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SUMMARY

There are copula-based statistical models in the literature for regression with dependent data such as clus-
tered and longitudinal overdispersed counts, for which parameter estimation and inference are straightfor-
ward. For situations where the main interest is in the regression and other univariate parameters and not
the dependence, we propose a “weighted scores method”, which is based on weighting score functions of
the univariate margins. The weight matrices are obtained initially fitting a discretized multivariate normal
distribution, which admits a wide range of dependence. The general methodology is applied to negative
binomial regression models. Asymptotic and small-sample efficiency calculations show that our method
is robust and nearly as efficient as maximum likelihood for fully specified copula models. An illustrative
example is given to show the use of our weighted scores method to analyze utilization of health care based
on family characteristics.

Keywords: Composite likelihood; Copulas; Count data; Estimating equations; Negative binomial.

1. INTRODUCTION

Modeling clustered and longitudinal continuous response data is straightforward based on the multivariate
normal (MVN) distribution, applied to a possibly transformed response. This is not the case for discrete
responses, such as counts or ordinal variables. Combining copulas (multivariate uniform distributions)
with standard univariate models for discrete responses seems to be a promising solution. Exchangeable
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654 A. K. NIKOLOULOPOULOS AND OTHERS

copulas could be used to model clustered data. For longitudinal discrete data, copulas with dependence
decreasing in time lag can be used.

The MVN copula generated by MVN distribution inherits the useful properties of the latter and thus
allows a wide range for dependence and overcomes the drawback of limited dependence of simple para-
metric families of copulas. Implementation of MVN copula for discrete data (discretized MVN) is possible
but not easy because multidimensional integration is needed for computing MVN rectangle probabilities.
Therefore, special estimation methods may be required in order to overcome the computational complex-
ities. The use of composite likelihood methods (seeZhao and Joe, 2005; Varin, 2008) can be a potential
path toward implementation of discretized MVN and other such models.

In this paper, to generalize existing methodology in the biostatistics literature for regression models
with dependent data, we concentrate on inference for the univariate parameters with dependence treated
as nuisance, that is, we assume that joint and conditional probabilities are not of interest. The efficiency
of estimating the univariate parameters using a composite likelihood based on the sum of univariate log-
likelihoods can be low when dependence within clusters is strong. We will improve the efficiency by
inserting weight matrices that depend on covariances of the scores assuming a “working model”, such as
discretized MVN. We call this method “weighted scores”.

The weighted scores method is an extension of the generalized estimating equations (GEEs) (Liang
and Zeger, 1986) since it can also be applied to families that are not in the class of generalized linear
regression models. The GEE method is a nonlikelihood approach based on a “working correlation” ma-
trix. But for nonnormal variables, Pearson’s correlations have constraints that depend on the univariate
margins, which the GEE method ignores (Sabo and Chaganty, 2010). Furthermore, in general the spec-
ified working correlation matrix may not correspond to any multivariate distribution for binary or count
data, so regression parameter estimates andp-values may lack a theoretical probabilistic basis. In the
absence of a multivariate distribution with specified working correlation matrix, broad claims of con-
sistency of GEE estimates are incorrect (Lee and Nelder, 2009). SeeChaganty and Joe(2004, 2006)
andLindsey and Lambert(1998) for further shortcomings of the GEE method. Our new method not only
generalizes but also overcomes the theoretical flaws associated with the GEE procedure because our work-
ing model is a proper multivariate model and the parameters in the weight matrices are interpretable as
latent correlations. Furthermore, we demonstrate that our weighted scores method is highly efficient when
compared with the “gold standard” maximum likelihood (ML) estimates arising from proper multivariate
models.

To illustrate the method of weighted scores concretely, we use negative binomial regression mod-
els to handle cluster and longitudinal count data with overdispersion. For longitudinal count data with
overdispersion,Thall and Vail(1990) andSolis-Trapala and Farewell(2005) have proposed covariance
models with robust estimation of the covariance matrix, but in these models, negative values for the co-
variances are not allowed, although multivariate discrete data can exist with some negative associations.
Some realistic situations with negative dependence appeared inChib and Winkelmann(2001). Further-
more, autocorrelation structures such as AR(1), which are very realistic in longitudinal count data, can-
not be adapted. Our approach allows flexibility through the MVN copula and more than one form of
marginal negative binomial regression as inCameron and Trivedi(1998) and therefore is superior to the
aforementioned methods because it provides (a) robust estimation, (b) more dependence structures, and
(c) flexibility in the sense that covariates can be incorporated into both parameters of the negative binomial
distribution.

The remainder of the paper proceeds as follows. Section 2 introduces the general theory of weighted
scores method, and Section 3 gives details for the special case of negative binomial regression. Section 4
discusses the use of the discretized MVN working model to obtain the weights and asymptotic proper-
ties of the estimates. Section 5 studies asymptotic efficiency of our method as compared to ML using
other multivariate copula models with negative binomial regression. Section 6 presents an application
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Weighted scores method 655

of our methodology to analyze dependent overdispersed count data. We conclude this article with some
discussion.

2. WEIGHTED SCORES: GENERAL THEORY

The main idea of weighted scores estimating equations is to write out the score equations for inde-
pendent data within clusters or panels and then generalize to estimating equations by inserting weight
matrices between the matrix of covariates and the vector of scores for regression and nonregression param-
eters. The general theory is outlined here and made concrete for negative binomial regression models in
Section3.

For ease of exposition, letd be the dimension of a “cluster” or “panel” andn the number of clus-
ters. The theory can be extended to varying cluster sizes. Letp be the number of covariates, that is, the
dimension of a covariate vectorx. Let γγγ of dimensionq be the vector of univariate parameters that are
not regression coefficients. The responseY is assumed to have densityf (∙; ν, γγγ ), whereν = η(x; βββ)
is a function ofx and thep-dimensional regression vectorβββ. Usually, ν = xTβββ or η(∙) is a known
function.

Suppose that data are(yi j , xi j ), j = 1, . . . , d, i = 1, . . . , n, wherei is an index for individuals
or clusters andj is an index for the repeated measurements or within-cluster measurements. The first
component of eachxi j is taken as 1 for regression with an intercept. The univariate marginal model for
Yi j is f (∙; νi j , γγγ ), whereνi j = η(xi j ; βββ). For a multivariate model, one would need a joint distribution of
(Yi 1, . . . , Yid). If for eachi , Yi 1, . . . , Yid are independent, then the log-likelihood is

L =
n∑

i =1

d∑

j =1

log f (yi j ; νi j , γγγ ) =
n∑

i =1

d∑

j =1

`(νi j , γγγ , yi j ),

where`(∙) = log f (∙). The score equations forβββ andγγγ are




∂L
∂βββ

∂L
∂γγγ



 =
n∑

i =1

d∑

j =1




∂η(xi j ;βββ)

∂βββ 0

0 Iq









∂`(νi j ,γγγ ,yi j )
∂νi j

∂`(νi j ,γγγ ,yi j )
∂γγγ



 = 0, (2.1)

whereIq is an identity matrix of dimensionq. Let XT
i j =

(
∂η(xi j ;βββ)

∂βββ 0

0 Iq

)

andsi j (a) =




∂`(νi j ,γγγ ,yi j )

∂νi j
∂`(νi j ,γγγ ,yi j )

∂γγγ



,

whereaT = (βββT , γγγ T ) is the column vector of allr = p + q univariate parameters. The score equations
(2.1) can be written as

∂L

∂a
=

n∑

i =1

d∑

j =1

XT
i j si j (a) =

n∑

i =1

XT
i si (a) = 0, (2.2)

whereXT
i = (XT

i 1, . . . , XT
id) andsT

i (a) = (sT
i 1(a), . . . , sT

id(a)). The vectorssi j (a) andsi (a) have dimen-
sions(1+ q) andd(1+ q), respectively. The dimensions ofXi j andXi are(1+ q) × r andd(1+ q) × r ,
respectively.

For estimation ofa whenYi 1, . . . , Yid are dependent and a multivariate model is not used, we consider
weighted scores equations that generalize (2.2) as

g = g(a) =
n∑

i =1

XT
i W−1

i si (a) = 0, (2.3)
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656 A. K. NIKOLOULOPOULOS AND OTHERS

whereW i are invertibled(1 + q) × d(1 + q) matrices. In (2.3), for initial analysis, we considerW i as
fixed. The asymptotic covariance matrix is used to obtain an optimal choice forW i for further analysis
in the subsequent sections. The asymptotic covariance matrix for the estimator that solves (2.3) is V =
(−Dg)

−1Mg(−DT
g )−1, whereMg = Cov(g) =

∑n
i =1 XT

i W−1
i �i [WT

i ]−1Xi and−Dg = E(∂g/∂aT ) =
∑n

i =1 XT
i W−1

i 9i , for g in (2.3). Here9i = −E(∂si (a)/∂aT ) and�i = Cov(si (a)). The dimensions of
the matrices are as follows:Dg, Mg are r × r , �i is d(1 + q) × d(1 + q), and9i is d(1 + q) × r .
Thus,

V =

(
n∑

i =1

XT
i W−1

i 9i

)−1( n∑

i =1

XT
i W−1

i �i [WT
i ]−1Xi

)(
n∑

i =1

9T
i [WT

i ]−1Xi

)−1

.

The matrix Cauchy–Schwarz inequality (Chaganty and Joe, 2004) shows that the optimal choice ofW i

satisfiesXT
i W−1

i = 9T
i �−1

i , leading to

Vopt =

(
n∑

i =1

9T
i �−1

i 9i

)−1

. (2.4)

Thus, the optimal choice ofW i depends on the “true multivariate model” via9i and�i .

3. OPTIMAL WEIGHTS FOR NEGATIVE BINOMIAL REGRESSION

For overdispersed count data, the sample variance is larger than the sample mean, that is, the dispersion
index (=variance/mean) is greater than 1. The negative binomial distribution NB(τ, ξ) allows for overdis-
persion, and its probability mass function is

f (y; τ, ξ) =
0(τ + y)

0(τ)y!

ξ y

(1 + ξ)τ+y
, y = 0, 1, 2, . . . , τ > 0, ξ > 0,

with meanμ = τξ , varianceτξ(1 + ξ), and dispersion index 1+ ξ . In this parameterization,τ is the
convolution parameter andξ = 1/π − 1, whereπ is the Bernoulli parameter.

Cameron and Trivedi(1998) present the NBk(μ, γ ) parameterization, whereτ = μ2−kγ −1 and
ξ = μk−1γ , 1 6 k 6 2. For the NBk model, we letν = logμ = xTβββ depend on the covariatesx,
and consequently either or both the parametersτ andξ of the negative binomial are covariate dependent.
We will primarily use the NB1 parameterization(τ = μγ −1, ξ = γ ) and the NB2 parameterization
(τ = γ −1, ξ = μγ ); the latter is the same as inLawless(1987). For the NB1 model,τ depends on
covariates whileξ = γ does not and thus the dispersion index is constant. For the NB2 model,τ = 1/γ is
constant whileξ is a function of the covariates and therefore the dispersion index varies with the covari-
ates ranging from 1+ γ min[exp(xTβββ)] to 1 + γ max[exp(xTβββ)]. For 1 < k < 2, one could interpolate
between these 2 models using the NBk parameterization, for which the covariates affect both parame-
ters of the negative binomial. Let`(ν, γ, y) = log f (y; τ, ξ) for the re-parameterized negative binomial
model.

Suppose that for each 16 i 6 n and 16 j 6 d, Yi j is distributed as negative binomial with mean
μi j and parameterγ . Assume thatνi j = log(μi j ) = xT

i j βββ. In this case,∂η(xi j ; βββ)/∂βββ = xi j andq = 1.

To obtain9i = −E(∂si (a)/∂aT ), first note that

∂si j (a)

∂aT
=






∂2`
∂ν2

i j
xT

i j
∂2`

∂νi j ∂γ

∂2`
∂γ ∂νi j

xT
i j

∂2`
∂γ 2




 =






∂2`
∂ν2

i j

∂2`
∂νi j ∂γ

∂2`
∂γ ∂νi j

∂2`
∂γ 2









xT

i j 0

0T 1



 = Di j Xi j ,

Downloaded from https://academic.oup.com/biostatistics/article-abstract/12/4/653/248917
by Old Dominion University user
on 15 May 2018



Weighted scores method 657

where` = `(νi j , γ, yi j ). With 1i j = −E(Di j ), we have

9i = −E

(
∂si (a)

∂aT

)
=






1i 1Xi 1
...

1idXid




=






1i 1 ∙ ∙ ∙ 0
...

...
...

0 ∙ ∙ ∙ 1id











Xi 1
...

Xid




 = 1i Xi , (3.1)

where1i = diag(1i 1, . . . ,1id) is a symmetric 2d × 2d matrix, asq = 1. Explicit expressions for
the elements of the matrix1i j , the log-likelihood` = `(ν, γ, y), its derivatives∂`/∂ν, ∂`/∂γ , and the
negative expectations of the second derivatives∂2`/∂ν2, ∂2`/∂ν∂γ , ∂2`/∂γ 2 for NB1 and NB2 models
are given in the supplementary material available atBiostatisticsonline.

Thus, for weighted scores equations of the form (2.3) for dependent observations, the optimal weights
Wi satisfyXT

i W−1
i = 9T

i �−1
i = XT

i 1T
i �−1

i or W i = �i 1
−1
i . In the special case of independence

within clusters,1i equals�i and the optimalW i is an identity matrix. In the next section, we propose a
preliminary modeling step to get a good estimate for Cov(si (a)) = �i for dependent data.

4. ESTIMATION OF WEIGHTS USING A WORKING MODEL

This section presents an estimation method for the weights and asymptotic properties of the weighted
scores estimating equations. An approach is to use a working model for the purpose of getting the weight
matricesW i , which might be near optimal for the “true joint distribution”.

We select a working model based on the discretized MVN distribution as this allows a wide range of
dependence. The discretized MVN model has the following cumulative distribution function (c.d.f.):

F(y1, . . . , yd) = 8d(8−1[F1(y1)], . . . , 8
−1[Fd(yd)]; R),

where8d denote the standard MVN distribution function with correlation matrixR, 8 is the c.d.f. of
the univariate standard normal, andF1, . . . , Fd are the univariate distributions. The MVN copula inherits
the dependence structure of MVN distribution but lacks a closed-form c.d.f.; this means that likelihood
inference might be difficult asd-dimensional integration is required for the multivariate probabilities
(d > 3) (seeNikoloulopoulos and Karlis, 2009). However, as the optimal weight matricesW i depend on
covariances of the scores, only the bivariate marginal probabilities ofYi j andYik , j 6= k, are needed for
estimation.

The estimating equations (2.3) based on a “working” discretized MVN take the form

g1 = g1(a) =
n∑

i =1

XT
i W−1

i,workingsi (a) = 0, (4.1)

whereW−1
i,working = 1i �

−1
i,working = 1i (̃a)�i (̃a, R̃)−1 is based on the covariance matrix ofsi (a) com-

puted from the fitted discretized MVN model with estimated parametersã and R̃. As bivariate normal
c.d.f. calculations are needed for the weight matrices (different ones for different clusters), a good ap-
proximation that can be quickly computed is important. We used the approximation given byJohnson and
Kotz (1972), details of which are described in the supplementary material available atBiostatisticsonline.
If the W i,working are assumed fixed for the second stage of solving the estimating equations (4.1), then the
asymptotic covariance matrix of the solutionâ1 is

V1 =
(
−Dg1

)−1 Mg1

(
−DT

g1

)−1
(4.2)
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with

−Dg1 =
n∑

i =1

XT
i W−1

i,working1i Xi , Mg1 =
n∑

i =1

XT
i W−1

i,working�i,true(W
−1
i,working)

T Xi ,

where�i,true is the “true covariance matrix” ofsi (a). Alternatively, withR̃ from the fitted MVN model
assumed fixed, and using the form of the optimalW i , we consider the following estimating equations ina:

g2 = g2(a) =
n∑

i =1

XT
i 1i (a)�−1

i (a, R̃)si (a) = 0, (4.3)

where�i (a, R) is the covariance matrix ofsi (a) based on the discretized MVN model. Solving (4.3) is nu-
merically more intensive than (4.1) because bivariate probabilitiespi jk (yj , yk) = Pr(Yi j = yj , Yik = yk)
are needed to compute the covariance entries of�i (a, R̃) for any a in any iterative numerical
method.

The asymptotics for the solution of (4.3) is similar to that of (4.1). Let aj be a component ofa. Then
with R̃ fixed, we have

∂g2

∂aj
=

n∑

i =1

XT
i 1i (a)�−1

i (a, R̃)
∂si (a)

∂aj
+

n∑

i =1

XT
i

∂1i (a)

∂aj
�−1

i (a, R̃)si (a)

+
n∑

i =1

XT
i 1i (a)

∂�−1
i (a, R̃)

∂aj
si (a). (4.4)

If the univariate marginal model is correct, thenE[si (a)] = 0 and only the first term on the right-hand
side of (4.4) contributes toE(∂g2/∂aT ). Hence, the asymptotic covariance matrix of the solutionâ2
for (4.3) is

V2 =
(
−Dg2

)−1 Mg2

(
−DT

g2

)−1
(4.5)

with Mg2 =
∑n

i =1 XT
i 1i (a)�−1

i (a, R̃)�i,true�
−1
i (a, R̃)1i (a)Xi and−Dg2 =

∑n
i =1 XT

i 1i (a)�−1
i (a, R̃)

1i (a)Xi .
To summarize, the steps to obtain parameter estimates and standard errors are as follows. The numer-

ical methods used for various steps are described in the supplementary material available atBiostatistics
online.

1. Use a discretized MVN model and estimate the parameters using the CL1 composite likelihood
method described inZhao and Joe(2005). Let the parameter estimates beã for the univariate
parameters and̃R for the correlation matrix.

2. Compute the “working weight matrices”W i,working = �i (̃a, R̃)1i (̃a)−1, where�i (̃a, R̃) is the
covariance matrix of univariate scores based on the fitted discretized MVN model.

3. Obtain robust estimateŝa of the univariate parameters solving equation (4.1) using working weight
matricesW i,working or solving (4.3) usingR̃, with a reliable nonlinear system solver.

4. The robust standard errors forâ are obtained calculating the estimated covariance matrixV̂1 of â
based on (4.2) or V̂2 based on (4.5) by plugginĝa for a and replacing�i,true with si (̂a)sT

i (̂a). This
estimate is similar to the widely used “sandwich” covariance estimator.

5. EFFICIENCY OF WEIGHTED SCORES EQUATIONS

In order to study robustness and efficiency of the weighted scores method, we will use various multivariate
copula models as “true” models. A quick overview on copulas, a brief description of some parametric
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families of copulas that might be suitable for clustered and longitudinal count data, and their Fisher
information matrix are provided in the supplementary material available atBiostatisticsonline.

5.1 Relative efficiency: comparison based on asymptotic variances

As a first step to understanding the asymptotic relative efficiency of the weighted scores method for neg-
ative binomial regression, we considered copula models with exchangeable and AR(1)-like dependence.
For exchangeable dependence structure, the Frank copula in the Archimedean family (Joe, 1997, p 141)
with Laplace transformφF(t) = −θ−1 log[1−(1−e−θ )e−t ] was used as the “true model”. For AR(1)-like
dependence, the mixture of max-id copula (Joe and Hu, 1996) with Laplace transformφF and the bivariate
Frank copula for theC(m)

jk (∙; θ jk) was used as the true model. For the marginals, we used both NB1 and
NB2 forms of negative binomial regression.

For continuous random variables, dependence as measured by Kendall’s tauτ = Pc − Pd, the dif-
ference between the probabilities of concordance(Pc) and discordance(Pd), is associated only with the
copula parameters. However, for discrete data, the marginal distributions also play a role on dependence
andτ does not attain the boundary values of±1 because the probability of tiesPt = 1− (Pc + Pd) is pos-
itive (seeNikoloulopoulos and Karlis, 2010). Therefore, for discrete data the strength of dependence was
measured using the normalized version of Kendall’s tauτGK = Pc−Pd

Pc+Pd
given in Goodman and Kruskal

(1954). Various factors related to the dimension, the strength of dependence, and overdispersion were
considered in selecting parameters for the models.

A summary of the parameter choices chosen for efficiency calculations is in Table1. For the covariates
and regression parameters, we chose 3 designs: (i)p = 2, xi j = (1, x1i j )

T , wherex1i j are taken as uni-
form random variables in the interval [−1, 1], β0 = −0.5, andβ1 = 0.5; (ii) p = 3, xi j = (1, x1i j , x2i j )

T ,
wherex1i j , x2i j are taken as uniform random variables in the interval [−1, 1], β0 = −0.5, andβ1 = β2 =
0.5; and (iii) p = 3, xi j = (1, x1i j , x2i j )

T , wherex1i j are taken as uniform random variables in the
interval [−1, 1] andx2i j are taken as Bernoulli random variables with probability of successπ = 0.4,
β0 = −0.5, andβ1 = β2 = 0.5.

For the above copula models and parameter and design selections, we computed the inverse of the
Fisher information matrixI, the matrixVopt =

(∑n
i =1 9T

i �−1
i 9i

)−1, given in (2.4) with 9i as in (3.1),
and the matrixV2 given in (4.5) for both NB1 and NB2 regressions. Note thatI−1 is the asymptotic
covariance matrix of the ML estimates when the copula model is correctly specified. Since it is common
practice to use parametric correlation matrices, we calculated efficiencies for structured latent correlation
matrices. For exchangeable dependence, we tookR̃ as(1− ρ)Id + ρJd, whereId is the identity matrix of
orderd andJd is thed × d matrix of 1s. For AR(1) dependence,R̃ is taken as(ρ| j −k|)16 j,k6d.

Table 1. Parameter choices in the computation of asymptotic relative efficiencies

Dependence Exchangeable (d = 2, 3, 4) Longitudinal (d = 2, 3, 4)
strength

Weak Moderate Strong Weak Moderate Strong

τGK 0.2 0.5 0.8 0.2 0.5 0.8
θ 1.1 3 7 0.1 1.35 4.5
θ jk — — — 1.8 5 20
NB NB1 NB2
Overdispersion Moderate Large Moderate Large
γ 1/2 2 1/2 2
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5.2 Findings on asymptotic relative efficiency

Representative summaries of findings on the performance of the weighted scores approach are given in
Tables2 and3 and in the supplementary material available atBiostatisticsonline for three-dimensional
(d = 3) copula models. We tookn = 500 to get a good approximation of the asymptotic efficiency. The
comparisons are made on the scaled diagonal elements, corresponding to the asymptotic variances of the
univariate parameters, of the 3 matricesI−1, Vopt, andV2 with different values ofρ.

Table2 has results for the Frank copula model with moderate dependence; see Table1 for the values
of the dependence parameters. We used design (iii) for the covariates and regression parameters, and the
matrix R̃ is taken as an exchangeable correlation matrix with parameterρ varying from 0 to 0.9 in 0.1
increments. Table3 has results for the mixture of max-id copula model with weak dependence composed
by φ = φF and bivariate Frank copulas with the dependence parametersθ13 = 0, ω1 = ω3 = −1, ω2 = 0
fixed, andθ , θ12, andθ23 as in Table1. We used design (iii), large overdispersion(γ = 2), and AR(1)
structured matrix̃R with parameterρ ranging from 0 to 0.9 in 0.1 increments. NB1 was used for Table3
and NB2 was used for Table2 as the marginal model.

Conclusions from the values in the 2 tables and other computations that we have done are the
following.

1. The estimating equations in (2.3) with optimal weight matrices yield estimates that are almost as
good as the ML estimates.

2. When the discretized MVN is used as the working model, the weighted scores method yields highly
efficient estimates when the parameterρ is such that the discretized MVN model is quite close to
the true model in Kullback–Leibler (K-L) distance.

3. For both negative binomial regressions, the efficiency of the weighted scores method using dis-
cretized MVN as a working model is high for the intercept and the dispersion parameter, for a wide

Table 2. Asymptotic variances, scaled by n, of the marginal parameters for the Frank copula model with
moderate dependence and NB2 marginals with moderate dispersion and for the weighted scores (WS)
using optimal choice of weights based on the true multivariate model and working weight matrices based
on the discretized MVN with exchangeable correlation matrixR̃ with parameterρ. Efficiencies with re-

spect to ML are shown in parentheses

Method (covariance) nVar(β0) nVar(β1) nVar(γ )

ML (I−1) 1.178 (1.00) 1.804 (1.00) 4.234 (1.00)
Optimal WS (Vopt) 1.206 (0.98) 1.846 (0.98) 4.339 (0.98)
WS with discretized MVN (V2(ρ))

ρ = 0.0 1.210 (0.97) 2.213 (0.82) 4.346 (0.97)
ρ = 0.1 1.208 (0.97) 2.043 (0.88) 4.345 (0.98)
ρ = 0.2 1.208 (0.98) 1.938 (0.93) 4.343 (0.98)
ρ = 0.3 1.207 (0.98) 1.883 (0.96) 4.341 (0.98)
ρ = 0.4† 1.208 (0.98) 1.866 (0.97) 4.340 (0.98)
ρ = 0.5 1.208 (0.98) 1.881 (0.96) 4.344 (0.96)
ρ = 0.6 1.210 (0.97) 1.923 (0.94) 4.368 (0.97)
ρ = 0.7 1.212 (0.97) 1.989 (0.91) 4.446 (0.95)
ρ = 0.8 1.218 (0.97) 2.088 (0.86) 4.704 (0.90)
ρ = 0.9 1.235 (0.95) 2.259 (0.80) 5.680(0.75)

†For thisρ value, the discretized MVN working model is close to the true model in K-L distance.
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Table 3. Asymptotic variances, scaled by n, of the marginal parameters for the trivariate mixture of max-
id copula model composed byφF with weak dependence and NB1 marginals with large dispersion and
for the weighted scores (WS) using optimal choice of weights based on the true multivariate model and
working weight matrices based on the discretized MVN with AR(1) correlation matrix̃R with parameterρ.

Efficiencies with respect to ML are shown in parentheses

Method (covariance) nVar(β0) nVar(β1) nVar(β2) nVar(γ )

ML (I−1) 2.481 (1.00) 2.796 (1.00) 3.520 (1.00) 17.827 (1.00)
Optimal WS (Vopt) 2.467 (1.00) 2.799 (1.00) 3.526 (1.00) 17.772 (1.00)
WS with discretized MVN (V2(ρ))

ρ = 0.0 2.487 (1.00) 2.856 (0.98) 3.602 (0.98) 17.777 (1.00)
ρ = 0.1 2.472 (1.00) 2.811 (0.99) 3.543 (0.99) 17.777 (1.00)
ρ = 0.2† 2.469 (1.00) 2.803 (1.00) 3.531 (1.00) 17.781 (1.00)
ρ = 0.3 2.481 (1.00) 2.834 (0.99) 3.574 (0.99) 17.795 (1.00)
ρ = 0.4 2.509 (0.99) 2.908 (0.96) 3.675 (0.96) 17.833 (1.00)
ρ = 0.5 2.559 (0.97) 3.028 (0.92) 3.841 (0.92) 17.925 (0.99)
ρ = 0.6 2.635 (0.94) 3.201 (0.87) 4.079 (0.86) 18.128 (0.98)
ρ = 0.7 2.745 (0.90) 3.436 (0.81) 4.403 (0.80) 18.562 (0.96)
ρ = 0.8 2.914 (0.85) 3.759 (0.74) 4.844 (0.73) 19.517 (0.91)
ρ = 0.9 3.276 (0.76) 4.245 (0.66) 5.490 (0.64) 22.050(0.81)

†For thisρ value, the discretized MVN working model is close to the true model in K-L distance.

range ofρ values. However, the efficiencies are not as high for the remaining regression coefficients.
This indicates that incorrect choice ofρ could lead to significant loss of efficiency.

4. Efficiencies are quite flat in an interval ofρ that depends on the strength of dependence within the
clusters. This provides partial justification for using (4.2) for the estimated covariance matrix of the
weighted scores estimator.

5.3 Small-sample efficiency based on simulation studies

To gauge the small-sample efficiency of the weighted scores method, we performed several simulation
studies using the copula models with parameter choices and design matrices as in Table1 and Section5.1.
We report here typical results from these experiments. We randomly generatedB = 104 samples of
sizen = 500, 300, 100 from the trivariate exchangeable Frank copula with moderate dependence and
NB2 regression with moderate dispersion and design (i) as in Section5.1. Table4 contains the parameter
values, the bias, variance (Var), and mean square errors of the ML estimates and weighted scores, along
with the average of their theoretical variances. The theoretical variance of the ML estimate is obtained
via the gradients and the Hessian computed numerically during the maximization process. The weighted
scores estimates were obtained assuming that theWi,working are fixed for the second stage of solving the
estimating equations in (4.3). The reported theoretical variances for the weighted scores method are from
V1 as in (4.2). The variances fromV2 were similar. Therefore, it is adequate to useV1 for estimating the
standard errors of the weighted scores estimates.

It is clear from Tables2 and4 (n = 500) that variances computed from the simulations are similar
to the asymptotic variances for both the ML and the weighted scores method. For example, forρ = 0.4
in Table2, nVar(β0) is 1.208 which is approximately equal to 1.217 in Table4. Note that forρ = 0.4,
the discretized MVN working model is close to the Frank copula model under moderate dependence with
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Table 4. Small sample of sizes n= 500, 300, 100simulations (104 replications) and resulted biases and
mean square errors (MSE) and variances (Var), along with average theoretical variances scaled by n, for
the ML of the marginal parameters for the trivariate Frank copula model with moderate dependence and
NB2 marginals with moderate dispersion and for the weighted scores based on the discretized MVN with

exchangeable correlation matrixR with parameterρ as estimated by the CL1method

ML Weightedscores

n nBias nVar nMSE nV̄(∙) nBias nVar nMSE nV̄1(∙)

β0 = −0.5 500 −0.82 1.19 1.19 1.17 −0.83 1.22 1.22 1.20
300 −1.11 1.18 1.19 1.17 −1.10 1.22 1.22 1.20
100 −1.03 1.22 1.23 1.18 −1.01 1.24 1.26 1.20

β1 = 0.5 500 0.62 1.81 1.81 1.80 0.61 1.86 1.86 1.85
300 0.29 1.79 1.79 1.80 0.24 1.85 1.85 1.85
100 0.20 1.90 1.90 1.84 0.19 1.95 1.95 1.85

γ = 0.5 500 −0.99 4.36 4.36 4.36 −0.74 4.46 4.46 4.42
300 −0.94 4.44 4.44 4.40 −0.71 4.55 4.55 4.42
100 −0.62 4.48 4.48 4.58 −0.42 4.61 4.61 4.43

respect to the K-L distance, a measure that is useful to make theoretical likelihood comparisons between
2 models.

For the models of Section5.1, the K-L distance slowly increases as the NB mean and the dependence
increase and it is less than 0.1 if the NB mean is less than 4 and the dependence is less than 0.8 as measured
with τGK . Our calculations show similar magnitude of K-L distance of copula models with discretized
MVN for exchangeable, AR(1), and unstructured dependence. Therefore, we expect the patterns seen for
exchangeable and AR(1) dependence to hold for unstructured dependence. In conclusion, the simulated
variances for samples of sizen = 500, 300, 100 show that the weighted scores method is almost as good
as ML.

6. ANALYSIS OF UTILIZATION OF HEALTH CARE COUNT DATA

This section illustrates the application of the weighted scores method to Riphahn, Wambach, and Million
(RWM) data (Riphahnand others, 2003), consisting of 7293 families from former West Germany and of
German nationality observed from 1 to 7 times during the years 1984–1988, 1991, and 1994. The data are
available for download at http://econ.queensu.ca/jae/2003-v18.4/. The focus of the original survey was to
study the role of public, private, and add-on health insurance on the intensity and utilization of health
care facilities. The use of health care facilities was measured by 2 primary count response variables, the
number of visits to a doctor (DocVis) within the last quarter prior to the survey and the number of inpatient
hospital visits (HospVis) within a given calendar year. Besides these variables the survey has a number
of explanatory variables. A complete list of variables and descriptive statistics can be found in Table 1 in
Greene(2008).

Our primary goal is not a complete analysis of the RWM data but to show the use of the weighted
scores in regressing the count variable (DocVis) panel on the explanatory variables. For our analysis, we
have selected a further subset of the RWM data consisting of 1154 families which had complete data for
the 5 years 1984–1988 and then to emphasize that our method does not depend on a constant cluster size
d, some observations were dropped randomly for the dependent variable. Thus, the data are unbalanced
and the missing values can be assumed to be missing completely at random.
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Table 5. Weighted scores (WS) estimates and standard errors (SEs) for the utilization of health care
countdata

CL1 estimates of the dependenceparameters

Marginal ρ12 ρ13 ρ14 ρ15 ρ23 ρ24 ρ25 ρ34 ρ35 ρ45
NB1 0.46 0.42 0.29 0.24 0.31 0.32 0.36 0.29 0.21 0.28
NB2 0.46 0.41 0.32 0.25 0.31 0.35 0.37 0.31 0.23 0.28

WS estimates of the univariateparameters

NB1 NB2

Covariates† Estimate Robust SE Z Pr > |Z| Estimate Robust SE Z Pr > |Z|
Intercept 0.343 0.294 1.17 0.24 0.635 0.367 1.76 0.08
Sex 0.373 0.091 4.10 0.00 0.248 0.107 2.28 0.02
Age 0.018 0.004 4.14 0.00 0.018 0.005 3.55 0.00
Hsat −0.115 0.014 −8.33 0.00 −0.147 0.019 −7.60 0.00
Handper 0.006 0.001 5.25 0.00 0.006 0.002 3.22 0.00
Univ −0.439 0.305 −1.44 0.15 −0.707 0.306 −2.33 0.02
Public 0.246 0.191 1.29 0.20 0.213 0.247 0.85 0.39
Addon −0.089 0.247 −0.36 0.72 −0.371 0.228 −1.63 0.10
γ 3.910 0.332 11.76 0.00 1.263 0.097 13.02 0.00

†Sex= indicator of female, that is, 1 for female, 0 for male; age= age in years; hsat= health satisfaction, on a scale of 0–10;
handper= degree of handicap in percent, 0–100; univ= binary indicator that highest schooling degree is university; public=
indicator of public health insurance; addon= indicator of add-on insurance.

Table 5 gives the estimates of the univariate parameters, along with the dependence parameters
obtained using the weighted scores method. As there is no reason to assume a structured correlation
between the 5 (1984–1988) repeated measurements, in the first step of the method the unstructured corre-
lation matrixR in the MVN copula is estimated using the CL1 method inZhao and Joe(2005). These CL1
estimates are listed in the first rows of the table. Next, we used this estimate ofR̃ and solved the weighted
scores equations (4.1) to obtain estimateŝa1 of the univariate parameters for both NB1 and NB2 regres-
sions. The parameter estimates along with robust standard errors computed usingV̂1 are also presented
in Table5. Since the parameters are the same for the 2 models, we can use the bivariate log-likelihood at
CL1 estimates as a rough diagnostic measure for goodness of fit between the 2 NB models. This quantity
was−7835.9 for NB2 and−7753.4 for NB1, and thus NB1 seems to be a better fit for the data.

Interestingly, the coefficient of hsat is negative and highly significant, indicating that families with
high health satisfaction rating seem to be making less frequent trips to the doctors office. Further public
and add-on health insurance has insignificant effect on the doctor visits as expected since families are
more likely to make doctor visits based on their health care needs as opposed to the type of insurance they
carry.

7. DISCUSSION

In this paper, we have studied weighted scores as an estimating equations approach based on weighting the
scores of the marginal distributions to account for the dependence in repeated or clustered measurements.
The weighted scores method with fixed weight matrices leads to unbiased estimating equations if the
univariate model is correct, and the efficiency depends on the choice of weight matrices. On the other hand,
the ML equations also lead to unbiased estimating equations if the univariate model and the dependence
are modeled correctly; however, the ML estimates could be biased if the univariate model is correct but
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dependence is modeled incorrectly. Hence, the weighted scores method is robust to dependence if the
main interest is the univariate regression parameters.

Some multivariate models are nearly indistinguishable from each other based on the moderate level of
dependence in response variables and sample sizes usually seen for real data. If there is strong dependence,
different copula models can be more easily discriminated and there might be a better working model
than discretized MVN. In terms of the Akaike information criteria, our empirical experience is that the
MVN copula model with discrete margins provides the best or nearly the best fit, so the working model
based on the discretized MVN distribution to compute weight matrices can satisfactorily account for the
dependence in the data.
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