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Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D
on NKT cell development and function

Sunil K. Joshi*,# and Mark L. Lang*

*Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center,
Oklahoma City, OK 73104
#School of Medical Diagnostic and Translational Sciences, Frank Reidy Research Center of
Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA

Abstract
Natural Killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that that provide
a functional interface between innate and adaptive immune responses in infectious disease, cancer,
allergy and autoimmunity. There have been remarkable advances in understanding the molecular
events that underpin NKT development in the thymus and in the complex array of functions in the
periphery. Most functional studies have focused on activation of T cell antigen receptors
expressed by NKT cells and their responses to CD1d presentation of glycolipid and related
antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer
(NK) cells, but nonetheless expressed by NKT cells. These include several activating and
inhibitory receptors that may fine-tune NKT development and survival, as well as activation via
antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in
regulating development and function of NKT cells in health and disease. We suggest that
pharmacological alteration of NKT activity should consider the potential complexities
commensurate with NK1.1 and NKG2D expression.
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INTRODUCTION
Natural Killer T cells

Natural Killer T (NKT) cells represent a group of T lineage cells of thymic origin with
several features that distinguish them from ‘conventional T cells’ [1]. Mature NKT cells are
restricted by the MHC class I-related molecule and express a T cell antigen receptor (TCR)
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capable of recognizing lipid-containing antigens (Ags) bound to CD1d. Since the discovery
of the marine sponge Agelas mauritianus-derived alpha-galactosylceramide CD1d-binding
glycolipid (α-GC) [2], numerous synthetic glycolipids have been devised and natural self
and foreign CD1d ligands have been discovered [3–7]. Several outstanding structural studies
have elucidated the manner in which CD1d binds to various ligands and in some cases how
the CD1d ligand complex interacts with the NKT TCR and are described elsewhere [8–12].

NKT cells are broadly grouped into two categories, namely Type I and Type II NKT cells.
Murine Type I NKT cells express an invariant Vα14/Jα18 TCRα chain (Vα24/Jα18 in
humans) paired with a restricted Vβ2, Vβ7 or Vβ8 repertoire (Vβ11 in humans) and are thus
termed ‘semi-invariant’ NKT cells [1,6,7] These are by far the most well studied subset of
NKT cells and are reactive to the α-GC ligand. Recently a Type I-like subset was
discovered by the Godfrey laboratory which expresses an invariant Vα10 TCRα chain and
is reactive to a glucosylceramide ligand [13].

Type II NKT cells represent a group of CD1d-restricted T lineage cells with variable, likely
oligoclonal TCR usage [14–17]. Type II NKT cell subsets have proven quite elusive due to
their variable TCR usage meaning that a given CD1d ligand such as myelin-derived
sulfatide may only detect a fraction of the Type II NKT population [18,19]. Nonetheless,
interest in this subset is growing rapidly and investigators are deepening their understanding
of Type II NKT functions in health and disease [16]. The information presented in this
review focuses on Type I NKT cells.

The classical model for Type I NKT activation is based upon observations that CD1d+

professional APCs present CD1d/foreign ligand complexes to NKT cells which are
subsequently activated via engagement and cross-linking of the TCR [1,2,20,21]. Several
co-receptors such as ICOS, CD40L and CD28 also regulate TCR signaling in NKT cells
[22]. More recently, it was reported that Toll-like receptor (TLR)-stimulated IL-12
production by professional APCs in concert with presentation of self CD1d ligand can
potently activate NKT cells [23,24]. Clearly, there are at least two major modes of Type I
NKT activation and the relative extent to which they occur in vivo could well be influenced
by several factors.

Type I NKT cells regulate adaptive immune responses to pathogens, allergens, self-antigens
and tumors. Type I NKT cells can boost cytotoxic T cell responses to tumors [25–27] as
well as Ag-specific Ab responses to foreign Ags (including allergens) and associated
pathogens [28–35]. Type I NKT cells also appear to regulate autoimmune reactions [36]. In
a recent study auto-reactive B cell homeostasis in SLE patients was linked to abnormal NKT
function and subject to CD1d-dependent control [37]. Consequently, there is much interest
in understanding the molecular events that govern the interaction of Type I NKT cells with
other immune cell types [28,38,39].

Natural Killer Cells
Natural Killer (NK) cells should not be confused with NKT cells. NK cells develop in the
bone marrow, are of the myeloid lineage, and do not express T cell antigen receptors. NK
cells are particularly responsive to virus-infected cells and cancer cells, responding often to
target cells that have down-regulated expression of the classical MHC. This is achieved via
multiple receptors that govern activation. NK cells exert effector function on target cells, by
production of IFNγ and release of perforin from intracellular granules, leading to target cell
killing. For a review on NK cells and their receptors, the reader is directed to the outstanding
review by Dr. Lanier [40]. The biological functions of NK cells and NKT cells therefore
differ but overlap. As we will discuss, the surface receptors that constitute the major modes
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of activation of NK cells, may play a supporting role by influencing activation of NKT cells
via the TCR.

Natural Killer Cell Receptors Expressed by NKT and NK Cells
The natural killer gene complex (NKC) encodes multiple C-type lectin-like receptors which
are responsible for the regulation of development and functions of NK and NKT cells
depending on the cellular environment. These include NK1.1, the Ly49 family of proteins,
and NKG2D. The balance of expression and engagement of these receptors fine tunes NK
activation [40] and it is expected that many of these properties also apply to NKT cells.

NK1.1 (also known as KLRB1C and NKRP1C), is a type II integral membrane glycoprotein
with a C-type lectin domain and is a member of the NKR-P1 family of cell surface receptors
[41]. This activating receptor associates with the ITAM-bearing γ-chain adaptor molecule
normally associated with Fc receptors. NK1.1 is expressed as a disulfide-linked homodimer
on all NK and NKT cells in some strains of mice and is a particularly good marker of these
cell types in the C57BL/6 genetic background. NKRP1 receptors family members (to which
NK1.1 belongs) do not engage ligands with an MHC class-I-like fold, but rather interact
with C-type lectin-like CLEC2 glycoproteins [41,42]. Although crosslinking of the NK1.1
receptor using an NK1.1-specific mAb (clone PK136) induces NK cell-mediated
cytotoxicity and effector cytokine secretion, the in vivo functions of NK1.1 and the identity
of its ligand(s) remain incompletely understood [43].

NKG2D is encoded by the KLRK1 gene (killer cell lectin-like receptor subfamily K,
member 1) on chromosomes 6 and 12 mouse and human respectively. NKG2D is a C-type
lectin-like type-2 trans-membrane glycoprotein expressed as a disulfide linked homo-dimer
on the surface of natural killer (NK) cells, NKT cells, CD8+ cytotoxic T cells, γδ T cells,
and under certain conditions CD4+ T cells [44–47].

NKG2D molecules bind to cell surface glycoproteins of the major histocompatibility
complex (MHC) class I family and thereby facilitate detection of stressed cells or cells
exhibiting aberrant MHC class I expression. In human, the ligands of NKG2D receptor are
MHC class I–related protein A (MICA), MICB, UL-16 binding proteins (ULBP) 1 to 3, and
lymphocyte effector cell toxicity-activating ligand (Letal/ULBP4/Raet1E) while in mice
NKG2D ligands include retinoic acid early transcript-1 proteins (Rae1α-ε), a minor
histocompatibility antigen (H-60), and mouse ULBP-like transcript 1 (Mult-1) [48]. As
NKG2D ligands are typically expressed by distressed cells, NKG2D ligands can potentially
be used as tumor-specific targets with minimal cross-reaction with normal tissues. Indeed, it
has been demonstrated that engineered expression of NKG2D (as TCR complex-associated
fusion proteins) can lead to enhanced tumor killing by tumor-specific CD8+ T cells [49,50].

We will now discuss how NK1.1 and NKG2D may contribute to the development and
functions of Type I NKT cells. Understanding the relationship between these molecules and
NKT activation will be valuable is designing therapies that pharmacologically alter the
activation of NKT cells.

NK1.1 and NKG2D IN NKT DEVELOPMENT
Impressive progress has been made in understanding the mechanisms regulating NKT cell
development and is reviewed elsewhere [51,52]. In brief NKT development is highly
dependent on homotypic interactions between CD1d-expressing thymocytes [53,54]. The
correct TCR gene arrangement is also required, since deletion of the Jα18 gene segment
from the TCR locus blocks development [55]. Other studies have reported that self CD1d
binding ligands such as the lysosomal glycosphingolipid isoglobotrihexosylceramide (iGb3)
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is required for NKT development, but debate exists regarding how many self-ligands could
influence development [56]. In more recent studies, co-receptor molecules such as the
SLAM (signaling lymphocytic activation molecule) family members (Slamf1 and Slamf6)
have been identified as critical for NKT development [53]. Signaling mediators including
MAP Kinases, and Erk target protein Egr2 and transcription factors that include PLZF
(promyelocytic leukemia zinc finger), E protein transcription factor HEB, c-Myb, and Hobit
(Homologue of Blimp-1 in T cells) regulate NKT development [57–61].

Thymic precursor cells receiving the correct balance of signals differentiate through discreet
checkpoints, whereby CD4/CD8 double-positive thymocytes are selected based on CD1d
expression [53,54]. NKT precursors (in mouse) then differentiate into CD4 single-positive
and CD4/CD8 double-negative cells. CD8 single-positive NKT cells are also found in
humans [62]. Expression of NK molecules is acquired relatively late during thymic
development with NK1.1 being examined closely than other molecules [63,64].
Nonetheless, up-regulation of other NK markers appears commensurate with NK1.1
expression and thus potential contributions of NKG2D might be inferred from such studies.
In elegant studies by the Bendelac and Stein groups respectively, several important findings
regarding NK receptors were reported [63,64]. NK1.1 expression was increased after
commitment to the CD4 or CD8 subsets and recent thymic emigrants were NK1.1− or had
low expression which increased considerably in the periphery over the few days following
export. NK1.1+ NKT cells were shown to have considerably lower cell division than their
NK1.1− counterparts, suggesting that they represent a more terminally differentiated subset.
NK1.1+ cells were also detected in a population of mature NKT cells retained in the thymus
[65]. NK1.1 expression is regulated by the Tec family kinase Itk and Itk−/− mice were
reported to progressively lose peripheral NKT cells with aging [64]. These findings
demonstrate an important contribution of NK molecules in the maintenance of NKT cells in
the periphery. A flow cytometric analysis of thymic and peripheral NKT cells from
NKG2D−/− mice (kind gift from David H. Raulet, University of California, Berkeley) did
not reveal any differences in frequency, number or phenotype as compared to cells derived
from C57Bl/6 controls (Lang and Joshi, unpublished observation). These findings are
consistent with the notion that NK receptors including NK1.1 and NKG2D have little if any
role to play in early stages of NKT development. However, more detailed studies on the
impact of NKT NK1.1 and NKG2D expression in the periphery with regard to
differentiation into distinct functional subsets is warranted. Given the diversity of tissue-
expressed NK1.1 and NKG2D ligands in the periphery (Table I), it is possible that select
ligand/NK1.1 and ligand/NKG2D pairings can deliver a form of ‘tonic’ but non-mitotic
signaling to NKT cells that could promote their survival in the periphery (Figure 1a).

NK1.1 AND NKG2D IN NKT FUNCTION
NK1.1 and NKG2D delineate functional NKT subsets

NKT cells express numerous cell surface receptors that were first identified as markers of
Natural Killer (NK) cells. These include NK1.1, NKG2D, and the Ly49 family of proteins
[66], the balance of expression and engagement of which may fine tune NKT activation. To
assist the reader, Table II shows NKT subsets in mouse and human according to CD4, CD8
and NK1.1 expression. While Table II indicates that NKT function with regard to Th1-,
Th2- or Th17-skewed responses can be ascribed to different subsets, it is also worth noting
that anatomical location and microenvironment can affect NKT function [67]. Arguably,
exposure to diverse NK1.1 and NKG2D ligands in different microenvironments could
influence these events.

As discussed earlier, NKT cells express NK receptors including NK1.1 during the later
stages of thymic development and expression increases further in the periphery. Increased
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expression of these receptors is concomitant with a change in the expression of cytokines
following stimulation of the TCR with CD1d/α-GC. Several studies have now confirmed
that NK1.1+ NKT cells are skewed away from Th2 responses and IL-4 production towards
Th1 responses and IFNγ production [52,63,64]. Indeed, NKG2D activation on NKT cells
can act synergistically with IL-12 to promote a Th1-skewed response [68]. A subset of
CD4−NK1.1− NKT cells has also been defined which produces very high concentrations of
the pro-inflammatory cytokine IL-17 within a few hours of stimulation [69–72]. IL-17-
secreting NKT cells, designated as NKT-17 cells, represent a small subset of the NKT cell
populations in the thymus, spleen, liver and lung but is enriched in the peripheral lymph
nodes [71]. In contrast, a largely CD4+NKG2D− NKT cell subset has been reported to
express the IL-25 receptor (IL-25R/IL-17RB) and play a major role in Th2-mediated allergy
and airway hyper-reactivity by producing large amounts of IL-4 and IL-13 [73]. These
findings collectively reinforce the notion that NK1.1 and NKG2D expression by NKT cells
are associated with Th1 rather than Th2 or Th17 responses.

A recent study by Kuylenstierna and co-workers provided the most important demonstration
to date that NKG2D is important for NKT cell function [74]. Using primary human NKT
cells, the authors established NKG2D expression primarily in the CD4− subset, consistent
with findings in mice. NKG2D+ NKT cells expressed perforin which localized to the contact
site between these cells and NKG2D-ligand-expressing target cells. Furthermore, NKG2D
engagement led to degranulation and target cell killing. In further experiments, they
demonstrated that NKG2D engagement enhanced TCR-mediated NKT activation
(represented in model in Figure 1b). Collectively, this study showed that NKG2D plays two
important roles in NKT cells. Firstly, NKG2D directly stimulates NKT effector functions
and secondly, it acts as a TCR co-receptor to influence cell activation. Understanding how
different NKG2D ligands differentially stimulate these diverse biological outcomes is of
considerable interest.

Clinically-relevant observations on NKT-expressed NK receptors
Some clinically-oriented studies have highlighted linkages between NKG2D and NKT
function in disease. Consistent with the Kuylenstierna study, Wang and colleagues showed
that the NKG2D ligand class MHC class I chain-related molecules (MICs) derived from
patients tumors could down-regulate NKT cell NKG2D expression and tumor cell killing in
vitro [75]. This perhaps provides one explanation of why NKT cells are functionally
compromised in cancer patients [75]. In another study, patients with Type II diabetes were
shown to have an increased frequency of NKG2D+ NKT cells in the peripheral blood as
compared to healthy controls [76]. Early onset SLE was associated with changes in the ratio
of activating NKG2D/inhibitory NKG2A receptors in multiple cell types including NKT
cells [77]. Th1-skewed NKT cells were also elevated in pre-eclamptic women as compared
to those undergoing a healthy pregnancy [78]. Interestingly, in pre-eclamptic patients,
expression of NKG2A was decreased on NKG2D+ NKT cells, suggesting the balance of
critical activating and inhibitory signals was altered [78]. Together, these studies suggest an
important role for NKG2D in human NKT cells regulating immunity during a variety of
disease conditions.

Interestingly, NKT cell NKG2D, but not NK1.1 may represent a target for bacterial
pathogenesis. We reported that anthrax toxin-treated murine NKT cells were functionally
anergic, responding poorly to TCR stimulation [79]. In that study NKG2D expression by
NKT cells but not NK cells was down-regulated following anthrax toxin treatment. NK1.1
expression was not down-regulated indicating a degree of selectivity of this effect. While the
anthrax toxin study did not establish causality, the association between NKG2D expression
and TCR function was clear and warrants further investigation. Whether bacterial toxins
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impact the immune system in part through effects on intrinsic NKT function or extrinsic
function is also of considerable interest.

Effect of NKT NK1.1 and NKG2D on transactivation of other immune cells
As described, NKT cells influence a range of adaptive immune responses to tumors, self-
antigens, allergens and pathogens. In order to do this, NKT cells appear to be able to carry
out some functions directly (intrinsic function) or to influence the behavior of other immune
cell types (extrinsic function). There are several reports in the literature which to describe in
their entirety would constitute a separate review article. However, the selected examples
described in Table III illustrate some likely extrinsic functions of NKT cells.

Hepatic injury following hepatitis B virus infection of mice was reported to be mediated by
the immune response to viral antigens. Disease was mediated at least in part by CD1d-
restricted but α-GC non-reactive NKT cells which in turn activated NK cells [80]. Vilarinho
and colleagues demonstrated that mAb blockade of NKG2D interaction with its ligands
prevented the acute immune response and liver damage in a transgenic mouse expressing
HBV envelope proteins on a RAG−/− background [81]. Adoptive transfer of NKG2D-
depleted donor splenocytes induced less liver damage than transferred NK-depleted
splenocytes or whole mixed splenocytes. This work therefore implicated NKG2D+ in the
ability of NKT cells (possibly Type II NKT cells) to influence the immunological milieu and
thus the complex immune response to HBV.

As referenced in Table III, the Steinman laboratory demonstrated that NKT activation with
α-GC was able to boost DC maturation and elicit improved tumor-specific CTL responses
[26,82,83]. We therefore generated chimeric mice in which NKT cells were NKG2D+ or
NKG2D-null. Re-constituted mice were immunized with OVA or OVA plus α-GC before
adoptive transfer of CFSE-labeled OVA SIINFEKL peptide-specific OT-1 cells. Subsequent
flow cytometry analysis revealed no difference in expansion of the OT-1 cells in the
presence of NKG2D+ or NKG2D-null NKT cells (Figure 2). This observation was surprising
in light of the known Th1-skewing effect of NKG2D+ NKT cells, but suggested that
NKG2D was dispensable for NKT-enhanced CTL expansion. This result would also suggest
that NKT cell NKG2D is not required for NKT-enhanced DC maturation and experiments to
test this hypothesis are warranted.

The growing number of available examples therefore illustrate an important point, namely
that NK1.1 and NKG2D may influence the ability of NKT cells to alter the activity and
behaviors of other immune cell types. More experimentation is required to delineate the
circumstances under which this occurs and those in which it does not.

CONCLUSIONS AND REMAINING QUESTIONS
There is a paucity of information on the exact contribution of NK1.1 and NKG2D to NKT
cell development, homeostasis and activation. However, the information available indicates
that NK1.1 and NKG2D could be of importance in the life of an NKT cell and that these
molecules represent potential targets for immune system avoidance by pathogens and for
immunotherapy. We therefore feel that investigators should consider the following questions
in future studies:

• Does NKG2D expression contribute to homeostasis and maintenance in the
periphery?

• Which ligands engage NK1.1 and NKG2D expressed by NKT cells?

• To what extent do NK1.1 and NKG2D signaling interact with TCR signaling and
affect intrinsic and extrinsic NKT function?
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• Do human and murine NKT cells differentially depend on NK1.1 and NKG2D for
function?

• How do NK1.1 and NKG2D work in concert with other NK receptors to control
cellular activation?

• How does pharmacological manipulation of NK1.1 and NKG2D activity affect
NKT function?

NK1.1 and NKG2D are molecules of pivotal importance in the immune system. It will be of
significant interest to determine the contribution of NKT cell NK1.1 and NKG2D to the
immune response to pathogens, allergens, tumors and auto-antigens.
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HIGHLIGHTS

• CD1d-restricted Natural Killer T (NKT) cells are appreciated as an important
bridge between innate and adaptive immune responses.

• There is less awareness of how molecules normally expressed by NK cells, but
also expressed by NKT cells, regulates NKT development and function.

• The NK1.1 and NKG2D receptors may influence later stages of NKT
development, survival in the periphery, intrinsic function, and extrinsic function.
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Figure 1. Possible effects of NKG2D engagement on peripheral NKT cells
(a) In this model, tonic signaling provided by tissue-expressed NKG2D ligands could help
maintain NKT cells in the periphery (b) NKG2D signaling provided by tissue-expressed
NKG2D ligands could potentiate the TCR-driven effector functions of NKT cells.

Joshi and Lang Page 14

Int Immunopharmacol. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

(a) 

• • • 

Tonic 
NKG2D Homeostasis 

(b) 

• • • 

Co-stimulatory 

NKG2D 

Signaling 
Cytokine secretion 

Effector Functions 



Figure 2. Potentiation of CD8+ T cell expansion by NKG2D-null NKT cells
Mixed bone marrow chimeric mice were generated by engrafting irradiated CD45.1
congenic recipients with donor bone marrow mixtures (a) Jα18−/− plus C57Bl/6 or (b)
Jα18−/− plus NKG2D−/−. Mice were immunized with OVA plus α-GC before adoptive
transfer of CFSE-labeled MHC I-restricted (OVA SIINFEKL-specific) OT-1 cells. After 96
hours splenocytes were harvested and analyzed by flow cytometry. Dot plots on top row
show re-constituted NKT cells in the mixed chimeras. Dot plots on center row show OT-1
cells detected by SIINFEKL-loaded MHC 1 pentamers. Histograms on lower row represent
dilution of CFSE in the OT-1 cells. Immunization with OVA alone or a heterologous Ag did
not lead to OT-1 expansion (not depicted). Jα18−/− refers to mice with a TCR Jα18 gene
segment deletion that lack Type I NKT cells [55]. Data are representative of three mice per
group.
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Table I
NKG2D ligands

Shows known ligands that could potentially interact with NKG2D expressed on human and murine NKT cells.
MIC (MHC-class I polypeptide-related sequence, ULBP (cytomegalovirus UL-16-binding protein), RAE 1
(Retinoic acid early protein 1), RAET 1 (Retinoic acid early transcript 1), MULT1 (murine UL-16 binding
protein-like transcript 1), H60 (minor histocompatibility antigen) [47,48,84]. Definitive ligands have not been
identified for NK1.1

Mouse

NKG2D Ligands

RAE-1α

RAE-1β

RAE-1γ

RAE-1δ

RAE-1ε

H60

H60a

H60b

MULT-1

Human

MICA

MICB

ULBP-1/RAET1I

ULBP-2/RAET1H

ULBP-3/RAET1N

ULBP-4/RAET1E

ULBP-6/RAET1L

RAET1G
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Table II
NKT subsets

Shows major subsets of NKT cells grouped according to CD4, CD8 and NK1.1 expression in humans and
mice.

Type-1 NKT Subtypes Cytokine Profile Ref.

Mouse

CD4+ TH1 (IFNγ/TNFα); TH2 (IL-4/IL-10/IL-13)

[52,89–91]

CD4+NK1.1− IFNγLO/IL-4HI

CD4−NK1.1+ IFNγHI/IL-4LO

CD4+NK1.1+ IFNγLO/IL-4HI/IL-13HI

CD8+ IFNγ/TNFα

CD4−CD8− (DN) TH1 (IFNγ/TNFα); TH2 (IL-4/IL-10/IL-13)

CD4−NK1.1− (NKT-17) IL-17/IL-21/IL-22 [69,72,73,92,93]

Human

CD4+CD8− TH1 (IFNγ/TNFα)LO; TH2 (IL-4/IL-10/IL-13)HI

[62,94]CD4−CD8+ TH1 (IFNγ/TNFα)HI; TH2 (IL-4/IL-10/IL-13)LO

CD4−CD8− (DN) TH1 (IFNγ/TNFα); TH2 (IL-4/IL-10/IL-13)
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Table III
NKT extrinsic functions

Shows selected examples of major immune cell types affected by NKT activation. Specific references to
original work are cited in the table. The topics are broadly reviewed in [26,85–88]

Cell Type Effector Function Ref.

DC DC Maturation/IL-12 secretion [26]

CTL Augment B16 melanoma killing [83,95]

NK Immuno-surveillance against sarcoma [96,97]

B Enhanced specific Ab responses [30–32,35,98,99]

CD4+ T Enhancement of T cell responses [95]
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