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ing data to borrow information in which to make the mea-
surement error corrections. If the data are of poor quality 
there is little information to borrow to make measurement 
error corrections.   Copyright © 2009 S. Karger AG, Basel

  Introduction

  In statistical modeling, ignoring confounding vari-
ables can lead to either increased false positive or in-
creased false negative rates  [1]  and a bias in parameter 
estimates either away from or toward a null value. A con-
founder is a variable that is correlated with the predictor(s) 
and the outcome variable(s) in the model, and can cause 
a biased estimation of the causal association between 
these variables if not properly taken into account. To con-
trol for a confounder’s effects, it is often included in the 
model as a covariate, which partials out its relationship 
with the predictor(s) and outcome variables in the model 
to obtain more accurate estimates of the relationship be-
tween predictor(s) and outcome(s) variables. In genetic 
association studies is overwhelming evidence that popu-
lation stratification, assortative mating, and admixture 
among populations can result in intrapopulation varia-
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  Abstract

   Objectives:  Structured association tests (SAT), like any statis-
tical model, assumes that all variables are measured without 
error. Measurement error can bias parameter estimates and 
confound residual variance in linear models. It has been 
shown that admixture estimates can be contaminated with 
measurement error causing SAT models to suffer from the 
same afflictions. Multiple imputation (MI) is presented as a 
viable tool for correcting measurement error problems in 
SAT linear models with emphasis on correcting measure-
ment error contaminated admixture estimates.  Methods:  
Several MI methods are presented and compared, via simu-
lation, in terms of controlling Type I error rates for both non-
additive and additive genotype coding.  Results:  Results in-
dicate that MI using the Rubin or Cole method can be used 
to correct  for measurement error in admixture estimates in 
SAT linear models.  Conclusion:  Although MI can be used to 
correct for admixture measurement error in SAT linear mod-
els, the data should be of reasonable quality, in terms of 
marker informativeness, because the method uses the exist-
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tion in ancestry, correlations of allelic variation among 
unlinked loci, and ultimately confound association stud-
ies  [2–6] .

  When discussing individual ancestry and individual 
admixture, it is important to distinguish what is meant 
by these two concepts. By individual ancestry (propor-
tion) we mean the proportion of an individual’s ancestors 
that come from a specified population. In contrast, indi-
vidual admixture (proportion) is defined as the propor-
tion of an individual’s genome that is inherited from a 
specific parental population  [7] .

  Several approaches to correct for population stratifi-
cation and admixture have been proposed. Genomic con-
trol (GC)  [4, 8, 9]  and structured association testing (SAT) 
 [10–13]  are two such statistical approaches. Although GC 
can be useful in correcting for population stratification, 
we focus here on precisely estimating ancestry and using 
it as a covariate in SAT. The SAT model can flexibly ac-
commodate time-to-event, dichotomous, ordinal, or 
continuous responses for the outcome measure and the 
model parameters can be estimated through standard 
statistical software. However, the model is subject to the 
same assumptions associated with standard linear mod-
els, including an implicit assumption that  all variables are 
measured without error . In linear models, measurement 
error in predictors can introduce bias in the parameter 
estimates and increase the residual variance, which trans-
lates into inaccurate conclusions about hypotheses being 
tested.

  Admixture may mask the true relationship between 
the phenotype (outcome variable) and genotypes (predic-
tors) and produce false positives  [14–17]  and/or false neg-
atives  [18] . Individual admixture estimates are typically 
used as proxies for individual ancestry because individu-
al ancestry is rarely known. Redden et al.  [7]  and Divers 
et al.  [19]  have shown that individual admixture esti-
mates, as proxies for individual ancestry, are contami-
nated with measurement error for several reasons. First, 
only a subset of genetic markers with imperfectly known 
ancestral population allele frequencies is used to estimate 
admixture (i.e., not fully ancestry informative markers). 
Second, imperfect historical knowledge about the ad-
mixed population can lead to inaccurate estimates of in-
dividual admixture. Third, individual ancestry is the ex-
pected value of individual admixture, but the process of 
meiosis introduces random variation between the two 
constructs. Finally, genotyping errors will also contribute 
to individual admixture being estimated with error. All 
or any one of these conditions will cause a discrepancy 
between individual ancestry and estimates of individual 

admixture, which translates into error contaminated an-
cestry estimates.

  This paper addresses accounting for admixture mea-
surement error in SAT and explores a specific alternative, 
multiple imputation (MI), to the methods previously de-
scribed by Divers et al.  [19] . We use simulation to evaluate 
the performance of the proposed methods and conclude 
with a discussion of results and how the methods can be 
extended.

  Methods

  SAT Model
  Redden et al.  [7]  formulated SAT in the form of a general linear 

model as follows:

   f ( Y  i ) =  �  0  +  �  1  A  i  +  �  2  P  1  i  P  2  i  +  �  3  G  ij  1  +  �  4  G  ij  2  +  �  i .                (1.1)

  In the model  f ( Y  i ) is the link function linking  Y  i  variable (pheno-
type) to the parameters of the model,  A  i  is the ancestry of the  i -th 
individual,  P  1  i    and  P  2  i  are the ancestry values of the two parents, 
and  G  ijk  is an indicator variable for the  i -th individual with  k  and 
only  k  alleles at the  j -th locus of type  m  (specific allele states). Red-
den et al.  [7]  propose inclusion of the product term for parental 
ancestry to better control for spurious association and achieve the 
desired Type I error rate. This general model can accommodate 
covariates such as gender, age, and treatment group and pheno-
types such as time-to-event, dichotomous, ordinal, or continuous 
responses. The  A  i  ancestry component is included to control for 
the potential confounding effect and must either be assumed to 
be measured without error or necessitates a measurement error 
correction.

  Ancestry and the Classical True Score Model
  Admixture estimates can be expressed in the form of the clas-

sical true-score model (CTM)  [20, 21]  as

   x  ij  =  �  i  +  u  ij                                                                                   (1.2)

  where  x  ij  is the  j -th observed score (estimated admixture) for the 
 i -th individual,  �  i  is the true score (ancestry) for the  i -th individ-
ual, and  u  ij  are the random components for the  j -th admixture 
estimate ( j  = 1,2, ...,  p ). In the CTM it is typically assumed that 
 E ( U  ij ) = 0 and  var ( u  ij ) =  �  2  u  with  u  ij  mutually independent of each 
other and of  �  j   [20, 21] . It can then be shown that  E ( x  ij ) =  �  i  or 
 �  x  i  = �  i  and  �  2  x  =  �  2  �  +  �  2  u  . Note that  �  i  and  u  ij  are latent variables 
that are never observed, but both influence  x  ij , which is observed. 
Nevertheless, an estimate of  �  2  u  can be obtained using only the 
data from the  x  ij ’s. This can be done through a reliability coeffi-
cient , generically defined as

   �  2  x  �  =  �  2  � / �  2  x  =  �  2  � /( �  2  �  +  �  2  u )                                                       (1.3)

  and ranges from 0 to 1  [20] . It should be noted that  �  2  x  �  is some-
times referred to as the intra-class correlation. Of specific interest 
here is Cronbach’s alpha ( �  c ), a measure of the reliability of the 
sum of the equally weighted
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   [22] , computed as
  
  

1 1 1
/ 1 1 cov , cov , . 

p p p

c j j j j
j j j

p p x x x x� �/       (1.4)

  The computation of  �  c  only requires that the  x  i ’s measure the 
same construct or latent variable (i.e., Tau-equivalence)  [22] . The 
estimated reliability coefficient in turn provides an estimate of  �  2  u  
as  �  2  u  =  �  2  x  (1 –  �  2  x  � ) =  �  2  x  (1 –  �  c )  [20]  and is a weighted estimate of 
the observed score variance. Note that  �  c  is being used instead of 
 �  2  x  � . In genetic association/mapping studies of population data, 
ancestry informative markers (AIMs) on each of the autosomal 
chromosomes can be used to obtain chromosome-specific ad-
mixture estimate for each person who, conditional on true indi-
vidual ancestry, is independent. From here on we denote admix-
ture estimate for an individual by  x  ij . The chromosome-specific 
admixture estimates can be used to estimate  �  c . For a discussion 
of how Cronbach’s alpha effects association tests see Divers et al. 
 [19] .

  Linear Models with Measurement Error
  Consider the linear model

   Y  =  �  0  +  �  X  +  � ,                                                                        (1.5)

  with  �   �   NID (0,  �  2  � ). If  X  is measured with error, it can be shown 
that the Ordinary Least Squares (OLS) regression of  Y  on  X  yields 
a consistent estimator of

   �     *  = [ �  2  � /( �  2  �  +  �  2  u )] �  =  �  c  � ,                                                     (1.6)

  which is attenuated towards zero. In addition, measurement error 
affects the residual variance as seen in the expression

  var( Y   �   X ) =  �  2  �  +  �  2  u [ �  2  � /( �  2  �  +  �  2  u )] �     2 .                                   (1.7)

  From the above two expressions, the smaller the measurement er-
ror variance ( �  2  u ), the closer  �     *  will be to  �  and the residual vari-
ance will be less confounded. Of course, neither problem will ex-
ist when there is no measurement error ( �  2  u  = 0).

  Divers et al.  [19]  demonstrated the use of quadratic measure-
ment error correction (QMEC)  [23, 24] , regression calibration 
 [25] , expanded regression calibration  [26, 27] , and the simulation 
extrapolation (SimEx) algorithm  [28, 29]  to address the admix-
ture measurement error challenge in SAT models. They found 
that the QMEC method performed best in terms of controlling 
the Type I error rate and the expanded regression calibration 
method performed the worst. However, the QMEC method is 
limited to linear models making a more flexible model desirable. 
Multiple imputation (MI) can in principle correct for measure-
ment error in the general SAT model of Redden et al.  [7]  and flex-
ibly accommodate a variety of special cases such as logistic and 
Cox regression.

  Multiple Imputation for Measurement Error
  Measurement error problems may be conceptualized as miss-

ing data problems in which we observe imperfect measurements 
but true scores are never seen (missing)  [29] . Using MI to impute 
the missing true values as a means of correcting for measurement 
error in conjunction with alpha, which is used to estimate the 
measurement error variance, has the advantage of using the ob-
served data as opposed to using (a) validation data in which the 

true values of the variable are actually observed, (b) replication 
data where multiple measurements of the variable are made, or (c) 
instumental data [29] in which two or more alternative methods 
are required to measure the variable.

  In MI one treats imputed true values as probable and not as 
the one ‘true’ value, and using the one ‘true’ value ignores impu-
tation variability or uncertainty about the actual value. Imputing 
a single value would fail to take into account the uncertainty 
about the actual value and can lead to underestimated standard 
errors, confidence intervals that cover less than their nominal 
coverage, and inflated Type I error rates. MI accounts for the un-
certainty by imputing multiple values for each missing value and 
accounting for the resulting uncertainty and will yield valid esti-
mates and tests pursuant to certain assumptions about the miss-
ing data mechanism [for details, see  32, 33 ].

  Estimating True Scores
  To use MI for measurement error correction one can proceed 

by obtaining an estimate of the true score (ancestry) for  i -th indi-
vidual based on the observed data  [21]  by formulating the predic-
tion equation from regression theory as follows:

  (Ŷ i  –  �  Y )/ �  Y  =  �  XY ( X  i  –  �  X )/ �  X ,                                                (1.8)

  where Ŷ i  is the predicted score,  �  XY  is the correlation between  X  
and  Y ,  �  Y  and  �  X , and  �  Y  and  �  X  are the means and standard de-
viations of  Y  and  X , respectively. Equation 1.8 can be rewritten 
as

  
  . Y

i XY i X Y
X

Ŷ X�
� � �

�                                                    (1.9)

  Substituting  �  ̂   i  for Ŷ i ,  �  X  �  for  �  XY ,  �  � / �  X  =  �  X  � , and  �  �  =  �  X  yields

   �  ̂   i  =  �     2  X  �  ( X  i  –  �  X ) +  �  X .                                                            (1.10)

  Note that  �  c  is used instead of  �     2  X  � . The variance associated 
with this estimated true score is  �  ̂   2  u  =  �  ̂   2  x  (1 –  �  ̂   c ). The reliability 
index is defined as  �  X  �  =  �  � / �  X   [21] . Equation 1.10 is a Bayesian or 
‘shrunken’ estimator  [30] . Thus, probable true scores can be gen-
erated using estimated coefficients ( �  ̂   c ) and variances ( �  ̂   2  u ). This 
idea will be revisited in the imputation process.

  Implementing MI for Measurement Error Correction
  Redden et al.  [7]  indicated that the product of parental ances-

tries is required to achieve the desired Type I error rate when ge-
notypic (as opposed to simply allelic) effects at the marker locus 
are tested. Divers et al.  [19]  found that squaring the individual 
admixture estimate ‘adequately approximates the product of an-
cestral ancestries’. Hence, in the present context, quadratic terms 
of the probable true scores are also required. Here, we justify the 
centering of the admixture estimate before implementation of 
MI. Assume that  X   �   N ( � ,  �  2 ), then

  cov( X ,  X  2 ) = ( �  3  + 3 ��     2 ) –  � ( �  2  +  �     2 )                                (1.11)
  cov( X ,  X  2 ) = 2 ��     2 .                                                                  (1.12)

  By centering  X , then ( X  –  � )  �   N (0,  �  2 ), it then follows that 
cov(( X  –  � ), ( X –  � ) 2 ) = 0. Thus, centering the admixture estimate 
allows one to ignore the covariance between  X  and  X  2  in the im-
putation process and subsequently only requires the squaring of 
the probable true score.
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  Using the SAT model proposed by Redden et al.  [7] , and given 
in equation (1.1), the following steps were implemented for the MI 
process.

  1. Measurement model
  a.  Regression method:  Regress  X  i , the error contaminated vari-

able, on the other variables in the model of interest. In our model 
this is  X  i  =  �  0  +  �     Y  Y  i  +  �     2  G  ij  ,1  +  �     3  G  ij  ,2  +  � . This step is identical 
to standard imputation routines in which  X  i  is the variable with 
missing values.

  2. Imputation process: Draw regression coefficients from the 
posterior distribution

   a  . Cole et al. (2006):  This method uses the estimated parame-
ters  �  ̂   = ( �  ̂   0   �  ̂   Y   �  ̂   2   �  ̂   3 ) �  and  	 ̂  

�  ̂   from Step 1, where  	 ̂  
(.)  = 

 �  ̂   2 ( X  �  X ) –1 , and  �  ̂   22  =  �  c  �  ̂   22  e  . Draw a new set of  m  random parameter 
estimates as  �  ̃   (  m  )  =  �  ̂   +  V  �  �  ̂ Z  from Step 1, where  	 ̂  

(.)  =  V  �  (.)  V  (.) , and 
Z is a vector of  z  i   �   NID (0, 1).

   b  . Rubin (1987, pp 166–167):  In this method draws are made 
from the new set of  m  random parameter estimates as  �  ̃   (  m  )  =  �  ̂   + 
 �     *  V  �  Z  from Step 1, where ( X  �  X ) –1  =  V  �  V ,  �     2  *  =  �  ̂   22  ( df  ê  – 1)/ g ,  �  ̂   22  = 
 �  c  �  ̂   22  e  ,  g   �   
  2  ( df  ê  – 1), and  df  ê  is the degrees of freedom (df) for the 
error term.

   c  . Bootstrap (Rubin, 1987):  With this method rather than mak-
ing draws from  Z   �   NID (0, 1) as in 2(a) and 2(b), the residuals 
from the fitted model are bootstrapped. Everything remains the 
same as option 2(a) and 2(b) except that

  
  

2/ 1 /i i ˆe e k n�*

  is used instead of  z  i , where  e  i  is the standardized residual for the 
 i -th individual,  �  ̂   22  is the estimated variance,  k  is the number of 
parameters in the model, and  n  is the sample size. This method 
has the advantage of imputing values whose distribution is simi-
lar to that of the observed values  [31] . All options in Step 2 simu-
late draws from the posterior predictive distribution of the pa-
rameters. This allows for ‘proper’ imputation  [32]  because the es-
timates produced in Step 2 are only probable estimates and not 
the true estimates.

  3. Imputation Process: Drawing  m  new probable true scores.

  a.  T  i  (  m  )  =  �  ̃   0  (  m  )  +  �  ̃   Y  
(  m  )  Y  i  +  �  ̃   2  (  m  )  G  ij  ,1  +  �  ̃   3  (  m  )  G  ij  ,2  +  z  i  �  ̂   (Cole)

  b.  T
...  

i  
(  m  )  =  �  ̃   0  (  m  )  +  �  ̃   Y  

(  m  )  Y  i  +  �  ̃   2  (  m  )  G  ij  ,1  +  �  ̃   3  (  m  )  G  ij  ,2  +  z  i  �     *  (Rubin)
  c.  T  i  (  m  )  =  �  ̃   0  (  m  )  +  �  ̃   Y  

(  m  )  Y  i  +  �  ̃   2  (  m  )  G  ij  ,1  +  �  ̃   3  (  m  )  G  ij  ,2  +  e  *  i  �     *  (Boot-
strap),

  where  z  i   �   NID (0, 1).

  4. Fit the model of interest using the new  m  probable true 
scores. This is

   Y  i  (  m  )  =  �  0  +  �  1  T̂  i  (  m  )  +  �  2  T̂  i  (  m  )2  +  �  3  G  ij  ,1  +  �  4  G  ij  ,2  +  �  i             (1.13)

  for the SAT Model discussed.
  5. Combine the  m  parameter estimates using the standard 

methods described by Rubin  [31] . Additionally, adjusted  df   [33] , 
which cannot exceed the complete-data  df , were used to compute 
the  df  for MI inferences.

  In the above steps, measurement correction is essentially vari-
ance correction in the form of  �  ̂   2  =  �  c  �  ̂   2  e .

  It is important to recall that MI assumes that the missing val-
ues are missing at random (MAR). In short, MAR means the 
probability that values are missing on a certain variable  Y  de-
pends on other variables in the model, but not on  Y  itself. Al-

though, MI is not specifically being used to impute missing val-
ues, the MAR assumption still holds. What is being treated as 
missing are the true value, which are not observed. Even so, it is 
assumed that the true values have a relationship with the other 
variables in the model, which is the MAR assumption.

  For comparative purposes, the data were analyzed through a 
naïve model, a model that treats the variables as if they had no 
measurement error.

  Simulation Study
  The simulation investigated the effect of error-contaminated 

individual ancestry proportions on the Type I error rate in SAT 
models. The underlying individual ancestry distribution ( X ) was 
simulated by making draws from a mixture of uniform and nor-
mal distributions that mimic the ancestral distribution observed 
in African American populations following the simulation proce-
dures by Tang et al.  [34] . A thousand datasets, each containing 500 
markers and 1000 individuals were generated. The delta-value of 
each marker is allowed to vary between 0 and 0.9. However, only 
ancestry informative markers were retained for individual ances-
try proportion estimation. They were sampled more heavily to-
ward the upper bound of this interval for high Cronbach’s alpha 
values and more toward the lower bound for lower Cronbach’s al-
pha values. These markers were evenly divided into 22 blocks, 
which are used to provide a set of 22 estimates of individual ances-
try. These estimates are used to estimate Cronbach’s alpha. From 
these sets, 20 sets of 500 markers for each mean Cronbach Alpha 
values of  �  ̄   c  = 0.90, 0.80, 0.70 were randomly selected. The allele 
frequency of each marker in the admixed sample was computed as 
a mixture of two parental allele frequencies as follow:

   P     a  ij  dx  =  X  i  P  1  j  + (1 –  X  i ) P  2  j                                                             (1.14)

  where  P  1  j  and  P  2  j  are frequencies of allele 1 at the  j -th marker for 
the 1st and 2nd parental populations,  X  i  the simulated ancestry of 
the  i -th admixed individual, and  P     a  ij  dx  is the allele 1 frequency for 
the  i -th admixed individual for the  j -th marker. In this simula-
tion, given a specific delta value,  P  1  j   �   U (0, 1),  P  2  j   =  P  1  j  +  �  where 
 �   �   Bin (100,  delta )  !  0.01, and  X  i  = 0.2  !   U (0.1, 0.9) + 0.8  !  
 N (0.15, 0.05 2 )  [19, 34] . The trait or phenotypic variable was gener-
ated as

   Y  i  = 35 + 5 X  i  + 0 G  ij  ,1  + 3 G  ij  ,2  +  �  i                                            (1.15)
   Y  i  = 35 + 5 X  i  + 5 X  2  i   + 0 G  ij  ,1  + 3 G  ij  ,2  +  �  i                                 (1.16)

  for the linear and quadratic model, respectively, where  �  i   �  
 N (0, 4). The linear model was generated for comparative purpos-
es. In the simulation  X  i  is the simulated true ancestry proportion 
from the above mixture distribution and  W  i  =  X  i  +  e  i  is the ob-
served ancestry proportion, where  e  i   �   N (0,  �     2  i ), is the error-con-
taminated ancestry coefficient. Note that this is ancestry estimat-
ed in the form of the classical true-score model (CTM). The 
 �     2  i   values were selected so that the observed correlations between 
 W  i  and  X  i  vary between 0.85 and 0.95, and to demonstrate that 
highly yet still imperfectly correlated true and estimated (or mea-
sured) ancestry proportions can still lead to Type I error inflation. 
We note that a correlation between 0.85 and 0.95 ensures that 
Cronbach’s alpha is bounded between 0.7 and 0.9. Under this 
scheme, 20 datasets of 500 markers containing 1000 individuals 
were simulated for a total of 10,000 markers. Each marker was 
tested for association with the simulated phenotype.
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  Analysis of Simulation
  Each dataset contained a sample of 1000 individuals with 500 

markers. Both the SAT models with and without the squared an-
cestry term were fitted to the data; we refer to the former as a lin-
ear SAT model and the latter a quadratic SAT model. Assume 
there are two alleles ( A ,  a ) at a locus forming three genotypes ( aa , 
 aA ,  AA ) and allele  A  is of interest. The genotypes can be coded to 
allow for testing of only additive or both additive and non-addi-
tive effects and  table 1  offers respective coding schemes.

  Results

   Table 2  contains the Type I error rates of the linear and 
quadratic SAT models with additive and non-additive ge-
notypic coding for different reliability coefficients’ cor-
responding to naïve model (i.e. without measurement 
correction). The type I error rates are liberal irrespective 
of genotype coding, a linear or quadratic SAT model, and 
reliability coefficient, implying that the association test 
will have a higher false positive rate if there is confound-
ing by admixture and the model is not corrected for mea-
surement error.

   Tables 3–5  provide the type I error rates with measure-
ment correction corresponding to the Rubin, Bootstrap, 

  Table 1.  Coding of genotypic values in simulation of genetic 
data

 Genotype  Non-additive  Additive model 

 G (aA)i   G (AA)i   G (A)i  

 aa  0  0  0 
 aA  1  0  1 
 AA  0  1  2 

  Table 2.  Type I error rates corresponding to the  �  coefficients in 
SAT models without any measurement corrections

 SAT
  model 

 Genotype
  coding 

 Para-
  meter 

 Reliability coefficient 

 0.90  0.80  0.70 

 Linear  additive   �  3   0.0758  0.0848  0.1830 
 non-additive   �  3   0.0702  0.0824  0.1684 

  �  4   0.0596  0.0632  0.0910 

 Quadratic  additive   �  3   0.0876  0.1002  0.2208 
 non-additive   �  3   0.0736  0.0912  0.2054 

  �  4   0.0574  0.0688  0.1082 

  Table 3.  Average Type I error rates after measurement correction corresponding to the  �  coefficients for reli-
ability coefficient of 0.90, using 10,000 replicates

 SAT model  Genotype coding  Method  Parameter  Number of imputations 

 5  10  15 

 Linear  additive  Rubin   �  3   0.0294  0.0288  0.0266 
 Bootstrap   �  3   0.0400  0.0430  0.0446 
 Cole   �  3   0.0288  0.0290  0.0268 

 non-additive  Rubin   �  3   0.0276  0.0262  0.0252 
  �  4   0.0308  0.0300  0.0306 

 Bootstrap   �  3   0.0384  0.0376  0.0348 
  �  4   0.0364  0.0368  0.0386 

 Cole   �  3   0.0306  0.0268  0.0302 
  �  4   0.0328  0.0320  0.0322 

 Quadratic  additive  Rubin   �  3   0.0386  0.0364  0.0336 
 Bootstrap   �  3   0.0500  0.0470  0.0454 
 Cole   �  3   0.0406  0.0384  0.0386 

 non-additive  Rubin   �  3   0.0382  0.0374  0.0404 
  �  4   0.0290  0.0302  0.0258 

 Bootstrap   �  3   0.0672  0.0682  0.0662 
  �  4   0.0526  0.0522  0.0528 

 Cole   �  3   0.0430  0.0406  0.0434 
  �  4   0.0312  0.0292  0.0328 
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and Cole methods.  Table 3  contains Type I error rates for 
both the linear and quadratic SAT model with additive 
and non-additive genotypic coding for reliability coeffi-
cient of 0.90. The type I error rates for all three methods 
of imputation were slightly conservative for the linear 
SAT model. A similar trend occurred for the quadratic 
SAT model with the exception of the bootstrap method, 
where the type I error rates for the  �  3  were slightly lib-
eral.

  The Type I error rates of the linear and quadratic SAT 
model with additive and non-additive genotypic coding 
with reliability coefficient of 0.80 are presented in  table 4  
with measurement correction using the Rubin, Boot-
strap, and Cole’s method. For the linear SAT model, the 
Bootstrap imputation method controlled the Type I error 
rate best followed closely by the Cole and Rubin’s meth-
ods. Additionally, the Cole and Rubin methods were not 
as conservative as before. However, the type I error rates 
were liberal for the quadratic SAT model using the Boot-
strap method irrespective of genotype coding system. 
Both Rubin and Cole’s methods provided type I error 
rates closer to nominal significance level of 0.05 and 
slightly less conservative compared to the situation with 
reliability coefficient of 0.90.

  Lastly,  table 5  displays the Type I error rates of the lin-
ear and quadratic SAT models with additive and non-ad-
ditive genotypic coding with reliability of 0.70. The type 
I error rates for the Bootstrap method were very liberal 
compared to either of Rubin’s or Cole’s method. However, 
all methods performed poorly for the quadratic SAT 
model. However, the Rubin and Cole methods kept the 
type I error rate closer the nominal significance level of 
0.05. The slight exception here is that both the Rubin and 
Cole methods were slightly conservative for the  �  4  pa-
rameter estimate.

  Discussion

  Measurement error in linear model variables is an im-
portant consideration, and through simulation we dem-
onstrated the importance for correcting measurement 
error in linear models. Of particular interest was using 
multiple imputation (MI) for measurement error correc-
tion for the Redden et al.  [7]  SAT model. Although the 
Redden SAT model requires individual ancestry esti-
mates to control for admixture confounding, individual 
admixture estimates were used because individual ances-
try estimates are rarely known, so admixture estimates 

  Table 4.  Average Type I error rates after measurement correction corresponding to the  �  coefficients for reli-
ability coefficient of 0.80, using 10,000 replicates

 SAT model  Genotype coding  Method  Parameter  Number of imputations 

 5  10  15 

 Linear  additive  Rubin   �  3   0.0332  0.0322  0.0356 
 Bootstrap   �  3   0.0482  0.0484  0.0498 
 Cole   �  3   0.0388  0.0314  0.0356 

 non-additive  Rubin   �  3   0.0314  0.0300  0.0308 
  �  4   0.0336  0.0324  0.0320 

 Bootstrap   �  3   0.0478  0.0478  0.0466 
  �  4   0.0424  0.0400  0.0382 

 Cole   �  3   0.0316  0.0322  0.0322 
  �  4   0.0356  0.0316  0.0346 

 Quadratic  additive  Rubin   �  3   0.0460  0.0478  0.0454 
 Bootstrap   �  3   0.0698  0.0678  0.0660 
 Cole   �  3   0.0504  0.0452  0.0480 

 non-additive  Rubin   �  3   0.0440  0.0450  0.0442 
  �  4   0.0352  0.0332  0.0332 

 Bootstrap   �  3   0.0944  0.0964  0.0988 
  �  4   0.0622  0.0612  0.0588 

 Cole   �  3   0.0464  0.0494  0.0452 
  �  4   0.0358  0.0328  0.0330 
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can be used as a surrogate for the ancestry estimates. We 
then describe how to use MI for measurement correction. 
Like Divers et al.  [19] , we also used Cronbach’s alpha  [35]  
as a component of our measurement error correction 
procedure. We also described three different methods for 
imputing probable true scores for admixture: Rubin, 
Bootstrap, Cole.

  In the linear SAT model, of the three different meth-
ods for imputing probable admixture scores, the Rubin 
and Cole methods appear to work best. Although at first 
it looks like the Bootstrap method controls the Type I er-
ror correctly whereas the Rubin and Cole methods are 
slightly conservative, as the marker informativeness be-
gins to decrease it is the Rubin and Cole methods that 
control Type I error rate and the Bootstrap method be-
comes liberal. Consistently, the Rubin and Cole method 
provided better control of the Type I error rate than the 
Bootstrap method. This same pattern was observed in 
Divers et al.  [19] , in that measurement error correction 
only appears to be required when the informativeness of 
the markers is of intermediate value. The reason for this 
is that when markers are highly informative, the mea-
surement correction method provides little improve-
ment. On the other hand, when marker informativeness 
is low, the measurement correction method has poor in-

formation to borrow for measurement correction. MI for 
measurement correction as presented uses the existing 
data to accomplish this goal and require no external in-
formation.

  In the quadratic SAT model, of the three different 
methods for imputing probable admixture scores, the 
Rubin and Cole methods again appear to work best. The 
Bootstrap method did not consistently provide reason-
able control of the Type I error rate. One interesting point 
is that the type I error rates of the Bootstrap method, in 
all models, are very similar to the type I error rates of the 
model without measurement error correction, suggesting 
that the Bootstrap method is not providing much mea-
surement error correction. Notably, none of the methods 
works particularly well for a quadratic SAT model with 
admixture reliability of 0.70. Because of this result the 
linear SAT model corrected for measurement error may 
be considered, yet it too can have problems if the genetic 
effects are markedly non-additive (e.g., overdominance).

  There is now much agreement that population admix-
ture and/or population stratification can confound asso-
ciation studies when not taken into account. However, it 
should also be mentioned that accuracy with which ad-
mixture is measured will have an influence on Type I er-
ror. When admixture or any other continuous variable 

  Table 5.  Average Type I error rates after measurement correction corresponding to the  �  coefficients for reli-
ability coefficient of 0.70, using 10,000 replicates

 SAT model  Genotype coding  Method  Parameter  Number of imputations 

 5  10  15 

 Linear  additive  Rubin   �  3   0.0480  0.0510  0.0522 
 Bootstrap   �  3   0.1214  0.1262  0.1248 
 Cole   �  3   0.0500  0.0516  0.0536 

 non-additive  Rubin   �  3   0.0444  0.0412  0.0444 
  �  4   0.0400  0.0356  0.0366 

 Bootstrap   �  3   0.1138  0.1138  0.1188 
  �  4   0.0636  0.0648  0.0666 

 Cole   �  3   0.0436  0.0464  0.0420 
  �  4   0.0374  0.0382  0.0384 

 Quadratic  additive  Rubin   �  3   0.0926  0.0972  0.0990 
 Bootstrap   �  3   0.2218  0.2324  0.2350 
 Cole   �  3   0.0928  0.0994  0.0984 

 non-additive  Rubin   �  3   0.0908  0.0904  0.0932 
  �  4   0.0576  0.0524  0.0558 

 Bootstrap   �  3   0.2328  0.2462  0.2496 
  �  4   0.1106  0.1184  0.1130 

 Cole   �  3   0.0934  0.0998  0.1018 
  �  4   0.0586  0.0582  0.0560 



 Padilla   /Divers   /Vaughan   /Allison   /Tiwari   
  
 

 Hum Hered 2009;68:65–72 72

are contaminated with error, MI for measurement error 
correction can help control the specified Type I error rate. 
However, this method is only useful if the data are of rea-
sonably good quality with respect to marker information, 
which means that much care should still be taken when 
designing association studies, and in particular when 
measuring variables that will be used for analysis in a sta-
tistical model.
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