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Is seagrass an important nursery habitat for the Caribbean
spiny lobster, Panulirus argus, in Florida?
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Abstract Caribbean spiny lobster (Panulirus
argus) settle preferentially in macroalgal-covered
hard-bottom habitat, but seagrass is more prevalent
in Florida (United States) and the Caribbean, so
even low settlement of lobsters within seagrass
could contribute substantially to recruitment if
post-settlement survival and growth were high. We
tested the role of seagrass and hard-bottom habitats
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for P. argus recruitment in three ways. We first
explored possible density-dependent regulation of
early benthic juvenile lobster survival within cages
deployed in seagrass and hard-bottom habitats.
Second, we compared settlement and survival of P.
argus in both habitats, by comparing the recovery
of microwire-tagged early benthic juveniles from
patches of seagrass and hard-bottom. Finally, we
assessed the relative abundance of juvenile lobsters
in each habitat by deploying artificial structures in
seagrass sites and compared these data with data
from similar deployments of artificial structures
in hard-bottom habitat in other years. More early
benthic juvenile lobsters were recovered from cages
placed in hard-bottom than in seagrass, but mortality
of the early benthic life stage was high in both
habitats. In regional surveys, the mean number of
lobsters recovered from artificial shelters deployed
within seagrass was lower than in any year that
we sampled hard-bottom, indicating that fewer
lobsters reside naturally in seagrass, particularly
large juveniles >40 mm carapace length. The
greater abundance (and likely survival) of juvenile
P. argus that we observed in hard-bottom habitat as
opposed to seagrass, combined with previous studies
demonstrating that postlarval P. argus are attracted
to, settle in, and metamorphose more quickly in red
macroalgae, confirm that macroalgae-dominated
hard-bottom habitat appears to be the preferred and
more optimal nursery for Caribbean spiny lobster.

Keywords hard-bottom; recruitment; Thalassia;
Laurencia; postlarvae; survival; growth

INTRODUCTION

Hard-bottom habitat intersperses with seagrass
meadows throughout much of south Florida and the
Caribbean Sea, and together these habitats serve as
nurseries and foraging grounds for numerous species
of fish and shellfish, including the Caribbean spiny
lobster (Panulirus argus Latrielle, 1804)—the target
of one the most economically valuable fisheries in
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Florida (hunt 2000) and the Caribbean (Baisre &
Cruz 1994; ehrhardt 1994; F a o 2000). Caribbean
spiny lobster postlarvae settle preferentially within
red macroalgae, especially Laurencia spp. (Marx &
herrnkind 1985; herrnkind & Butler 1986), drawn
there by the odour of the algae (Butler & herrnkind
1991 ; goldstein & Butler unpubl. data). Three to four
months after settlement, the early benthic juvenile
(eBJ) lobsters leave their vegetated settlement
habitat to seek crevice shelters (Butler et al. 2006).
hard-bottom areas replete with red macroalgae are
prime nurseries for P. argus because they provide
both a settlement substrate and habitat for early
benthic stage juveniles (i.e., macroalgae), as well as
crevice shelters (e.g., sponges, solution holes, corals)
used by later juvenile stages (eggleston et al. 1990;
Field & Butler 1994; Forcucci et al. 1994; herrnkind
& Butler 1994; Mintz et al. 1994). however, seagrass
is more ubiquitous than macroalgae-covered hard-
bottom in many regions of the Caribbean, and it may
also provide habitat for settling postlarvae and eBJ
lobsters (see Butler et al. 2006) as it does for many
other animal species (heck & Wetstone 1977; heck
&Thoman 1984; lewis 1984; Stoner& lewis 1985;
Blaber et al. 1992; adams et al. 2006).

Worldwide, there are about 50 species of
seagrasses (den hartog 1977). Turtle grass, Thalassia
testudinum, is the most abundant seagrass in the
Caribbean, overlapping in its broad distribution
with P. argus (littler & littler 2000). likewise,
three species of seagrass are common in south
Florida (turtle grass, T. testudinum; manatee grass,
Syringodium filiforme; and shoal grass, Halodule
wrightii), but turtle grass is the most abundant in
the saline waters of southwestern Florida Bay and
the Florida keys (Fourqurean et al. 1992; hall et
al. 1999; Zieman et al. 1999). Macroalgal-covered
hard-bottom is limited to this region of Florida
Bay where it covers nearly 30% of the sea floor
(Zieman et al. 1989; herrnkind et al. 1997; Bertelsen
et al. 2009, this issue), interspersing with seagrass
meadows and carbonate sand and mud bottom. The
primary nursery area for spiny lobster in Florida
also occurs here (herrnkind et al. 1997; Robles et
al. 2005). Thus, there is a concomitant overlap in
the distribution of turtle grass, macroalgae-covered
hard-bottom, and juvenile spiny lobsters in this
region of south Florida where we examined essential
nursery habitat for spiny lobster.

establishing the contribution of seagrass to spiny
lobster recruitment in the Florida keys is important
for several reasons. Seagrass is the most prevalent
habitat north of the Florida keys and in western

Florida Bay (Zieman et al. 1989; herrnkind 1995),
so even relatively low settlement of lobsters within
seagrass compared with macroalgae, as predicted
from laboratory studies (herrnkind & Butler 1986),
could potentially make a significant contribution to
recruitment on a regional scale. habitat structure in
western Florida Bay has been dramatically altered
by widespread die-offs of sponges and octocorals
(Butler et al. 1995; herrnkind et al. 1997; Peterson
et al. 2006). Persistent cynobacteria blooms
(Synecococcus sp.) from 1991 to 1995 resulted in
massive die-offs of the sponge community, local
declines in macroalgae, and coincident shifts in the
abundance and shelter use of juvenile spiny lobster
(Butler et al. 1995). Cyanobacteria blooms may also
negatively impact macroalgae through shading and
competition for dissolved nutrients. hard-bottom
habitat may also be further impacted by the planned
return of historical freshwater flow—an aim of the
Comprehensive everglades Restoration Project
(United States army Corp of engineers & South
Florida Water Management District 2002). The
implications of these changes for lobster recruitment
are not entirely known and are likely to be complex.
lastly, macroalgal abundance on hard-bottom sites,
particularly the Laurencia spp. red algal complex,
is also naturally ephemeral and at times may be
insufficient for spiny lobster settlement (Butler et al.
1997). Seasonal abundance in the Middle keys varies
from <10% to over 30%, but does not correspond
to postlarval supply, which might create local
bottlenecks for lobster settlement (Butler et al. 1997).
That is, large numbers of postlarvae may sometimes
arrive when there is little algae for settlement. This
variability adds a temporal dimension to nursery
habitat dynamics wherein the importance of seagrass
as a supplementary settlement habitat may vary with
algal abundance in hard-bottom.

Understanding the relative value of seagrass and
macroalgae-covered hard-bottom as nursery habitats
for spiny lobster provides information essential to
habitat-based management for this ecologically and
economically important species. Designation and
protection of "essential fish habitat" is a prominent
component of the 1996 Sustainable Fisheries act that
is now law (Public law 104-297) in United States.
Therefore, we compared the relative value of seagrass
and macroalgal habitats for recruitment of juvenile
spiny lobster in south Florida in three ways. We
tested density-dependent survival of newly settled
lobsters within cages deployed in seagrass and hard-
bottom habitats. We also examined settlement and
survival of microwire-tagged eBJ P. argus released
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South Florida
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Fig. 1 Region within the Florida keys (United States) (boxed area) where studies of P. argus recruitment into seagrass
and hard-bottom habitats were conducted. Small-scale caging studies were conducted within the circled areas, large-
scale mark-recapture and regional recruitment studies were conducted throughout the Middle keys.

in both habitats. Finally, we compared the relative
abundance of juvenile lobsters attracted to artificial
structures that we deployed at seagrass sites and
compared the results with similar data obtained in
hard-bottom habitat.

M A t e r I A l s A n d M e t h o d s

small-scale mark-recapture
study of recruitment
This part of the study took place north of the Middle
Florida keys in the gulf of Mexico and western
Florida Bay from May to July 1995 (Fig. 1). Sites
were established at c. 1.5 m depth in representative
seagrass and hard-bottom habitat. We placed one
cage at each of six seagrass sites and six hard-bottom
sites near lower arsnicker key and 12 seagrass sites
and 12 hard-bottom sites near grassy key. Cages
were spaced at least 10 m apart. in related studies

of predation on tethered juvenile lobsters, Butler et
al. (1997) and acosta & Butler (1999) found that
nocturnal predation events were independent for
all tethered animals >1 m linear distance. Based on
those studies, we believe that the separation of cages
10 times this distance assured their independence.

The cages covered a surface area of 1.0 m2 (1.0 m
long × 1.0 m wide) and were 40 cm in height. The
cage frames were constructed of 2.5 cm diameter
PVC with 0.5 cm × 0.5 cm plastic mesh strapped
to the frame with cable ties. The tops of the cages
were open (to permit access by predators), but 10
cm wide strips of plexiglass fixed at a 45° angle to
the top of the PVC frame formed an overhang at the
top of the cage that prevented escape of eB J lobsters
over the cage top. To prevent escape of lobsters from
the bottom of the cages, the bottoms were sealed to
the sea floor using strips of foam and a 10 cm wide
plastic mesh skirt buried in the substrate. Predators
could freely swim in and out of open-top cages
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but it was considered improbable that newly-settled
eBJ lobsters could climb the 40 cm mesh wall and
then maneuver around the slick plexiglass overhang
that capped each wall. Four concrete blocks were
attached to the top corners of each cage, which firmly
anchored the cages to the bottom. great care was
taken to ensure that the cages were well sealed in
both habitats, eliminating any bias in retention. Cages
introduce potential artifacts into experiments, but
natural estimates of survivorship are difficult to obtain
for mobile species that experience high mortality in
open, natural systems (Peterson & Black 1994).

after placement of the cages, two different eBJ
lobster density treatments (4 lobsters/cage and
14 lobsters/cage) were randomly assigned to the
seagrass and hard-bottom cages with three replicates
per habitat and treatment. The density of eBJ lobsters
chosen was based on estimates of natural settlement
obtained from microwire tag-recapture data from
0.1 ha sites (Butler et al. 1997). We estimated that the
low-density treatment (4 lobsters/cage) mimicked a
high natural settlement density, whereas the high-
density treatment (14 lobsters/cage) may only be
indicative of extremely high settlement periods,
based on postlarval influx monitored on Witham-
type collectors (herrnkind & Butler 1994). only
first- and second-stage EBJ lobsters obtained from
Witham-type collectors were used. lobsters were
measured (to the nearest 0.1 mm), weighed (to
the nearest 0.01 g), tagged with microwire tags
(1.00 mm × 0.25 mm diameter; Northwest Marine
Technology, inc., Washington, United States), and
then held overnight to confirm post-tagging survival.
We then transported them to the field where divers
placed them into cages. Nine replicates of each of
the four treatments (high-density hard-bottom, low-
density hard-bottom, high density seagrass, and low-
density seagrass) were left in the field for 20 days.
For logistical reasons, the cages at one site (grassy
key) were retrieved 30 days after deployment instead
of the standard 20 days.

after 20 (or 30) days, divers visually searched
each cage for lobsters and removed all substrate
material. Macroalgae and small sponge-encrusted
rocks were removed from hard-bottom sites, whereas
at seagrass sites, seagrass blades and calcareous green
algae stalks were cut off at the sediment surface. The
above-ground material from each cage was placed
in mesh (0.1 cm × 0.1 cm mesh size) bags, and
transported to a vessel were it was subsequently
sorted to recover lobsters. We then returned to each
cage, visually searched for lobsters again, and then
swept each cage twice with small mesh (0.1 cm

• 0.1 cm mesh) hand nets. This method has been
used successfully in the past to document habitat
use by this same size class of juveniles (Marx &
herrnkind 1985). lobsters that were recovered were
measured, weighed, and evaluated for the presence
of a microwire tag to distinguish natural settlers from
those that were experimentally placed into the cages.
Differences in the recovery (i.e., survival) of eBJs
between habitats or stocking densities were analysed
using a 2-way model i a N o Va (habitat × density)
(Zar 1999). Before applying a N o Va, we evaluated
the difference in the number of lobsters recovered
between different durations using a t test (Zar 1999)
and found no significant difference between cages
left in the field for 20 or 30 days (t = -0.569, d.f. =
34, P > 0.573). Statistical tests were performed using
JMP™ software v.5 and significance determined at
a = 0.05.

large-scale mark-recapture
study of recruitment
We selected four seagrass-covered sites and four
macroalgae-covered hard-bottom sites within a
300 km2 region immediately north of the Middle
keys for a large-scale mark-recapture study. The
sites were each approximately 25 m in diameter
(c. 491 m2) and isolated by open sand, and selected
to represent a range of seagrass and macroalgal
densities characteristic of the region.

once each month for 7 months (beginning in
March 1997), we introduced microwire-tagged
first- and second-stage EBJ lobsters directly into
vegetation within 10 m of the centre of all sites.
Newly settled postlarvae were collected from
arrays of Witham collectors placed near shore on
the atlantic ocean side of long key, Florida and
allowed to metamorphose to the juvenile phase in
large continuous-flow seawater tables before we
tagged them. We tagged 1335 juveniles, held them
for 24 h (during which time nearly all handling
mortality occurred), and then transported them to
the field sites where they were released. We released
between 149 and 188 tagged eBJ lobsters per site
over the 7-month period.

Seven months after the last introduction of tagged
lobsters (april 1998), allowing time for the juveniles
to reach the postalgal, crevice-dwelling stage, we
deployed 12 artificial juvenile lobster shelters
(double-stacked three-hole concrete partition blocks
20 cm × 40 cm × 10 cm) haphazardly, 3-4 m apart
throughout each site. This type of shelter attracts
the full size range of postalgal juveniles (15—40 mm
carapace length, C l ) equally as well as natural
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structures (Butler & herrnkind 1997). The shelters
were left for 3 weeks and then searched to recover
juveniles. Because the shelters were only briefly
at each site, they served as "passive collectors"
of juvenile lobsters. We also sampled the seagrass
and hard-bottom sites to recover any lobsters not
dwelling in the artificial shelters. At hard-bottom
sites, we searched for crevice-dwelling juveniles
in natural shelters by searching all structures at
each 500 m2 site. a t seagrass sites, pairs of divers
repeatedly traversed the seagrass patch while holding
the ends of 2 m PVC poles with which they gently
bumped the substrate to frighten juvenile lobsters
from the seagrass.

Upon capture, each juvenile lobster was scanned
with a magnetic detector to distinguish those tagged
and added by us from those of the same size (age)
cohort that had settled naturally. The number of
recaptured, tagged lobsters out of the total that had
been added provided an estimate of post-settlement
mortality, assuming no emigration from the site and
recovery of all marked lobsters present. only lobsters
<35 mm C l were included in this evaluation because
based on estimated growth rates from this region
(Forcucci et al. 1994; Sharp et al. 2000), lobsters of
this size probably settled within the previous 6-7
months and are likely to have remained nearby their
site of settlement (Butler & herrnkind 1997).

Field surveys of regional recruitment

To provide a broader geographical component to our
assessment of seagrass as a nursery habitat for P.
argus in Florida keys, we surveyed juvenile lobster
abundance in artificial structures (as described above)
that we deployed in seagrass meadows in June-July
1997 at 16 sites spread over an area of approximately
500 km2 in Middle Florida keys. Seagrass sampling
sites were selected by stratified random sampling
to ensure regional coverage of the area north of the
Middle keys from the western end of Marathon to
the eastern end of long key (Fig. 1). We assessed
lobster population structure (i.e., abundance and size
structure) at each seagrass site once, 3 weeks after
deploying 12 artificial shelters at each site using the
same methods as above. Captured juveniles <40 mm
C l provided a relative indication of successful
settlement and survival over the past c. 8 months.
That is, juveniles up to 40 mm C l (approximately
8 months post-settlement) typically do not wander
far from their settling location, probably less than
100 m (Butler & herrnkind 1997).

Data on lobster recruitment in seagrass habitat
were compared with similar data obtained from 18

hard-bottom sites (6 sites in 1996,12 sites in 1998)
studied in the same season (June-July) and same
region. As at the seagrass sites, artificial shelters were
added to the hard-bottom sites and lobster population
structure determined approximately 3 weeks later.
The number of shelters used per hard-bottom site
varied slightly, therefore lobster abundance was
scaled per shelter (i.e., number of lobsters/shelter).
For logistical reasons, the data for the regional
comparison of lobster recruitment in seagrass and
hard-bottom were not collected at the same time;
seagrass data were collected in 1997, whereas hard-
bottom data were collected in 1996 and 1998. We
chose to bracket the seagrass data collection year to
minimise the effect of recruitment variability on the
intra-year comparison. For this reason and because
macroalgae-covered hard-bottom is considered the
preferred nursery habitat for P. argus, we analysed
these data using one-sample t tests (Zar 1999) to
determine whether the number of lobsters/structure
or the C l of lobsters collected on seagrass sites
differed from expected values obtained from the
hard-bottom sites (a = 0.05).

RESULTS

small-scale mark-recapture
study of recruitment

of the 162 microwire-tagged eBJ lobsters released
in cages in both hard-bottom and seagrass habitats
(total released = 324), 28 were recaptured from
the hard-bottom cages compared with 14 in the
seagrass cages; no unmarked lobsters or carcasses
were recovered. The mean number of surviving eBJ
lobsters within hard-bottom habitat (1.6 ± 1.4 SD)
was double that within seagrass (0.78 ± 0.94 SD);
but the 2-way model i a N o V a had low power (1
- β < 0.40) to detect differences of this magnitude.
There was no significant effect of lobster density or
any of the interactions on eBJ survival (Table 1 ; Fig.
2a). owing to logistical constraints, not all lobsters
recovered could be weighed and measured. a s a
result, insufficient numbers of lobster were recovered
from the treatments for which weight and length
were recorded to permit a reliable statistical analysis.
however, lobsters seeded into hard-bottom habitat
at either low or high density gained more weight
than those in seagrass habitat (Fig. 2B). Changes
in length were not as great, probably because of the
short duration of the study and the incremental nature
of arthropod growth through moulting.



332 New Zealand Journal of Marine and Freshwater Research, 2009, Vol. 43

3.0

•o

2.5 -

2-0 -

1.5 -

1.0 -

0.5 -

0.0

I Hard-bottom
Seagrass

Low High Low High

Density treatment

m

gh
t 

in
cr

ea
i

V
et

 w
ei

¿uu -

180 -

160 -

140 -

120 -

100 -

80 -

60 -

40 -

20 -

0 -

B
173%

•

•1••-W—
83%

Hard-bottom Seagrass

Habitat type

Fig. 2 Comparison of A, survival (mean number of post-
larval lobsters recovered, ± SD) and B, growth (wet weight
increase) of first- and second-stage early benthic juvenile
lobsters caged in hard-bottom and seagrass habitats. (error
bars not included in B because of insufficient replication.)

table 1 Results of 2-way model a N o V a examining
the effects of habitat type and postlarval lobster density
on lobster survival/recovery.

Source d.f. SS

habitat 1
Density 1
habitat × Density 1
error 32
Corrected total 35

5.44 3.909 0.057
2.78 1.990 0.168
0.11 0.080 0.778

44.67
53.00

large-scale mark-recapture
study of recruitment
only 1 of 668 tagged lobsters was recovered
from the hard-bottom sites, compared with 4 of
667 recovered from seagrass sites. This extremely
low recapture success (<1%), reflecting the high
mortality experienced by recently settled, non-
migratory juveniles, precluded any formal mark-
recapture analysis or reliable comparison of survival
between the habitats. however, comparing the mean
number of similar-sized, tagged and untagged
juvenile lobsters captured with the number of tagged
numbers released at the sites provided an estimate
of natural settlement of 2.2 postlarvae/m2 settling
per month. This estimate is based on the assumption
that lobsters settling naturally on the sites survive
and grow at rates similar to tagged lobsters (Sharp
et al. 2000).

Field surveys of regional recruitment
No lobsters were found within artificial shelters at
nine of the 16 seagrass sites that we sampled 3 weeks
after deploying the structures. Moreover, juvenile
lobsters were significantly less abundant (t = 5.50,
d.f. = 15, P < 0.0005) and smaller (t = 3.63, d.f. = 6,
P < 0.012) at seagrass than at hard-bottom sites (Fig.
3). More than 90% of lobsters collected in seagrass
habitat were <40 mm C l (Fig. 4), whereas those
collected at hard-bottom sites represented a broader
range of sizes (Fig. 4).

d I s c u s s I o n

Seagrass appeared to be an inferior settlement habitat
for P. argus in Florida compared with macroalgal-
dominated hard-bottom. The caging study showed
that survival of eBJ lobsters was probably greater
in hard-bottom than in seagrass, as it may have been
for growth. however, this study demonstrated that
mortality was extremely high for lobsters in the
initial months following settlement regardless of
habitat type, and the poor recovery of eBJ lobsters
diminished the power of statistical tests. The regional
surveys of recruitment also revealed that lobsters
were larger and more abundant in hard-bottom than
those found in seagrass habitat, and were distributed
across a broader range of size classes. The capacity
for hard-bottom to support more and larger lobsters
suggests that it remains a superior habitat after
lobsters grow from the asocial, vegetation-dwelling
stage to the larger social crevice-dwelling stage.
These results support the conclusion that macroalgae-
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Fig. 3 Comparison of regional recruitment of juvenile
lobsters captured in June-July from artificial structures
placed in seagrass (1997) and hard-bottom habitat (1996
and 1998). A, number of lobsters (mean + 1 SD) captured
per artificial structure, B, size (carapace length; mean +SD)
of lobsters captured in each habitat.

covered hard-bottom is superior to seagrass as
a nursery habitat for P. argus. Yet, settlement of
lobsters in seagrass probably supplements that in
hard-bottom habitat and may be especially important
in areas where hard-bottom is unavailable or of
poor quality for lobster settlement (i.e., low red
macroalgal cover).

Regardless of the methods used to compare
juvenile lobster mortality among habitats (e.g.,
caging, mark-recapture, tethering), previous studies
have revealed the same result, that survival of benthic
juvenile lobsters is exceedingly rare (reviewed
in Butler et al. 2006). intense predation on early
benthic stages of many fish and invertebrates is
commonly viewed as a bottleneck to recruitment
(Menge & Sutherland 1987; Moksnes et al. 1998;
heck et al. 2001 ; l ee et al. 2006), which can obscure
the potential impact of episodic larval supply by

10-20 21-30 31-40 41-50 51-60 61-70 71-81

Size class (mm CL)

Fig. 4 Size (carapace length, Cl ) frequency distribution
of lobsters captured within seagrass (n = 19) and hard-
bottom habitats (n = 107) during the surveys of regional
recruitment.

rapidly eliminating additional individuals (Wahle
& Steneck 1991; eggleston & armstrong 1995; Pile
et al. 1996; Butler & herrnkind 1997; heck et al.
2001). Density-dependent predation can act rapidly
in decapod crustaceans, typically within 2-14 days
(eggleston & armstrong 1995; heck et al. 2001).
Thus, the duration of the caging experiment (20-
30 days), afforded sufficient time for predators to
eliminate the influence of the high-density treatment
on recruitment.

Despite high mortality, eBJ lobsters seeded into
macroalgae within cages placed in hard-bottom
habitat appeared to have a greater chance of survival
compared with those added to cages placed in
seagrass. Past studies have documented not only
the preference of eBJ P. argus for macroalgae, but
also a survival advantage conferred on those settling
in macroalgae (herrnkind & Butler 1986; Butler
et al. 1997; acosta & Butler 1999). although the
poor recovery of tagged lobsters in the large-scale
mark-recapture study prevented reliable estimation
of natural mortality in seagrass and hard-bottom
habitats, the observed magnitude of eBJ loss is not
unprecedented. Previous mark-recapture studies
of microwire tagged eBJ P. argus in the Florida
keys produced estimates of natural mortality from
settlement to 3-4 months post-settlement at 94-98%
(Butler et al. 1997; Sharp et al. 2000). Mortality of the
subsequent crevice-dwelling postalgal stage may be
as high as 20% per month based on mark-recapture
studies (Forcucci et al. 1994). Daily estimates of
mortality from tethering studies of juvenile lobsters
range from 20 to 30% in hard-bottom and 80 to
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100% in unvegetated open substratum (Smith &
herrnkind 1992; Childress & herrnkind 1994; Mintz
et al. 1994). The poor natural survival of young
lobsters, especially in seagrass, is of concern for
stock-enhancement efforts, which have been and
continue to be explored given the high market value
of this species.

Predation has long been assumed to be the primary
source of the rapid post-settlement mortality of eB J
lobsters; however, disease may also play a role in
this species. a lethal virus (PaV1) infects juvenile
P. argus in the Florida keys and elsewhere in the
Caribbean (Shields & Behringer 2004; huchin-Mian
et al. 2008) with a mean prevalence among eBJ
lobsters in Florida of 16% and local hot spots of
prevalence exceeding 35% (Shields & Behringer
2004). among larger juveniles, the prevalence of
PaV1 diminishes and is unrelated to population
density (Butler et al. 2008), so mortality owing to
this pathogen centres on the asocial eBJs where
its relationship to population density—thus its role
as a source of density-dependent mortality—is
unknown.

in addition to survival, the growth of juvenile P.
argus may also be compromised in seagrass habitat.
although too few to provide conclusive results, the
tagged lobsters that survived and were recaptured in
hard-bottom habitat gained more than twice the weight
of those we recovered in seagrass. it appears that small
prey such as crustaceans, gastropods, and echinoderms
that inhabit bushy macroalgae (e.g., Laurencia spp.)
and upon which eBJ lobsters prey, provide a nearly
limitless food supply for eBJ (Marx & herrnkind
1985; herrnkind et al. 1988). Similarly, food for larger
juveniles dwelling in hard-bottom appears plentiful
because the growth and nutritional condition of larger
crevice-dwelling lobsters are unaffected by lobster
density (Behringer & Butler 2006a), and lobsters have
little measurable impact on inf aunal prey abundance
(Nizinski 2007). Stable-isotope analysis of juvenile
lobster tissue relative to potential sources of energy
in Florida Bay also indicates an association between
lobsters and macroalgae, not seagrass (Behringer &
Butler 2006b).

Seagrass also did not appear to support the full
size-range of juvenile lobsters nor did it provide
shelter to lobsters >40 mm Cl . only one lobster
>40 mm C l was captured within seagrass habitat
during our study. lobsters that settle within seagrass
probably relocate to adjacent crevice-bearing habitats
(e.g., hard-bottom areas, mangrove prop roots, rubble
zones, coral reefs, edges of seagrass "blow-outs")
once they grow large and become social. Dispersal of

small, solitary juveniles among habitats is hazardous,
but once in adjacent shelter-rich habitats, the risk of
predation is ameliorated not only by shelter, but also
by the presence of conspecifics that provide odour
cues for locating shelter (Childress & herrnkind
1997, 2001; Ratchford & eggelston 1998, 2000;
Butler et al. 1999) and enhance survival through
group defense (Butler et al. 1999; Dolan & Butler
2006). however, the degree to which juvenile
lobsters disperse from seagrass relative to other
habitats is unknown.

Combined, these studies provide evidence of the
importance of macroalgae-covered hard-bottom
habitat as essential nursery habitat for lobsters in
Florida. however, our results also show that seagrass
habitat is used by some P. argus (<40 mm Cl) , and
thus, can augment hard-bottom habitat when the
latter is unavailable. Juvenile P. argus have been
found in seagrass meadows, mangrove prop roots,
in artificial structures, and even among the spines
of sea urchins (Davis 1971; herrnkind & Butler
1986; holmquist et al. 1989; acosta & Butler 1997),
but these habitats are not their preferred settlement
habitat. The estimate of natural settlement from
this study (2.2 postlarvae/m2) is comparable to
previous counts of postlarvae settling into clumps
of macroalgae deployed in arrays on the seafloor
(herrnkind & Butler 1994), but much higher than
estimates of settlement derived from counts of
postlarvae recovered from macroalgae collected
directly from the seafloor (Marx & Herrnkind 1985).
Laboratory experiments confirm the attraction of P.
argus pueruli and eBJs to red macroalgae (herrnkind
& Butler 1986; herrnkind et al. 1988; Butler &
herrnkind 1991 ; Butler et al. 1997; goldstein 2006),
whereas this study and others indicate that survival
and perhaps growth of juvenile P. argus is higher in
hard-bottom habitat.

however, the abundance of seagrass meadows with
the absence of macroalgae dominated hard-bottom
habitat in many areas of the Caribbean, suggests
that seagrass nurtures considerable numbers of
new recruits in these areas where it is an important
nursery habitat for P. argus (acosta & Butler 1997;
acosta 1999) and other species that preferentially
recruit into macroalgae such as the Nassau grouper,
Epinephelus striatus (Dahlgren & eggleston 2001).
a t these locations, seagrass may be critical in
sustaining juvenile populations and recruitment to
adult lobster fisheries. Yet, wherever shallow hard-
bottom habitat is reasonably abundant and replete
with bushy red macroalgae and crevice-bearing
shelters, its contribution to the local recruitment of
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P. argus may be substantially higher than seagrass
habitat.
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