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The human genome comprises approximately 8–9 % of human endogenous retroviruses (HERVs)

that are transcribed with tissue specificity. However, relatively few organs have been examined in

detail for individual differences in HERV transcription pattern, nor have tissue-to-cell culture

comparisons been frequently performed. Using an HERV-specific DNA microarray, a core HERV

transcription profile was established for the human kidney comparing 10 tissue samples. This core

represents HERV groups expressed uniformly or nearly so in non-tumour kidney tissue. The

profiles obtained from non-tumour tissues were compared to 10 renal tumour tissues (renal cell

carcinoma, RCC) derived from the same individuals and additionally, to 22 RCC cell lines. No

RCC cell line or tumour-specific differences were observed, suggesting that HERV transcription

is not altered in RCC. However, when comparing tissue transcription to cell line transcription,

there were consistent differences. The differences were irrespective of cancer state and included

cell lines derived from non-tumour kidney tissue, suggesting that a specific alteration of HERV

transcription occurs when establishing cell lines. In contrast to previous publications, all known

HERV-derived tumour antigens, including those identified in RCC, were expressed both in

multiple RCC cell lines and several non-tumour tissue-derived cell lines, a result that contrasts

with findings from patient samples. The results establish the core kidney transcription pattern of

HERVs and reveal differences between cell culture lines and tissue samples.

INTRODUCTION

Human endogenous retroviruses (HERVs) make up
approximately 8–9 % of the human genome. HERVs are
footprints of ancient germ cell infections by exogenous
retroviruses (Weiss, 2006). They are generally classified
according to their homology to animal retroviruses. Each
class has several subgroups often named based on the tRNA

that binds to the retroviral primer-binding site. The class I
HERV families have similarities to the mammalian
c-retroviruses that include HERV-E and HERV-H, among
several other subgroups. The class II subgroups exhibit
homology to mammalian b-retroviruses and include the
HERV-K elements. Class III HERVs are distantly related to
spumarviruses and are composed of the HERV-L and the
HERV-S subgroups (Medstrand et al., 2002; Griffiths,
2001). Class I and III HERVs are the oldest groups and are
present throughout the primate lineage (Greenwood et al.,
2005; Griffiths, 2001). Among HERV sequences are more

3These authors contributed equally to this work.

Supplementary material is available with the online version of this paper.
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than 3000 full-length proviruses and about 8000 elements
containing at least a partial pol gene (Jern et al., 2005;
Villesen et al., 2004).

So far, comprehensive HERV transcription profiles have
been established for only a few human tissues resulting in
observation of significant interindividual variation (Frank
et al., 2005, 2008; Flockerzi et al., 2008). The identification
of a transcriptional core profile, which is characteristic for
a certain tissue and detectable in all individuals, is of
importance in determining the significance of transcription
alterations in disease states and distinguishing disease-
associated alteration from normal interindividual tran-
scription variation. Several HERVs have been implicated in
different forms of cancers, but to progress from implica-
tion to causality will require knowledge of normal
interindividual HERV transcription variation (Nelson
et al., 2003; Ruprecht et al., 2008b; Romanish et al., 2010;
Balada et al., 2009).

HERV transcripts and proteins have been detected in many
human tumours (Romanish et al., 2010). For example HERV-
K(HML-2) transcripts are found in testicular tumours,
seminoma biopsies (Löwer et al., 1993; Herbst et al., 1998;
Sauter et al., 1995) and breast cancer tissue (Wang-Johanning
et al., 2003). Furthermore, HERV-encoded antigens have
been detected in renal cell carcinoma (RCC) patient material
[Komohara et al., 2007 (Table 1); Komohara et al., 2007;
Takahashi et al., 2008; Alves et al., 2008; Wang-Johanning
et al., 2003, 2008; Schiavetti et al., 2002;Rakoff-Nahoum et al.,
2006; Ishida et al., 2008]. RCC is the most common neoplasia
arising from the adult human kidney. It is the sixth leading
cause of cancer deaths overall in the USA (Kawakami et al.,
2006). Several HERVs give rise to T-cell epitopes as
documented by the presence of T-cells recognizing tumour
cell lines harbouring respective HERV sequences (Takahashi
et al., 2008). We have recently identified a T-cell specificity
among T-cells infiltrating the primary RCC tumour of a
patient (patient 53; TCR53) that appears to recognize an
antigen that is shared among many RCC tumours and
appears to be absent in non-tumour kidney cells (Leisegang
et al., 2010). We speculate that the antigenic epitope could
originate from HERV-E, a previously described HERV with
RCC-associated expression (Takahashi et al., 2008), or
another RCC-expressed HERV sequence.

Here, we present a systematic and comprehensive analysis
of the HERV transcription profiles in human non-tumour
kidney, RCC tissues, RCC cell lines and cell cultures
derived from non-tumour kidney tissues by using a
previously established retrovirus DNA chip (Seifarth
et al., 2003, 2005). We utilized 10 paired tumour and
adjacent non-tumour kidney tissues, 22 RCC cell lines, one
non-tumour-derived epithelial kidney cell line (HK2) and
four primary non-tumour kidney-derived cell cultures
(NKC). The specific HERV transcript profiles of the RCC
lines, HK2 and NKCs were compared to the presence or
absence of the TCR53 antigen to determine if an HERV
sequence correlates with the TCR recognition pattern.

Furthermore, the transcription of seven known HERV
tumour antigen sequences was examined in the cell lines by
PCR. The data presented established the non-tumour
kidney HERV transcription profile and illustrated changes
in transcription between tissues versus cell culture systems.
The RCC-specific changes are discussed in the context of
HERV contribution to cancers.

RESULTS

The human kidney core HERV transcription profile

Using RNA from non-tumour healthy kidney tissues from
10 different patients, we established the core kidney HERV
transcription profile (Table 1). Fourteen HERV subgroups,
HERV-E elements (E4-1 and Seq32), HERV-W, ERV-9
elements (Seq63, ERV9 and Seq59), HERV-K (HML-2)
elements (HERV-K10, HERV-K2.HOM, HERV-KHP1 and
HERV-KD1.2), HML-3 elements (Seq26 and HML-3),
HML-6 and HML-8 were transcribed in eight or more
individuals for tissue samples, all primary NKC cultures
and non-tumour HK2 kidney cell line (Table 1). The cut-
off value of 13 positives of 15 samples is similar to that
used by Frank et al. (2005, 2008). Because samples 4807N
and 4757N gave weaker overall signals for class I
retrovirus-like elements (see Supplementary Fig. S2,
available in JGV Online), a slightly less stringent cut-off
for the core profile was used (87 % in this study versus
94 % in Frank et al., 2005) to account for potential
underscoring of very frequently active HERVs in kidney
tissues. Microarray images of a core profile versus a non-
core profile HERV transcription are shown in Fig. 1. It
should be noted that each positive spot on the microarray
can represent multiple HERV loci as most HERVs are
multicopy elements with sufficient sequence homology that
they cannot be distinguished on an individual basis. Thus,
HML-3 spots, for example, are representative for HML-3
subgroup elements, not single locus expression.

HERV transcription in RCC tumours closely
reflects that of the non-tumour kidney tissue

Comparison of HERV transcription in the non-tumour
tissue to the patient-matched RCC tissue revealed striking
similarity with the kidney ‘core’ HERV profile (Table 1).
No RCC-specific up- or downregulation of HERVs was
observed. This suggests that cancer manifestation does not
grossly alter the HERV transcription.

Cell culture-induced changes in HERV
transcription

Next, we analysed the transcription pattern in short-term
cultures (passages 2–4) of primary non-tumour kidney cell
cultures of four patients and found complete overlap when
compared to the tissue core kidney profile. However, the
cell cultures expressed additional HERV subgroups that

Kidney HERV transcription
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Table 1. Number of samples positive for HERV transcription for each sample type

Bold indicates HERVs belonging to the kidney core profile.

HERV family Subgroup* Primary

cultures of

NKC and HK2

cells in HK2

media (n55)

RCC cell lines

(n519)D

Non-tumour

kidney tissue

(tumour

adjacent)

(n510)

showing

percentages of

tissues with

transcription

of respective

HERV

Tumour

tissue

(n510)

Core

profile

non-tumour

kidney

tissued

Transcribed

with

different

frequency

among cell lines

and tissues

Infrequently

transcribed

or random

among

sample

types

Gammavirus-like

HERV-S HERV-S 60 % 21 % 30 % 20 % X

Seq77 0 5 % 10 % 0 X

HERV-I HERV-I 0 21 % 50 % 60 % X

HERV-IP-T47D 40 % 42 % 30 % 50 % X

Seq65 40 % 26 % 60 % 60 % X

HERV-T S71pCRTK6 100 % 84 % 20 % 30 % X

S71pCRTK1 20 % 32 % 30 % 40 % X

HERV-FRD HERV-FRD 100 % 90 % 50 % 40 % X

HS49C23 0 0 50 % 50 % X

HERV-Z 0 0 0 20 % X

HERV-E E4-1 100 % 100 % 100 % 100 % X

Seq32 100 % 84 % 80 % 80 % X

HERV-H RGH2 100 % 100 % 30 % 30 % X

HERV-H 0 0 30 % 40 % X

Seq66 80 % 68 % 40 % 30 % X

HERV-ADP HERV-ADP 0 0 0 0 X

HERV-W HERV-W 100 % 100 % 80 % 70 % X

ERV-9 Seq64 80 % 90 % 40 % 30 % X

Seq63 100 % 100 % 80 % 70 % X

ERV9 100 % 100 % 80 % 80 % X

Seq59 100 % 100 % 80 % 80 % X

Seq60 100 % 95 % 30 % 10 % X

HERV-F HERV-F2 20 % 16 % 10 % 10 % X

HERV-F 0 5 % 40 % 50 % X

HERV-Fb 100 % 100 % 50 % 50 % X

HERV-R HERV-Rb 0 0 60 % 70 % X

ERV3 40 % 26 % 60 % 70 % X

Betavirus-like

HML-1 HML-1 20 % 16 % 0 0 X

Seq29 20 % 16 % 0 0 X

HML-2 HERV-K10 100 % 90 % 90 % 80 % X

HERV-K2.HOM 100 % 90 % 90 % 90 % X

HERV-KHP1 100 % 95 % 90 % 80 % X

HERV-KD1.2 100 % 95 % 100 % 80 % X

HML-3 Seq26 100 % 100 % 80 % 70 % X

Seq34 100 % 100 % 50 % 30 % X

HML-3 100 % 100 % 90 % 80 % X

HERV1 100 % 100 % 40 % 30 % X

Seq43 100 % 100 % 30 % 30 % X

HML-4 Seq10 100 % 100 % 30 % 20 % X

HERV-K-T47D 100 % 100 % 20 % 30 % X

HML-5 HML-5 80 % 79 % 20 % 10 % X

HML-6 HML-6 100 % 100 % 80 % 90 % X

S. Haupt and others

2358 Journal of General Virology 92



Downloaded from www.microbiologyresearch.org by

IP:  128.82.252.150

On: Tue, 15 May 2018 12:43:04

Fig. 1. HERV microarray example images of cell culture and tissues. HERV-E (E4-1) belongs to the core profile and is
contrasted with a non-core profile HERV (HERV-L Seq45). (a) Enhanced contrast and brightness false-colour microarray
images of the 22 RCC and four non-tumour kidney cultures and one non-tumour kidney cell line HK2 grown in different media.
(b) False-colour images of non-tumour and tumour kidney tissues.

Table 1. cont.

HERV family Subgroup* Primary

cultures of

NKC and HK2

cells in HK2

media (n55)

RCC cell lines

(n519)D

Non-tumour

kidney tissue

(tumour

adjacent)

(n510)

showing

percentages of

tissues with

transcription

of respective

HERV

Tumour

tissue

(n510)

Core

profile

non-tumour

kidney

tissued

Transcribed

with

different

frequency

among cell lines

and tissues

Infrequently

transcribed

or random

among

sample

types

Seq38 100 % 100 % 70 % 60 % X

Seq56 80 % 100 % 10 % 20 % X

HML-7 NMWV7 20 % 53 % 100 % 80 % X

HML-8 NMWV3 100 % 74 % 90 % 80 % X

HML-9 NMWV9 80 % 100 % 80 % 70 % X

HML-10 HERV-KC4 100 % 84 % 30 % 50 % X

Seq31 60 % 47 % 60 % 20 % X

Spumavirus-like

HERV-L HERV-L 100 % 47 % 60 % 40 % X

Seq39 100 % 47 % 50 % 30 % X

Seq45 60 % 37 % 30 % 30 % X

Seq51 100 % 84 % 60 % 50 % X

Seq58 60 % 26 % 20 % 20 % X

*HERV names from Seifarth et al. (2003).

DThe three variants of the 786-0 cell line were analysed separately from the other 19 RCC cell lines.

dCore profile of transcribed HERVs in non-tumour kidney tissues, NKC and HK2 cells in HK2 media. HERV transcription was defined as

belonging to the core if transcribed in 80 % of tissues and 100 % of cell cultures.

Kidney HERV transcription
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were infrequently transcribed in the tissues (Table 1 and
Supplementary Fig. S1, available in JGV Online). These
included HERV-T (S71pCRTK1 and S71pCRTK6), HERV-
FRD (FRD and HS49C23), HERV-H (RGH2, HERV-H
and Seq66), ERV-9 (Seq60 and Seq64), HERV-F (-F and
Fb), HERV-R (HERV-Rb), ERV3, HML-1 (Seq29), HML-3
(Seq34, HERV1 and Seq43), HML-4 (Seq10 and HERV-
KT47D), HML-5, HML-6 (Seq56), HML-7, HML-9,
HML-10 (HERV-KC4 and Seq31) and HERV-L elements
(Seq39 and Seq51). Interestingly, all the HERV sequences
that were induced in the primary non-tumour kidney cells
by short-term culture were also found to be expressed in
RCC cell lines (Table 1). Given that these same HERVs
were uniformly or frequently expressed in the RCC cell
lines but were consistently infrequent in the tumour
tissues, these differences probably represent changes in
HERV transcription that occurred in response to cell
culture establishment and thus do not reflect pathology.
The uniformity with which the culture-induced differ-
ences occurred suggests that the cell culture conditions
drastically alter HERV transcription by a common
mechanism, which influences the same HERV LTRs
(Table 1).

Moreover, it was found that different culture media could
influence HERV transcription. This was seen with the
established non-tumour proximal tubular kidney epithelial
cell line HK2, which was cultured under two different
conditions (see Methods). Altered HERV transcription in
response to the media included HERV-I, HERV-H (subgroup
HERV-H), and HERV-F (subgroup HERV-F) (Supple-
mentary Table S1, available in JGV Online). Notably, the
affected HERVs did not belong to the core profile.

Additionally, three RCC cell lines all derived from the same
parental cell line but transfected with either the wild-type
von Hippel Lindau (VHL) gene (786-0 VHLwt8), a
truncated VHL gene (786-0 VHL1-115) or the empty vector
(786-0 PCR3) (see Methods), also demonstrated differences
in HERV expression. HERV-I (HERV-I and HERV-IP-
T47D), HERV-T (S71pCRTK6 and S71pCRTK1), HERV-H
(subgroup HERV-H), ERV9 (Seq64), HERV-R (ERV3),
HML-1 (HML-1 and Seq29), HML-7, and HERV-L (Seq39,
Seq45 and Seq58) were transcribed differently among the
three RCC cell lines with different VHL transcription
(Supplementary Table S1). Again, none of the altered
HERVs were part of the core profile.

HERV sequences as potential targets for
RCC-reactive TCR53

The HERV transcription profiles of the RCC lines (n522),
primary non-tumour kidney cultures (NKC, n54) and the
established HK2 non-tumour kidney epithelial cell line was
compared to the presence or absence of the TCR53 epitope.
Fifteen of the 22 RCC cell lines expressed the TCR53
epitope, but none of the four NKC cultures (Leisegang
et al., 2010). Thus, while the antigen recognized by TCR53

appears to be restricted to RCC cell lines, it is not present
in all RCC cell lines.

Positive (n515) and negative (n511) cell lines or cultures
did not reveal any HERV subgroup that was present or
respectively absent in the majority of cells of one or the other
group (Supplementary Table S2, available in JGV Online).
Thus, the HERV transcription pattern does not provide
evidence that an HERV sequence is the antigen recognized
by the RCC-reactive TCR53. However, it cannot be excluded
that a single HERV locus among a subgroup of multicopy
HERV elements may be differentially expressed.

Quantitative analysis of HERV transcription
differences between tumour and non-tumour
tissue samples

Although there was no difference in terms of HERV presence
or absence in tumour-derived versus non-tumour-derived
RNA (Table 1), the intensity of the microarray signals
differed among samples (Fig. 1). To examine whether the
differences in HERV transcription levels between RCC and
non-tumour tissue RNA that were statistically significant,
the microarray data were analysed densitometrically and
each HERV normalized to the housekeeping gene HPRT,
which was consistently expressed among samples. No
statistically significant difference was observed, reinforcing
that HERV transcription is unaltered in RCC (not shown).

The results of the microarray analysis were confirmed by
quantitative real-time RT-PCR (qRT-PCR) for HERV-K
groups HML-3 and HML-5 performed on selected samples
(five and three RCC tissues, respectively) (Supplementary
Fig. S3, available in JGV Online). The qRT-PCR results
were generally consistent with the observed microarray
analysis and did not support RCC-specific increase or
decrease of transcription of the HERVs tested.

Transcription of known HERV-encoded tumour
antigens in RCC cell lines, the cell line HK2 and
primary NKC cultures

A number of tumour-specific antigens derived from various
HERV elements have been identified in several human
tumours such as breast carcinoma, colorectal carcinoma,
melanoma, prostate carcinoma, RCC and seminoma
(Shastri, 1996; Rakoff-Nahoum et al., 2006; Ishida et al.,
2008; Chen et al., 2004; Schiavetti et al., 2002; Alves et al.,
2008; Takahashi et al., 2008; Wang-Johanning et al., 2008)
(Table 2). Primers specifically amplifying transcripts of these
HERV antigens were adapted from the literature and used to
screen the RCC and HK2 cell lines as well as the primary
NKC cultures (Fig. 2). HERVs HERV-E-RCC8, HERV-E-
RCC9, HERV-K-102 and HERV-K-M1976 were expressed
in all analysed cell cultures, including those from non-
tumour kidney, thus exhibiting no cancer-associated
expression pattern. HERV-H-Xp22 was absent in some
RCC lines (10 of 20) and also absent in the immortalized
non-tumour kidney cell line HK2 and one (of four) primary

S. Haupt and others
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NKC culture. Transcripts of the HERV-K-MEL gene were
detected in only one of the primary NKC cultures. The
antigen HERV-K-NGO-P-54 was transcribed in 22 of the 28
analysed samples, irrespective of whether or not they are
non-tumour or cancer in origin. There was no correlation
between HERV transcription and the presence or absence of
the TCR53 epitope. Moreover, transcription of each HERV
described to be a tumour-associated antigen was not
restricted to cancer cell lines but was also found in non-
tumour kidney tissues.

DISCUSSION

Alterations in HERV transcriptional activity are observed
in many human cancers (for reviews see (Romanish et al.,
2010; Ruprecht et al., 2008a). Some HERV sequences have
also been found in RCC where it was shown that they give
rise to cancer-associated T-cell reactivity (Takahashi et al.,
2008). In order to better understand potential disease-
associated changes in HERV transcription in the kidney, we
established the core kidney HERV transcription profile
using retrovirus-specific DNA microarrays and compared it
to the transcription profile of kidney cancer tissues. It should
be noted that the microarray is based on the detection of the
pol gene (Seifarth et al., 2005). The advantage is that HERV
group-specific pol sequences flanked by conserved motifs
make the gene amenable to microarray discrimination. This
means, however, that it cannot be excluded that other HERV
genes such as env-derived sequences exhibit different
expression patterns. Previous studies of brain tissue (Frank
et al., 2005) and mammary gland tissue (Frank et al., 2008)
observed interindividual variation in HERV transcription
with some HERV groups expressed in all individuals and
some in one or few. The HERV transcription profile in
kidney tissue contrasts with the profile observed in cultured
cells. While there is a core of commonly expressed HERVs,
cell cultures were consistently found to express additional
HERVs. The expression of the additional HERV sequences
was found to be independent of whether the cell culture was
from non-tumour kidney tissue or from RCC tumour.
Different microarray production does not explain this result
as the extra HERVs were transcribed in some of the tissue
samples as well but at much lower frequency among
individuals. Given the consistency of this difference among
all cell cultures tested, the data suggest that HERV
transcription in kidney tissue and kidney cell cultures is
not entirely comparable. They additionally suggest that there
is a common mechanism involved in the alteration of HERV
transcription that occurs when cells are propagated under
culture conditions. The induction of HERV transcription
occurs quickly as had already been seen in primary non-
tumour kidney cultures within only two passages. Within
the organ, kidney and RCC cells are mostly quiescent with
very few cells positive for the proliferation marker Ki67
(Nakano et al., 2001). Thus, HERV induction could be
related to the cell proliferation prompted by the cell culture
conditions.T
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Notably, there were no differences between non-tumour
kidney and tumour kidney tissue or between non-tumour
kidney cultures or RCC cell lines. When analysed
quantitatively, there were no statistically significant differ-
ences in the levels of transcription. Thus, pattern and
transcription levels remained unaffected by tumour status.
Some differences were observed that were related to the
expression of VHL protein variants in a given cell line
(786-0 cell line). However, none of the HERVs that varied
among the VHL-altered cell line belonged to the core
profile and varied in transcription in other cell lines.

The results are somewhat surprising in light of the
description of HERV-derived RCC-specific antigens
(Takahashi et al., 2008). Based on this publication we
had speculated that the RCC-associated T-cell reactivity
(TCR53), which we had identified (Leisegang et al., 2010),
could be related to an RCC-expressed HERV sequence.
However, the transcription pattern of HERVs in the RCC
lines and normal kidney cultures did not match the pattern
of TCR53 epitope presence, thus not supporting the
hypothesis that an HERV gag sequence is involved in
TCR53 specificity. However, it is possible that differential
expression of a single HERV locus among a subgroup of
closely related HERV elements may not be detected by
microarray analysis (Frank et al., 2008). We therefore
analysed the two published RCC-specific HERV sequences
and several other HERV sequences that are thought to be

tumour antigens, but observed that all were expressed
in RCC cell lines and non-tumour kidney cultures.
Unfortunately, insufficient human kidney tissue material
was available for a similar analysis. The lack of tumour
specificity of antigen expression could be due to cell line
alterations in expression. Alternatively or additionally, it
could mean that the reported tumour antigens are not truly
tumour-specific and are more generally expressed. Further
work on tissue samples will be needed to clarify this point.

In conclusion, we have established a core HERV transcrip-
tion profile for the human non-tumour kidney and we
describe, for the first time, the dramatic impact that cell
culture has on the transcription of HERV sequences. This
indicates that data obtained with cell cultures cannot be
used to deduce the ‘native’ organ-associated HERV profile.
Moreover, we report that the HERV profile of RCC tissues
very closely follows that of the non-tumour kidney,
suggesting that RCC development and manifestation do
not impact HERV transcription. However, other kidney
diseases may alter HERV transcription by either qualita-
tively or quantitatively changing the core HERV profile.

METHODS

Tissue collection. Human kidney samples were obtained from the

Biorepository of the Eastern Virginia Medical School (Eastern

Virginia Medical School, Norfolk, VA, USA IRB # 07-02-EX-0031)

Fig. 2. Seven HERV sequences, which are described as encoding antigens in various cancer types, were analysed by PCR to
determine their transcription in RCC cell lines and non-tumour kidney cell line (HK2) and primary NKC cultures. None of the
investigated HERVs were restricted to cancer cell lines; rather the transcription was also found in the immortalized non-tumour
kidney cell line HK2 and the primary NKC cultures. The presence or absence of the TCR53 epitope was determined previously
(Leisegang et al. 2010) and is indicated by + or 0.

S. Haupt and others
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(Table 3). Whole kidney sections were stored at 280 uC in plastic

bags with no preservatives. Tumours and adjacent normal tissue were

harvested at Sentara Norfolk General Hospital, at the Urology

Department, at the time of total or partial nephrectomy from RCC

patients (Fuhrman et al., 1982). All samples were obtained only from

subjects who consented to the Eastern Virginia Medical School RCC

biomarker discovery research protocol. All samples were carefully

analysed by one of three genito-urinary specialized pathologists. The

sampling strategy involved obtaining equivalent size sections from

non-tumour and cancerous tissues, minimum of 1 cm apart, from the

same individual. Tumours and non-tumour kidney areas were

defined by a pathologist (RL). Tissue samples were taken using a

6 mm3 biopsy punch and were added directly to a minimum of

180 ml buffer RNA Later (Qiagen) solution containing 0.1 % 2-

mercaptoethanol.

RCC cell lines, immortalized kidney cell line HK2, primary non-

tumour kidney cell cultures and TCR53 epitope presence. The

RCC cell lines used in this study are described in detail in Leisegang et

al. (2010). They are derived from primary human RCC tumours by

spontaneous outgrowth after placing tumour suspensions in culture.

No means of cell transformation were applied. Three variants of the

RCC cell line 786-0 were used. These variants are the 786-0 VHLwt8

cell line, transfected with the wild-type von Hippel Lindau gene

(VHLwt8), the 786-0 VHL1-115 cell line, transfected with a truncated

VHL gene encoding aa 1–115, and the 786-0 PCR3 cell line,

transfected with the empty vector (Iliopoulos et al., 1995). HK2 was

purchased from ATCC (ATCC CRL-2190). It is an immortalized

human proximal epithelial kidney cell line, which was established by

transformation with E6/E7 genetic elements of the human papilloma

virus HPV16. All cell lines were examined regularly regarding their

growth behaviour and morphological characteristics. All cell lines

were grown in VLE-RPMI 1640 (FG1415) medium (Biochrom) with

very low endotoxin. RPMI was further supplemented with FCS

(12 %) and penicillin/streptomycin (1 %), except for HK2, which was

grown either in HK2 medium (DMEM F-12 HAM (Sigma)

supplemented with L-glutamine, 1 % Insulin-Transferrin-Selenium-

X (Sigma), 0.1 mM hydrocortisone (Sigma), T3 (3,39,-triodo-L-

thyrosine; 10 mg ml21) (Sigma) and EGF (0.01 mg ml21) (Sigma) or

RCC medium (RPMI 1640 supplemented with 12 % FCS, 1 %

L-glutamine, 1 % non-essential amino acids (Biochrom), 1 % sodium
pyruvate and 1 % penicillin/streptomycin; Invitrogen).

NKC are described elsewhere (Leisegang et al., 2010). Briefly, they are
short-term cultures (passage 2– 4) of cells from non-tumour kidney
cortices obtained from RCC patients undergoing complete nephrec-
tomy at the Urological Department of the University Hospital
Grosshadern at the Ludwig-Maximilians-University Munich. They
were maintained in RPMI 1640 medium supplemented with 10 %
FCS, 100 U penicillin–streptomycin ml21, 1 mM L-glutamine, 1 mM
sodium pyruvate, 1 % non-essential amino acids and 1 % Insulin-
Transferrin-Selenium-X as described previously (Leisegang et al.,
2010). Determination of TCR53 epitope presence in the cell lines and
NKCs is described in Leisegang et al. (2010).

RNA extraction from human tissues. Disposable probes attached
to a TissueRuptor were used to disrupt the samples at full speed until
no debris remained (Qiagen). The lysate was then transferred to a
QIAshredder spin column placed in a 2 ml collection tube and
centrifuged for 2 min at maximum speed. The homogenized lysate
was transferred to a genomic DNA (gDNA) Eliminator spin column
placed in a 2 ml collection tube and centrifuged for 30 s at 8000 g.
One volume of 70 % ethanol (350 ml or 600 ml) was added to the
flow-through. The samples were then processed according to the
manufacturer’s directions.

A DNase digestion step on the RNA was performed to ensure no
residual DNA was in the sample prior to a second RNA clean-up
procedure. The eluted RNA was mixed with 10 ml Buffer RDD and
2.5 ml DNase stock I solution followed by incubation at room
temperature for 10 min. The above procedure was repeated beginning
with the transfer of the mixture to the gDNA Eliminator spin column.
A total of 100 ml was added to the membrane for the final elution
step.

Cell lines were harvested, pelleted and immediately placed on ice and
processed for RNA extraction using an RNeasy kit (Qiagen) according
to manufacturer’s instructions. DNase treatment was performed using
RQ1 RNase-free DNase (Qiagen) according to the supplier’s
instructions.

To ensure that all gDNA was removed by DNase treatment PCR with
HERV-L LTR-specific primer pair was performed for the cell lines.
This primer pair amplifies a great number of HERV-loci. Alter-
natively, the mixed oligonucleotides for pre-amplification before
microarray hybridization were used and checked by gel electrophor-
esis. The same strategy was used for the human tissue sample RNA
preparations. Further experiments were only conducted on PCR-
negative RNA.

Reverse transcription and PCR. Reverse transcription of 500 ng to
1 mg human tissue RNA was performed using Q-script (Quanta
BioSciences) after the RNA tested free of contamination. A second
PCR was then performed using the same protocol as above to amplify
the cDNA. For cell lines, cDNA synthesis was performed using the
Superscript First-Strand Synthesis System for RT-PCR according to
manufacturer’s instructions.

Two different mixed oligonucleotide primer (MOP) sets were used
for multiplex-PCR. The primer sequences were derived from two
highly conserved amino acid motives (VLPQG and YM/VDDI/LL)
present in all retroviral RT-proteins and flank an approximately 90 bp
sequence. This ensures the amplification of various RT-associated
elements and the specificity of the PCR (Seifarth et al., 2003). The
antisense- (‘reverse’-) primers were modified with the fluorochrome
Cy3 at their 59 end, which allows the labelling of all synthesized PCR
products (Seifarth et al., 2003). In addition, 6 bp long ‘clamp’-
sequences were implemented at the 59 end of each primer, which
stabilize the binding of the primer during the PCR. The MOP-C-

Table 3. Kidney tissue samples and pathology information from
Eastern Virginia Medical School

CA#, Cancer sample number.

CA# Tissue type Stage/Fuhrman

nuclear grade*

4670 Clear cell pT3bN0Mx/ 3

4699 Clear cell pT3aNxMx/ 2

4807 Clear cell pT3aNxMx/ 2-3

4945 Clear cell and

granular cell

pT3N3Mx/ 2-3

4707 Papillary renal cell pT1bNxMx/ 2

4757 Clear cell pT2NxMx/ 3

4852 Clear cell with sarcomatoid

differentiation

pT3N0Mx/ 4

4732 Unspecified renal cell pT1bNxMx/ 2

4933 Clear cell pT3bNxMx/ 2

4779 Clear cell pT1bNxMx/ 4

*Fuhrman et al. (1982).

Kidney HERV transcription
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primer set is based on degenerate primers described by Shih et al.

(1989) and permits the amplification of human and vertebrate

c-retroviral RT-sequences and various exogenous virus sequences.

The other primer set (MOP-A) enables the amplification of human

b-retroviral RT-sequences. The PCR for each primer mixture was

performed separately to allow the optimal amplification of the

retrovirus-related elements. Oligonucleotides specific for human

housekeeping genes (MOP-HKG) served as internal control for the

quality of the RNA and the reproducibility of the microarray data

(Seifarth et al., 2003). For the human tissues, the PCR mixture

contained 2.5 ml cDNA, 0.5 ml HKG primer mixture, 2.0 ml MOP-A

primer mixture or 2.0 ml MOP-C primer mixture and 45 ml Platinum

Taq polymerase (Invitrogen). All PCR programs were performed on

the Bio-Rad MyCycler thermocycler (Hercules) using the HKG with

either the MOP-A or MOP-C oligonucleotide primers (100 nM final

concentration) in 1 mM phosphate buffer (1.5 mM MgCl2), with

Platinum Taq polymerase and standard buffers (Applied Biosystems).

Negative-amplification controls were included with each sample to

monitor for contamination. RNA extraction and pre-amplification

steps for PCR were carried out in separate UV-exposed hoods to

prevent DNA contamination with separate pipettes, disposable sterile

tubes, filter tips, sterile reagents and solutions were used throughout

the procedures. All reagents and tubes were irradiated with UV light

to minimize the potential contamination. The cycling parameters

included an initial denaturation of 9.5 min at 95 uC, followed by 30 s

at 45 uC; annealing for 30 s at 60 uC in the initial three cycles then

stepping down to 50 uC annealing for the remaining 42 cycles, 72 uC
for 30 s and a final extension of 2–7 min at 72 uC.

For the cell lines, the KAPA 2G Robust DNA-Polymerase system was

used containing 19.8 ml, PCR-grade water, 10 ml 56 KAPA 2G Buffer

A, 2 ml MgCl2 (25 mM), 1 ml dNTPs (10 mM), 2 ml primer mixture

MOP-A/MOP-C, 1 ml MOP-HKG, 10 ml 56 Enhancer 1, 2 ml 256
Enhancer 2, 0.2 ml KAPA 2G Robust DNA-Polymerase and 2 ml

template cDNA for a total volume of 50 ml. Cycling conditions were

an initial denaturation at 95 uC for 1 min, three cycles of 94 uC 30 s,

45 uC 3 min, 72 uC 2 min followed by 30 cycles of 94 uC 30 s, 50 uC
2 min, 72 uC 2 min and a final 72 uC extension for 7 min. PCR

products using RNA or cDNA as template were separated by

electrophoresis on agarose gels and visualized by ethidium bromide

staining. PCR-amplified cDNA was purified using a MinElute PCR

Purification kit (Qiagen), according to manufacturer’s directions for

tissues.

Microarrays. Purified PCR-amplified cDNA was annealed to

microarray slides (Epoxy2 Barcoded Slides; VWR) containing the

complementary sequence to known HERV oligonucleotides.

Microarray slides were spotted (SpotArray24; Packard BioScience)

in triplicate at Eastern Virginia Medical School (Norfolk, VA) in

separate UV-exposed hoods to prevent DNA contamination. Separate

pipettes, disposable sterile tubes, filter tips, sterile reagents and

solutions were used throughout procedures. All reagents and tubes

were irradiated with UV light to minimize contamination. Microarray

slides were blocked for 2–24 h, using 20 ml ArrayIt BlockIt (ArrayIt

Corporation) buffer in microarray hybridization chambers at 60 uC.

Slides were then washed with ArrayIt wash buffers: 2 min in 16
Wash Buffer A, 2 min in 26 SSC, 1 min in double-deionized water.

Purified PCR products (10 ml) were mixed with 18.4 ml 1.256
Hybridization buffer and 2 ml nuclease-free water and incubated at

42 uC for 5 min.

The mixture was then added to the microarray and covered with a

coverslip. The microarrays were placed in a Hybex hybridization

chamber overnight at 60 uC. Double-deionized water (1 ml) was

added to the top of the chamber to keep the microarrays hydrated. A

second wash cycle was performed after DNA annealing to remove un-

annealed DNA: 5 min in 16 Wash Buffer A; 5 min in 16 Wash

Buffer B; and 1 s in 16 Wash Buffer C. Several preliminary studies
were conducted to determine autofluorescence of the slides. Water
control slides were scanned prior to sample slides in order to observe
autofluorescence levels. The scanner was reduced to 60 % Photo-
multiplier tube to remove the observed autofluorescence. Microarray
slides were scanned using a microarray scanner (ScanArray Express;
Packard BioScience). False-colour spot images were used to
determined low or high expression levels. The microarray dataset
images are shown in the Supplementary material (available in JGV
Online).

For cell lines, similar arrays were produced using a GMS arrayer
(three hits per dot) using oligonucleotides synthesized by MWG
Biotech AG. Slides were incubated 1–4 h in a humid chamber and
then dried 24 h in the dark. The slides were shaken vigorously for
2 min in 0.2 % SDS and two times for 1 min in ddH2O. They were
placed for 5 min in a NaBH4-solution, washed for 1 min in 0.2 % SDS
and then twice for 2 min in ddH2O. The slides were placed in 50 ml
Falcon tubes and centrifuged for 2 min at low speed and stored at
room temperature until use. Hybridization then proceeded as
described in Seifarth et al. (2003). The microarrays were scanned
with an Affymetrix GMS 418 array scanner, further processing of the
pictures were done with ImaGene Software tool package (resulting
pictures were visualized in false-colours), the pictures were saved as
tagged image file (tif) and bitmap file (bmp) and the alignments were
created with the support of Adobe Photoshop CS3 Extended and
Adobe Illustrator CS3 (Supplementary material). Densitometric
analysis was performed with the program Image J 1.37v. Data
analysis was performed using GraphPad Prism 5.0. Significance was
calculated using unpaired Student’s t-test and using a cut-off of
P,0.05 for significance. The microarray dataset images are shown in
the Supplementary material.

Detection of HERV antigen transcripts. Primers used to detect
seven known HERV-derived tumour antigens were developed and
tested for amplification of the correct sequences by sequencing each
product from a test sample. Primers that amplified the correct
sequences were used on the cell line-derived RNA. The primer
sequences are shown in Table 1. Amplification conditions were
performed in ddH2O (39.5 ml), 5 ml Expand High Fidelity buffer with
5 ml 106 MgCl2, 1 ml dNTPs (10 mM), 1 ml Primer fwd (10 mM),
1 ml Primer rev (10 mM), 0.5 ml Expand High Fidelity Polymerase,
and 2 ml template cDNA for a total of 50 ml. Cycling parameters
included an initial denaturation at 95 uC for 2 min followed by 30
cycles at 95 uC for 30 s, 59–61 uC for 30 s, 72 uC for 1 min with a
final extension at 72 uC for 5 min. Products were visualized on
ethidium stained agarose gels.

ACKNOWLEDGEMENTS

The authors thank Christine Nelson for technical support for the
microarray experiments. M. T. and A. D. G. received financial support
from the Old Dominion University Research Foundation
Multidisciplinary Seed Funding Program. E. N. received support
from the SFB-TR36. We thank M. Staehler from the Urology
Department of the University Clinic Großhadern, Ludwig-
Maximilians-University Munich for providing kidney samples. We
would like to thank C. D. Gerharz (Institute of Pathology, Bethesda-
Johanniter Clinic, Duisburg, Germany) for providing some of the
RCC cell lines.

REFERENCES
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