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Ultrashort electric pulses (ns-ps) are useful in gaining understanding as to how pulsed electric fields act upon biological cells,
but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage
ultrashort pulse generator is required. To deliver 1ns pulses with sufficient electric field but at a relatively low voltage, we used
a glass-encapsulated tungsten wire triple-point electrode (TPE) at the interface among glass, tungsten wire, and water when it is
immersed in water. A high electric field (2 MV/cm) can be created when pulses are applied. However, such a high electric field
was found to cause bubble emission and temperature rise in the water near the electrode. They can be attributed to Joule heating
near the electrode. Adherent cells on a cover slip treated by the combination of these stimuli showed two major effects: (1) cells
in a crater (<100 ym from electrode) were fragmented and the debris was blown away. The principal mechanism for the damage
is presumed to be shear forces due to bubble collapse; and (2) cells in the periphery of the crater were permeabilized, which was
due to the combination of bubble movement and microstreaming as well as pulsed electric fields. These results show that ultrashort
electric fields assisted by microbubbles can cause significant cell response and therefore a triple-point electrode is a useful ablation

tool for applications that require submillimeter precision.

1. Introduction

Electric pulses in the range of several nanoseconds to
picoseconds are an important electric stimulus for studying
ultrafast biological processes initiated by electric fields. As
the pulse is shorter than a cell membrane charging time,
which is typically estimated to be 100 ns or longer, it can be
hypothesized that the pulse penetrates the cell membrane
and affects the cell organelles by circumventing the shielding
from the membrane charging. Intracellular manipulation in
principle is more likely than with longer pulses. Although
this hypothesis has not been rigorously proven, there is
evidence that shorter pulses are indeed more efficient to
recruit calcium from intracellular stores [1]. However, as the
pulse becomes shorter, the threshold to induce biological
effects such as stimulation or electroporation becomes higher,
as predicted by a typical strength duration curve [2]. A series

of works conducted in the 1990s showed that subnanosecond
pulses caused minor or no effects on heart rate and blood
pressure in live animals [3, 4]. In the later work on gas-
trocnemius muscles isolated from frogs, it was shown that
muscle excitation requires a much higher field than those
used in the animal experiments [5]. In the in vitro experi-
ments, subnanosecond pulses were used to study membrane
permeabilization. Still, a large field is needed to cause trypan
blue uptake. For a cell that is rich in voltage-gated channels, a
single subnanosecond pulse can permeabilize the membrane,
presumably through the voltage-gated channels rather than
the lipid bilayer, but the field is still rather high (~200 kV/cm)
[6-8]. When subnanosecond pulses are applied repetitively,
temperature increase contributes to the cell killing in addition
to the pulsed electric field [9] and so the electric field can
be effectively lowered to 20 kV/cm. Temperature was found
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to sensitize the membrane so the permeabilization is more
probable to the electric fields [10].

Generation of high electric fields usually relies on a high
voltage (200 kV) subnanosecond pulse generator [11], which
is generally bulky and not easy to use and therefore limits its
applicability in most biology labs. Recently, the technology
to generate moderate or low voltage (<10kV) subnanosec-
ond pulses has advanced and generators are commercially
available. Such low voltages allow us to generate electric
fields that can be as high as 200kV/cm with two wires in
parallel for small-diameter electrodes and a short electrode
gap distance [8]. It is also possible to use the triple-point
effect to enhance the electric field near the metallic electrode
with a low dielectric constant sleeve. Such an electrode was
reported in [12] as a pulsed electron avalanche knife (PEAK)
for eye surgery. It was later studied as a component in a water
trigatron to initiate water breakdown [13]. This electrode may
allow us to generate a sufficient field with even lower voltage.

When high intensity pulses are delivered to cells with
electrodes, not only are pulsed electric fields applied to
cells, but also side products, such as pressure transient, are
generated near electrodes. This pressure transient can be the
result of electrostriction, in which water dipoles experience
a sudden electric force for aligning with the electric field [14,
15]. A recent experiment showed that a pressure transient can
be produced by nanosecond pulses [16]. In addition to pres-
sure transient, microbubbles are also commonly observed
near the electrodes [17, 18] and have been postulated as
the precursor for water streamer formation as electronic
processes such as water molecular ionization and dissociation
can occur inside [19, 20]. Free radicals can also form and
cause downstream electrochemical effects [21]. Furthermore,
bubble collapse may also induce a water jet that results in
a high speed shock, which further complicates the physical
picture [22, 23]. In general, delivery of high intensity pulses
involves a series of side effects although pulsed electric field
is often perceived as the sole event.

In this paper, we report the use of a triple-point electrode
(TPE) to deliver 1ns pulses as a tool to study in vitro
responses. The main rationale of using TPE is to amplify
the electric field for low-voltage, ns-ps pulses and provide
an easy-to-use approach of studying the biological responses.
The TPE was installed on a microscope on top of a cover slip
preseeded with cells and real-time images were taken while
the pulses were delivered. As a high intensity electric field is
needed for 1ns pulses to act on cells, byproducts, including
pressure waves and microbubbles, are expected to accompany
the electric field. It is likely that the local temperature
near the electrode will increase. We quantified each aspect
through either measurement or computer simulation, aiming
to clarify the role of electric field, bubbles, and temperature.
The impact of these factors on cells was analyzed from bright-
field images and fluorescence images of propidium iodide
(PI) staining. We found that cells were fragmented after
exposure to the combination of all stimuli (electric field,
microbubbles, and temperature increase) due to the pulse
application. The fragmentation was confined to a crater with
a diameter of 100 um. It is a rather severe effect and was
typically not observed in cells after exposure to nanosecond
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pulse electric fields using conventional needle electrodes.
Electric field alone is not sufficient to cause this effect and
mechanical force should be taken into account. A less severe
effect observed was the membrane permeabilization for cells
that were on the crater periphery, where the electric field
is close to the electroporation threshold. These cells can be
useful for further analysis to understand the impact of pulses
on cell recovery and survival.

2. Materials and Methods

2.1. Exposure System. Cell cover slips with precultured Chi-
nese Hamster Ovarian (CHO) cells were placed in a microcu-
vette on a microscope (IX71, Olympus America, Waltham,
MA). The TPE was mounted on a 3D movable stage, so
the electrode could be maneuvered on top of the cover
slip (Figure 1). The electrode was connected to the inner
conductor of a coaxial cable through a lead. Another lead
working as a ground return was connected to the outer
conductor of the coaxial cable. In the process of selecting
electrodes, several different electrodes were explored: (a) a
bare tungsten needle electrode, where this electrode has a tip
diameter of 5 ym and its highest electric field is near its tip; (b)
a tungsten needle electrode (5 ym tip diameter) encapsulated
with epoxy glue; this electrode tip is exposed to air, but the
rest of the body is covered with glue; and (c) a tungsten
wire electrode (50 ym diameter) sealed in a glass tube. This
electrode was fabricated by melting and pulling a glass pipette
with the wire inside. Afterwards, the glass-encapsulated wire
was polished until a smooth glass surface was formed with
the wire exposed. Both b-type and c-type electrodes can
be triple-point electrodes (TPE) once they are immersed in
water, and the electric field can be enhanced near the triple-
point locations. Each of these electrodes was supposed to
produce the largest electric field near its tip and, as a result,
microbubbles can be produced when pulses were applied to
the electrode. For the a-type electrode, besides bubbles that
were produced at the tip, a few bubbles were also generated
on the tungsten rod surface away from the tip, presumably
due to some invisible sharp points. For the b-type electrode,
microbubbles were produced at the tip of the electrode, but
some bubbles were also trapped in some microscale gap
regions which the epoxy glue did not completely cover. For
the c-type electrode, bubbles were emitted only from the
tip and the bubble generation was found only at the tip of
the electrode, which led us to choose it as our experimental
electrode.

A picosecond-rise time pulse generator (FPG-5P, FID
GmbH, Germany) supplied pulses to the TPE with a peak
voltage of ~+4kV. The pulses were continuously applied to
TPE at 1kHz for various durations. The pulses were measured
by an inline capacitive sensor (VDC-1, Farr Research, NM),
which measures the displacement current (i.e., the time
derivative of the pulse) in the cable. The waveform on
the oscilloscope (TDS7404, Tektronix, Beaverton, OR) was
then integrated in order to obtain the voltage waveform.
To measure the temperature change during pulsing, a fiber
optic sensor (T1C-11000A, Neoptix Inc., Canada) was placed
near the electrode using another micromanipulator stage.
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FIGURE 1: Delivery of 1ns pulses to cells on a microscope stage through a glass-insulated triple-point electrode (TPE). (a) The setup. (b) The
TPE electrode was brought close to cells on a cover slip by a micromanipulator.

The fiber was connected to a computer via a controlling unit
(RFX-04-1, Neoptix Inc., Canada).

2.2. Cell Culture and Propidium Iodide Staining. CHO cells
were cultured in F-12K medium with 10% FBS and 1%
Penicillin-Streptomycin-Glutamine on a 12 mm in diameter
cover slip and were kept in an incubator at 37°C and 5%
CO, until experimentation. In the experiments, the cover slip
was placed in a microcuvette containing the same medium.
A camera (DP80, Olympus America, Waltham, MA) with
a fastest speed of 20 fps recorded the images during the
pulsing. PI was used as a bioprobe to detect membrane
integrity. 500 ul of cell culture medium including PI with a
final concentration of 5 yg/ml was added to the microscope
chamber and the coverslip was then put in the bottom of the
chamber. Cells seeded in the coverslip were facing up towards
the electrode.

3. Experiment Results

3.1. Electric Field Near the TPE. The waveform of the pulses
delivered to the TPE is shown in Figure 2(a). An incident
pulse, which has a full width at half maximum (FWHM) of
approximately 1 ns, was delivered to the electrode. As a result,
a pulse was reflected due to the impedance mismatch between
the TPE and the coaxial cable. These two pulses allowed us to
calculate the approximate resistance of the TPE, as done in
the practice of time-domain reflectometry. Since the incident
pulse peak voltage is V;, = 3.75kV and the return voltage is
2.2KkV, the reflection coeflicient R is 0.58. The resistance of
TPE is

= Zine X TR @
where Z;; . = 50 Q. R, is calculated as 188 Q). The actual
voltage at the TPE should be

out

2R
Ve = Vin —Out> (2)
out + Zline

which is 5.9 kV. Knowing the voltage allowed us to calculate
the electric field near the electrode (Field Precision, Albu-
querque, NM). The electric field distribution near the TPE
for a given voltage of 1kV is shown in Figure 2(b). The
highest electric field is near the interface of water, glass, and
tungsten wire. In the experiment, the highest electric field
was calculated as 2.1 MV/cm for the voltage at the electrode
tip (5.9kV), but the highest field is only 0.63MV/cm for
the electrode without glass encapsulation. At 25 ym on the
electrode axis from the electrode tip, the electric field is
0.63MV/cm for the TPE and is only 0.279 MV/cm for the
electrode without glass encapsulation. It is thus beneficial
to use TPE to enhance the local electric field. The decrease
of electric field, however, is very fast over distance. Even at
a distance of 100 um, the electric field already decreases to
90 kV/cm.

3.2. Bubble Generation. Microbubbles were generated as
soon as the pulses were applied to the electrode, but the sizes
were not uniform. The diameter of the largest bubble never
exceeded 100 ym, whereas the smallest bubble size was hard
to determine due to the limitation of the spatial resolution
of the camera. A rough estimation from Figure 3 suggests
that it can be much less than 20 yum. Two special cases are
shown in Figure 3, where (1) mainly large bubbles (~80 ym
in diameter) and (2) only bubble clusters consisting of small
bubbles (<20 ym) were produced. Most of the time, a mixture
of large bubbles and bubble clusters were observed near
the electrode. For a large bubble to grow, it took no longer
than 0.05s, shown in Figure 3(a). Almost in every 0.05s, a
large bubble was produced. But such “linear” bubble growth
pattern was not seen in Figure 3(b). Rather, the small bubbles
grew in an “explosive” manner from 0.15 to 0.25s, showing
the complexity of the bubble growth dynamics.

3.3. Temperature Change. To measure the temperature
change near the electrode, an optic fiber sensor was placed
at varying distances (0 to 3000 ym) from the electrode
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FIGURE 2: 1ns pulses delivered to the TPE. (a) The pulse was integrated on the oscilloscope from the time derivative signal (not shown)
obtained by the capacitive probe. (b) Electric field distribution near the electrode.

(Figure 4(a)). Here, the cover slip was not used, but both
the electrode and fiber sensor were in the cell culture
medium. For each distance, the pulses were applied for 15 s. At
all distances, temperature continued increasing throughout
the pulsing and dropped as soon as pulses were stopped
(Figure 4(b)). At a distance of 3000 ym, the increase in
temperature was only 0.6°C. After pulsing, all temperatures
dropped back to the baseline in about 1 minute. Clearly, the
bulk of the fluid was at the ambient temperature.

3.4. Cell Response. After exposure of 1ns pulses for 1s, 2s,
or 4s, the resulting cell response is shown in Figure 5. After
1s exposure, there were only a few cells that took up PI and
not much change was observed in cell morpohology. After 2's
exposure, the pulses again did not produce much change in
cell morphology but caused more PI uptake in cells. However,
after the 4s exposure, cell PI uptake became obvious and

was observed for cells surrounding the TPE tip. These cells
were distributed in a circle with a radius of approximately
100 pm, forming a crater. Inside the crater, no PI uptake was
observed. A careful examination of the images (4 s) indicated
that the cells inside the circle were mostly wiped out. In front
of the TPE, much small debris was observed, which was cell
fragments resulting from broken cells.

A closer view of the damaged cells was obtained for puls-
ing low-confluence cells (30%) (Figure 6) for 1s. Several cells
that were close to the TPE tip were chosen for observation.
After exposure, the cells were broken into fragments. This
damage was rather local and confined within a distance of
100 ym from the electrode tip. Outside the region, cells were
intact.

Besides cell fragmentation, individual cells near the TPE
were wiped out from the cover slip, which could take place in
0.05s, as shown in the temporally resolved images (Figure 7).
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100 ym

FIGURE 3: Bubbles generated in separate experiments: (a) the bubbles with approximately the same diameter of ~80 ym were generated in
0.25 s when the pulses were applied and (b) the bubbles that have various sizes (mostly <20 ym) were generated in the form of clusters.

Figure 7(a) shows that a bubble burst caused the cell removal.
A cell pointed out by the red arrow managed to stay attached
to the cover slip for 1.1s after pulse application despite the
attacks of many bubbles and pulsed electric fields. However, it
was removed when a bubble showed up at ¢ = 1.1's (indicated
by the orange arrow) to its close proximity and collapsed
prior to 1.15 s. Meanwhile, most of other adjacent cells still

attached to the cover slip. This removal caused by the bubble
burst is rather local and only confined to a single cell. In
Figure 7(b), two cells (one indicated by a red arrow inside the
yellow rectangle at t = 0s, 1.4 5, 1.45 s, and 1.55 s and the other
indicated by an orange arrow at 1.5s, Figure 7(a)) vanished
between 1.55s and 1.6s. Simultaneously, a large bubble (~
100 ym diameter, indicated by the yellow arrow) near the cell
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FIGURE 5: CHO cells were treated for 1s, 25, and 4 s by a TPE energized with 1ns pulses. The bright-field images and PI uptake are shown.
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FIGURE 7: Time-resolved images for cell detachment near the tip of TPE during the application of 1 ns pulses. (a) A bubble (t = 1.1 s, indicated
by the orange arrow, ~30 yum diameter) wiped out a cell (indicated by the red arrow), which is presumably caused by its collapse. In the
meantime, other adjacent cells remained attached. (b) In a different experiment, a cell (indicated by the red arrow t = 0,1.4s,1.45s,and 1.55 s,
denoted as cell C) was wiped out from the cover slip and a bubble (indicated by the yellow arrow at t = 1.55s and 1.6 s, denoted as bubble A,
~100 ym diameter) was pushed away, which were caused by the same event, presumably a bubble collapse in the proximity of cell C. The cell

indicated by an orange arrow was also wiped out in the same time.

was pushed away by 170 ym at an average speed of 0.34 cm/s.
Notice that the bubble stayed almost at the same location
from 1.4 s to 1.55 s before being translated to its new location
at 1.6 s. Apparently, the bubble displacement and cell removal
were caused by the same event, which was most likely a bubble
collapse as observed in Figure 7(a).

4. Discussions

The damage to adherent cells (CHO cell) after exposure
to high intensity 1ns pulsed electric fields delivered by a
glass-encapsulated TPE includes (1) cell fragmentation that
occurred in the region next to the TPE tip with the highest
field, where the cells were fragmented and the cell fragments
were blown away, forming a cell-free crater, and (2) cell
permeabilization was found on those cells that surround the
crater. The size of the crater was approximately 100 ym in
diameter; thus, the damage was rather local.

The formation of the crater and cell fragmentation are
a rather severe effect and are not seen in cells exposed to
low intensity electric fields, where cell shapes are preserved.
When intense electric pulses are applied to the electrode and
consequently to the cells on the cover slip, the action is very
complex and multifaceted, involving electric field, bubble
emission, pressure waves, and an increase of temperature.

To elucidate the role of each is difficult with our current
experimental setup. Although intense electric fields can cause
cell swelling and blebbing, direct cell fragmentation has not
been reported. Instead, it is more likely to be caused by
microbubble collapse as Figure 7 clearly shows that bubble is
responsible for the cell detachment, a milder effect than cell
fragmentation. However, the bubbles can be more energetic
in the crater region as they become closer to the electrodes.
A generally accepted theory of bubbles imposing damage on
adherent cells is that when a bubble collapses asymmetrically
on the cover slip surface, a high speed microjet forms
towards the surface, which is violent enough to rupture a cell
membrane. The vorticity along the jet can cause secondary,
smaller bubbles to form and rotate in an asymmetrical
manner. The associated shear stress can further permeabilize
cell membrane or detach the cell. In our setup, we could not
capture such a picture due to the hardware limitation, but a
rough estimation of a possible shear from a bubble collapse
can be made based on Figure 7(b). The bubble (indicated
by the yellow arrow at t = 1.55s and 1.66 s in Figure 7(b),
denoted as bubble A) was translated by 170 ym within 0.05s
at an average speed of 0.34 cm/s from 1.55s to 1.6 s. Before
translation, its distance to a cell (indicated by the red arrow,
t = 1.4s-155s, denoted as cell C) is Ry, = ~100 um. If we
assume a hypothetical, small bubble (let us denote it as bubble
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B, radius Ry) adjacent to cell C is about to collapse to cause
the cell detachment (shown in the insert in Figure 8), which
follows the same physical picture as Figure 7(b) shows; then
the bubble wall velocity, V}, can be extrapolated from the
movement of bubble A according to the conservation of mass
for an incompressible fluid [24]:

7‘2

V=V, —. 3
B A RBZ ( )
Here, V, = 0.34cm/s and r = 100 ym. The associated fluid
speed V, due to bubble B’s collapse can be assumed tobe V, =
Vj at the onset of the bubble collapse. The collapse-induced
shear force near cell C can then be estimated as [25]

T=U—, (4)

where y is the dynamic viscosity of the medium (u =
107° Pas). Here, because Ry is unknown, we assume Ry to
be in the range of 20 yum to 1um and so 7 can be calculated
as shown in Figure 8. Smaller bubbles produce larger 7 and
large bubbles (>20 pm) are expected to produce trivial shears.
The critical pressure for direct jet impact to induce membrane
rupture was reported as 3kPa [26] and for shear stress to
detach a cell is 0.1 kPa [27]. In Figure 8, the estimated shear
force sufficient to cause adherent cells to detach is >0.1 kPa for
bubble radius < 7 yum. However, in the experiment, a bubble
with a radius of 15 um can detach the cell (Figure 7(a)), but
the shear force is only calculated as 10 Pa in Figure 8, an order
of magnitude less than the reported threshold (0.1kPa). This
deviation could be due to the oversimplified model we used
that precludes the bubble expansion and collapse dynamics
and so the actual shear in the experiments can be much larger.
But the model at least suggests the possibility of generating
sufficient shears for cell detachment with the bubble size
observed in our experiments.

It is also possible that other forces may contribute to
the cell fragmentation and detachment. When bubbles are

BioMed Research International

emitted from the electrode under intense electric field, the
bubble expansion is similar to streamer discharge [28], where
a narrow current carrying bubble is partially ionized, result-
ing in the Joule heating of the bubble, which in turn increases
the pressure of the bubble. The expanded bubble acts like a
piston on the surrounding water and produces a shock. In
an electrode energized by nanosecond pulses for an electric
field of 1MV/cm, the shock pressure was found exceeding
1GPa in the vicinity of the electrode, but it also decreases
rapidly [28]. In addition, the electrostriction resulting from
high intensity pulses can contribute to the cell fragmentation
and detachment. The electrostriction can be understood that
water dipoles will align with the external field and cause
the change to its density and pressure. When the electric
field energy density is comparable to the external pressure,
the pressure change is significant. In studying the pressure
transient caused by nanosecond pulses [16], it was found
that nanosecond electric fields are capable of generating a
high frequency (2.5 MHz), high intensity (>13kPa) pressure
transient for an electric field of 13 kV/cm. The origin of the
pressure transient is most likely electrostriction, as the change
of the pressure polarity, that is, whether it is rarefaction wave
or compression wave, matches the rise and fall of the pulse.
In the flat part of the pulse, the pressure wave is diminished.
It was concluded, however, that this pressure transient alone
was not responsible for membrane poration. Although these
forces are viable mechanisms for cell fragmentation and
detachment, the principal cause still should be shear force
resulting from bubble collapse. A shear force (transverse
wave) acts on a cell by twisting it, whereas a compression or
a tension force (longitudinal wave) compresses or pulls the
cell [29]. Cells exhibit a stronger resistance to compression or
tension than shear force.

On the other hand, the cells in the crater periphery
(Figure 5) experienced much milder attack and still adhered
to the cover slip. Yet, they were permeabilized, as indicated by
the PI uptake (Figure 5). The bubble motion and instability
could cause microstreaming force to cause permeabiliza-
tion [30]. In addition, the cell permeabilization can also
be caused by pulsed electric fields. The electric field at a
distance of ~100 yum from TPE was found to be 90 kV/cm,
which is lower than 200kV/cm, the field required to cause
cell permeabilization in single-shot experiments previously
reported for 0.5ns pulses [5, 7]. But the temperature rise
and intermittent jet pressure and microstreaming forces may
likely assist in the membrane permeabilization. For studying
the precise mechanism, these cells in the crater periphery are
useful for further analysis to gain more understanding of how
ultrashort pulses act on cells, which may ultimately allow us
to apply pressure and heat as sensitizing agents to increase the
efficiency of ultrashort pulses.

This work has shown the feasibility of generating bubbles
by 1ns pulses to induce cell fragmentation and cell detach-
ment. Certainly, not every bubble collapsed to cause harm to
the cells and most bubbles appeared benign. It was reported
previously that only inertial cavitation bubbles that contain
high pressure water vapor are poised to collapse and cause
damage to cells [31, 32].
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In our case, the formation of water vapor can be illus-
trated through a crude calculation near the TPE. The electric
field was calculated as 2MV/cm, and for the conductivity
of culture medium (1.5S/m), the local power density is AP
= 45 GW/cm®. Assuming adiabatic conditions (i.e., no heat
flow or radiation or chemical losses), which is reasonable
for 1ns pulses, the temperature rise is then approximately
AT = APt/pc,, where 7 is the pulse application time (1 ns,

FWHM), p is the water density in liquid phase (1g/cm®), and
¢, is the heat capacity (4.185]/g°C). Using these values, AT
can be estimated as 14°C. This is just for a single 1 ns pulse.
As the pulses were applied at high repetition rate (1kHz), the
temperature could rise much higher and reach the boiling
point of water. To measure the temperature change near
the electrode by a single pulse is difficult, which requires
sufficient temporal and spatial resolution. This, however, may
be measured (or indirectly inferred) by the probe beam
deflection technique (PBDT), described by Barnes et al. [33].
Nonetheless, in our case, the heating of the bulk liquid near
the electrode can be seen from the temperature increase at
various distances from the electrode (Figure 4(b)), which is
caused by the heat diffusion from the electrode. The divergent
flow of heat suggests that vaporization would be highly
localized and cannot be expected to occur throughout the
region.

The inertial vapor bubble can change its nature to a
noninertial, gas filled bubble in its growth by rectified diffu-
sion and bubble coalescence; therefore not every bubble will
impose harm to cells. Rectified diffusion involves an unequal
mass transfer across the bubble interface in the rarefaction
and compression phases of a pressure wave. Considering
that a cell medium contains dissolved air and the TPE
electrode surface may trap air particles, a bubble has a larger
surface area, therefore leading to more gas being diffused
into than out of the bubble. It was suggested that the wall
of a bubble thins during its expansion, making it easier for
gas to diffuse [27]. Alternately, bubble coalescence involves
multiple bubbles coming into contact with each other and
forming wall partitions. The partitioning walls rupture when
they become sufficiently thin, leading to the formation of
bigger bubbles [34]. The large bubbles in our experiment
mostly dissolved or burst far away from the TPE electrode
and did not cause any PI uptake.

5. Conclusions

Delivery of 1ns pulses to a triple-point electrode has allowed
us to create a very large field in treating monolayer cells. The
electric field causes a multitude of events including bubble
generation and temperature increase. This series of physical
stimuli, however, produces localized damage to cells, which
includes cell fragmentation in a crater and cell permeabi-
lization in the crater periphery. The crater has a diameter of
approximately 100 ym. The cell fragmentation is presumed to
be caused by bubble collapse and its associated shear force,
whereas the permeabilization is caused by bubble movement
and microstreaming, although the pulsed electric field with
the assistance of temperature may also have contribution. It

is unknown whether these permeabilized cells remain viable
and so further survival experiments need to be done. The
work in this paper shows that ultrashort nanosecond pulses
can be used to drive a triple-point electrode for tissue ablation
that requires submillimeter precision. The advantages of such
a pulsed electrode may enable a longer electrode lifetime
and less plasma formation than long pulse driven electrodes,
although more studies are needed to verify that.
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