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Introduction

Dissolved organic matter (DOM) is a complex assemblage
of organic molecules from natural waters, and information on
its chemical composition is crucial if we are to understand its
source, reactivity, and global cycling. An improved under-
standing of its composition is also essential to understand
how pollutants react with DOM and possibly become less
bioavailable due to this interaction (Traina et al. 1996; Akka-
nen and Kukkonen 2003; Gourlay et al. 2005). Dissolved
organic carbon (DOC) is a significant component of the global
carbon cycle, accounting for a pool of active carbon (680 ×
1015 g C) that is approximately equal to that of atmospheric
carbon dioxide (Hedges 1992; Eglinton and Repeta 2003).
DOM has defied complete molecular level characterization by
most analytical techniques, primarily because it exists as a

highly functionalized, complicated polyelectrolyte mixture. To
date, <10% of DOM can be characterized as amino acids, sug-
ars, and other chemicals using traditional chromatographic
analyses (Perdue and Ritchie 2003). Fourier transform ion
cyclotron resonance mass spectrometry (FTICR-MS) has
recently changed this analytical shortcoming by providing the
first molecular-level details for DOM (Kujawinski et al. 2002,
2004; Llewelyn et al. 2002; Stenson et al. 2002, 2003; Kim et al.
2003a, 2003b, 2004, 2006; Kramer et al. 2004; Koch et al. 2005;
Hockaday et al. 2006; Sleighter and Hatcher 2007). The ultra-
high resolving power (>400,000) and mass accuracy (<1 ppm)
of FTICR-MS provides the ability to assign unique molecular
formulas to thousands of components in a single DOM sample.

Accurately calibrating the FTICR mass spectrum is key to
successful molecular formula assignments (Muddiman and
Oberg 2005; Kujawinski and Behn 2006). One must meticu-
lously calibrate the spectrum both externally and internally to
achieve the mass accuracy of 1 ppm that is generally needed
for unique formula assignments at masses <500 Da. Typi-
cally, external calibration is achieved by use of a synthetic
standard or a manufacturer’s specific tuning mix, with accu-
racies of 2–5 ppm. Internal calibration can be applied by use
of numerous methods that basically add an internal cali-
brant. Many studies of DOM using the instrumentation at
the National High Magnetic Field Laboratory in Tallahassee,
FL, have employed a dual-spray injection technique (Hannis
and Muddiman 2000) to simultaneously coinject calibrants
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into the source (Kim et al. 2003a, 2004, 2006; Hockaday et al.
2006). The ions from the calibrants are accumulated with ana-
lyte ions in the hexapole, and then both calibrant and analyte
ions are transferred to the ICR cell. The peaks in the resulting
mass spectrum can be calibrated by reference to the exact m/z
of the calibrant ions. This approach is successful if no overlap
exists between calibrant and analyte peaks; however, the com-
plicated nature of DOM spectra places constraints on this
requirement. To overcome these complications, the sample is
analyzed separately without calibrants, and the resulting spec-
trum is then internally calibrated by use of the exact m/z val-
ues of the major DOM peaks in the spectra previously
obtained in the presence of calibrants. The major disadvan-
tage of this approach is that each sample must be analyzed at
least twice, doubling instrument time. Furthermore, the DOM
signals can easily be overwhelmed by the added standards,
especially for samples with low DOC concentrations.

Internal calibration to <1 ppm is also possible without this
dual-spray procedure. Essentially, the protocol described above
is used, but the sample is mixed with the internal standard
before ionization and usually analyzed again separately without
the standard (Kujawinski et al. 2002, 2004; Llewelyn et al. 2002;
Stenson et al. 2003; Koch et al. 2005). However, this method
also requires twice the instrument time for data acquisition.

In this study, we describe a new internal calibration
approach for DOM that takes advantage of the fatty acids nat-
urally present in the sample. Although the petroleum commu-
nity has previously calibrated spectra with a homologous series
of compounds known to be present (Schaub et al. 2005; Fu et
al. 2006; Klein et al. 2006a, 2006b), this is the first time, to our
knowledge, that such calibration has been accomplished with
DOM samples, which are compositionally quite different from
petroleum. Fatty acids, mainly those with carbon chain lengths
of 14 to 32 (C14 to C32), are ubiquitous components of DOM
(Slowey et al. 1962; Mannino and Harvey 1999; Minor et al.
2001; Kaiser et al. 2003; Frazier et al. 2005; McCallister et al.
2006). Saturated fatty acids from C14 to C32 are typically derived
from terrestrial vegetation, whereas mono- and polyunsatu-
rated fatty acids, usually with carbon numbers <22, are charac-
teristic of plankton (Mannino and Harvey 1999). McCallister
et al. (2006) determined concentrations of fatty acids in DOM
from the York River estuary, Virginia, to be in the range of 0.4
to 2.9 µg fatty acid/mg organic carbon.

Fatty acids are ideal for use as internal calibrants, mainly
because they have high ionization efficiencies in negative ion-
ization mode owing to their carboxyl group (Henriksen et al.
2005). In addition, because saturated fatty acids are hydrogen
rich and have a high mass defect (distance displaced from the
exact nominal mass), they tend to separate well from other
ions typically detected in DOM mass spectra. Saturated fatty
acids with mass defects in the range of 0.2 to 0.4 reflect mid-
length fatty acids (C14–C22), and longer-chain fatty acids
(C23–C40) appear at mass defects of 0.4 to 0.6. Accordingly,
they can be readily recognized in the spectra. Furthermore, by

use of Kendrick mass defect (KMD) analysis, we can easily
identify the homologous series of saturated fatty acids in our
samples. KMD analysis categorizes m/z values that differ only
by the exact mass of a certain functional group, such as a CH2

group (Stenson et al. 2003; Kujawinski and Behn 2006;
Sleighter and Hatcher 2007). Saturated fatty acids have a
generic formula of CnH2nCOOH, which give a KMD value of
0.9480. These criteria are used to confirm the presence of
saturated fatty acids in DOM. Internal calibration of ultrahigh-
resolution mass spectra can be performed accurately and with
ease by use of the fatty acids that are unambiguously present
in these complex DOM samples.

Materials and procedures
Sample preparation—To illustrate the use of fatty acids as

natural calibrants, we chose 2 different DOM samples. The
first was from the Great Dismal Swamp in Suffolk, Virginia.
This site represents the swampy, highly terrestrial DOC head-
waters of the Elizabeth River system. The water has an ambi-
ent pH of about 3.3–4.5 and DOC concentrations in the range
of 60–140 ppm C, depending on the time of sampling and
recent precipitation (Johannesson et al. 2004). We filtered
Dismal Swamp water (250 mL) through a 0.1-µm polycap car-
tridge filter (Whatman) and acidified it to pH 2. All of the fil-
trate was extracted with a 47-mm solid phase C18 extraction
disk (3M, Empore), and adsorbed organic matter was eluted
with 20 mL LC-MS–grade methanol (Fisher Scientific). The
second sample, collected from on board the R/V Hugh R.
Sharp, was taken from surface water of the Chesapeake Bay
mouth using Niskin bottles on a CTD rosette. With a pH of
about 8.0, a salinity of 25, and DOC concentrations in the
range of 1–3 ppm C, this water is typical coastal ocean water.
We filtered about 2 L Chesapeake Bay water through doubly
stacked 47-mm precombusted 0.7 µm glass fiber filters (What-
man). All of the filtrate was then C18 extracted using the same
procedure described above.

To confirm that the mass spectral peaks were indeed fatty
acids, each DOM sample was spiked with a fatty acid standard
(Sigma-Aldrich) to a final concentration of 0.001 mg fatty
acid/mL DOM solution. The fatty acid standard comprised 8
saturated fatty acids in the range of C15–C30 (Table 1). An
approximate concentration of 0.02 mg/mL of each fatty acid
was prepared in 50:50 (vol/vol) methanol:acetonitrile with
0.1% ammonium hydroxide.

To show that this fatty acid standard could be used to
calibrate other mixtures of compounds, we prepared a
simple, easily ionized, and readily available peptide mix-
ture (Sigma-Aldrich) to which our fatty acid standard was
added. The peptide mixture consisted of numerous 
peptides (Table 1), each at a concentration of approxi-
mately 0.15 mg/mL in 50:50 (vol/vol) methanol:water. For
mass spectral analysis, the fatty acid standard and the pep-
tide mixture were diluted to final concentrations of 0.005
and 0.015 mg/mL, respectively.
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Instrumentation—Before analyzing the C18 extracted DOM
samples, a blank of 50:50 (vol/vol) methanol:water with 0.1%
ammonium hydroxide was analyzed on the FTICR-MS to ensure
that no fatty acids or peptides from previous analyses would
contaminate the sample spectra. This blank analysis confirmed
that both standards were completely rinsed from the ion source
before analyzing the DOM samples. The C18 extracted samples
were diluted with LC-MS–grade water (Fisher Scientific) to a final
sample composition of 50:50 (vol/vol) methanol:water. To
increase the ionization efficiency, ammonium hydroxide was
added to all samples immediately before MS analysis, bringing
the pH to about 8. The samples were continuously infused into
the Apollo II ESI ion source of a Bruker Daltonics 12 Tesla Apex
Qe FTICR-MS, housed at the College of Sciences Major Instru-
mentation Cluster (COSMIC) at Old Dominion University. Sam-
ples were introduced by a syringe pump operating at a rate of
120 µL/h. All samples were analyzed in negative ion mode, and
electrospray voltages were optimized for each sample. To acquire
the optimal resolving power, the ion accumulation time and the
number of coadded transients, collected with a 4 MWord time
domain (the FID data set acquisition size), were adjusted for each
sample. Ion accumulation times were in the range of 0.1–2.0 s,
and the number of scans was 25–100. Each summed FID signal
was zero-filled once and Sine-Bell apodized before fast Fourier
transformation and magnitude calculation using the Bruker Dal-
tonics Data Analysis software. The instrument was initially exter-
nally calibrated with PEG (polyethylene glycol).

Assessment
Fatty acid standard and peptide mixture—The fatty acid

standard was first analyzed separately to optimize instru-

mental conditions (1.0-s ion accumulation and 50 coadded
transients). As Fig. 1A shows, each fatty acid is numbered
1–8, and its corresponding m/z value is shown in the inset.
The spectrum was internally calibrated using the fatty acids’
known masses as the calibrant list. The calibration errors,
measured as deviation from a quadratic fit of the fatty acid
masses, are all <0.3 ppm. Once this fatty acid standard was
optimized alone, we combined it with the peptide mixture to
test the fatty acids’ ability to accurately calibrate a mixture
with a more diverse mixture of components. The negative
ion mass spectrum for the peptide mixture to which the fatty
acid standard was added is shown in Figure 1B, and the pep-
tides are labeled a–e with their corresponding m/z values
shown in the inset. The peak abundance relationships of
fatty acids in this mixture are greatly changed with the addi-
tion of peptides, which is likely due to the charge competi-
tion between peptides and fatty acids during the electrospray
process (Cech and Enke 2000, 2001). The exact reasons for
this phenomenon need to be further explored, and ongoing
research within our group is currently aimed at determining
how ionization efficiencies affect the observed relative abun-
dances of various DOM moieties in the mass spectra. Molec-
ular formula assignments for the peptides were made by
inserting their m/z values into a molecular formula calcula-
tor (Molecular Formula Calc v.1.0, ©NHMFL, 1998), which
generated empirical formula matches using carbon, hydro-
gen, oxygen, nitrogen, sulfur, and phosphorus. Formula
errors were determined by comparing the m/z value to the
calculated exact mass of the assigned formula. Table 2 shows
the mass accuracy from the internal calibration and errors in
assigning molecular formula matches for the peptides. The

Table 1. Composition of the fatty acid and peptide standards.

Final  
Exact MW concentration,

Formula negative ion mg/mL

Fatty acid

n-Pentadecanoic acid C15H30O2 241.216755 4.96 × 10–3

n-Hexadecanoic acid C16H32O2 255.232405 4.95 × 10–3

n-Nonadecanoic acid C19H38O2 297.279355 4.57 × 10–3

n-Eicosanoic acid C20H40O2 311.295005 4.38 × 10–3

n-Docosanoic acid C22H44O2 339.326306 4.57 × 10–3

n-Tetracosanoic acid C24H48O2 367.357606 4.92 × 10–3

n-Hexacosanoic acid C26H52O2 395.388906 4.54 × 10–3

n-Triacontanoic acid C30H60O2 451.451506 4.79 × 10–3

Amino acid sequence

Glu-Asn-Gly C11H16N4O6 299.099708 1.48 × 10–2

Val-Pro-Leu C16H29N3O4 326.208530 1.53 × 10–2

Val-Thr-Cys-Gly C14H26N4O6S 377.150029 1.41 × 10–2

Met-Leu-Phe C20H31N3O4S 408.196251 1.87 × 10–2

Lys-Val-Ile-Leu-Phe C32H54N6O6 617.403207 1.49 × 10–2

The exact molecular weight of the negative ion is the exact molecular mass – 1 H. The final concentrations are those that were introduced into the mass
spectrometer.
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root mean square deviation (RMSD) was calculated to mea-
sure the differences between the observed m/z values and
the exact masses calculated from the assigned molecular for-
mulas, by the formula shown below:

RMSD = [(1/n) Σ(x1,i – x2,i)
2]1/2

where n is the number of values in the dataset (5 in this
case), x1 values are the observed m/z values, and x2 are the
calculated exact masses. The RMSD for the peptide mixture
calibrated by the fatty acid standard was 2.5 × 10–4. Clearly,
this peptide mixture was well calibrated by using the fatty
acids, as indicated by the high mass accuracy of the internal
calibration, the low errors for the molecular formula
matches, and the low RMSD.

DOM samples—The Dismal Swamp DOM and the Chesa-
peake Bay DOM mass spectra are shown in Fig. 2A and B,
respectively. It is apparent from the insets of Fig. 2 that these
mass spectra contain thousands of peaks, with up to 15 peaks
per nominal mass over the entire m/z range of 200–650. Other
investigators have observed the same degree of complexity for
DOM (Kujawinski et al. 2002; Kim et al. 2003a; Stenson et al.
2003). The ultrahigh resolving power (>400,000 broadband),
defined as the exact m/z value divided by the full width at half
maximum (FWHM) of that peak, is absolutely essential to
resolve each peak in samples such as DOM. We determined
that the peaks in the spectra were singly charged, which is
consistent with previous studies (Kujawinski et al. 2002; Sten-
son et al. 2002; Kim et al. 2003a). The large peak at m/z
368.97651 is an artifact from the C18 extraction and is present
in all of our C18 extracted samples.

As mentioned above, saturated fatty acids have a higher
mass defect than other DOM compounds, which simplifies
their identification (insets of Fig. 2). To confirm that these
high mass defect peaks are in fact fatty acids, each DOM sam-
ple was spiked with the fatty acid standard (0.001 mg fatty
acid/mL DOM solution) and analyzed using the same condi-
tions as above. The signal enhancement for the previously
assigned fatty acid peaks in the spiked samples, as shown in
Fig. 3, verified the natural presence of the fatty acids. The clus-
ter at lower mass defect stood out over the fatty acid peak
when only the DOM sample was analyzed, but when spiked
with the fatty acid standard, the high mass defect fatty
acid peak dominated over the entire nominal mass. Although
only 2 nominal mass regions of the Chesapeake Bay DOM

Fig. 1. (A) Negative ion mass spectrum of the fatty acid standard.
The exact m/z values of the fatty acids (peaks 1–8) are listed in the
inset. (B) Negative ion mass spectrum of the fatty acid standard mixed
with the peptide standard. The exact m/z values of the peptides
(peaks a–e) are listed in the inset. Each spectrum had an optimal
resolving power with an ion accumulation time of 1.0 s and 50 coad-
ded transients.

Table 2. Mass accuracy of the fatty acids used for internal calibration of the mixture (fatty acids standard with the peptide mixture) and
error values for the molecular formula matches to each peptide.

Mass  Molecular  Error from  
accuracy, formula molecular formula

Fatty acid Formula ppm calculator calculator, ppm

n-Pentadecanoic acid C15H30O2 –0.028 C11H15N4O6 0.44

n-Hexadecanoic acid C16H32O2 0.073 C16H28N3O4 0.092

n-Nonadecanoic acid C19H38O2 –0.046 C14H25N4O6S 0.24

n-Eicosanoic acid C20H40O2 –0.15 C20H30N3O4S –0.71

n-Docosanoic acid C22H44O2 0.13 C32H53N6O6 0.75

n-Tetracosanoic acid C24H48O2 0.16

n-Hexacosanoic acid C26H52O2 –0.15

The root mean square deviation (RMSD) calculated for the peptide mixture was 2.5 × 10–4 (see text for details of this calculation).
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are shown as examples in Fig. 3, the enhancement for each
fatty acid in both DOM samples is analogous. It should be
noted that the peaks we labeled as naturally present fatty
acids may not be n-fatty acids (straight chain). Because mass
spectrometry does not distinguish between structural iso-
mers, each peak likely contains numerous isomers with vary-
ing degrees of branching.

The DOM samples examined here showed fatty acid distri-
butions from C14 to C26, as determined by their KMD for the
homologous series of saturated fatty acids (KMD 0.9480). It
should be noted, however, that smaller fatty acids are likely
naturally present within these samples, but the FTICR-MS
typically discriminates against ions with m/z values <225
(Sleighter and Hatcher 2007). The mass spectra were internally
calibrated with the naturally present fatty acids, and then all
the m/z values with a signal-to-noise ratio >5 were inserted
into the molecular formula calculator. Below m/z 400, only 1
formula fell within the 1.0-ppm error limit, providing an
unequivocal assignment. Above m/z 400, where multiple

formulas exist for 1 m/z value, the correct formula was
assigned by use of KMD analysis and the formula extension
approach described by Kujawinski and Behn (2006). This pro-
cedure leads to approximately a thousand individual formulas
for peaks in each sample spectrum. The mass accuracies from
the internal calibration for the fatty acids were <0.1 ppm
(Table 3). This value is slightly lower than that of the fatty acid
standard, but we do not believe that the difference is signifi-
cant since calibration values vary from sample to sample.
Using this internal standard approach, the vast majority
(approximately 80%) of formula assignments for peaks in
DOM are within 0.4 ppm, and <5% of the formula assign-
ments have an error >0.8 ppm (Fig. 4). These low error values
allow us to confidently state that the range of fatty acids used
was adequate for our formula assignments. Although the
dynamic range of the calibrants (225–400 m/z) covered only
about 50% of the range of DOM components (200–650 m/z),
the fatty acids do accurately calibrate the DOM peaks >400
m/z. Fig. 5 shows the calculated average formula errors for
each m/z range, subdivided for every 25 m/z units. Over the
range of the calibration, from m/z 225 to 400, the average for-
mula errors are <0.1 ppm. The formula errors began to slightly
increase once the analyte peak was outside the calibration
range. These errors increased to 0.5 ppm when the m/z
exceeded 550 and then reached a maximum average error of
approximately 0.6 ppm above that. An equivalent plot was
also constructed by calculating the RMSD for each m/z range,
rather than average formula error. As with the average formula

Fig. 2. (A) Negative ion mass spectrum of the C18 extracted Dismal
Swamp water. (B) Negative ion mass spectrum of the C18 extracted
Chesapeake Bay water. Each spectrum was optimized for the number
of peaks and highest resolving power using an ion accumulation time
of 1.0 s and 100 coadded transients. The insets show an expanded
region of 297.0–297.4. In the inset, the peak with the highest m/z is
the C19 fatty acid, which is well separated from the other peaks at the
297 nominal mass.

Fig. 3. Negative ion mass spectra of the C18 extracted Chesapeake Bay
water spiked with the fatty acid standard. The top spectrum in each is the
DOM sample alone and the bottom is the DOM spiked with the fatty acid
standard. The peak with the highest mass defect in each set is the fatty
acid, whose enhancement is apparent when spiked with the standard.
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error plot, the RMSD was nearly constant up to m/z 400, and
then the RMSD values increased up to m/z 600. The range of
RMSD values was 2.5 × 10–5 to 7.4 × 10–5 for m/z 225 to 400.
The RMSD increases to 3.0 × 10–4 up to m/z 550 and reaches
3.9 × 10–4 above that. This information, along with the fact
that <20% of the total formulas have an error >0.5 ppm, veri-
fies that this range of fatty acids is sufficient for the internal
calibration of the entire m/z range of the DOM mass spectra.
Of course, the presence of fatty acids with higher masses in
DOM samples would extend the range of accuracy beyond
that described here.

Comments and recommendations
The ultrahigh resolving power and mass accuracy of

FTICR-MS has the ability to extensively characterize DOM
samples, but an accurate calibrating procedure is required to
successfully obtain molecular formulas from the complex
mass spectra usually obtained for these substances. The com-
positional differences elucidated by FTICR-MS of the 2 very
different DOM samples discussed in this study will be
reported elsewhere (Sleighter and Hatcher, 2008). Our
method demonstrates a new protocol for internal calibration
that uses the easily recognizable fatty acids naturally present
in DOM samples. This procedure achieves accurate, high-
quality mass spectral assignments, reduces instrument time,
and maintains the ultrahigh resolving power that is required

for FTICR-MS analysis of DOM. Although other studies using
a synthetic internal standard, whether mixing with the sample
before ionization or using a dual-spray injection technique,
accomplish the mass accuracy required for data interpretation
and formula assignments, they also call for multiple analyses
for each sample and are therefore much more time consuming.

Table 3. Mass accuracy of the fatty acids used for internal calibration and the error values for the molecular formula matches to those
fatty acids in the C18 extracted Dismal Swamp water and Chesapeake Bay water.

Mass  Molecular  Error  
accuracy, formula from molecular

Fatty acid Formula ppm calculator formula calculator

Dismal Swamp

Tetradecanoic acid C14H28O2 –0.020 C14H27O2 –0.018

Pentadecanoic acid C15H30O2 0.047 C15H29O2 0.066

Hexadecanoic acid C16H32O2 –0.024 C16H31O2 –0.016

Heptadecanoic acid C17H34O2 0.017 C17H33O2 0.022

Octadecanoic acid C18H36O2 –0.036 C18H35O2 –0.049

Nonadecanoic acid C19H38O2 –0.004 C19H37O2 –0.013

Eicosanoic acid C20H40O2 0.019 C20H39O2 0.019

Chesapeake Bay

Hexacosanoic acid C26H52O2 –0.095 C26H51O2 0.086

Tetracosanoic acid C24H48O2 0.099 C24H47O2 0.098

Docosanoic acid C22H44O2 0.044 C22H43O2 0.047

Henicosanoic acid C21H42O2 0.003 C21H41O2 –0.012

Eicosanoic acid C20H40O2 –0.064 C20H39O2 –0.077

Nonadecanoic acid C19H38O2 0.040 C19H37O2 0.054

Octadecanoic acid C18H36O2 –0.011 C18H35O2 –0.014

Heptadecanoic acid C17H34O2 –0.007 C17H33O2 –0.015

Hexadecanoic acid C16H32O2 –0.024 C16H31O2 –0.016

Pentadecanoic acid C15H30O2 0.000 C15H29O2 –0.017

Tetradecanoic acid C14H28O2 0.015 C14H27O2 0.026

Fatty acids in these samples are naturally present and were identified based on their Kendrick mass defect of 0.9480.

Fig. 4. The percentages of molecular formula matches that exist in each
ppm error range for the C18 extracted Dismal Swamp water (black) and the
C18 extracted Chesapeake Bay water (gray). The ppm error ranges are from
the absolute error values determined by the molecular formula calculator.
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Our method eliminates the need for multiple analyses. Also,
because our calibrants are naturally present within the sample
make-up, they eliminate 2 other major problems associated
with a synthetic calibrant: interfering overlap between cali-
brants and analyte, and balancing the relative abundances of
calibrants with that of each analyte. As previously mentioned,
fatty acids are ubiquitous components of many DOM samples,
as well as other natural organic matter (NOM) samples [i.e.,
humic and fulvic acids, particulate organic matter (POM), soil
and sedimentary organic matter (SOM), atmospheric organic
matter (AOM), etc.], and this method can most likely be
applied to their FTICR-MS analyses as well.

The particularly critical aspects of this procedure are that
fatty acids are present in measurable abundance in the DOM
samples and they exist across a wide range of m/z values. Even
when the concentrations of fatty acids are low in the natural
samples, their high ionization efficiency in ESI will allow for
their detection using FTICR-MS. Once the range of fatty acids
present is determined for the sample, the internal calibration
can be performed quickly and accurately without the concern
of the impeding overlaps of calibrants with analyte peaks.

Although here we have focused on the saturated fatty acids
naturally present in DOM, it should be recognized that
numerous unsaturated fatty acids (mono- and polyunsatu-
rated) as well as di-acids, COOH–(CH2)n–COOH, also exist in
DOM samples. Both unsaturated fatty acids and di-acids were
observed in these 2 DOM samples, and these components can
also be used for internal calibration. These compounds, if
they exist in measurable abundance in other samples, could
be used to fill in gaps where saturated fatty acids may not
exist, as well as to increase the dynamic range of the overall
calibration.
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