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METHODOLOGY ARTICLE Open Access

NEXT-peak: a normal-exponential two-peak
model for peak-calling in ChIP-seq data
Nak-Kyeong Kim1*, Rasika V Jayatillake1 and John L Spouge2

Abstract

Background: Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) can locate
transcription factor binding sites on genomic scale. Although many models and programs are available to call
peaks, none has dominated its competition in comparison studies.

Results: We propose a rigorous statistical model, the normal-exponential two-peak (NEXT-peak) model, which
parallels the physical processes generating the empirical data, and which can naturally incorporate mappability
information. The model therefore estimates total strength of binding (even if some binding locations do not map
uniquely into a reference genome, effectively censoring them); it also assigns an error to an estimated binding
location. The comparison study with existing programs on real ChIP-seq datasets (STAT1, NRSF, and ZNF143)
demonstrates that the NEXT-peak model performs well both in calling peaks and locating them. The model also
provides a goodness-of-fit test, to screen out spurious peaks and to infer multiple binding events in a region.

Conclusions: The NEXT-peak program calls peaks on any test dataset about as accurately as any other, but
provides unusual accuracy in the estimated location of the peaks it calls. NEXT-peak is based on rigorous statistics,
so its model also provides a principled foundation for a more elaborate statistical analysis of ChIP-seq data.

Keywords: ChIP-seq, Normal-exponential distribution, Continuous mixture, Poisson regression, Goodness-of-fit

Background
ChIP-seq experiments use chromatin immunoprecipita-
tion and then high-throughput sequencing, primarily to
locate transcription factor binding sites across entire ge-
nomes, and to better our understanding of biological
control systems [1]. As a brief overview of the relevant
experimental protocols, they begin by irreversibly cross-
linking a transcription factor (TF) molecule to its bind-
ing site in genomic DNA. They then shear the DNA into
millions of short sequence fragments. Usually, the ends
of a fragment are near the corresponding cross-link, but
the exact distance between the end of the fragment and
the cross-link is random. Moreover, the fragments on
the two DNA strands show different systematic biases in
the positions of their ends relative to the cross-link.
Antibodies to the TF then precipitate each TF molecule
along with its attached fragment. Fragments are dissoci-
ated from the TF molecules, amplified by polymerase

chain reaction (PCR). The fragments are then sequenced
into short subsequences, called “tags”. Computational ana-
lysis then enters by mapping the tag sequences to a refer-
ence genome. If a tag sequence is long enough, the tag
matches only one genomic coordinate. Sometimes, how-
ever, its sequence is short and maps to more than one co-
ordinate, making the mapping ambiguous. The possibilities
of ambiguous mapping, false positive tag-reads, and other
experimental errors have motivated the development of
programs to analyze ChIP-seq experiments.
Peak-calling programs locate potential binding sites as

“peaks” where mapped tags concentrate. Peak-calling
programs use widely differing approaches, none of which
has yet emerged as dominant in reviews [2-4], because
relative accuracy of programs varies with the dataset ex-
amined [2,3]. Improvement is probably possible, how-
ever, because the models underlying existing programs
do not consider mapping ambiguities directly, despite
the existence of packages for enumerating the ambigu-
ities, e.g., the PeakSeq suite [5]. Moreover, some pro-
grams ignore strand-specific information [6,7].
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Most programs use (sometimes implicitly) kernel
smoothing to compensate for mapping ambiguities, the
most popular kernel being the uniform density, which is
equivalent to counting tags in sliding windows of fixed-
length [8-12]. Programs also manipulate information about
a tag’s strand in various ways: as mentioned, some ignore it
[6,7]; some use it explicitly (e.g. SISSRs [12], spp [11]); and
some use it indirectly by transposing tag locations over to
the other strand (e.g. MACS [8], QuEST [13], CisGenome
[9]). Programs that combine strand information and
windowing are essentially using two separate uniform
densities as kernels for the forward and backward strands.
For example, QuEST [13] (among other computer pro-
grams) estimates tag densities with a kernel smoother than
the uniform density, to mimic the observed shape of tag
peaks. QuEST did not dominate in comparisons, however,
perhaps because it transposes tag locations, rather than es-
timating two separate tag densities, one for each strand.
The significance of peaks can be reported either as the

number of tags in a window, a p-value, a q-value, or a pos-
terior probability. Although p-values guide a naïve user
better than tag numbers, they introduce problematic as-
sumptions. To derive a p-value, some programs [7,13] as-
sume a globally uniform background intensity of tags, an
assumption known to fail in ChIP experiments. To assign
the significance of peaks, different programs use various
model assumptions such as Poisson [7,12,13], local Poisson
[8], binomial [9], and hidden Markov [10] models. Some
programs [8,9,11-13] use control data to account for local
variations in background tag intensity or to compensate for
experimental artifacts like PCR over-amplification, which
can cause a spurious concentration of tags in a few specific
locations. The reproducibility of control data is suspect,
however, because it varies across cell types and ChIP proto-
col [4]. Although control data mitigates some experimental
artifacts, its unreliability ultimately undermines any infer-
ence based on the corresponding p-value.
Mapping ambiguities can also be problematic for a

naïve p-value calculation. Consider, e.g., a large genomic
region where exactly A locations are ambiguously
mapped (where A is fixed). In the same region, consider
a window containing a total of L locations, including the
A ambiguous locations. The window length is an arbi-
trary parameter (within limits), and as it increases, L in-
creases. The A ambiguous locations are essentially
censored data, so the simplest maximum likelihood esti-
mate of the tag count in the window is L/(L-A) times the
observed tag count. Thus, if observed tag count is fixed,
the estimated tag count decreases as the window length
increases. If a p-value decreases with the estimated tag
count, it then depends on the window length. False dis-
covery rates (FDR) depend on p-values, so the use of
FDRs does not remove the dependency. Under the cir-
cumstances described, therefore, the arbitrary choice of

window length influences the number of peaks reported.
A recent study on the number of binding sites in a gen-
ome [14] indicates that many real binding sites from
ChIP-seq data go unreported, suggesting that the
assumptions and approximations underlying current
p-value estimates leave room for improvement.
Intuitively, the spatial resolution of a peak should also

improve as more tags contribute to it. In principle,
therefore, a program should also assign errors to its lo-
cation estimates, but in fact, existing programs do not
infer the accuracy of their estimated peak locations.
To examine the performance of the proposed model

(NEXT-peak) against current standards, we selected sev-
eral programs from a recent comparison [2]: HPeak [10],
spp package (WTD and MTC) [11], CisGenome [9],
MACS [8], QuEST [13], and SISSRs [12]. A summary of
selected programs is given in Table 1. The details of
NEXT-peak appears in the Methods.

Results
Fitting the NEXT-peak model to ChIP-seq data
Using ChIP-seq datasets for three TFs: STAT1 [15], NRSF,
and ZNF143 (see Methods for details), results with and
without mappability information were examined; for each
dataset, only the better of the two are presented here.
Mappability information improved results for STAT1, but
degraded results for NRSF and ZNF143.
Searches with position-specific scoring matrices from

JASPAR [16] yielded candidates for actual STAT1, NRSF,
or ZNF143 sites within each region with a binding event.
The searches used the p-value cut-off 5×10-6 for all
datasets. See Methods for details on the p-value compu-
tation for finding motif sites. Figure 1a shows a density
of the normal-exponential two-peak (NEXT-peak) model
(see Methods). Figure 1b-d displays the tag number, nor-
malized to a probability density, for each location
around the position of the candidate sites. The observed
tag density is superimposed on the estimated density
(derived from model estimates of the expected tag num-
bers, λRj or λLj in the Methods). Maximum likelihood es-

timation on the NEXT-peak model produced parameter
estimates underlying λRj and λLj . Table 2 reports esti-

mated parameter values for each dataset.
For STAT1, the observed tag counts follow the density

curve of the NEXT-peak model with a small difference
in terms of average trend, except for two unexplained
dips (Figure 1b). The dips (one for right tags, and one
for left tags) display symmetry around the binding site.
The tag counts for NRSF (Figure 1c) also follow the
NEXT-peak density with a small trend difference. The
tag counts for ZNF143 (Figure 1d) show a larger trend
difference from the NEXT-peak density, perhaps because
the ChIP experiment was noisier.
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Examples of regions with unmappable locations
Figure 2 shows three regions with large number of
unmappable locations from STAT1 data. In Figure 2,
unmappable locations are marked by grey blocks. In
Figure 2a, 49% of locations are unmappable; in Figure 2b,

41%; and in Figure 2c, 38%. The circles indicate motif
sites; the triangles, estimated sites from the NEXT-peak
model. The estimated sites approximate the motif sites
reasonably well. The estimated tag counts due to the
binding event are 636.8, 264.3, and 699.3; the total

Table 1 Summary of programs used for comparison

Profile Strand specific Statistical model Peak criteria Rank by Ref

HPeak Sliding window Indirect Hidden Markov model Tag counts Tag counts [10]

WTD Sliding window Direct Score P-value [11]

MTC Sliding window Direct Score P-value [11]

CisGenome Sliding window Indirect Binomial Tag counts Tag counts [9]

MACS Sliding window Indirect Local Poisson P-value P-value [8]

QuEST Gaussian kernel density Indirect Poisson Height threshold Q-value [13]

SISSRs Sliding window Direct Tag counts with sign change P-value [12]

NEXT-peak NEXT-peak kernel density Direct Poisson per base pair Likelihood Estimated binding intensity (2ν)
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Figure 1 Profile of the normal-exponential two-peak (NEXT-peak) density. (a) An example of NEXT-peak density profile without fitting to a
particular dataset. The blue curve is for a tag profile on the left (positive) strand, the red curve is for the right (negative) strand. Parameter values
are β = 60, and σ = 40 (see Methods). The two density curves mirror each other around the center location. (b) Tag profile of STAT1 ChIP-seq
data. From the motif search, thousands of motif sites were found. The cumulative tag counts were rescaled and displayed as densities. (c) NRSF.

(d) ZNF143. Table 2 reports estimated values β̂ and σ̂ for each dataset.
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observed tag counts in the region are 396, 209, and 492.
Although tags at unmappable locations are not observ-
able, the NEXT-peak model increases the corresponding
estimated tag counts to compensate. The compensation
permits NEXT-peak to sharpen estimates of binding
strength.

Comparison of the programs: top 2,000 peaks
To compare peak-calling programs, we run NEXT-peak
along with other popular programs like HPeak [10], spp
package (WTD and MTC) [11], CisGenome [9], MACS
[8], QuEST [13], and SISSRs [12] (see Background for
details). On running these programs including NEXT-
peak, following standard practice, we used the default
parameters to ensure reproducibility. As the first stage
of comparison, we consider the 2,000 top peaks from
each. The NEXT-peak program uses the estimated tags
per binding event ( ν̂ ) to rank its peaks. We considered
every peak called within 250 bp of a candidate site (as
determined by position-specific scoring matrix search)
to be a true positive (TP). Our primary performance
measure was the number of TPs within the 2,000 highest
peaks. (Precision provides a standard but equivalent per-
formance measure: the precision at 2,000 positives is the
number of TPs within the 2,000 top peaks divided by
the constant, 2,000.) Our secondary performance mea-
sures considered placement of TP peaks: (1) the mean
distance between a TP peak center and the nearest motif
site, and (2) the mean bias between a TP peak center
and the nearest motif site. A TP peak upstream of the

nearest motif site contributes to a negative bias; down-
stream, a positive bias. Thus, small distances and biases
are desirable.
Table 3 contains summary statistics for various peak-

calling programs. For STAT1, NEXT-peak found 781
TPs, a full 41 TPs more than any other program. For
NRSF, NEXT-peak found 1,507 TPs, more than any
other program; MTC was the second at 1,498 TPs. For
ZNF143, NEXT-peak found 707 TPs, less than only
MACS (709 TPs). For all three datasets, NEXT-peak had
the smallest mean distances among all programs; it had
one of the smallest biases as well. In addition, NEXT-
peak is the only program that produced small biases for
all three datasets. All other programs show a noticeable
bias in at least one dataset. Specifically, HPeak and
QuEST had a noticeable bias in STAT1; WTD, MTC,
MACS and SISSRs had a noticeable bias in NRSF and
ZNF143; CisGenome had a noticeable bias in STAT1
and ZNF143.

Comparison of the programs: top peaks in general
The previous section gives performance measures based
on the top 2,000 peaks called by each program. Re-
searchers might wish to compare the measures based on
lists of top peaks with different truncations, e.g., lists
truncated at rank 1,000, 4,000, or 10,000. Figure 3 shows
the precision (fraction of TPs among the top peaks) for
top peaks truncated at ranks up to 10,000. For each rank
r in the x-axis, the precision is computed for cumulative
peaks between rank 1 and rank r. As expected, precision

Table 2 Summary of ChIP-seq datasets

Dataset tag length motif length number of tags β̂ σ̂ Genome

STAT1 27 15 15.1 million 73.5 52.8 Human build 36.1

NRSF 36 21 33.1 million 30.4 23.6 Human build 36.1

ZNF143 36 20 25.2 million 35.3 21.6 Human build 36.1
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Figure 2 A plot of regions with large number of unmappable locations from STAT1 ChIP-seq. Tag counts in the left strand are shown as
blue bars, tag counts in the right strand, as red bars. The unmappable locations are marked by grey blocks. The circles represent motif sites; the
triangles, estimated sites. (a) 49% locations are unmappable. (b) 41% unmappable. (c) 38% unmappable.
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generally decreased with the length of the list. For
STAT1, NEXT-peak had the largest precision (of all pro-
grams examined) over the full range of lengths, up to
10,000 peaks. For NRSF, NEXT-peak had nearly the best
precision up to 4,500 peaks (and in fact, it had the best
precision at 2,000 peak; see the previous section.);
NEXT-peak had the best precision between 4,500 and
10,000 peaks. For ZNF143, NEXT-peak had near the
best precision up and 10,000 peaks. For ZNF143, MACS
performed similarly to NEXT-peak between 1,500 and
10,000 peaks, but MACS had a significantly poorer per-
formance between 0 and 1,500 peaks compared to other
programs.
Figure 4 shows mean distances for TP peaks ranked up

to 10,000. In all three datasets, for the most of the range
up to rank 10,000, NEXT-peak had the smallest mean dis-
tances. Note that other programs did not show the same
consistency among three datasets in terms of mean dis-
tances. For example, MTC was the second best in STAT1
but performed poorly for NRSF; QuEST was the second
best in ZNF143 but performed poorly for STAT1.
Figure 5 shows mean biases up to 10,000 peaks. As

noted in the previous section, NEXT-peak is the only

program showing small biases for all three datasets. Any
other program shows a noticeable bias in at least one
dataset. That is, for ZNF143, only NEXT-peak, QuEST,
and HPeak had small biases, but QuEST and HPeak had
noticeable biases in STAT1, making their performances
highly dependent on the dataset at hand.

Correlation of estimated standard deviation and distance
to motif site
Unlike other programs, NEXT-peak indicates the accur-
acy of a peak’s estimated location by estimating the cor-
responding standard deviation. Figure 6 displays smooth
scatterplots for the estimated standard deviation versus
distance to the nearest candidate site. (The plot is trun-
cated on both axes at 250 bp, to dampen the influence
of outliers caused by the omission of a true site among
the candidate sites.) Dark regions represent high dens-
ities of data points and small dots represent isolated
points. Ideally, all points should fall near the line y= x.
Most data points, however, are concentrated at the
bottom-left corner for all three plots. That is, most
standard deviation estimates are small and actual dis-
tances to the motif site tend to be small as well. The

Table 3 Program result summary for ChIP-seq datasets

STAT1 NRSF ZNF143

Program #motif sites mean distance mean bias #motif sites mean distance mean bias #motif sites mean distance mean bias

HPeak 726 23.6 12.0 1489 7.5 0.2 698 26.0 0.5

WTD 732 20.2 0.7 1487 17.4 −16.5 698 26.1 −13.4

MTC 737 18.8 1.3 1498 16.7 −15.8 697 25.7 −12.2

CisGenome 716 28.5 11.3 1471 8.0 0.3 681 27.6 −15.1

MACS 740 24.4 −0.9 1491 18.5 −17.4 709 27.2 −13.8

QuEST 715 24.9 11.2 1105 8.3 −0.4 703 22.0 1.2

SISSRs 659 19.6 −0.2 1413 18.1 −16.8 661 29.1 −14.3

NEXT-peak 781 16.7 −1.6 1507 6.0 −0.5 707 20.3 0.6
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Figure 3 A plot of percentage of top peaks with motif. (a) STAT1. (b) NRSF. (c) ZNF143. Some curves were truncated, because QuEST called
fewer than 3,000 peaks; and WTD and MTC, fewer than 4,000 peaks. (Large percentages are desirable.)
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Pearson correlation coefficients corresponding to the
smooth scatterplots are 0.43 (STAT1), 0.50 (NRSF), and
0.33 (ZNF143), indicating that although the relationship
is rather weak, the estimated error is positively corre-
lated with the actual distance between the estimated
peak location and the motif site.

Discussion
Alone among existing peak-calling programs, NEXT-
peak analyzes data with a parametric statistical model.
Of the existing programs, therefore, it alone provides a
principled foundation for elaborating the statistical ana-
lyses of ChIP-seq data. One obvious elaboration is to
model multiple binding events in a region. This work is
currently underway and the results will be reported
elsewhere.
NEXT-peak can estimate the average fragment length,

even if the experiment does not measure the average
fragment length. Let d denote the tag length, e.g., d=27
for STAT1. In the NEXT-peak model, the average

distance from a fragment end to a cross-link is β. The
average distance between the fragment ends is therefore
2β + d − 1 (because the “location” of the right end is the
leftmost position of the corresponding tag). For the
STAT1 dataset, β̂ =73.5 and d =27, so the NEXT-peak
model estimate of the average fragment length is 173.0,
consistent with a previous estimate of 174 [15]. For
NRSF data, β̂ =30.4 and d=36, the estimate of the frag-
ment length is 95.8, and for GABP data, β̂ =35.3 and
d=36, the estimate is 105.6.
Existing programs simply discard ambiguously mapped

reads. In contrast, NEXT-peak explicitly models the loca-
tions where reads do not map uniquely into the reference
genome. NEXT-peak can therefore adjust for ambiguous
mapping while estimating the total number of tags in a re-
gion, thereby sharpening its estimates of TF binding
strength. Sharper estimates of binding strength can pro-
mote better physical interpretation of ChIP-seq results.
Existing peak-calling programs require tedious visual

screening of up to tens of thousands of binding regions,
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Figure 4 A plot of mean distance between top peaks and motif. (a) STAT1. (b) NRSF. (c) ZNF143. Mean distances are average distances
between motif sites and estimated sties, where estimated sites contain a motif site within 250 bp distance. (Small distances are desirable.)
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Figure 5 A plot of mean bias between top peaks and motif. (a) STAT1. (b) NRSF. (c) ZNF143.The bias is the (signed) distance in bp between
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to eliminate experimental artifacts like spikes in tag
numbers caused by PCR anomalies. The goodness-of-fit
tests in NEXT-peak can reduce the burden of visual
screening. Moreover, the same tests can detect the pres-
ence of multiple TF binding sites, which are usually
found in regions longer than those containing PCR
anomalies. The long regions with small p-values can
therefore be set aside for further, more intensive ana-
lyses, such as searching for multiple binding events or
sequence motifs.
For STAT1, the observed tag distribution follows the

NEXT-peak density closely, indicating that the NEXT-
peak model captured the essence of the physical pro-
cesses in the ChIP-seq experiment. Consequently,
NEXT-peak outperformed its competitors, possibly be-
cause the NEXT-peak model successfully mimicked the
true experimental kernel. On the other hand, for
ZNF143, the observed tag distribution is somewhat devi-
ated from the NEXT-peak density, possibly degrading
NEXT-peak’s performance slightly. The observed tag
density might reflect a mixture of multiple binding
events, however, resulting from TF binding fluctuating
between different protein complexes. Mass and struc-
tural differences between the protein complexes could
cause binding locations or mean fragment lengths to
fluctuate. Conventional motif analysis or a more elabor-
ate model including multiple binding sites might expose
the protein-protein interactions, however.
By adding mappability information, STAT1 increased

true-positive binding sites by 4.0% on average. Unlike
STAT1, mappability information for NRSF and ZNF143
actually degraded the performance of NEXT-peak: on
average, it decreased true-positives by 0.5% and 0.6%, a
surprising result given that both NRSF and ZNF143 had
large numbers of mapped tags (33.1 millions and 25.2

millions). The truncated read length for NRSF and
ZNF143 was 36, however, much larger than read length of
27 for STAT1. Thus, fewer genomic locations were
mapped ambiguously for NRSF or ZNF143 (10.3%) than
for STAT1 (16.2%), diminishing NEXT-peak’s ability to en-
hance its performance by adding mappability information.
This article examined three ChIP-seq datasets with a

single dominant binding motif, permitting motif sites to
serve as surrogates for the true binding sites. In general,
however, even with an antibody specific to a protein,
protein-protein interactions between TF molecules
might cause multiple TFs (and hence, multiple motifs)
to cross-link to an antibody. The two global parameters
σ (the standard deviation for the cross-link locations)
and β (the intensity of the Poisson process modeling
shearing) then require delicate estimation. One could se-
lect a few hundred of the most tag-rich regions. One
could screen the regions visually, choosing the ones with
a good fit to the dual normal-exponential density and
then estimate σ and β. Alternatively, one could perform
a motif search on the tag-rich regions. The observed tag
density for each motif then can be fit to the NEXT-peak
model. Thus, NEXT-peak can analyze any ChIP-seq ex-
periment, even without specific information on the pro-
tein interactions.

Conclusions
We proposed a new statistical model for identifying
binding sites from ChIP-seq data. The model success-
fully mimics the underlying data-generating process in
ChIP-seq experiments by using the dual density of a
normal-exponential two-peak model. The NEXT-peak
program produced better prediction with more true pos-
itives and a better spatial resolution than any other pro-
gram tested. The NEXT-peak program tests the validity

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

STAT1 (Correlation = 0.43)

estimated standard deviation

di
st

an
ce

 to
 n

ea
re

st
 m

ot
if 

si
te

a

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

NRSF (Correlation = 0.50)

estimated standard deviation
di

st
an

ce
 to

 n
ea

re
st

 m
ot

if 
si

te

b

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

ZNF143 (Correlation = 0.33)

estimated standard deviation

di
st

an
ce

 to
 n

ea
re

st
 m

ot
if 

si
te

c

Figure 6 Smooth scatterplots for estimated standard deviation vs. actual distance to nearest motif site. (a) STAT1. (b) NRSF. (c) ZNF143.
Both axes truncated values at 250 bp. For all datasets, the estimated standard deviation and the actual distance to the nearest motif site had a
positive Pearson correlation coefficient. Dark regions represent high densities of data points and small dots represent isolated points. The majority
of data points are located at the bottom-left corner for all three panels, hence most standard deviation estimates are small and actual distances
to the motif site are also small in general.

Kim et al. BMC Genomics 2013, 14:349 Page 7 of 12
http://www.biomedcentral.com/1471-2164/14/349



of its underlying NEXT-peak model without depending (as
many programs do) on an unrealistic assumption of a glo-
bal uniform background tag distribution. The NEXT-peak
program stands alone in quantifying errors by reporting a
standard error for its estimates of binding intensity. More-
over, smooth scatterplots showed that its standard errors
are informative about errors in motif location, as estimated
from external standards. The NEXT-peak program also
provides a goodness-of-fit test, automating screening of the
spurious binding, and work is in progress to extend its
model to locate multiple binding events in a region.

Methods
ChIP-seq datasets
Our analysis used ChIP-seq datasets corresponding to
three TFs: STAT1, NRSF, and ZNF143. Because the three
datasets correspond to known binding motifs, they pro-
vide a gold-standard for evaluating peak-calling pro-
grams [2]. Table 2 presents summary statistics for the
three datasets.
The STAT1 dataset [15] was downloaded at http://www.

bcgsc.ca/downloads/chiptf/human/STAT1/stimulated/july_
23_2008/. The NRSF[SRA:SRR577995] and ZNF143[SRA:
SRR243553] datasets were downloaded from the SRA
database at http://www.ncbi.nlm.nih.gov/sra. Bowtie [17]
mapped tags into a reference human genome (NCBI Build
36.1) for all three datasets. Mismatches of up to 2 bases were
permitted, if they mapped uniquely within the genome.
For all datasets, the PeakSeq suite [5] then determined

whether tag sequences in the reference genome were
unique. PeakSeq requires tags of a uniform length. The
tags for the downloaded STAT1 dataset, however, had
varying length although most tags had length 27. We
truncated the tags to length 27, if they were longer, or
we discarded them, if they were shorter. Thus, we used
the mappability information for 27 bp tags to approxi-
mate the complete STAT1 data. The downloaded NRSF
had tags of length 50 and the downloaded ZNF143 had
tags of length 40. We truncated tags from both datasets
to length 36 to make it easy to investigate the effect of
the mappability information (36 bp mappability informa-
tion was used). Additional file 1 also reports on results
from three additional datasets, MAX, GABP, and FoxA1.

Notations for the ChIP-seq data
Let some preliminary method (see NEXT-peak algorithm
for detail) flag possible cross-links in candidate genomic
regions Rr (r = 1, …, S). Computational time is a consid-
eration, because S can be on order of 104 or more. Con-
sider a specific genomic region Rs, where s ∈ {1,…, S},
and let Rs have width ws, with the nucleotide bases hav-
ing coordinates 1, …, ws. Call the forward and backward
DNA strands “left” and “right”, so the bases at each loca-
tion j on the left and right strands are complementary

(j = 1, …, ws). Let X0 denote the set of locations within
Rs where a tag sequence is not unique within the gen-
ome, so the corresponding tag maps ambiguously.
The superscripts “L” and “R” distinguish quantities

pertaining to the left and right strands: note in particular
that “L” and “R” are not exponents. Within Rs, let a total
of nL “left tags” be observed on the left strand; nR “right
tags”, on the right strand. Define the “location” of a tag
as its leftmost position. Let the location of the left tags
map to xLi ∈ 1;…;wsf g (i = 1,…, nL); the location of the
right tags, to xRi ∈ 1;…;wsf g (i = 1,…, nR). Thus, the data
are X ¼ xL1 ;…; xLnL ; x

R
1 ;…; xRnR ;X

0
� �

where no location xLi
or xRi is in X0.
An alternative representation is occasionally useful.

Let yLj ∈ 0; 1; 2;…f g be the number of left tags observed

at location j ∈ {1,…, ws}; yRj , the number of right tags ob-

served at position j. Tags cannot be observed at locations
j∈X0. Thus, yL1;…; yLw; y

R
1 ;…; yRw;X0

� �
provides an equiva-

lent representation of the data X. The model parameters
for the data in Rs are (μs, νs, ρs) and (σ2, β), defined
below. Parameters specific to the region Rs are
subscripted with “s”; the parameters common to all gen-
omic regions lack subscripts.

Dual density for a binding event
Let the standard normal distribution have the density
function ϕ(•) and the cumulative distribution function
Φ(•). Each observed right tag location xRi in Rs corre-
sponds to an underlying (and unobservable) random
variate ξi, the coordinate of the corresponding cross-link.
For mathematical convenience, assume ξi ~N(μs, σ

2), i.e.,
ξi is a normal variate with mean μs (specific to Rs) and
variance σ2 (common to Rr for r = 1, …, S). The density
of the distribution of ξi is

πðξ ijμs; σ2Þ ¼
1
σ
ϕ

ξ i−μs
σ

� �
:

Assume that upon shearing, the breaks in the DNA
form a Poisson process over the entire genome. Thus,
the break point at location xRi (xRi > ξ i ) corresponds to
an exponential random variate xRi −ξ i . For simplicity, as-
sume that the mean β of the exponential distribution is
common to all regions Rr (r = 1, …, S), so the density
function corresponding to xRi is

πðxRi jξ i; βÞ ¼
1
β
exp −

xRi −ξ i
β

� �

for xRi > ξ i, and 0 otherwise.
The joint density of xRi ; ξ i

� �
is therefore

π xRi ; ξ i μs; σ
2; βj Þ ¼ π xRi ξ i; βj Þ⋅π ξ i μs; σ

2j Þð��
. Integrate ξi

out, to derive the density function of xRi :
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The above distribution is a marginal distribution of
the normal-exponential joint density, which we call a
“normal-exponential” distribution in short. Figure 7
shows a schematic representation for the role of parame-
ters σ and β in a ChIP-seq experiment. Figure 1a shows
a normal-exponential density for both left and right tags
(as discussed in Results).

Poisson regression model for the observed tags
Within Rs: (1) let νs be the expected number of right tags
for each TF molecule that binds; (2) let ρs be the uni-
form background intensity of right tags; and (3) let λRj be

the expected number of right tags at location j. Assume

λRj ¼ νs f
R j θj Þ þ ρs:
�

Approximate the sum over all locations j with an integra-
tion, to produce a consistency check: νs = ∫ νs ⋅ f

R(x|θ)dx.

The expected total number of right tags within Rs due to
binding is therefore approximately νs, νs = 0 being equiva-
lent to the absence of TF binding in Rs. On the other hand,
the expected total number of right tags within Rs due to
noise is wsρs.
Let YR

j be the random variable that counts right tags

at j, and assume Yj
R has a Poisson distribution with mean

λRj , i.e.,

Pr YR
j ¼ y

� �
¼ exp −λRj

� � λRj

� �y
y!

;

for y ∊ {0, 1, 2, …}.

The models for the tag locations xLj
n o

and xRj
n o

on

the left and right strands share the parameters (μs, σ
2, β,

νs, ρs) and differ only in mirroring the tag location

f RðxRi μs; σ
2; βj Þ ¼ ∫πðxRi ; ξ ijμs; σ2; βÞdξ j ¼ Φ

xRi − μs þ σ2β−1
� �

σ

 !
1
β
exp −

1
β
½xRi −ðμs þ 1

2σ
2β−1

� �	)


Figure 7 ChIP-seq experiment with NEXT-peak model parameters. A genomic location of the center of the TF is denoted as μ. Green bi-
directional arrows represent cross-links between a TF and a genomic sequence. Cross-links are assumed to be normally distributed with standard
deviation σ. Tags are shown as small black rectangles at the 5′ end of fragments. The distance from a cross-link to a tag location is assumed to
be exponentially distributed with mean β. When tags are mapped to a reference genome, then tags are projected onto the corresponding
genomic locations. Blue arrows represent “left” tags mapped on the forward strand; red arrows, “right” tags mapped on the backward strand. The
tag distribution is the NEXT-peak under the previous assumptions.
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densities around the link location μs, i.e.,

f L μs−z μs; σ
2; β

�� � ¼ f R μs þ z μs; σ
2; β

�� �
:

��
The models for the left and right tags share νs and ρs,

so as in the model for the right tags, νs is the expected
number of left tags for each TF molecule that binds, and
ρs is the uniform background intensity of left tags.
Figure 1a shows a normal-exponential two-peak (NEXT-

peak) density. In this example, μ = 0, β = 60, and σ = 40. The
two density curves mirror each other around the center loca-
tion μ = 0. The curves are asymmetrical distributions skewed
in opposite directions. Although both tails of each density
rapidly approach zero, one tail approaches zero much faster
than the other. Figure 1a motivates the model name: the
“normal-exponential two-peak” (NEXT-peak) model.
Let θs= (μs, νs, ρs). Under the NEXT-peak model in

Figure 1a, the likelihood of the data yL1 ;…; yLw; y
R
1 ;…; yRw;X0

� �
in Rs is

L σ; β; θsð Þ ¼∏j∉X0 Pr YR
j ¼ yRj σ; β; θsj Þ⋅Pr YL

j ¼ yLj σ; β; θsj Þ
� i

:
�h

Thus, the likelihood of the complete dataset is

L σ; β; θð Þ ¼ ∏S
r¼1L σ; β; θsð Þ

where θ = (θr : r = 1,…, S).
Because σ and β do not depend on the region Rs, train-

ing data can yield maximum likelihood estimates (MLEs)

σ̂ and β̂ . Fix the values σ ¼ σ̂ and β ¼ β̂ , so the
remaining parameters requiring estimation for the
NEXT-peak model are θ = (θ1,…, θS). Maximization of

the profile likelihood L θsð Þ ¼ L σ̂ ; β̂; μs; νs; ρs

� �
then yields

the estimate θ̂s ¼ μ̂s; ν̂s; ρ̂s
� �

within each region Rs. The
estimate’s components are: (1) the estimated mean location
μ̂s of a binding event, (2) the estimated mean total number
ν̂s of right (or left) tags within Rs due to the binding event,
and (3) the estimated uniform background intensity ρ̂s of
right (or left) tags within Rs. As usual, the inverse of the
Fisher Information matrix (i.e., the inverse of the negative
expectation of the Hessian of the log-likelihood) estimates
the asymptotic variance-covariance matrix for θs.

Let ^̂θs ¼ ^̂μs; 0; ^̂ρs
� �

denote the maximum likelihood

estimate (MLE) of θs = (μs, νs, ρs) under the restriction νs
= 0. To test whether or not a binding event occurred in
Rs, under the null hypothesis H0:νs = 0, the likelihood ra-
tio (LR) statistic

λ ¼ −2 log L ^̂θs

� �
=L θ̂s

� �h i
has an asymptotic chi-square distribution with 1 degree
of freedom. Unlike the null hypotheses in many existing
programs, the NEXT-peak model does not assume a glo-
bally uniform background intensity. Instead, its locally

uniform background intensity is equivalent to assuming
that the expected number of background tags per loca-
tion varies slowly enough to be almost constant within
each region Rr (r = 1, …, S).

Goodness-of-fit test
The following can test whether observed tag data are
consistent with the NEXT-peak model. PCR over-
amplification and other experimental artifacts can cause
spikes in the observed tag distribution. Likewise, mul-
tiple binding events in a region Rr cause deviations from
the unimodal density of the model. Accordingly, con-
sider Pr (D|H0), the probability of the data D under the
null hypothesis H0 of a NEXT-peak model. Under H0,
the counts yRj of right tags at location j are generated

with the Poisson intensity λRj given above, the counts of

the left tags being generated with the mirror intensity λLj .

Consider also the probability Pr (D|H1) of the data
under an alternative model H1 where the underlying in-
tensity λRj is unrestricted. The LR statistic 2 log[Pr(D|

H1)/Pr(D|H0)] for the models follows a χ2 distribution,
with degrees of freedom equal to the difference of the
number of parameters in H0 and H1. The LR test yields
a p-value for each region Rs, with a small p-value indi-
cating a poor fit within Rs to the NEXT-peak model
underlying H0.

P-value computation for finding motif sites
From a position-specific score matrix, any segment re-
ceives a score by adding the corresponding columns
scores from the position-specific score matrix. The prob-
ability of observing the score or higher is computed
based on the null model that nucleotides (A, C, G, and
T) can appear at random with equal probabilities. We
used the Staden’s method [18] for the convolution com-
putation of the score distribution, The principal of our
p-value computation has been used for PSI-BLAST [19]
and A-GLAM [20], among others, for their p-value com-
putation, where p-values are used to compute E-values.

Screening based on goodness-of-fit tests
Like many peak-calling programs, NEXT-peak masks loca-
tions having anomalously many tags, but it does so in a
principled manner, with p-values based on goodness-of-fit
tests. Long regions with small p-values suggest multiple
binding sites, so for all datasets NEXT-peak masked regions
less than a certain length long and with small p-values.
When motif site locations are available, based on the area
under the precision curve up to the top 10,000 peaks (e.g.
Figure 3), the NEXT-peak program automatically reports a
cut-off recommendation for each dataset. The Results sec-
tion uses the length 400 and the p-value 10-8 as a cut-off
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for STAT1 and the length 300 and the p-value 10-4 as a
cut-off for NRSF and the length 400 and the p-value 10-6 as
a cut-off for ZNF143, all suggested by the NEXT-peak
output.

NEXT-peak algorithm
The NEXT-peak program goes through the following
procedures for producing an output (Figure 8 shows a
flowchart for the NEXT-peak program). (1) Read the
mapped tag location file, e.g., from a Bowtie [17] output.
(2) Select regions based on the tag count with a user
specified length of the window (default: 150) and a user
specified minimum count (default: 15). When a neigh-
boring window has more than the minimum count, the
window under scrutiny is combined with its neighbor.
The region lengths range from the minimum length (de-
fault: 150) to several thousands. (3) When motif site lo-
cations are available, estimate σ and β by maximizing the
likelihood using motif site locations. For a known TF,
a publicly available motif pattern is used, e.g. from

JASPAR [16]. For an unknown motif, run the NEXT-
peak program with default values (σ = 30 and β = 50),
and identify the strongest motif from a motif search. Al-
ternatively, a user can estimate these parameters with se-
lected regions. (4) For each region, estimate μ and ν by
maximizing the likelihood. It computes the standard de-
viation estimates for these estimates. Then, perform a
goodness-of-fit test for each region. (5) As a post-
processing step, compute the region length and p-
value cut-off recommendations to screen out potential
spurious regions when the motif site locations are
available.

NEXT-peak software
The NEXT-peak program is implemented in C++.
The code is publicly available at http://www.odu.
edu/~nxkim/nextpeak/. A typical computation time is
about 15 ~ 45 minutes, depending on the size of the in-
put data.

E

Figure 8 A flowchart for NEXT-peak algorithm. First, the program reads the mapped tags. Then, it selects regions based on the tag count
with a user specified length of the window (default: 150) and a user specified minimum count (default: 15). If motif site locations are provided, it
estimates σ and β using motif site locations. For an unknown motif, run the NEXT-peak program with default values (σ = 30 and β = 50), and
identify the strongest motif from a motif search. For each region, the program estimates μ and ν. It computes the standard deviation estimates
for these estimates. As a post-processing step, the program computes the region length and p-value cut-off recommendations to screen out
potential spurious regions when the motif site information is available.
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Additional file

Additional file 1: Supplementary material. Supplementary material
contains results for additional datasets, MAX, GABP, and FoxA1. This file
contains four supplementary figures and two supplementary tables:
Figure S1. A plot of percentage of top peaks with motif. Table S1 reports

estimated values β̂ and σ̂ for each dataset. Figure S2. A plot of
percentage of top peaks with motif. Some curves were truncated in (a),
because QuEST called fewer than 5,000 peaks; MTC, fewer than 7,000
peaks; and WTD, fewer than 9,000 peaks. In (b), QuEST, WTD, and MTC
called fewer than 4,000 peaks. Figure S3. A plot for mean distance
between top peaks and motif. Mean distances are average distances
between motif sites and estimated sites, where estimated sites contain a
motif site within 250 bp distance. Figure S4. A plot of mean bias between
top peaks and motif. The bias is the (signed) distance in bp between an
estimated site and the nearest motif site. Table S1. Summary of additional
ChIP-seq datasets. Basic characteristics of additional datasets. Table S2.
Program result summary for additional ChIP-seq datasets.
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