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SUMMARY
There are copula-based statistical models in the literature for regression with dependent data such as clus-
tered and longitudinal overdispersed counts, for which parameter estimation and inference are straightfor-
ward. For situations where the main interest is in the regression and other univariate parameters and not
the dependence, we propose a “weighted scores method”, which is based on weighting score functions of
the univariate margins. The weight matrices are obtained initially fitting a discretized multivariate normal
distribution, which admits a wide range of dependence. The general methodology is applied to negative
binomial regression models. Asymptotic and small-sample efficiency calculations show that our method
is robust and nearly as efficient as maximum likelihood for fully specified copula models. An illustrative
example is given to show the use of our weighted scores method to analyze utilization of health care based
on family characteristics.

Keywords Composite likelihood; Copulas; Count data; Estimating equations; Negative binomial.

1. INTRODUCTION

Modeling clustered and longitudinal continuous response data is straightforward based on the multivariate
normal (MVN) distribution, applied to a possibly transformed response. This is not the case for discrete
responses, such as counts or ordinal variables. Combining copulas (multivariate uniform distributions)
with standard univariate models for discrete responses seems to be a promising solution. Exchangeable
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654 A. K. NIKOLOULOPOULOS AND OTHERS

copulas could be used to model clustered data. For longitudinal discrete data, copulas with dependence
decreasing in time lag can be used.

The MVN copula generated by MVN distribution inherits the useful properties of the latter and thus
allows a wide range for dependence and overcomes the drawback of limited dependence of simple para-
metric families of copulas. Implementation of MVN copula for discrete data (discretized MVN) is possible
but not easy because multidimensional integration is needed for computing MVN rectangle probabilities.
Therefore, special estimation methods may be required in order to overcome the computational complex-
ities. The use of composite likelihood methods (8kao and Jog2005 Varin, 2008 can be a potential
path toward implementation of discretized MVN and other such models.

In this paper, to generalize existing methodology in the biostatistics literature for regression models
with dependent data, we concentrate on inference for the univariate parameters with dependence treated
as nuisance, that is, we assume that joint and conditional probabilities are not of interest. The efficiency
of estimating the univariate parameters using a composite likelihood based on the sum of univariate log-
likelihoods can be low when dependence within clusters is strong. We will improve the efficiency by
inserting weight matrices that depend on covariances of the scores assuming a “working model”, such as
discretized MVN. We call this method “weighted scores”.

The weighted scores method is an extension of the generalized estimating equations (GHIgs) (
and Zeger1986 since it can also be applied to families that are not in the class of generalized linear
regression models. The GEE method is a nonlikelihood approach based on a “working correlation” ma-
trix. But for nonnormal variables, Pearson’s correlations have constraints that depend on the univariate
margins, which the GEE method ignoré&sapo and Chagant2010. Furthermore, in general the spec-
ified working correlation matrix may not correspond to any multivariate distribution for binary or count
data, so regression parameter estimates@ndlues may lack a theoretical probabilistic basis. In the
absence of a multivariate distribution with specified working correlation matrix, broad claims of con-
sistency of GEE estimates are incorrelced and Nelder2009. SeeChaganty and Jog£004 2006
andLindsey and Lambeit1998 for further shortcomings of the GEE method. Our new method not only
generalizes but also overcomes the theoretical flaws associated with the GEE procedure because our work-
ing model is a proper multivariate model and the parameters in the weight matrices are interpretable as
latent correlations. Furthermore, we demonstrate that our weighted scores method is highly efficient when
compared with the “gold standard” maximum likelihood (ML) estimates arising from proper multivariate
models.

To illustrate the method of weighted scores concretely, we use negative binomial regression mod-
els to handle cluster and longitudinal count data with overdispersion. For longitudinal count data with
overdispersionThall and Vail (1990 and Solis-Trapala and Farewd2005 have proposed covariance
models with robust estimation of the covariance matrix, but in these models, negative values for the co-
variances are not allowed, although multivariate discrete data can exist with some negative associations.
Some realistic situations with negative dependence appeat@hiiinand Winkelmanr§2001). Further-
more, autocorrelation structures such as AR(1), which are very realistic in longitudinal count data, can-
not be adapted. Our approach allows flexibility through the MVN copula and more than one form of
marginal negative binomial regression asGameron and Trivedi1998 and therefore is superior to the
aforementioned methods because it provides (a) robust estimation, (b) more dependence structures, and
(c) flexibility in the sense that covariates can be incorporated into both parameters of the negative binomial
distribution.

The remainder of the paper proceeds as follows. Section 2 introduces the general theory of weighted
scores method, and Section 3 gives details for the special case of negative binomial regression. Section 4
discusses the use of the discretized MVN working model to obtain the weights and asymptotic proper-
ties of the estimates. Section 5 studies asymptotic efficiency of our method as compared to ML using
other multivariate copula models with negative binomial regression. Section 6 presents an application

Downl oaded from https://academni c. oup. coni biostatistics/article-abstract/12/4/653/248917
by O d Dom nion University user

on 15 May 2018



Weighted scores method 655

of our methodology to analyze dependent overdispersed count data. We conclude this article with some
discussion.

2. WEIGHTED SCORES GENERAL THEORY

The main idea of weighted scores estimating equations is to write out the score equations for inde-
pendent data within clusters or panels and then generalize to estimating equations by inserting weight
matrices between the matrix of covariates and the vector of scores for regression and nonregression param-
eters. The general theory is outlined here and made concrete for negative binomial regression models in
Section3.

For ease of exposition, let be the dimension of a “cluster” or “panel” amdthe number of clus-
ters. The theory can be extended to varying cluster sizesp lbet the number of covariates, that is, the
dimension of a covariate vectar Let y of dimensiong be the vector of univariate parameters that are
not regression coefficients. The respoiNses assumed to have densify(-; v, ), wherev = 5(x; B)
is a function ofx and the p-dimensional regression vectgr. Usually,v = x' 8 or 5(-) is a known
function.

Suppose that data a(gij, xij), j = 1,...,d,i = 1,...,n, wherei is an index for individuals
or clusters and is an index for the repeated measurements or within-cluster measurements. The first
component of eack;; is taken as 1 for regression with an intercept. The univariate marginal model for
Yij is f(;vij, ), wherevjj = n(xij; B). For a multivariate model, one would need a joint distribution of
(Yi1, ..., Yig). If for eachi, Yj1, ..., Yig are independent, then the log-likelihood is

n d n d
L=2> > logfisvij.y) =2 > Wi, 7. %)),

i=1j=1 i=1j=1

wheref(-) = log f (-). The score equations f@ andy are

oL nod[/on:B) oLlvij.y . ¥ij)
op op 0 ovij
aL ZZ oL(vij,y,Yij) 0 1)
oy i=1j=1 0 |q 5y
on(ij; B) 0L(vij.y - %ij)
. . . . . . T _ (7 . _ 6U|
wherelq is an identity matrix of dimensioqg. LetX;; = ( 69 Iq) andsj(a) = 5f(w,-a,;£,yu) ,
y
wherea” = (87,9 T) is the column vector of al = p + q univariate parameters. The score equations
(2.1) can be written as
oL n d n
T T
— =22 Xisi@=23 X's@=0, (2.2)
i=1j=1 i=1

whereX = (X[, ..., XT) ands' (a) = (s, (@), ..., s (a)). The vectorss; (a) ands (a) have dimen-
sions(14 ) andd(1+ q), respectively. The dimensions ¥f; andX; are(14q) x r andd(14q) xr,
respectively.

For estimation oAwhenYj1, ..., Yiq are dependent and a multivariate model is not used, we consider
weighted scores equations that generalzg) @s

g=9@ =2 X/W's@=0, (2:3)
i=1
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656 A. K. NIKOLOULOPOULOS AND OTHERS

whereW; are invertibled(1 + q) x d(1 4+ g) matrices. In 2.3), for initial analysis, we considéN; as
fixed. The asymptotic covariance matrix is used to obtain an optimal choid&/fdor further analysis
in the subsequent sections. The asymptotic covariance matrix for the estimator that 3@viess\ =
(—Dg)"*Mgy(—Dj) 7%, whereMg = Cow(g) = >/_y X W Qi [W]]~1X; and—Dgy = E(dg/oa’) =
iy XiTWi‘l‘Pi, for gin (2.3. Here®; = —E(ds (a)/0a’) andQ; = Cow(s (a)). The dimensions of
the matrices are as followdg, Mg arer x r, Qj isd(1+qg) x d(1+q), and¥; isd(1+q) xr.

Thus, .
=<fowi—1~yi) (ZXT (WY are) (VAN 1X.)(Z‘PiT[WiT]‘1Xi) :
i=1

i=1
The matrix Cauchy—Schwarz inequalit@h{faganty and Jo2004 shows that the optimal choice &Y,
satisfiesX[ Wt = T Q% leading to

n -1
Vopt = (Z A Qi_l‘Pi) . (2.4)
i=1

Thus, the optimal choice &; depends on the “true multivariate model” viq andQ;.

3. OPTIMAL WEIGHTS FOR NEGATIVE BINOMIAL REGRESSION

For overdispersed count data, the sample variance is larger than the sample mean, that is, the dispersion
index (=variance/mean) is greater than 1. The negative binomial distributign, KBallows for overdis-
persion, and its probability mass function is

. _T+y ¢ B
f(y;7,¢) = Ty Cr 5 y=0,1,2..., >0 ¢>0,

with meanu = t¢£, variancer (1 + &), and dispersion index 4 £. In this parameterizatior, is the
convolution parameter and= 1/z — 1, wherer is the Bernoulli parameter.

Cameron and Trived{1998 present the NB(x, y) parameterization, where = x2Ky~1 and
& = 4% 1y, 1 < k < 2. For the N model, we letv = logu = x' B depend on the covariates
and consequently either or both the parameteaad¢ of the negative binomial are covariate dependent.
We will primarily use the NB1 parameterizatiqgn = uy ~1,& = y) and the NB2 parameterization
(r = y~1, & = uy); the latter is the same as lrawless(1987). For the NB1 modelz depends on
covariates whil& = y does not and thus the dispersion index is constant. For the NB2 model,/y is
constant while? is a function of the covariates and therefore the dispersion index varies with the covari-
ates ranging from % y min[exp(x" )] to 1 + y max[expx" B)]. For 1 < k < 2, one could interpolate
between these 2 models using the KNBarameterization, for which the covariates affect both parame-
ters of the negative binomial. Léfv, y, y) = log f (y; z, &) for the re-parameterized negative binomial
model.

Suppose that for each< i < nand 1< j < d, YIJ is distributed as negative binomial with mean
uij and parametey . Assume that;.J = log(uij) = X;; ﬂ In this casedn(xij; B)/0p = xij andq = 1.

To obtain®; = —E(as (a)/aa"), first note that

%t xT %t %t 82t T 0
osi (a) a2 1] wijoy o2 ooy \ %]
J _ ij ! _ ij ! _ Dij Xij
- - - b
oa' A o o2 o’ 1
dy ovij "] ay2 0y 0vij ay2
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wherel = £(vij, v, ¥ij). With Ajj = —E(Djj), we have
55 (@) Ai1Xi1 Aip .-+ 0 Xi1
‘Pi:—E(ﬁaT ): =l =i (3.1)
AidXid 0 - Aid/ \Xid
where A; = diag(Ai1, ..., Ajg) is a symmetric 8 x 2d matrix, asq = 1. Explicit expressions for

the elements of the matrik;j, the log-likelihood? = £(v, y, y), its derivativess(/dv, 8£/6y , and the
negative expectations of the second derivats&s ov?, 6%¢/ovoy , 92€/oy 2 for NB1 and NB2 models
are given in the supplementary material availablBiastatisticsonline.

Thus, for weighted scores equations of the fobh8)for dependent observations, the optimal weights
Wi satisfy X7 Wt = wTat = XTATQ™ or wi = QAL In the special case of independence
within clusters,A; equalsQ; and the optimaWV; is an identity matrix. In the next section, we propose a
preliminary modeling step to get a good estimate for Ga®a)) = Q; for dependent data.

4. ESTIMATION OF WEIGHTS USING A WORKING MODEL

This section presents an estimation method for the weights and asymptotic properties of the weighted
scores estimating equations. An approach is to use a working model for the purpose of getting the weight
matricesW;, which might be near optimal for the “true joint distribution”.

We select a working model based on the discretized MVN distribution as this allows a wide range of
dependence. The discretized MVN model has the following cumulative distribution function (c.d.f.):

F(YL, ..., Yd) = @a(@ YFi(y)], ..., D H{Fa(ya)]; R),

where ®4 denote the standard MVN distribution function with correlation maRix® is the c.d.f. of
the univariate standard normal, aRd . .., Fq are the univariate distributions. The MVN copula inherits
the dependence structure of MVN distribution but lacks a closed-form c.d.f.; this means that likelihood
inference might be difficult agl-dimensional integration is required for the multivariate probabilities
(d > 3) (seeNikoloulopoulos and Karlis2009. However, as the optimal weight matricds depend on
covariances of the scores, only the bivariate marginal probabiliti&g @fnd Y, j # k, are needed for
estimation.

The estimating equation2.Q) based on a “working” discretized MVN take the form

n
01 =018 = D X{ W, 1oingS (@ =0, (4.2)
i—1
WhereWi—,v:\Llorking = AjQ \,lvorkmg = Ai(@Qi (@ R)™!is based on the covariance matrixfa) com-

puted from the fitted discretized MVN model with estimated paramétensd R. As bivariate normal

c.d.f. calculations are needed for the weight matrices (different ones for different clusters), a good ap-
proximation that can be quickly computed is important. We used the approximation givembgon and

Kotz (1972, details of which are described in the supplementary material availaBlestatisticsonline.

If the Wi working are assumed fixed for the second stage of solving the estimating equatinthen the
asymptotic covariance matrix of the solutianis

V1= (~Dg) ‘Mg, (—Dgl)_1 (4.2)
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658 A. K. NIKOLOULOPOULOS AND OTHERS

with
T T .
_Dgl ZX i WorklngA Xi, ZX i worklngQ' true(W| worklng) Xi,

whereQ; e is the “true covariance matrix” of (a). Alternatively, withR from the fitted MVN model
assumed fixed, and using the form of the optiival we consider the following estimating equationgin

n
B2 =0@ =Y X! A@Q (@ R)s@=0, (4.3)
i=1

whereQ; (a, R) is the covariance matrix & (a) based on the discretized MVN model. Solvidg3d) is nu-
merically more intensive thar (1) because bivariate probabilitigsk (yj, yk) = Pr(Yij = yj, Yik = Yk)
are needed to compute the covariance entrieXQafa, R) for any a in any iterative numerical
method.

The asymptotics for the solution of.@) is similar to that of 4.1). Leta; be a component ai. Then
with R fixed, we have

g2 T 1 6S(a) L roAi@ =
e, .Z;'X Ai@Q @, Ry —— 2 ;xi 52, QY@ R)s(a)

-1
+ZXTA (a)ag—("’"R) (@), (4.4)
J

i=1

If the univariate marginal model is correct, thEfs (a)] = 0 and only the first term on the right-hand
side of @.4) contributes toE(ogz/0a’ ). Hence, the asymptotic covariance matrix of the solufign

for (4.3 is .

Vo= (_Dgz)_l Mg, (_D;;rz) (4.5)
with Mg, = 31, XT Ai @9 (a, R)Qi e (8, R) A (@)Xi and—Dg, = 31 XT Aj(@Q (&, R)
Aj(@)Xj.

To summarize, the steps to obtain parameter estimates and standard errors are as follows. The numer-
ical methods used for various steps are described in the supplementary material avaibadéatistics
online.

1. Use a discretized MVN model and estimate the parameters using the CL1 composite likelihood
method described iZhao and Jo€2005. Let the parameter estimates Befor the univariate
parameters ani for the correlation matrix. _ _

2. Compute the “working weight matrice¥; working = Qi (@ R)A; @1, whereQ; @ R) is the
covariance matrix of univariate scores based on the fitted discretized MVN model.

3. Obtain robust estimat@sof the univariate parameters solving equatiéri) using working weight
matricesWi working OF solving @.3) usng with a reliable nonlinear system solver.

4. The robust standard errors famre obtained calculating the estimated covariance mla{t;[mf a
based on4.2) or V, based on4.5) by plugginga for a and replacing; true With 5 (a)s1 (@. This
estimate is similar to the widely used “sandwich” covariance estimator.

5. EFFICIENCY OF WEIGHTED SCORES EQUATIONS

In order to study robustness and efficiency of the weighted scores method, we will use various multivariate
copula models as “true” models. A quick overview on copulas, a brief description of some parametric
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Weighted scores method 659

families of copulas that might be suitable for clustered and longitudinal count data, and their Fisher
information matrix are provided in the supplementary material availatidéoatatisticsonline.

5.1 Relative efficiency: comparison based on asymptotic variances

As a first step to understanding the asymptotic relative efficiency of the weighted scores method for neg-
ative binomial regression, we considered copula models with exchangeable and AR(1)-like dependence.
For exchangeable dependence structure, the Frank copula in the ArchimedeanJamilp97, p 141)
with Laplace transformpe(t) = —6~1log[1— (1—e~?)e '] was used as the “true model”. For AR(1)-like
dependence, the mixture of max-id copulad and Hu1996 with Laplace transforngr and the bivariate
Frank copula for thé:}'l?)(-; 0jk) was used as the true model. For the marginals, we used both NB1 and
NB2 forms of negative binomial regression.

For continuous random variables, dependence as measured by Kendat's=td®x — Py, the dif-
ference between the probabilities of concordaffeg and discordancéPy), is associated only with the
copula parameters. However, for discrete data, the marginal distributions also play a role on dependence
andr does not attain the boundary valuestdf because the probability of tiés = 1 — (Pc + Py) is pos-
itive (seeNikoloulopoulos and Karlis2010. Therefore, for discrete data the strength of dependence was
measured using the normalized version of Kendall'sdgu = d given in Goodman and Kruskal
(1954). Various factors related to the dimension, the strength of dependence, and overdispersion were
considered in selecting parameters for the models.

A summary of the parameter choices chosen for efficiency calculations is inTTatdethe covariates
and regression parameters, we chose 3 designp:={)2, xijj = (1, Xgjj )T, wherexyj; are taken as uni-
form random variables in the intervak[L, 1], fo = —0.5, ands;, = 0.5; (i) p = 3, xjj = (1, Xaij , Xaij )T,
wherexijj, Xpij are taken as uniform random variables in the intervdl,[1], fo = —0.5, andf, = p> =
0.5; and (i) p = 3,x; = (1, Xlij,Xzij)T, wherexyj; are taken as uniform random variables in the
interval [-1, 1] andxyij are taken as Bernoulli random variables with probability of sucaess 0.4,
So=—0.5,andf; = > = 0.5.

For the above copula models and parameter and design selections, we computed the inverse of the
Fisher information matrig, the matrixVopt = (> ‘PiTQi‘llPi)_l, given in @.4) with ¥; as in @.1),
and the matrixV, given in 4.5 for both NB1 and NB2 regressions. Note that?® is the asymptotic
covariance matrix of the ML estimates when the copula model is correctly specified. Since it is common
practice to use parametric correlation matrices, we calculated efficiencies for structured latent correlation
matrices. For exchangeable dependence, weRbak(1 — p)lq + pJd, wherelq is the identity matrix of
orderd andJyq is thed x d matrix of 1s. For AR(1) dependend®,is taken agp!i~ I)1<J k<d-

Table 1. Parameter choices in the computation of asymptotic relatifiei@fcies

Dependence Exchangeabte= 2, 3, 4) Longitudinal @ = 2, 3, 4)
strength Weak Moderate  Strong Weak Moderate Strong
IGK 0.2 0.5 0.8 0.2 0.5 0.8
0 11 3 7 0.1 1.35 45
ik — — — 1.8 5 20
NB NB1 NB2
Overdispersion Moderate Large Moderate dear
y 1/2 2 1/2 2
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660 A. K. NIKOLOULOPOULOS AND OTHERS

5.2 Findings on asymptotic relative efficiency

Representative summaries of findings on the performance of the weighted scores approach are given in
Tables2 and3 and in the supplementary material availabldaistatisticsonline for three-dimensional
(d = 3) copula models. We toak = 500 to get a good approximation of the asymptotic efficiency. The
comparisons are made on the scaled diagonal elements, corresponding to the asymptotic variances of the
univariate parameters, of the 3 matrides!, Vopt, andV with different values op.

Table2 has results for the Frank copula model with moderate dependence; sed Tablbe values
of the dependence parameters. We used design (iii) for the covariates and regression parameters, and the
matrix R is taken as an exchangeable correlation matrix with parametarying from 0 to 0.9 in 0.1
increments. Tabl& has results for the mixture of max-id copula model with weak dependence composed
by ¢ = ¢ and bivariate Frank copulas with the dependence parantgtets0, w1 = w3 = —1, w2 =0
fixed, andd, 012, andf3 as in Tablel. We used design (iii), large overdispersign = 2), and AR(1)
structured matri>R with parametep ranging from 0 to 0.9 in 0.1 increments. NB1 was used for Table
and NB2 was used for Tabkas the marginal model.

Conclusions from the values in the 2 tables and other computations that we have done are the
following.

1. The estimating equations i2.8) with optimal weight matrices yield estimates that are almost as
good as the ML estimates.

2. When the discretized MVN is used as the working model, the weighted scores method yields highly
efficient estimates when the parameteis such that the discretized MVN model is quite close to
the true model in Kullback-Leibler (K-L) distance.

3. For both negative binomial regressions, the efficiency of the weighted scores method using dis-
cretized MVN as a working model is high for the intercept and the dispersion parameter, for a wide

Table 2. Asymptotic variances, scaled by n, of the marginal parameters for the Frank copula model with
moderate dependence and NB2 marginals with moderate dispersion and for the weighted scores (WS)
using optimal choice of weights based on the true multivariate model and working weight matrices based
on the discretized MVN with exchangeable correlation maRriwith parameterp. Efficiencies with re-

spect to ML are shown in pantheses

Method (covariance) nVar(fo) nVar(f1) nVar(y)

ML (27D 1.178 (1.00) 1.804 (1.00)  4.234 (1.00)

Optimal WS Vopy) 1.206 (0.98) 1.846 (0.98) 4.339(0.98)

WS with discretized MVNY2(p))
p=0.0 1.210(0.97) 2.213(0.82) 4.346 (0.97)
p=0.1 1.208 (0.97) 2.043(0.88) 4.345(0.98)
p=02 1.208 (0.98) 1.938(0.93) 4.343(0.98)
p =03 1.207 (0.98) 1.883(0.96) 4.341(0.98)
p= 0.4 1.208 (0.98) 1.866 (0.97) 4.340 (0.98)
p =05 1.208 (0.98) 1.881(0.96) 4.344 (0.96)
p=0.6 1.210(0.97) 1.923(0.94) 4.368(0.97)
p =07 1.212(0.97) 1.989(0.91) 4.446 (0.95)
p=0.38 1.218(0.97) 2.088 (0.86) 4.704 (0.90)
p=0.9 1.235(0.95) 2.259(0.80) 5.680.75)

TFor thisp value, the discretized MVN working model is close to the true model in K-L distance.
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Table 3. Asymptotic variances, scaled by n, of the marginal parameters for the trivariate mixture of max-
id copula model composed ¢ with weak dependence and NB1 marginals with large dispersion and
for the weighted scores (WS) using optimal choice of weights based on the true multivariate model and
working weight matrices based on the discretized MVN witHAR{rrelation matrixR with parametep.

Efficiencies with respect to ML are shown in patheses

Method (covariance) nVar(fo) nVar(f1) nVar(f2) nVar(y)

ML (271 2.481 (1.00) 2.796(1.00) 3.520(1.00) 17.827 (1.00)

Optimal WS ¥opi) 2.467 (1.00) 2.799 (1.00) 3.526 (1.00) 17.772(1.00)

WS with discretized MVNY2(p))
p =00 2.487(1.00) 2.856(0.98) 3.602(0.98) 17.777 (1.00)
p=0.1 2472 (1.00) 2.811(0.99) 3.543(0.99) 17.777 (1.00)
p=02" 2.469 (1.00) 2.803(1.00) 3.531(1.00) 17.781(1.00)
p=03 2.481(1.00) 2.834(0.99) 3.574(0.99) 17.795 (1.00)
p=04 2.509 (0.99) 2.908 (0.96) 3.675(0.96) 17.833(1.00)
p=05 2559 (0.97) 3.028(0.92) 3.841(0.92) 17.925(0.99)
p=0.6 2.635(0.94) 3.201(0.87) 4.079(0.86) 18.128(0.98)
p =07 2.745(0.90) 3.436(0.81) 4.403(0.80) 18.562 (0.96)
p=028 2914 (0.85) 3.759(0.74) 4.844(0.73) 19.517 (0.91)
p =09 3.276 (0.76) 4.245(0.66) 5.490(0.64) 22.06@1)

TFor thisp value, the discretized MVN working model is close to the true model in K-L distance.

range ofp values. However, the efficiencies are not as high for the remaining regression coefficients.
This indicates that incorrect choice pfcould lead to significant loss of efficiency.

4. Efficiencies are quite flat in an interval pfthat depends on the strength of dependence within the
clusters. This provides partial justification for usigd) for the estimated covariance matrix of the
weighted scores estimator.

5.3 Small-sample efficiency based on simulation studies

To gauge the small-sample efficiency of the weighted scores method, we performed several simulation
studies using the copula models with parameter choices and design matrices as inefab&ectiorb.1
We report here typical results from these experiments. We randomly gen@ated10* samples of
sizen = 500,300 100 from the trivariate exchangeable Frank copula with moderate dependence and
NB2 regression with moderate dispersion and design (i) as in Sextlomable4 contains the parameter
values, the bias, variance (Var), and mean square errors of the ML estimates and weighted scores, along
with the average of their theoretical variances. The theoretical variance of the ML estimate is obtained
via the gradients and the Hessian computed numerically during the maximization process. The weighted
scores estimates were obtained assuming thatih@yrking are fixed for the second stage of solving the
estimating equations i(3). The reported theoretical variances for the weighted scores method are from
V1 as in @.2). The variances fronv, were similar. Therefore, it is adequate to W&efor estimating the
standard errors of the weighted scores estimates.

It is clear from Table® and4 (n = 500) that variances computed from the simulations are similar
to the asymptotic variances for both the ML and the weighted scores method. For example; fod
in Table2, nVar(fo) is 1.208 which is approximately equal to 1.217 in TatléNote that forp = 0.4,
the discretized MVN working model is close to the Frank copula model under moderate dependence with
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Table 4. Small sample of sizes=a 500, 300, 100simulations {0* replications) and resulted biases and

mean square errors (MSE) and variances (Var), along with average theoretical variances scaled by n, for

the ML of the marginal parameters for the trivariate Frank copula model with moderate dependence and

NB2 marginals with moderate dispersion and for the weighted scores based on the discretized MVN with
exchangeable correlation matrR with parameterp as estimated by the Clfiethod

ML Weightedscores

n nBias nVar nMSE nV() nBias nVar nMSE nVi(")
po=-05 500 -0.82 1.19 1.19 1.17 -0.83 1.22 1.22 1.20
300 -1.11 1.18 1.19 1.17 -1.10 1.22 1.22 1.20
100 -1.03 1.22 1.23 1.18 —-1.01 1.24 1.26 1.20
p1 =05 500 0.62 1.81 1.81 1.80 0.61 1.86 1.86 1.85
300 0.29 1.79 1.79 1.80 0.24 1.85 1.85 1.85
100 0.20 1.90 1.90 1.84 0.19 1.95 1.95 1.85
y =0.5 500 -0.99 4.36 4.36 436 —-0.74 4.46 4.46 4.42
300 -—-0.94 444 4.44 440 -0.71 455 4.55 4.42
100 -0.62 4.48 4.48 458 —-0.42 461 4.61 4.43

respect to the K-L distance, a measure that is useful to make theoretical likelihood comparisons between
2 models.

For the models of Sectiob.1, the K-L distance slowly increases as the NB mean and the dependence
increase and itis less than 0.1 if the NB mean is less than 4 and the dependence is less than 0.8 as measured
with zgk. Our calculations show similar magnitude of K-L distance of copula models with discretized
MVN for exchangeable, AR(1), and unstructured dependence. Therefore, we expect the patterns seen for
exchangeable and AR(1) dependence to hold for unstructured dependence. In conclusion, the simulated
variances for samples of sime= 500, 300, 100 show that the weighted scores method is almost as good

as ML.

6. ANALYSIS OF UTILIZATION OF HEALTH CARE COUNT DATA

This section illustrates the application of the weighted scores method to Riphahn, Wambach, and Million
(RWM) data Riphahnand others2003, consisting of 7293 families from former West Germany and of
German nationality observed from 1 to 7 times during the years 1984-1988, 1991, and 1994. The data are
available for download at http://econ.queensu.ca/jae/2003-v18.4/. The focus of the original survey was to
study the role of public, private, and add-on health insurance on the intensity and utilization of health
care facilities. The use of health care facilities was measured by 2 primary count response variables, the
number of visits to a doctor (DocVis) within the last quarter prior to the survey and the number of inpatient
hospital visits (HospVis) within a given calendar year. Besides these variables the survey has a number
of explanatory variables. A complete list of variables and descriptive statistics can be found in Table 1 in
Greeng2008.

Our primary goal is not a complete analysis of the RWM data but to show the use of the weighted
scores in regressing the count variable (DocVis) panel on the explanatory variables. For our analysis, we
have selected a further subset of the RWM data consisting of 1154 families which had complete data for
the 5 years 1984—1988 and then to emphasize that our method does not depend on a constant cluster size
d, some observations were dropped randomly for the dependent variable. Thus, the data are unbalanced
and the missing values can be assumed to be missing completely at random.
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Table 5. Weighted scores (WS) estimates and standard errors (SEs) for the utilization of health care
countdata

CL1 estimates of the dependermm@rameters
Marginal  p12 P13 P14 P15 P23 p24 P25 P34 P35 P45

NB1 0.46 0.42 0.29 0.24 0.31 0.32 0.36 0.29 0.21 0.28
NB2 0.46 0.41 0.32 0.25 0.31 0.35 0.37 0.31 0.230.28
WS estimates of the univariaparameters

NB1 NB2
Covariate}  Estimate  Robust SE z Pr> |Z| Estimate RobustSE V4 Pr> |Z]|
Intercept 0.343 0.294 1.17 0.24 0.635 0.367 1.76 0.08
Sex 0.373 0.091 4.10 0.00 0.248 0.107 2.28 0.02
Age 0.018 0.004 4.14 0.00 0.018 0.005 3.55 0.00
Hsat -0.115 0.014 -8.33 0.00 —0.147 0.019 -7.60 0.00
Handper 0.006 0.001 5.25 0.00 0.006 0.002 3.22 0.00
Univ —-0.439 0.305 —-1.44 0.15 -0.707 0.306 —-2.33 0.02
Public 0.246 0.191 1.29 0.20 0.213 0.247 0.85 0.39
Addon —0.089 0.247 —-0.36 0.72 -0.371 0.228 -1.63 0.10
y 3.910 0.332 11.76 0.00 1.263 0.097 13.02 0.00

TSex= indicator of female, that is, 1 for female, 0 for male; agage in years; hsat health satisfaction, on a scale of 0-10;
handper= degree of handicap in percent, 0-100; usi\binary indicator that highest schooling degree is university; public
indicator of public health insurance; adderindicator of add-on insurance.

Table 5 gives the estimates of the univariate parameters, along with the dependence parameters
obtained using the weighted scores method. As there is no reason to assume a structured correlation
between the 5 (1984-1988) repeated measurements, in the first step of the method the unstructured corre-
lation matrixR in the MVN copula is estimated using the CL1 methodirao and Jo€005. These CL1
estimates are listed in the first rows of the table. Next, we used this estinfataraf solved the weighted
scores equationg (1) to obtain estimateg; of the univariate parameters for both NB1 and NB2 regres-
sions. The parameter estimates along with robust standard errors compute@yaireagalso presented
in Table5. Since the parameters are the same for the 2 models, we can use the bivariate log-likelihood at
CL1 estimates as a rough diagnostic measure for goodness of fit between the 2 NB models. This quantity
was—7835.9 for NB2 and-7753.4 for NB1, and thus NB1 seems to be a better fit for the data.

Interestingly, the coefficient of hsat is negative and highly significant, indicating that families with
high health satisfaction rating seem to be making less frequent trips to the doctors office. Further public
and add-on health insurance has insignificant effect on the doctor visits as expected since families are
more likely to make doctor visits based on their health care needs as opposed to the type of insurance they

carry.

7. DISCUSSION

In this paper, we have studied weighted scores as an estimating equations approach based on weighting the
scores of the marginal distributions to account for the dependence in repeated or clustered measurements.
The weighted scores method with fixed weight matrices leads to unbiased estimating equations if the
univariate model is correct, and the efficiency depends on the choice of weight matrices. On the other hand,
the ML equations also lead to unbiased estimating equations if the univariate model and the dependence
are modeled correctly; however, the ML estimates could be biased if the univariate model is correct but
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dependence is modeled incorrectly. Hence, the weighted scores method is robust to dependence if the
main interest is the univariate regression parameters.

Some multivariate models are nearly indistinguishable from each other based on the moderate level of
dependence in response variables and sample sizes usually seen for real data. If there is strong dependence,
different copula models can be more easily discriminated and there might be a better working model
than discretized MVN. In terms of the Akaike information criteria, our empirical experience is that the
MVN copula model with discrete margins provides the best or nearly the best fit, so the working model
based on the discretized MVN distribution to compute weight matrices can satisfactorily account for the
dependence in the data.
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