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Editorial

Mesoscopic methods in engineering and science

Matter, conceptually classified into fluids and solids, can be completely described by the microscopic physics of its
constituent atoms or molecules. However, for most engineering applications a macroscopic or continuum description has
usually been sufficient, because of the large disparity between the spatial and temporal scales relevant to these applications
and the scales of the underlying molecular dynamics. In this case, the microscopic physics merely determines material
properties such as the viscosity of a fluid or the elastic constants of a solid. These material properties cannot be derived
within the macroscopic framework, but the qualitative nature of the macroscopic dynamics is usually insensitive to the
details of the underlying microscopic interactions.

The traditional picture of the role of microscopic and macroscopic physics is now being challenged as new multi-scale
and multi-physics problems begin to emerge. For example, in nano-scale systems, the assumption of scale separation
breaks down; macroscopic theory is therefore inadequate, yet microscopic theory may be impractical because it requires
computational capabilities far beyond our present reach. This new class of problems poses unprecedented challenges to
mathematical modeling as well as numerical simulation and requires new and non-traditional analysis and modeling
paradigms. Methods based on mesoscopic theories, which connect the microscopic and macroscopic descriptions of the
dynamics, provide a promising approach. They can lead to useful models, possibly requiring empirical inputs to determine
some of themodel parameters, which are sub-macroscopic, yet indispensable to the relevant physical phenomena. The area
of complex fluids focuses on materials such as suspensions, emulsions and gels, where the internal structure is relevant to
themacroscopic dynamics. An important challenge will be to construct meaningful mesoscopic models by extracting all the
macroscopically relevant information from the microscopic dynamics.

There already exist a few mesoscopic methods such as the lattice gas cellular automata (LGCA), the lattice Boltzmann
equation (LBE), discrete velocity models (DVM) of the Boltzmann equation, gas-kinetic schemes (GKS), smoothed particle
hydrodynamics (SPH) and dissipative particle dynamics (DPD). Although these methods are sometimes designed for
macroscopic hydrodynamics, they are not based upon the Navier–Stokes equations; instead, they are closely related to
kinetic theory and the Boltzmann equation. These methods are promising candidates to effectively connect microscopic
and macroscopic scales and thereby substantially extend the capabilities of numerical simulations. For this reason,
they are the focus of the International Conferences on Mesoscopic Methods in Engineering and Science (ICMMES,
http://www.icmmes.org).

The Sixth ICMMES Conference was held in the South China University of Technology (SCUT), Guangzhou City, China, July
13–17, 2009. This special issue of the Computers and Mathematics with Applications devoted to this conference includes
twenty-eight selected and peer-reviewed papers on a wide range of topics related to the focused areas of ICMMES:
Development of high-order LB algorithm [1]; theory and numerical analysis of LB models for advection–diffusion system
[2,3] and axial-symmetric flows [4]; study of the connection between the LBE and the artificial compressibility method [5];
development of the LB scheme with non-uniform grids for large-eddy simulation (LES) of high-Reynolds-number flow in
three dimensions [6]; development of LB algorithmswith the immersed boundarymethod (IBM) for particulate flows [7] and
fluid–structure interactionproblems [8];modeling and simulation ofmicro-flows [9,10], complex flows of fluidwith realistic
equation of state [11], free-surface flows [12], droplet collisions [13], cavitation [14], dendrite growth in convective flows
[15], gas–solid two phase flows [16], and flow through porous media [17,18]; implementation of LB algorithms on general
purpose graphic processing units (GPGPUs) [12,19,28]; gas-kinetic scheme (GKS) for liquid–gas mixture [20], compressible
flows with various Mach and Knudsen numbers [21], and shallow water equation [22]; as well as other LB applications of
computational fluid dynamics [23–27]. The usefulness of the LBE method is attested by the wide range of applications.
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