (B.3) gives the opelrators of increasing twist, and later we will
demonstrate that three terms of the expansion are sufficient.

Using the expansion (B.3) one easily obtains

T2 Tl
Oy, ys) = Pexp zg/ d—2zy €'as ™ Ag(z)e™ Vas ™ b =[xy, Yu] (B.4)
s

|4, 26| Dy Foj [z*,y*]}}>

27/9/ dz*(z*{zﬂ x*az*]Fﬁ(z*)[Z*’y*}

492/ /* [T, 24 ( —i(z = 2)u Faj(2:)[24, 2] FJ (2L)

242l

P R ) 2P >)[z*,y*]+...

so the the scalar propagator in the fast external field takes the form

1 , Cdo . O da| e .
2 2
X (@1l 5 Oa @y, y)e sV [y )
Note that O (x4, ys«) trivially satisfies the group property
Oun(s, 26) O (24, Ys) = Oa(Tx, ys) (B.6)

For future use we present also two equivalent expressions with derivative operators to
the right and to the left of the field operators:

Oa(‘r*')y*)
23 . .
= Oulprimys) = oew) - 25 [ s (2pf (e, 2] P (22) = ile, 2] DI Fug(22)
2%(p7pk[x*, 24| — ’ipk[fli*, Z*}Dj)DkF.j> (24, Ys]
L8 i o ( | R
3 Zs 2y 2| 1, 26 Foj(24) 24, 2| F7 (21)
Yx
— oppF —[x*,z*]F.j( )25, 2L For (2 ’))[z;,y*] + ... (B.7)
2ig [V~ - i
= O0a(Ts, Ys3 1) = [Ta, yu] + e A2y Zi [Tuy 24]Q 2F 6 (24) 25, Yu |7 + 0D Foj(24)[24, Ys]
Z* ~ ~ . L~ ~
+2-" (DkF-j(Z*)[Z*a Y P’ D" + DI DiFoj(2) 2, v ]p") }
dz*/ dzl 24 [Ty, 24 (— i Faj(2:) 20, 2] FY 2 (20) 20, 4]

2% By () 2 Fu(2 )[*,y*]p?p) . (B.8)

/
Zy
as
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Here we display right or left p| in the notation for O to indicate whether we use represen-
tation (B.7) or (B.8).

To finish the proof of eq. (B.5) we need to demonstrate that it is correct in the light-
cone case. We will need the general formula

04 (%4, yx5p1) (B.9)
T x ) 2
= Pexp{zg/ d2Z 6 as (Z a) A.(Z*)e_’?;(Z—a)*}
S

2ig
= [T, y) —

+ M{pj’ {pk’ [T, z*]DkF.j S y*]}}>

as?

/y* dz*<(z—a) {1V, [, 2] Foj (22) [, ]}

4 2 .
+ i dZ*/ dZ; [IIZ‘*, Z*]( - Z(Z - z’)*F.j(z*)[z*, ka]Fo](Z:k)
Yx Y

as3

— aplpF (2= a)u(2" — a)*F.j(z*)[z*, L) Fu(Z)) [yl + -+

as

In the light-cone case one expands the external field either around the light cone
YL+ %z*pl or r; + %z*pl. Let us consider the first case (the second is equivalent). The
Pexp in the r.h.s. of eq. (B.1) can be transformed to

(xJ_|Pexp{ - z'/j*dz* [Zé Y NE )] }|?JJ_)

p2 2 L p2 p2
_ (Q;J_ezot(z*y*)PeXp{;g/ dz, 61'04{;('2*y*)A.(Z*)e’LaJ;(Z*y*)}yJ_) (B.lO)

Now we rewrite eq. (B.9) in the form (B.7)

T 2 ) 2
Olo/a*(pJJx*ay*) = PeXp{ig/ dsz 6 os (z Y- AO(Z*)e_Z%(Z_y)*}

~ el = 25 [Tt (o - ) (Wl 2P il 21D F )
Y

(z—)

o WﬁmeﬂﬁmwumMﬂQqu

2 e [0 = (o 2P £

- 2p7'pk(zasy)*[a;*, 2 Foj ()24, z,’k]F.k(sz)> EARTAIE (B.11)

This is effectively expansion around the light ray y, + gy*pl with the parameter of the

jun)

i < 1. As we mentioned, we expand up to the operators of twist two.

expansion ~
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Using eq. (B.11) we obtain the propagator (B.1) in the form

“da 0 da
ly) = [_ i (s — y*)/() i +i0(yx — x*)/ a ] (B.12)

2a oo%

(]

P2 + e

. .pﬁ_
x e e (g e e T OY (w, yai p1) L)
which coincides with the light-cone expansion of scalar propagator (A.6) from ref. [40].
Thus, the eq. (B.12) agrees with eq. (B.5).

Similarly, one can demonstrate that the propagator in the complex conjugate amplitude
has the form

X da 0 do .
(] 5 |y>=[w<y*—z*> /0 70 i, — ) / d] eiove  (B13)

P2 —je 2 o 200

Mg Ly
X (wp|e™ as ™ On (s, yx)e" as ¥ |y 1)

2 2
After transformation efi%x*oa(x*,y*)ei%x* = OF(x4,ys;p1) and rewriting according
to eq. (B.8) this equation coincides with eq. (A.12) from ref. [40].
B.2 Scalar propagator of Wightman type

The scalar propagator from point = to the left of the cut to point y to the right of the
cut reads

1 2 2 2 1
2 S B.14
(@] g0 213 (p7)0(po)p” 55— 1Y) (B.14)

It is convenient to represent this equation as an integral of product of two amplitudes of
particle emission found in ref. [40]:

1 P
. 2 _ . 1os Yx
kl‘zlgok (k|P2 +Z.€|yL,y*) = (k1]Oa(kL;00,ys)e lyL)
2
.P
lm K@y g k) = (@1l @ On w00t kL) [K) (B.15)

In the shock-wave case I ~ k; these formulas coincide with egs. (B.18) and (B.20) from
ref. [40]; in the light-cone case one needs to rewrite them as

2

1 Lt
; 2 — Sl Y Yx .
Jim k7 (k| gy, ve) = €t (kL |Ogr (ks 00, ya)lyo)

1 fiiz T«
m‘k) =e oas (I'J_’Oa (w*,oo,kl)’kj_) (B16)
after which they coincide with eqs. (A.14) and (A.16) from ref. [40].
Using eq. (B.15) one easily obtains

lim E%(x, x|
k2—0

1 2 2 2
21 0
pr P (p*)0(po)p PQHE\y)
o g . P2 P2
N / Ta e_m(x_y).(xl|€_z%m*0a(x*7OO)Oa(ooay*)ez%y*
0 (6%

(]

Y1) (B.17)

where O is built of the A fields in the left functional integral in eq. (A.S8).
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B.3 Gluon propagator in the light-like gauge

The general expression for Feynman gluon propagator in the light-like gauge phA, = 0 in
the background field (3.6) has the form

HT{AY @) AL (y)}) = (a <gji - pp)

P, (00— 220 ) = P2y (g

P2+ie\" T p. Pz
Using the expression (B.5) for P+4—ie we get

oo oo e~ i@=y)e (B.19)
—00

Cda 0 do
<T{Az<x>A’;<y>}>=[—e@:*—y*) /0 70 4 iy, — ) / da

2 2
_iPL 2p2 ; i 2p2 L . P2uD2
X (x| as (g,t- - as"m) Oa(fﬁ*,y*;m)<5£ —pzia; etas vy ) + (x| ;2 “ly)

*

For the complex conjugate amplitude one obtains in a similar way

p pa b _ L by 1 i iPw P2uP2v | \ab
P ALY = (ol (- 21 ) g (50— 22 ) - P22y (B

and

X da 0 do )
<T{Az<x>Az<y>}>—[—e@*—x*) /0 70 4 o, — ) / i (B.21)

2a _ooﬁ

2 2
P 2p2  i2pav ) Pl L P2up2
< Coale™ 55 (g = 22, ) Ouls i) (8 - 222 ) ) il P22

*

where we used eq. (B.13) for P%_ie.
The “cut” propagator in the background field (3.6) is given by eq. (C.4)

(A5 (x) A (y))
_ 1L Py 1 2 2 2 1 i iP2w ab
= (ol (= 2 ) g P2 e (00 -0 ) (B2
Using eq. (B.17) for scalar propagator we obtain
e A (B.23)
® v 0 2ae

2p2 it Py (i i2D2
X (CL'J_| (g[fl — Oég“]%)e v as x*O(ﬂj‘*, OO)O(OO, y*)el as I* (SZV _pZTSV |yj_)ab

where, as usual, O is built of the A fields in the left functional integral in eq. (A.8).

C Feynman diagrams for the gluon propagator in the light-like gauge

The formulas (B.18) and (B.20) can be easily obtained from general formula for the propa-
gator in the light-like gauge in refs. [23, 24]. However, the expression (B.22) for Wightman
gluon propagator needs derivation and the easiest way is to analyze Feynman diagrams in
the background field (3.6) (cf. ref. [65]).
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Figure 3. Cut gluon propagator in external field Aq (24, z1).

Let us consider a typical diagram shown in figure 3. The perturbative gluon propaga-
tors in the light-like py A,, = 0 gauge has the form

_ [t du (k)

(T{Au(2)A,(y)}) = e—ik(@=)
(T{AL(2) A, ()}) =i / % M Y

(Au()Au(y)) = — / a*k 278(k*)0()d,, (k) e *@=)

where

2
dﬂ”(k) = gi_y -

443
kJ_ Vkl_ o Y 1
o (p2uky + p2vky) PP (C.1)

First, we prove that only one term in the three-gluon vertex survives. Indeed, consider a
typical 3-gluon vertex

(2k +q) - A g — (k+29),Au(q) + (¢ — k)uAu(q)

2

= (2k +a) - AQ)gpw + (@ = K)opz — (K +24),p20] Aa(q)

It is easy to see that the two last terms do not contribute since the vertex is multiplied by
dap(k) and dyg(k + q) so we are left with the first term which is a vertex of emission of the
gluon by scalar propagator multiplied by g, .

Second, let us consider the product of numerators of gluon propagators in figure 3

daul(k)dmm (k + QI)dmm (k +q+ Q2) s dunﬁ(k +qa+---+ qn) (C.Z)

It is clear that for all d,’s, except the first and the last ones, we can replace d,, (k) by g/j,
since terms ~ pg,, vanish. For the same reason, only two terms in the first and in the last
dy,’s survive:

2
L 1
daul (k) — gaul - $p2aklul7

2
dupk+ @+ +an) = gup— @292/3(’6‘L gt ) (C.3)

Thus, the gluon propagator in the background field (3.6) in the light-like phA, = 0
gauge differs from the scalar propagator in the same background field (B.14) only by two
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factors (C.3)

(A (2) A5 ()

_ 1 _ b2 1 2 2 1 i _ P2 ab
— (ol (= 2 ) g P2 i (802 Y ()

D Light-like vs background-Feynman gauge

In this section we prove that our expression (3.13), obtained in the light-like gauge agrees
with the results of ref. [40] obtained in the background-Feynman gauge. First, we rewrite
eq. (3.13) as a product of two Lipatov vertices of gluon emission

(PIFe} (T4, w1 )[4, 00] ™[00, yu]” F:lj(y*,yLﬂpw
da a
/ /CL’LQM IS (s k2 ) LY (s kL) Ip) (D.1)
where
LY (g1, kisye)= lim K2 (A ()00, el Fuj (ye, y1) (D2)
=% (k1]1O0a (00, ys, pr)e as ¥ (p67 + 2pip™)|yL) [y, 00ly
ab
4 / > / iiy’ k /
- ;(kL‘Oa(Ooay*apJ) dy, e'as%*p |yJ_)[y*ay*]yF0j(y*ayJ_)[y*aOo]y

Yx

and similarly for L%(z 1, ky;z.).
We will prove that the Lipatov vertex (D.2) coincides with

LYy kisys)
O(y)0% K, O(—yx N a
= (2;6 as Y (kvy)L(ki(S]? + ijkk) + (2a )(k:L|Ue s Y (Pi(;f + ijpk)UT‘yL) b
1 .k . 49
+ QOéez(jgy*—z(k,y)L{ alg (k‘l(sk + 2%k k:k)kl/dz*((z N y)*e(z* N y*)

=+ y*e(_y*)) [00, 24| For(2x) [24, 0]

ab
(K = gl — 5;.;&);1/6&* 10020 — 4) — 6(—0)] [00, 2] Far(2:) 2, oo]}

Kk "
QZk—Qe s ye—iky) L [OO,y*]yF.j(y*,yL)[y*,oo]yb (D.3)
1

with our accuracy.

D.1 Light-cone case

Let us start with the “light-cone case” when the characteristic transverse momenta of
background field [| are much smaller than the momenta of the “quantum” fields p;. As
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we discussed above, we need to find the Lipatov vertex with twist-one accuracy which
means taking into account only first term in the expansion in powers of F,;. First, let us
note that in such approximation the last terms in egs. (D.2) and (D.3) coincide so we need
to prove that

1 Ly o sk k
25 (kL1Oa(00, ys, p1)e"as ¥ (107 + 2pip") [y L) Y+, 0y

= é?(kiaf + 2k kR el ar vyl <2§ >(kL|Ue aty*(pi(sf +2p;p") Uy )
1 .42 44
oo S veilhy)L { =19 (k2 6% + 2k k)R

/ Az (2 = )20z — 1) + 9.0(=)) [00, 2] Fa () 22, ]

+ (0K — gl — 5;kk>§ [z 6 = ) = 8] 0,2 Pt o oo]} (D.4)

Using formulas

(0,192 [, 00] = + 25 [ 4 loc, s syl 0] + O(DF. F?) (D5)

*

o0
9 .
[00, Y+ |20 Pk [y, 00] = 2pjpK, — 2 d;yi[oo, YLl (piFer(yl) + j ¢ k)[yl, 00] + O(DF, F?)
Yx

we obtain

2
(k1]Oa(00, g, p1)e as ¥ (p2 85 + 2p;p") y 1) [y, 00l

k2 , 49
— ezci;y*_’(k’y)l{(kiéf + 2k, k") ( Y9 kz/ dze (7 — Y)«[00, 24 Foi(24) [24, oo])

+ (5;%1 ) k: 5Z]<;k) /Oodz* [oo,z*]F.i(z*)[z*,oo]} (D.6)

*

Also, using egs. (D.5) and the commutator

2y*

2 2
Pl Pl
e taslUeas ¥ — U ~ — k:@U

one finds

1 ii an 1 1i —1
%(k:ﬂUe asy*(piéf—f—ijpk)U”yL) ~ e s Y (kvy)l{(kiéf—kajkk) (D.7)

29y«
QS

(k3 0% + 2k, KM K O, U, U + 2ig(6F k! — gMke; — 5§kk)alUyUyT}

It is easy to see now that the combination of formulas (D.5) and (D.7) (multiplied by
0(—y.)) proves eq. (D.4) in the light-cone case.
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D.2 Shock-wave case

If the characteristic transverse momenta of background field [; are of the same order of
magnitude as the momenta of the “quantum” fields p|; we have a “shock-wave case” when
longitudinal size of background fields o, ~ 7 is much smaller than typical distances in

1
quantum Feynman diagrams ~ 7% (recall that a > o). As in ref. [40], we must consider

separately two cases: y, inside and outside of the shock wave. The first case is simple:
2 2 P2
since %y* ~ %G* < 1 we can neglect eas¥ factors in eqs. (D.2) and eq. (D.3) which
effectively puts all operators on the light ray y; + %z*pl so we return to the “light-cone”
case considered in the previous section.
If y, is outside the shock wave, first we note that O of eq. (B.4) can be replaced by
pure gauge link [z,,y.|. Indeed, let us compare the first and the second terms in r.h.s.

of eq. (B.4)

Oa(x*yy*) = [33*, y*] - 2192/30212* (Z*{pj, [x*y Z*]FOJ(Z*)[Z*, y*]} +...
Ui

. 2
The first term is ~ 1 while the second is ~ éa*zﬂ o;U ~ % ~ 2 < 1. In a similar manner

ag

one can demonstrate that other terms in the r.h.s. of eq. (B.4) are ~ £ in comparison to

the first [x.,y.| and therefore the Lipatov vertex (D.2) reduces to

L™ (yL, ks )
1 ii 2 ¢k k
= % (kLHOQy*]e as I* (pLé‘] +2pjp )|3/L)[3/*700]y
4 o 5 ab
Py
- S(hl[oo,yi]/ dy, €5V |y 1) Y Yaly Foj (Yes Y1) [y, 001y
Yx
0 Yx 5ab i i 0 —Yx 'i
_ (2(1(5;1?3 L opph)el it 4 (2a (b US55 + 2" Uy )
K iiyri(kyu ab
_2zk—26 as WL [00, Yuly Foj (Yss Y1) [y, 0y (D.8)
1

because [00, ys] = 0(—y.)U + 0(y.) if y. is outside the shock wave. Now we prove that the
rest of r.h.s. of eq. (D.3) can be neglected

— %(kﬁﬁf + ijk:k)k:l/dz* ((z —Y)0(ze — ys) + y*G(—y*)) [00, 24| Foi(24)[24, 0]
0K =y 05) L [ 2100~ -0 o0, 2 (el =0 (1 Z) (D)

To prove eq. (D.9) we first notice that at y, > 0 (and outside of the shock wave) the eq. (D.9)
vanishes since Fe;(z:) = 0. Second, if y, < 0 the integral fyo*odz* [00, 24| Foi(24)[24, 0] can
be replaced by [% dz. [00, 2:] Fe(2+)[2, 00] s0 eq. (D.9) reduces to

4ig

2 (kiéf + 2kjkk)kl/dz* 2[00, Zi| For(24) [25, 00] (D.10)
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2 . 4
which is ~ %a*kjajU ~ %a* ~ O(k? 2). Now we see that the r.h.s. of eq. (D.8) coincides
with the r.h.s. of eq. (D.3), so we have proved that eq. (D.2) agrees with eq. (D.3) with
our accuracy O(%) The last thing to note is that the integral of eq. (D.3) over y, with
the weight 2 e¢’5Y+ reproduces the Lipatov vertex (4.26) from ref. [40].

Finally, let us present the explicit form of the real (production) part of the kernel from
ref. [40] (n =1Ino):

d Ta a
Ting o) (BB 21 o) (B 1) (D.11)

1
real 2 1 1 T UﬂBSg/u' *21{3“ k;
= —a,Ir¢ [d°k U————=(U'k U
a {/ J_(xJ_‘{ UBBSeri( k +peU") R

1
ol 1 t_9g [ Pi LT L
2k, 9iU U" = 29U U+~ 9ik (Flioo) | B + = IFL)

oBps+pt oBps+pt 1
k2 06385/~L — Qkﬁk)j 1
ki|F| -+ / kU + U Ut
X( J_| (+oo)<BB+ US>{ UBBS‘F]{E_ ( U+ pl)UBBS‘Fp%_

1 D K
— 2%k g U ———UT — 20U —L—UT 42 ~i} + O(a?
1941 UﬁBS‘f‘pi 1 Uﬂ38+pi gﬂki |yJ_) ( s)

where

p 2 i z am m
‘F(_ﬁoo)i(ﬁB?zL) = S/dz* P57 ([00, 2, )2m g F M (24, 21))",

“ 2 —ifB 2« [ ma
f(foo)i(ﬁByzLﬁs/dZ*e % g (3} (20, 21 ) [0, 00]7) " (D.12)
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