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Abstract
Characterizing habitat suitability for a marine predator requires an understanding of 
the environmental heterogeneity and variability over the range in which a population 
moves during a particular life cycle. Female California sea lions (Zalophus californianus) 
are central-place foragers and are particularly constrained while provisioning their 
young. During this time, habitat selection is a function of prey availability and proxim-
ity to the rookery, which has important implications for reproductive and population 
success. We explore how lactating females may select habitat and respond to environ-
mental variability over broad spatial and temporal scales within the California Current 
System. We combine near-real-time remotely sensed satellite oceanography, animal 
tracking data (n = 72) from November to February over multiple years (2003–2009) 
and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea 
lion occurrence based on environmental covariates. Results indicate that sea lion pres-
ence is associated with cool (<14°C), productive waters, shallow depths, increased 
eddy activity, and positive sea-level anomalies. Predictive habitat maps generated 
from these biophysical associations suggest winter foraging areas are spatially consist-
ent in the nearshore and offshore environments, except during the 2004–2005 win-
ter, which coincided with an El Niño event. Here, we show how a species distribution 
model can provide broadscale information on the distribution of female California sea 
lions during an important life history stage and its implications for population dynamics 
and spatial management.
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1  | INTRODUCTION

Understanding how highly mobile marine predators select and prior-
itize habitats can be challenging. Despite the proliferation of animal 
tracking data and near-real-time availability of environmental data 
products, we still have a limited understanding of how environmen-
tal heterogeneity can influence the spatial distribution of many spe-
cies and populations. Habitat models (or species distribution models, 
SDMs) provide correlative insight into the biophysical features that 
may drive habitat preference across a wide variety of taxa, scales, and 
environments (Guisan & Zimmermann, 2000). Habitat models have 
provided novel tools for assessing and predicting how animals inter-
act with their environment and are increasingly used for ecological 
and conservation-relevant research (Barbet-Massin, Jiguet, Albert, & 
Thuiller, 2012; Buckley et al., 2010; Dambach & Rödder, 2011; Elith 
& Leathwick, 2009; Studwell et al., 2017; Zydelis et al., 2011). Most 
recently, marine SDMs have been used to identify critical habitat of 
understudied populations, improve our understanding of distributional 
shifts in habitat under changing ocean conditions, and support com-
mercial and protected species management (Carvalho, Brito, Crespo, 
Watts, & Possingham, 2011; Eguchi, Benson, Foley, & Forney, 2017; 
Hazen et al., 2016; Hobday, Hartog, Spillman, Alves, & Hilborn, 2011; 
Hooker et al., 2011; Skov et al., 2016).

Despite advances in marine SDMs, the complex life histories of 
many marine species challenge our ability to understand the spatial 
distributions and patterns for a population during a particular stage 
or cycle (Ficetola, Pennati, & Manenti, 2013). Modeling habitat suit-
ability for populations of mobile animals with stage-specific spatial 
constraints, such as colonial breeders (e.g., seabirds, pinnipeds), has 
been particularly difficult (Pinaud & Weimerskirch, 2005). As central-
place foragers, these animals are constrained to land during breeding 
and provisioning stages, that is, nesting colonies, rookery haul-out 
(Orians & Pearson, 1979). During this time, habitat preference is likely 
a function of both prey availability and proximity to the central loca-
tion (Rosenberg & McKelvey, 1999). Accounting for this place-based 
constraint in habitat models is important, as the need to provision 
offspring directly constrains foraging opportunities, which in turn can 
have profound implications for the behavior, energetics, and overall 
reproductive success of individuals.

The California Current System (CCS) is a highly dynamic eastern 
boundary current that is characterized by oceanographic variability on 
multiple spatial and temporal scales (Chavez & Messié, 2009; Checkley 
& Barth, 2009; Schwing, Husby, Garfield, & Tracy, 1991). Here, highly 
migratory species are known to associate with biophysical features 
that promote predictable coastal upwelling centers, fronts, and ed-
dies year-round (Croll et al., 2005; Scales et al., 2017; Yen, Sydeman, 
Bograd, & Hyrenbach, 2006). California sea lions (Zalophus califor-
nianus; hereafter, sea lions) are among the most abundant top preda-
tors in the CCS (Carretta, Forney, & Oleson, 2011; Villegas-Amtmann, 
Atkinson, Paras-Garcia, & Costa, 2012; Villegas-Amtmann, Simmons, 
Kuhn, Huckstadt, & Costa, 2011), and populations have continued to 
grow under the Marine Mammal Protection Act (Carretta et al., 2016; 
Lowry, Melin, & Laake, 2017; Melin, DeLong, & Siniff, 2008; Roman 

et al., 2013). In the United States, sea lions breed primarily at four 
of the Channel Islands in southern California (Santa Barbara Island, 
San Clemente Island, San Miguel Island, and San Nicolas Island). San 
Miguel Island and San Nicolas Island are the two largest rookeries, ac-
counting for approximately 90% of the pups produced in the United 
States (Lowry et al., 2017).

The distribution, foraging ecology, and reproductive strategies of 
sea lions have evolved under the influence of short-term (i.e., upwell-
ing) and long-term (i.e., El Niño Southern Oscillation) changes in ocean 
conditions (Melin et al., 2008; Weise & Harvey, 2008). Throughout the 
summer breeding months, animals remain close to the rookeries. During 
the nonbreeding season (August–May), demographic groups spatially 
segregate. Males disperse from the rookery and are free to exploit 
productive habitats throughout the CCS (Melin, Delong, Thomason, 
& Vanblaricom, 2000), while adult females are central-place foragers 
for the entirety of the 10- to 11-month lactation period. During this 
time, females must attend to their young, alternating periodic trips at 
sea (1–7+ days) with time on land to nurse their pups (McHuron et al., 
2016; Melin et al., 2000). Because they are nonmigratory, females are 
vulnerable to prolonged changes in their foraging environment (Melin 
et al., 2008). The ability to locate suitable habitat close to the rookery 
is critical to pup survival (Costa, 2007; Melin et al., 2000; Ono, Boness, 
& Oftedal, 1987). Suboptimal conditions reduce prey availability, re-
quiring females to alter foraging and attendance patterns. In extreme 
events, protracted changes to prey distribution and abundance have 
led to reproductive failures and long-term population affects (DeLong 
et al., 1991; Kuhn & Costa, 2014; Lowry et al., 2017; McClatchie et al., 
2016; Melin et al., 2008; Trillmich et al., 1991).

Moreover, a majority of sea lion prey items are commercially im-
portant species (e.g., northern anchovy (Engraulis mordax), sardine 
(Sardinops sagax), Pacific hake (Merluccius productus), jack mackerel 
(Trachurus symmetricus), Pacific mackerel (Scomber japonicus), and mar-
ket squid (Doryteuthis opalescens)) (Lowry & Carretta, 1999; Lowry, 
Stewart, Heath, Yochem, & Francis, 1991; Orr, VanBlaricom, DeLong, 
Cruz-Escalona, & Newsome, 2011; Weise & Harvey, 2008). A deple-
tion of foraging resources near the colony can lead to increased spatial 
overlap with fisheries, leading to both direct competition and indirect 
biological interactions (NMFS, 1997; Weise & Harvey, 2005). Such 
conflicts include human-related injuries (Goldstein, Johnson, Phillips, 
Hanni, & Fauquier, 1999), depredation (loss of commercial and rec-
reational fish), incidental capture in fisheries or bycatch, and entan-
glement in fishing gear (Beeson & Hanan, 1996; Carretta & Chivers, 
2004; Stewart & Yochem, 1987). Many of these interactions are com-
plex and have been difficult to manage (Arthur et al., 2017; Lewison 
et al., 2015; Maxwell et al., 2015). In particular, bycatch of marine 
mammals in fisheries that overlap with their foraging grounds has 
been identified as a critical management issue for the United States 
fisheries (Beeson & Hanan, 1996). Bycatch mitigation, however, re-
quires a robust understanding of sea lion habitat use and distribution.

While a robust body of literature has documented the biology, 
ecology, and physiology of female California sea lions (Antonelis, 
Stewart, & Perryman, 1990; Costa, 1991; Feldkamp, DeLong, & 
Antonelis, 1989; McDonald & Ponganis, 2013; McHuron et al., 2016; 



2790  |     BRISCOE et al.

TABLE  1 Biometric data for the 72 adult female California sea lion trips used in the GAMM, from 2003 to 2009. A foraging trip was defined 
as the time at sea between haul-out periods (Villegas-Amtmann et al., 2008). Maximum trip distance from colony refers to the distance 
between the colony and the farthest away an animal traveled

Tag ID Tagging location
Start date of 
trip Date end of trip

Trip duration 
(days)

Max distance from 
colony (km)

Total trip 
distance (km)

2103020 San Nicolas 11/16/03 11/24/03 8 119.43 223.3

2103029 San Nicolas 11/14/03 11/20/03 6 80.24 80.24

2103030 San Nicolas 11/18/03 11/22/03 4 37.92 79.15

2103033 San Nicolas 12/16/03 12/26/03 10 102.39 144.4

2103035 San Nicolas 12/3/03 12/9/03 6 78.78 95.11

2103036 San Nicolas 11/14/03 11/16/03 2 8.08 8.08

2103037 San Nicolas 11/18/03 11/23/03 5 64.58 92.85

2104001 San Nicolas 11/20/04 11/28/04 8 57.24 77.36

2104003 San Nicolas 11/2/04 11/16/04 14 456.95 895.12

2104004 San Nicolas 11/3/04 11/12/04 9 135.78 178.93

2104005 San Nicolas 10/31/04 11/10/04 10 100.06 181.96

2104006 San Nicolas 2/23/05 3/8/05 13 84.37 112.27

2104007 San Nicolas 11/24/04 12/10/04 16 168.62 230.69

2104008 San Nicolas 11/13/04 11/22/04 9 208.75 432.93

2104010 San Nicolas 11/1/04 11/9/04 8 95.77 160.51

2104011 San Nicolas 11/9/04 11/18/04 9 49.08 65.22

2104012 San Nicolas 11/2/04 11/12/04 10 126.25 238.12

2105019 San Miguel 12/17/05 12/23/05 6 163.08 227.6

2105020 San Miguel 12/14/05 12/19/05 5 50.13 101.04

2105021 San Miguel 1/5/06 1/15/06 10 369.27 746.64

2105022 San Miguel 11/18/05 11/25/05 7 136.5 273.04

2105023 San Miguel 1/30/06 2/7/06 8 210.3 264.3

2105024 San Miguel 12/29/05 1/5/06 7 105 222.76

2105025 San Miguel 1/8/06 1/13/06 5 165.75 273.12

2105026 San Miguel 1/11/06 1/19/06 8 355.4 705.26

2105027 San Miguel 1/5/06 1/11/06 6 47.8 77.29

2105028 San Miguel 12/21/05 12/29/05 8 321.62 537.21

2105029 San Nicolas 12/6/05 12/11/05 5 40.75 125.31

2105030 San Nicolas 12/13/05 12/25/05 12 255.98 447.27

2105031 San Nicolas 12/26/05 1/3/06 8 194.02 394.32

2105032 San Nicolas 12/2/05 12/7/05 5 49.22 129.57

2105033 San Nicolas 12/5/05 12/10/05 5 13.05 75.43

2105034 San Nicolas 12/6/05 12/12/05 6 8.02 62.97

2105035 San Nicolas 11/17/05 11/23/05 6 57.54 115.6

2105036 San Nicolas 12/25/05 12/31/05 6 143.47 263.84

2105037 San Nicolas 12/3/05 12/9/05 6 78.43 164

2105038 San Nicolas 12/28/05 1/6/06 9 100.79 177.77

2105039 San Nicolas 12/5/05 12/9/05 4 57.93 67.09

2105040 San Nicolas 12/7/05 12/23/05 16 226.93 275.41

2106001 San Nicolas 11/11/06 11/20/06 9 255.41 493.04

2106002 San Nicolas 11/3/06 11/10/06 7 124.96 223.36

2106003 San Nicolas 11/22/06 12/10/06 18 340.42 582.47

(Continues)
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Melin et al., 2000; Villegas-Amtmann et al., 2011, 2012), these stud-
ies focused on foraging characteristics such as dive behavior, trip 
length, and duration of individuals from a single rookery or in re-
sponse to El Niño events (Antonelis et al., 1990; Costa, 2007; Melin, 
Orr, Harris, Laake, & DeLong, 2012; Melin et al., 2008; Ono et al., 
1987; Sydeman & Allen, 1999; Trillmich et al., 1991). Although as-
pects of at-sea habitat use have been explored (Kuhn & Costa, 2014), 
our ability to broadly identify suitable foraging habitat of this central-
place forager has been limited. This is in part because the importance 
of prey species in sea lion diet fluctuates seasonally and annually, 
making direct observations that coincide with prey distribution diffi-
cult (Lowry et al., 1991; Melin et al., 2012; Orr et al., 2011). Because 
we currently lack the fine-scale resolution required to correlate forag-
ing habitat with prey distribution, we must rely on the oceanographic 

processes that serve as proxies to prey distribution (Arthur et al., 
2017; Bost et al., 2009).

Here, we couple a multiyear tracking data set with near-real-
time environmental data to quantitatively characterize and predict 
the spatial extent of habitat suitability of lactating female sea lions 
from the two main rookeries in the CCS. We examine broadscale 
habitat use using satellite tracking data from 72 lactating sea lions 
to elucidate the biophysical relationships associated with habitat 
preference. We then develop predictive models of habitat to ex-
plore how accessibility and use changes among years. Our findings 
demonstrate the utility of a marine SDM to identify changes in hab-
itat use of a central-place forager. Given the importance of habitat 
use of breeding and provisioning females on population-level pro-
cesses, our model can be used to connect at-sea distribution shifts 

Tag ID Tagging location
Start date of 
trip Date end of trip

Trip duration 
(days)

Max distance from 
colony (km)

Total trip 
distance (km)

2106004 San Nicolas 11/4/06 11/14/06 10 96.23 228.58

2106005 San Nicolas 11/7/06 11/19/06 12 158.29 352.43

2106006 San Nicolas 11/20/06 11/25/06 5 34.05 69.54

2106007 San Nicolas 11/21/06 11/28/06 7 127.12 253.85

2106008 San Nicolas 11/5/06 11/10/06 5 5.02 8.31

2106009 San Nicolas 12/12/06 12/21/06 9 117.92 231.82

2106010 San Nicolas 11/15/06 11/29/06 14 218.31 484.83

2106011 San Nicolas 11/8/06 11/14/06 6 65.82 65.82

2106012 San Miguel 12/17/06 12/24/06 7 133.73 238.52

2106014 San Miguel 12/15/06 12/22/06 7 195.4 349.16

2106015 San Miguel 11/27/06 12/11/06 14 387.18 796.15

2106016 San Miguel 11/11/06 11/19/06 8 92.87 179.56

2106018 San Miguel 12/3/06 12/8/06 5 67.09 178.68

2106020 San Miguel 11/21/06 11/27/06 6 80.47 176.58

2106021 San Miguel 11/14/06 11/19/06 5 137.39 251.58

2107009 San Nicolas 11/21/07 11/27/07 6 121.95 240.23

2107010 San Nicolas 12/22/07 1/4/08 13 108.12 213.83

2107011 San Nicolas 12/31/07 1/6/08 6 41.3 84.56

2107012 San Nicolas 1/4/08 1/15/08 11 502.15 876.47

2107013 San Nicolas 11/28/07 12/8/07 10 243.75 498.97

2107014 San Nicolas 1/12/08 1/18/08 6 158.89 299.49

2107015 San Nicolas 11/11/07 11/19/07 8 74.07 134.17

2107016 San Nicolas 12/28/07 1/9/08 12 456.12 838.08

2107017 San Nicolas 11/25/07 12/5/07 10 248.24 509.06

2108001 San Nicolas 12/12/08 12/18/08 6 94.72 151.28

2108002 San Nicolas 12/14/08 12/21/08 7 102.9 218.35

2108003 San Nicolas 11/18/08 11/30/08 12 415.27 765.57

2108005 San Nicolas 11/19/08 11/29/08 10 185.83 397.52

2108006 San Nicolas 11/18/08 11/26/08 8 123.1 249.3

2108010 San Nicolas 12/18/08 1/10/09 23 120.26 157.86

TABLE  1  (Continued)
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to changes in population trends, as well as inform species protection 
and fisheries bycatch management efforts.

2  | MATERIALS AND METHODS

2.1 | Data sets and tagging methodology

The movement and distribution of California sea lions were examined 
using ARGOS tracking data from 72 adult lactating females, tagged 
in November of 2003–2009. Seventeen females were tagged from 
San Miguel Island (34.0°N, −120.4°W) and 55 from San Nicolas Island 
(33.3°N, 119.5°W; Table 1). The tracking period for each year lasted 
between November and February, although the tracking duration of 
individual animals did not necessarily span this entire time period. All 
analyses presented were restricted to this time period. Description of 
animal capture and instrumentation are provided in Kuhn and Costa 
(2014) and McHuron et al. (2016).

All data processing and analyses were carried out in the R environ-
ment, version 3.3.0 (R Core Team, 2016).

2.2 | Track filtering and trip identification

Bayesian state–space modeling techniques were used as a filtering 
method to account for location error (Bailey et al., 2008, 2012; Breed, 
Costa, Goebel, & Robinson, 2011; Breed, Costa, Jonsen, Robinson, & 
Mills-Flemming, 2012; Jonsen, Flemming, & Myers, 2005). In order 
to reduce autocorrelation of at-sea locations, final position estimates 
along each track were generated at 24-hr intervals resulting in one 
position per day (Austin, Bowen, & McMillan, 2004; Kuhn & Costa, 
2014). All points over land were removed from final track locations. A 
foraging trip was defined as the time at sea between haul-outs from 
the rookery (Villegas-Amtmann, Costa, Tremblay, Salazar, & Aurioles-
Gamboa, 2008). Kernel density analyses of at-sea locations were used 
to determine the home range (95%) and core (50%) for each rook-
ery during the entire tracking period (adehabitatHR package, Calenge 
(2011).

2.3 | Quantifying space use

The efficacy of SDMs often depends on the quality and quantity of 
presence data points as well as the method of selection of absence 
points or background data (“pseudoabsences”; e.g., random, environ-
mentally, or spatially stratified; Barbet-Massin et al., 2012). Here, we 
created suitable habitat models using presence-only tracking data 
and generated pseudoabsences from correlated random walk mod-
els (CRWs; Aarts, MacKenzie, McConnell, Fedak, & Matthiopoulos, 
2008; Hazen et al., 2016; Willis-Norton et al., 2015). Such absences 
represent a theoretical null model where sea lions would travel inde-
pendent of environmental parameters. Comparison of environmental 
conditions along sea lion tracks and CRWs can test whether animals 
are selecting habitat based on specific oceanographic variables (Willis-
Norton et al., 2015).

Owing to the difficulties of quantifying habitat suitability for 
central-place foragers (Aarts et al., 2008; Matthiopoulos, Harwood, & 
Thomas, 2005) and of parameterizing correlated random walks that 
can accurately approximate their movements, this approach has not 
been widely implemented. Here, we explore the utility and param-
eterization of CRWs for a central-place forager in modeling habitat 
suitability over broad spatial and temporal scales. Random walk tra-
jectories were simulated using the adehabitatLT package in R (Calenge, 
2015). Due to the nature of female sea lion movements, CRWs were 
simulated by trip and by trip phase (i.e., incoming and outgoing por-
tions of each foraging trip). A minimum of 10 CRW simulations were 
generated per trip and were allowed to move unconstrained except 
for on land, in which a new location along the trip length was sampled 
with replacement. Each simulation started at the first observed trip 
latitude/longitude location and was built iteratively so that the simu-
lated movement was sampled from a normal distribution (e.g., Figure 
S1). Each simulation maintained the same relative distance, turning 
angle, and duration in time between successive locations (Calenge, 
Dray, & Royer-Carenzi, 2009).

Each simulated trip was weighted based on how closely it re-
sembled the actual sea lion trip. The weight value was calculated as 

Variable Hypothesized mechanistic link

Sea Surface Temperature (SST) Description of thermal regime

Sea Surface Temperature Standard Deviation 
(SST SD)

Mesoscale thermal structure

Chlorophyll-a (Chl-a) Proxy for primary productivity

Eddy kinetic energy (EKE) Index of mesoscale convergence and 
divergence, prey retention

Mean sea-level anomaly (SLA) Index of mesoscale features

Mean sea-level anomaly Standard Deviation 
(SLA SD)

Index of mesoscale variability

Wind (v-component) Upwelling-favorable winds

Bathymetry Depth to seafloor

Bathymetry Standard Deviation (Bathymetry SD) Roughness of seafloor

Distance from colony Index of movement from rookery

TABLE  2 List of environmental 
variables and hypothesized influence on 
adult female sea lion habitat selection
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the normalized difference between the actual trip and simulated trip 
length distance, summed with the normalized distance in net angular 
displacement of the sea lion and CRW track (Hazen et al., 2016). 

The higher the weight value, the more dissimilar the CRW to the 
actual trip. Such weighted values provided a means of ensuring that 
the CRWs were at an appropriate distance and direction as compared 
to the actual movements of sea lions. Simulated trips with weighted 
values in the upper quartile, and those that crossed land, were re-
moved to ensure that the CRWs were representative of possible 
movements, distributions, and habitats that sea lions could have en-
countered (Hazen et al., 2016).

2.4 | Remotely sensed oceanographic data

Remotely sensed environmental data were obtained for both sea 
lion and CRW tracks using Xtractomatic (Simmons, 2016). The data 
sets included time series of sea surface temperature (SST), surface 
chlorophyll-a concentrations (Chl-a), surface winds (v-component, 
for upwelling-favorable conditions), mean sea-level anomaly (SLA), 
SST standard deviation (SST SD), SLA standard deviation (SLA 
SD), bathymetry, and rugosity (bathymetric standard deviation, 
bathymetry SD; Table 2, see Table S1 for data references). For 
each oceanographic parameter, a mean value was calculated based 
on the mean latitude and longitude error 1° longitude × 1° lati-
tude × 1–8 day intervals and centered at the position of each daily 
SSM-interpolated sea lion position (Willis-Norton et al., 2015). The 
distance of each satellite location from the colony was calculated 
using great circle distances to account for the Earth’s curvature 
(Kappes et al., 2010).

We also explored mesoscale structure in surface currents using 
eddy kinetic energy (EKE), which was calculated from geostrophic cur-
rent components as follow (Cayula & Cornillon, 1992): 

Transformations of variables were explored to ensure data were nor-
mally distributed. A logarithmic transformation was required for Chl-a 
and EKE. A square root transformation was applied to bathymetry SD.

2.5 | Generalized additive mixed models

Generalized Additive Mixed Models (GAMMs) were used to quantify 
the statistical correlation between oceanographic parameters and 
sea lion spatial distribution (Redfern et al., 2006). GAMMs allow for 
multiple nonlinear relationships between a response variable and its 
covariates in a semiparametric manner (Hastie & Tibshirani, 1990; 
Su, Sun, Punt, Yeh, & DiNardo, 2011; Wood, 2006). The GAMMs 
link the environmental covariates to animal presence/absence with 
individual as a nested variable. Specifically, GAMMs were fit with 
a binomial distribution, logit link function, and random effect of 

individual sea lion. To avoid pseudoreplication, only one trip per in-
dividual (the trip with the most number of locations) and one CRW 
of that trip (randomly selected) were used in the models. GAMMs 
were run using the gamm4 package (Wood & Scheipl, 2013).

Because the main focus of this study is on the broadscale habitat 
use of lactating female sea lions within the CCS, we chose not to run 
separate models by rookery, but rather to run one model for all individ-
uals. Results provide information on the population-level habitat as-
sociations for the two largest California sea lion rookeries in the CCS.

2.6 | Model performance metrics

Candidate models were generated based on hypothesized combina-
tions of environmental covariates (Table 2). All variables were tested 
for multicollinearity using Generalized Variance Inflation Factors 
(Zuur, Ieno, Walker, Saveliev, & Smith, 2009). The model with the low-
est Akaike’s Information Criterion (AIC) and highest receiver operating 
curve (ROC) area under the curve (AUC) statistic was run 40 times with 
a 1:1 ratio of randomly chosen simulated tracks for each foraging trip 
(outgoing and return) to examine variability. Model validation using 
ROC curves and AUC statistics was calculated using the ROCR pack-
age in R (version 1.0-7; Sing, Sander, Beerenwinkel, & Lengauer, 2015).

2.7 | Habitat models and predictive surfaces

Predictive surfaces were generated daily and were fit over a set 
of time-matched environmental data that corresponded to each 
November–February satellite tracking period between 2003 and 
2009. The spatial resolution of each predictive surface was set to 
0.25°, the lowest common resolution of environmental data (Table 
S1). Daily surfaces were averaged for each November–February 
period, generating a total of six winter habitat maps. Relative habi-
tat suitability was scaled from 0 (unsuitable) to 1 (highly suitable). 
Cumulative mean and standard error (SE) suitability maps show the 
variability associated with model predictions.

3  | RESULTS

3.1 | General habitat use

From 2003 to 2009, adult female sea lions were tracked for 14–
131 days (mean 56.9 days ± 24.6 SD). The average number of for-
aging trips per female was 13.3 ± 6.9 SD trips, with a mean trip 
duration of 8.4 days (±3.6 days SD) (Table 1). The maximum straight-
line trip distance from the rookery ranged from 5.0 to 502.2 km (mean 
149.4 km ± 115.0 km SD). Dispersal primarily extended north/north-
west of each colony (San Miguel and San Nicolas islands, Figure 1a); 
however, core areas of use remained closest to the colonies (50% UD, 
Figure 1b,c). While most individuals favored nearshore habitat from 
the Southern California Bight and along the mainland coast, several in-
dividuals from each colony were tracked offshore into waters greater 
than 500 m depth (Figure 1b,c).

(1)Weight=2∗ (distancetrack−distanceCRW)∕distancetrack

+(angletrack−angleCRW)∕90◦

EKE=
1

2
(u2+v

2)
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3.2 | Model predictions

The best-fitting model included SST, Chl-a, bathymetry, EKE, SLA, and 
SLA SD and explained 46% (R2 = .46) of the total deviance (Table 3) 
with an AUC = 0.91 (Figure S2). Partial response curves (Figure 2) show 
that the probability of sea lion occurrence was greatest with cool SST 
(<14°C), productive waters (i.e., Chl-a ranging from −0.5 to 1.0 mg/m3), 

and shallow depths (<500 m below sea level). Sea lions were also as-
sociated with increased SLAs (0.05–0.1 cm) and EKE, while SLA SD (i.e., 
index of mesoscale variability) was negatively associated with sea lion 
occurrence. Distance from the colony was considered in a competing 
candidate model, but surprisingly was a less important predictor of sea 
lion habitat than bathymetry. Overall, SST, EKE, and bathymetry were 
the most consistently significant predictors of sea lion habitat (Table 3).

F IGURE  1  (a) Daily locations from all foraging trips of lactating female California sea lion tracks (Zalophus californianus, n = 72), from 
November to February 2003–2009 (color-coded by year of deployment) displaying one location per day. Distribution of tracks by colony: (b) San 
Miguel (n = 17) and (c) San Nicolas Islands (n = 55). Deployment locations shown as black circles. The 500-m isobaths are shown in light gray, 
and the 50% and 95% kernel density utilizations for each colony are shown in dark gray
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Variable
Effective degrees of 
freedom (edf) Chi-squared n-significant (n/40)

SST 2.7 (1.0–3.8) 160.4 (120.6–198.8) 40

Chl-a 2.9 (1.0–3.9) 20.0 (1.5–42.3) 24

EKE 3.3 (1.0–3.8) 57.3 (25.1–80.7) 40

SLA 3.1 (1.0–3.9) 39.3 (19.0–70.1) 38

SLA SD 1.2 (1.0–3.5) 27.0 (4.9–71.7) 33

Bathymetry 3.6 (3.3–3.9) 146.2 (106.5–183.2) 40

R2 = .46 (.36–.54).
AIC = 864.92 (712.61–1014.59).
AUC = 0.91 (0.88–0.93).

TABLE  3 Selection diagnostics from the 
final Generalized Additive Mixed Model 
(GAMM). Model was run 40 times to 
examine the number of times a variable 
was significant (n-significant). All variables 
represent a p value <.001. Values listed as 
follow: mean (min – max)
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The combined influence of these biophysical parameters is evi-
dent in the broadscale spatial habitat predictions. Throughout each 
winter, highly suitable habitats were evident in the near to offshore 

environments. Available habitat was identified along the California coast, 
from the northern Channel Islands, up through Monterey Bay. Two ex-
ceptions were the winters of 2004–2005 and 2008–2009. During 

F IGURE  3 Spatial habitat predictions of adult female California sea lions by year. Maps show relative habitat suitability for female California 
sea lions during foraging trips, based on environmental data from November to February, from 2003 through 2009. Suitability is scaled from 0 
(unsuitable) to 1 (highly suitable)
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F IGURE  2 GAMM partial plots showing the relative habitat suitability for adult female California sea lions in response to: sea surface 
temperature (SST, °C), Chlorophyll-a (Chl, log mg/m3), eddy kinetic energy (EKE, cm2/s2), sea-level anomaly (SLA, cm), sea-level anomaly standard 
deviation (SLA SD, cm), and bathymetry (m). Gray shading represents the 95% confidence intervals for the fitted relationships
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both time periods, habitat suitability diminished within the Southern 
California Bight (Figure 3b,f). In the winter of 2004–2005, habitat suit-
ability shifted offshore and north of Monterey Bay (Figure 3b). In the 
winter of 2008–2009, suitability was most concentrated along the 
nearshore central California coast. Prediction errors across all sampled 
years were highest in offshore and within the Southern California Bight 
(Figure 4b).

4  | DISCUSSION

Characterizing habitat associations for a mobile marine predator can 
be challenging for animals whose movement patterns change among 
life stages. Modeling habitat suitability for spatially constrained for-
agers is a particularly complex exercise because the options to re-
spond to their environment are limited (Kappes et al., 2010; Pinaud 
& Weimerskirch, 2005). Using multiyear satellite tracking data and 
near-real-time environmental data, we developed a species distribu-
tion model to identify the oceanographic conditions that characterize 
and predict foraging habitat for lactating sea lions from the two largest 
rookeries in the CCS.

The foraging behavior of many central-place foragers has evolved 
to repeatedly exploit areas within proximity to breeding grounds where 
resources may be, to some degree, spatiotemporally predictable, as 
they offer higher, more efficient levels of energy acquisition and thus 
maternal provisioning (Baylis, Page, McKenzie, & Goldsworthy, 2012; 
Bonadonna, Lea, Dehorter, & Guinet, 2001; Chilvers, 2008; Irons, 
1998; Lowther, Harcourt, Hamer, & Goldsworthy, 2011). For female 
California sea lions, we found relationships with static and dynamic 
environmental covariates that suggest they repeatedly target areas 
of enhanced productivity. Sea lions preferentially selected cold SST 
(<14°C), shallow depths, and elevated chlorophyll-a values, com-
mon proxies for upwelling along the continental shelf, where tightly 

coupled biophysical processes drive the development of a robust food 
web along central and southern California (Ainley, Sydeman, Parrish, 
& Lenarz, 1993; Sydeman & Allen, 1999). Coastal upwelling offers 
seasonally predictable resources on broad spatial scales and has been 
shown to influence the distribution and abundance of top predators, 
including several pinniped species off the California coast (Sydeman 
& Allen, 1999). As California sea lions are known to be shallow water, 
epipelagic foragers (Feldkamp et al., 1989; Kuhn & Costa, 2014), the 
combination of shallow depths and upwelling of cold, nutrient wa-
ters along the shelf would provide seasonally reliable prey resources. 
Results from our spatial predictions identified a high degree of suit-
ability close to the breeding colonies and along the California coast, 
suggesting a strong preference for the nearest predictable and most 
profitable areas for nursing females.

Interestingly, we found positive associations with metrics of me-
soscale activity (e.g., eddy kinetic energy and sea-level anomalies), 
suggestive of shelf-break and offshore foraging, where physical con-
vergence processes can serve as useful foraging patches for top pred-
ators due to the aggregation of resources (Bailleul, Cotté, & Guinet, 
2010; Hyrenbach, Forney, & Dayton, 2000). Previous top predator 
studies have documented associations with eddies [e.g., seabirds, 
Yen et al. (2006); sea turtles, Polovina et al. (2006); and other pinni-
ped species, Fadely, Robson, Sterling, Greig, and Call (2005); Ream, 
Sterling, and Loughlin (2005)]. While these features are more ephem-
eral in nature, their persistence in the CCS has been well documented 
(Batteen, 1997; Lynn & Simpson, 1987; Strub & James, 2000). To 
our knowledge, this is the first study to detect an association be-
tween California sea lion foraging habitat and mesoscale activity. 
Sea lions are known to display extensive intraspecies variability in 
their at-sea movements, behaviors, and distributions (Kuhn & Costa, 
2014; McHuron et al., 2016; Melin et al., 2008). This is especially 
true during lactation, as females must continually expand and adjust 
their foraging behavior in response to prey movements (Melin et al., 

F IGURE  4 Spatial habitat predictions of adult female California sea lions, averaged over all tracking periods (November–February), from 
2003 to 2009. (a) Mean spatial prediction of relative habitat suitability for female California sea lions, from November to February 2003–2009, 
based on a suite of environmental data. Suitability is scaled from 0 (unsuitable) to 1 (highly suitable); (b) Standard Errors in spatial prediction 
from November to February 2003–2009. The spatial resolution of predictive surfaces was set to 0.25°, the lowest common resolution of 
environmental data
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2008) and direct competition for resources under a restricted range 
and large population size. While finer-scale studies are necessary to 
explore an association with eddies in the CCS, it is possible that sea 
lions may utilize these mesoscale features for foraging opportunities 
while at sea.

Our modeling approach demonstrates preferred habitat for lac-
tating sea lions is broadly associated with the continental shelf, but 
exhibits a degree of spatial modulation across years, most notably 
during basin-wide environmental perturbations. Considerable studies 
have documented interannual changes in lactating female foraging 
behavior in response to El Niño Southern Oscillation (ENSO) events 
(Costa, Antonelis, & DeLong, 1991; DeLong et al., 1991; Kuhn & Costa, 
2014; Melin et al., 2008; Trillmich et al., 1991); however, our ability to 
broadly identify spatially explicit changes has been limited. For exam-
ple, higher than normal upwelling and subsequent high productivity 
during the 2007–2008 La Niña winter provided the most spatially ro-
bust habitat availability for sea lions throughout our study period. By 
the winter of 2008–2009, La Niña conditions had weakened; however, 
central and northern California maintained stronger than normal up-
welling (McClatchie et al., 2009). This most likely drove prey resources 
north, thereby weakening habitat suitability closest to the breeding 
colonies. As a result, females would have had to travel farther north to 
reach access profitable habitat.

Our findings suggest that, during El Niño events, females may face 
serious limitations in habitat accessibility due to the spatial constraints 
of the breeding colony. Warmer sea surface temperatures, reduced 
productivity, and elevated SLA have been associated with reduced 
food availability in the Southern California Bight (Schwing et al., 2006; 
Thomas & Brickley, 2006; Trillmich et al., 1991). Suboptimal condi-
tions require females to alter foraging and attendance patterns, with 
females moving further offshore and north of Monterey Bay to find 
food (Kuhn & Costa, 2014; Melin et al., 2008), which may result in 
pup abandonment (Melin et al., 2008). Our model predictions during 
the 2004–2005 winter reflected this pattern, as a weak El Niño ap-
peared to reduce productivity and prey resources within the nearshore 
environment (Kuhn & Costa, 2014), shifting habitat suitability away 
from the southern California coast and north of Monterey Bay. This 
displacement is consistent with previous studies that identified an in-
crease in adult female abundance in central and northern California 
during El Niños in response to better foraging conditions (Lowry & 
Forney, 2005; Sydeman & Allen, 1999).

Although our model predictions extend from 2003 to 2009, the 
distribution patterns and feature associations we describe here can be 
used to track shifts in distribution under future ocean conditions. In a 
warming ocean, alterations to suitable habitat—smaller in extent and 
further from the breeding colonies—may have severe consequences 
on the population dynamics of this species. Prolonged environmental 
change will result in increased energetic costs and decreased repro-
ductive success with potentially long-term population declines (Hazen 
et al., 2012; Lowry et al., 2017; McHuron, Mangel, Schwarz, & Costa, 
2017; Melin et al., 2008, 2012). Recent studies have documented an in-
creasing number of pups born on Año Nuevo Island, an important cen-
tral California haul-out site that supports a small breeding population 

(Lowry et al., 2017; McHuron, Block, & Costa, 2017). However, there is 
limited space for the population to expand northwards, as the Channel 
Islands represent the only islands with enough available space to sup-
port such large breeding rookeries under a growing population.

Habitat loss and large sea lion concentrations may lead to in-
creased pressure on coastal fisheries, due to overlap with commer-
cially important prey species, with a potential to impact to top-down 
food web dynamics (Lowry & Forney, 2005; Lowry et al., 1991; Weise, 
Costa, & Kudela, 2006). Furthermore, the relationships we identified 
have been found in other mobile marine predators that utilize dynamic 
biophysical features (e.g., upwelling centers, fronts, and eddies) and 
have important implications for overlap with human use (Maxwell 
et al., 2013; Scales et al., 2014). Recent research that considers what 
dynamic habitat use means for ocean resource management has 
found that while place-based static management approaches can be 
used to define general areas of overlap between protected species 
and human use, our ability to monitor and manage animals in relation 
to human activities will likely require management approaches that 
are also dynamic in space and time (Gregr, Lessard, & Harper, 2013; 
Lewison et al., 2015; Maxwell et al., 2015; Wedding et al., 2016). The 
predictive models used in this study offer an increased understanding 
of when and where potential conflicts may arise and reflect the im-
portance of dynamic, spatially explicit conservation and management 
initiatives for many other marine top predators (Louzao et al., 2011).

Our broadscale modeling approach presented provides informa-
tion on the population-level habitat associations for females from 
the two largest California sea lion breeding colonies in the California 
Current System. However, some caveats must be considered, as for-
aging habits and at-sea distribution can vary by season and life his-
tory stage. For lactating females, distribution may be closer to the 
rookery at different times of year, specifically during the breeding 
season (June–July). During this time, females give birth and their 
foraging trips are even more constrained by pup age. Our satellite 
observations did not include this period; therefore, we caution ex-
trapolation of model predictions to other data-limited times of the 
year. Second, separate species distribution models should be con-
structed for nonlactating females, as are free to disperse away from 
the rookery to exploit productive areas (Melin et al., 2000). Finally, 
habitat selection may be colony-specific. While core residency for 
both colonies indicated proximity of lactating females to breeding 
grounds and some overlap in spatial distribution, San Miguel Island 
females were more likely to move north near Monterey Bay, whereas 
only San Nicolas Island individuals used the Southern California 
Bight (Figure 1b,c). This spatial foraging segregation may be a mech-
anism to reduce intraspecific competition between two breeding 
colonies (Kuhn & Costa, 2014; McHuron et al., 2016), but also may 
reflect spatial constraints associated with lactation, as San Nicolas 
is approximately 120 km southeast of San Miguel (Kuhn & Costa, 
2014). Future work may include finer-scale, colony-specific, or 
behavior-specific models that may capture habitat preference more 
relevant to specific colonies or individual behaviors. Additional tag-
ging studies may help capture suitable habitat for all colonies within 
the Southern California Bight, including Santa Barbara Island and 
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San Clemente Island. However, for the purposes of understanding 
the environmental drivers that influence distribution on a popula-
tion level, this study represents an important first step in modeling 
spatially explicit habitat use for this species. Our findings demon-
strate the utility of a marine species distribution model as a novel 
approach for identifying changes in central-place forager habitat, 
with important implications at the population level. An increased 
understanding of habitat use can not only improve our ability to 
monitor and predict future shifts in distribution as a function envi-
ronmental variability, but also serve in the context of species protec-
tion and fisheries management.

ACKNOWLEDGMENTS

Funding for this effort was provided by the Center for Ocean Solutions 
and by NASA Earth Science Division/Applied Sciences Program’s 
ROSES-2012 A.36 Ecological Forecasting (NNH12ZDA001N-
ECOF). SF was funded by a NRC postdoctoral fellowship. Research 
was conducted as a part of the Tagging of Pelagic Predators (TOPP) 
program. Animal handling procedures were approved by the UCSC 
Chancellors Animal Research Committee and permitted under NMFS 
permit #87-1593. We thank S. Simmons, M. Fowler, M. Weise, and 
a large number of field volunteers that allowed the collection of 
California sea lion data and the U.S. Navy for field and logistical sup-
port. We thank M. Lowry and two anonymous reviewers for their 
contributions that improved earlier versions of this manuscript. We 
also thank the satellite data providers (NASA, NOAA, AVISO) and 
data servers (ERDDAP) used in this study.

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTION

DB, SF, KS, EH, SB, EM, and EB contributed to research design and 
data analysis. SM, EM, PR, and CK conducted fieldwork and collected 
the data. DC, SM, EH, SB, LC, and RL were responsible for funding 
application. DB wrote the first draft. All authors contributed to draft 
revisions and approved the final version of the manuscript.

ORCID

Dana K. Briscoe   http://orcid.org/0000-0002-8891-9294 

Sabrina Fossette   http://orcid.org/0000-0001-8580-9084 

Sara M. Maxwell   http://orcid.org/0000-0002-4425-9378 

Elizabeth A. McHuron   http://orcid.org/0000-0003-3147-2628 

REFERENCES

Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., & Matthiopoulos, 
J. (2008). Estimating space-use and habitat preference from 

wildlife telemetry data. Ecography, 31, 140–160. https://doi.
org/10.1111/j.2007.0906-7590.05236.x

Ainley, D. G., Sydeman, W., Parrish, R., & Lenarz, W. (1993). Oceanic fac-
tors influencing distribution of young rockfish (Sebastes) in central 
California: A predator’s perspective. California Cooperative Oceanic 
Fisheries Investigations Reports, 34, 133–139.

Antonelis, G. A., Stewart, B. S., & Perryman, W. F. (1990). Foraging charac-
teristics of female northern fur seals (Callorhinus ursinus) and California 
sea lions (Zalophus californianus). Canadian Journal of Zoology, 68, 150–
158. https://doi.org/10.1139/z90-022

Arthur, B., Hindell, M., Bester, M., De Bruyn, P. N., Trathan, P., Goebel, 
M., & Lea, M.-A. (2017). Winter habitat predictions of a key Southern 
Ocean predator, the Antarctic fur seal (Arctocephalus gazella). Deep Sea 
Research Part II: Topical Studies in Oceanography, 140, 171–181. https://
doi.org/10.1016/j.dsr2.2016.10.009

Austin, D., Bowen, W., & McMillan, J. (2004). Intraspecific vari-
ation in movement patterns: Modeling individual behaviour 
in a large marine predator. Oikos, 105, 15–30. https://doi.
org/10.1111/j.0030-1299.1999.12730.x

Bailey, H., Fossette, S., Bograd, S. J., Shillinger, G. L., Swithenbank, A. M., 
Georges, J. Y., … Hays, G. C. (2012). Movement patterns for a critically 
endangered species, the leatherback turtle (Dermochelys coriacea), 
linked to foraging success and population status. PLoS One, 7, e36401. 
https://doi.org/10.1371/journal.pone.0036401

Bailey, H., Shillinger, G., Palacios, D., Bograd, S., Spotila, J., Paladino, F., & 
Block, B. (2008). Identifying and comparing phases of movement by 
leatherback turtles using state-space models. Journal of Experimental 
Marine Biology and Ecology, 356, 128–135. https://doi.org/10.1016/j.
jembe.2007.12.020

Bailleul, F., Cotté, C., & Guinet, C. (2010). Mesoscale eddies as foraging area 
of a deep-diving predator, the southern elephant seal. Marine Ecology 
Progress Series, 408, 251–264. https://doi.org/10.3354/meps08560

Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting 
pseudo-absences for species distribution models: How, where and 
how many? Methods in Ecology and Evolution, 3, 327–338. https://doi.
org/10.1111/j.2041-210X.2011.00172.x

Batteen, M. L. (1997). Wind-forced modeling studies of currents, mean-
ders, and eddies in the California Current system. Journal of Geophysical 
Research: Oceans, 102, 985–1010. https://doi.org/10.1029/96JC02803

Baylis, A. M., Page, B., McKenzie, J., & Goldsworthy, S. D. (2012). Individual 
foraging site fidelity in lactating New Zealand fur seals: Continental 
shelf vs. oceanic habitats. Marine Mammal Science, 28, 276–294. 
https://doi.org/10.1111/j.1748-7692.2011.00487.x

Beeson, M. J., & Hanan, D. A. (1996). An evaluation of pinniped-fishery 
interactions in California. Report to the Pacific States Marine Fisheries 
Commission, 46.

Bonadonna, F., Lea, M.-A., Dehorter, O., & Guinet, C. (2001). Foraging 
ground fidelity and route-choice tactics of a marine predator: The 
Antarctic fur seal Arctocephalus gazella. Marine Ecology Progress Series, 
223, 287–297. https://doi.org/10.3354/meps223287

Bost, C.-A., Cotté, C., Bailleul, F., Cherel, Y., Charrassin, J.-B., Guinet, C., … 
Weimerskirch, H. (2009). The importance of oceanographic fronts to 
marine birds and mammals of the southern oceans. Journal of Marine 
Systems, 78, 363–376. https://doi.org/10.1016/j.jmarsys.2008.11.022

Breed, G. A., Costa, D. P., Goebel, M. E., & Robinson, P. W. (2011). Electronic 
tracking tag programming is critical to data collection for behavioral 
time-series analysis. Ecosphere, 2, art10.

Breed, G. A., Costa, D. P., Jonsen, I. D., Robinson, P. W., & Mills-Flemming, J. 
(2012). State-space methods for more completely capturing behavioral 
dynamics from animal tracks. Ecological Modelling, 235, 49–58. https://
doi.org/10.1016/j.ecolmodel.2012.03.021

Buckley, L. B., Urban, M. C., Angilletta, M. J., Crozier, L. G., Rissler, L. J., & 
Sears, M. W. (2010). Can mechanism inform species’ distribution mod-
els? Ecology Letters, 13, 1041–1054.

http://orcid.org/0000-0002-8891-9294
http://orcid.org/0000-0002-8891-9294
http://orcid.org/0000-0001-8580-9084
http://orcid.org/0000-0001-8580-9084
http://orcid.org/0000-0002-4425-9378
http://orcid.org/0000-0002-4425-9378
http://orcid.org/0000-0003-3147-2628
http://orcid.org/0000-0003-3147-2628
https://doi.org/10.1111/j.2007.0906-7590.05236.x
https://doi.org/10.1111/j.2007.0906-7590.05236.x
https://doi.org/10.1139/z90-022
https://doi.org/10.1016/j.dsr2.2016.10.009
https://doi.org/10.1016/j.dsr2.2016.10.009
https://doi.org/10.1111/j.0030-1299.1999.12730.x
https://doi.org/10.1111/j.0030-1299.1999.12730.x
https://doi.org/10.1371/journal.pone.0036401
https://doi.org/10.1016/j.jembe.2007.12.020
https://doi.org/10.1016/j.jembe.2007.12.020
https://doi.org/10.3354/meps08560
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1029/96JC02803
https://doi.org/10.1111/j.1748-7692.2011.00487.x
https://doi.org/10.3354/meps223287
https://doi.org/10.1016/j.jmarsys.2008.11.022
https://doi.org/10.1016/j.ecolmodel.2012.03.021
https://doi.org/10.1016/j.ecolmodel.2012.03.021


     |  2799BRISCOE et al.

Calenge, C. (2011). Home range estimation in R: The adehabitatHR package. 
Saint Benoist, Auffargis, France: Office national de la classe et de la 
faune sauvage.

Calenge, C. (2015). Analysis of animal movements in R: The adehabitatLT 
Package. Vienna, Austria: R Foundation for Statistical Computing.

Calenge, C., Dray, S., & Royer-Carenzi, M. (2009). The concept of animals’ 
trajectories from a data analysis perspective. Ecological Informatics, 4, 
34–41. https://doi.org/10.1016/j.ecoinf.2008.10.002

Carretta, J. V., & Chivers, S. J. (2004). Preliminary estimates of marine 
mammal mortality and biological sampling of cetaceans in California 
gillnet fisheries for 2003. In Paper SC/56/SM1 presented to the 
IWC Scientific Committee, June 2004 (unpublished).[Available from 
Southwest Fisheries Science Center, National Marine Fisheries Service, 
8604 La Jolla Shores Drive, La Jolla, CA 92037, USA]

Carretta, J., Forney, K., & Oleson, E. (2011) U.S. Pacific marine mam-
mal stock assessments: 2011. U.S. Department of Commerce, NOAA 
Technical Memorandum, NOAA-TM-NMFS-SWFSC-488, 356.

Carretta, J. V., Oleson, E., Baker, J., Weller, D. W., Lang, A. R., Forney, 
K. A., … Brownell, R. L. Jr (2016). US Pacific draft marine mammal 
stock assessments: 2015. NOAA Technical Memorandum NMFS-
SWFSC-561. La Jolla, CA: National Oceanic and Atmospheric 
Administration.

Carvalho, S. B., Brito, J. C., Crespo, E. G., Watts, M. E., & Possingham, 
H. P. (2011). Conservation planning under climate change: Toward 
accounting for uncertainty in predicted species distributions to in-
crease confidence in conservation investments in space and time. 
Biological Conservation, 144, 2020–2030. https://doi.org/10.1016/j.
biocon.2011.04.024

Cayula, J.-F., & Cornillon, P. (1992). Edge detection algorithm for SST im-
ages. Journal of Atmospheric and Oceanic Technology, 9, 67–80. https://
doi.org/10.1175/1520-0426(1992)009&lt;0067:EDAFSI&gt;2.0.CO;2

Chavez, F. P., & Messié, M. (2009). A comparison of eastern boundary up-
welling ecosystems. Progress in Oceanography, 83, 80–96. https://doi.
org/10.1016/j.pocean.2009.07.032

Checkley, D. M., & Barth, J. A. (2009). Patterns and processes in the 
California Current System. Progress in Oceanography, 83, 49–64. 
https://doi.org/10.1016/j.pocean.2009.07.028

Chilvers, B. (2008). Foraging site fidelity of lactating New 
Zealand sea lions. Journal of Zoology, 276, 28–36. https://doi.
org/10.1111/j.1469-7998.2008.00463.x

Costa, D. P. (1991). Reproductive and foraging energetics of pinnipeds: 
Implications for life history patterns. In D. Renouf (Ed.), The behaviour 
of pinnipeds (pp. 300–344). Chapman and Hall, London, UK: Springer. 
https://doi.org/10.1007/978-94-011-3100-1

Costa, D. P. (2007). A conceptual model of the variation in parental atten-
dance in response to environmental fluctuation: Foraging energet-
ics of lactating sea lions and fur seals. Aquatic Conservation: Marine 
and Freshwater Ecosystems, 17, S44–S52. https://doi.org/10.1002/
(ISSN)1099-0755

Costa, D., Antonelis, G., & DeLong, R. (1991). Effects of El Niño on the 
foraging energetics of the California sea lion. In F. Trillmich and K. 
Ono (Eds.), Pinnipeds and El Niño Pinnipeds and El Nino: Responses to 
Environmental Stress (pp. 156–165). Springer-Verlag, Berlin, Germany: 
Springer. https://doi.org/10.1007/978-3-642-76398-4

Croll, D. A., Marinovic, B., Benson, S., Chavez, F. P., Black, N., Ternullo, R., & 
Tershy, B. R. (2005). From wind to whales: Trophic links in a coastal up-
welling system. Marine Ecology Progress Series, 289, 117–130. https://
doi.org/10.3354/meps289117

Dambach, J., & Rödder, D. (2011). Applications and future challenges in 
marine species distribution modeling. Aquatic Conservation: Marine and 
Freshwater Ecosystems, 21, 92–100. https://doi.org/10.1002/aqc.1160

DeLong, R., Antonelis, G., Oliver, C., Stewart, B., Lowry, M., & Yochem, P. 
(1991). Effects of the 1982–83 El Nino on several population param-
eters and diet of California sea lions on the California Channel Islands. 
In F. Trillmich and K. Ono (Eds.), Pinnipeds and El Nino: Responses to 

Environmental Stress (pp. 166–172). Springer-Verlag, Berlin, Germany: 
Springer. https://doi.org/10.1007/978-3-642-76398-4

Eguchi, T., Benson, S. R., Foley, D. G., & Forney, K. A. (2017). Predicting 
overlap between drift gillnet fishing and leatherback turtle habitat in 
the California Current Ecosystem. Fisheries Oceanography, 26, 17–33. 
https://doi.org/10.1111/fog.12181

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological 
explanation and prediction across space and time. Annual Review 
of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.
org/10.1146/annurev.ecolsys.110308.120159

Fadely, B. S., Robson, B. W., Sterling, J. T., Greig, A., & Call, K. A. (2005). 
Immature Steller sea lion (Eumetopias jubatus) dive activity in relation to 
habitat features of the eastern Aleutian Islands. Fisheries Oceanography, 
14, 243–258. https://doi.org/10.1111/j.1365-2419.2005.00379.x

Feldkamp, S. D., DeLong, R. L., & Antonelis, G. A. (1989). Diving patterns of 
California sea lions, Zalophus californianus. Canadian Journal of Zoology, 
67, 872–883. https://doi.org/10.1139/z89-129

Ficetola, G. F., Pennati, R., & Manenti, R. (2013). Spatial segregation among 
age classes in cave salamanders: Habitat selection or social inter-
actions? Population Ecology, 55, 217–226. https://doi.org/10.1007/
s10144-012-0350-5

Goldstein, T., Johnson, S., Phillips, A., Hanni, K., & Fauquier, D. (1999). 
Human-related injuries observed in live stranded pinnipeds along the. 
Aquatic Mammals, 25, 43–51.

Gregr, E. J., Lessard, J., & Harper, J. (2013). A spatial framework for rep-
resenting nearshore ecosystems. Progress in Oceanography, 115, 189–
201. https://doi.org/10.1016/j.pocean.2013.05.028

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution 
models in ecology. Ecological Modelling, 135, 147–186. https://doi.
org/10.1016/S0304-3800(00)00354-9

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. John 
Wiley & Sons, Inc.: CRC Press.

Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. G., 
Jonsen, I. D., … Block, B. A. (2012). Predicted habitat shifts of Pacific 
top predators in a changing climate. Nature Climate Change, 3, 234–
238. https://doi.org/10.1038/nclimate1686

Hazen, E. L., Palacios, D., Forney, K., Howell, E. A., Becker, E. A., Hoover, 
A. L., … Bailey, H. (2016). WhaleWatch: A dynamic management tool 
for predicting blue whale density in the California Current. Journal of 
Applied Ecology, 54, 1415–1428.

Hobday, A. J., Hartog, J. R., Spillman, C. M., Alves, O., & Hilborn, R. (2011). 
Seasonal forecasting of tuna habitat for dynamic spatial management. 
Canadian Journal of Fisheries and Aquatic Sciences, 68, 898–911. https://
doi.org/10.1139/f2011-031

Hooker, S. K., Cañadas, A., Hyrenbach, K. D., Corrigan, C., Polovina, J. J., & 
Reeves, R. R. (2011). Making protected area networks effective for ma-
rine top predators. Endangered Species Research, 13, 203–218. https://
doi.org/10.3354/esr00322

Hyrenbach, K. D., Forney, K. A., & Dayton, P. K. (2000). Marine protected 
areas and ocean basin management. Aquatic Conservation: Marine 
and Freshwater Ecosystems, 10, 437–458. https://doi.org/10.1002/
(ISSN)1099-0755

Irons, D. B. (1998). Foraging area fidelity of individual seabirds in relation 
to tidal cycles and flock feeding. Ecology, 79, 647–655. https://doi.
org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2

Jonsen, I. D., Flemming, J. M., & Myers, R. A. (2005). Robust state–space 
modeling of animal movement data. Ecology, 86, 2874–2880. https://
doi.org/10.1890/04-1852

Kappes, M. A., Shaffer, S. A., Tremblay, Y., Foley, D. G., Palacios, D. M., Robinson, 
P. W., … Costa, D. P. (2010). Hawaiian albatrosses track interannual vari-
ability of marine habitats in the North Pacific. Progress in Oceanography, 
86, 246–260. https://doi.org/10.1016/j.pocean.2010.04.012

Kuhn, C. E., & Costa, D. P. (2014). Interannual variation in the at-sea be-
havior of California sea lions (Zalophus californianus). Marine Mammal 
Science, 30, 1297–1319. https://doi.org/10.1111/mms.12110

https://doi.org/10.1016/j.ecoinf.2008.10.002
https://doi.org/10.1016/j.biocon.2011.04.024
https://doi.org/10.1016/j.biocon.2011.04.024
https://doi.org/10.1175/1520-0426(1992)009%3c0067:EDAFSI%3e2.0.CO;2
https://doi.org/10.1175/1520-0426(1992)009%3c0067:EDAFSI%3e2.0.CO;2
https://doi.org/10.1016/j.pocean.2009.07.032
https://doi.org/10.1016/j.pocean.2009.07.032
https://doi.org/10.1016/j.pocean.2009.07.028
https://doi.org/10.1111/j.1469-7998.2008.00463.x
https://doi.org/10.1111/j.1469-7998.2008.00463.x
https://doi.org/10.1007/978-94-011-3100-1
https://doi.org/10.1002/(ISSN)1099-0755
https://doi.org/10.1002/(ISSN)1099-0755
https://doi.org/10.1007/978-3-642-76398-4
https://doi.org/10.3354/meps289117
https://doi.org/10.3354/meps289117
https://doi.org/10.1002/aqc.1160
https://doi.org/10.1007/978-3-642-76398-4
https://doi.org/10.1111/fog.12181
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1365-2419.2005.00379.x
https://doi.org/10.1139/z89-129
https://doi.org/10.1007/s10144-012-0350-5
https://doi.org/10.1007/s10144-012-0350-5
https://doi.org/10.1016/j.pocean.2013.05.028
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1038/nclimate1686
https://doi.org/10.1139/f2011-031
https://doi.org/10.1139/f2011-031
https://doi.org/10.3354/esr00322
https://doi.org/10.3354/esr00322
https://doi.org/10.1002/(ISSN)1099-0755
https://doi.org/10.1002/(ISSN)1099-0755
https://doi.org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2
https://doi.org/10.1890/04-1852
https://doi.org/10.1890/04-1852
https://doi.org/10.1016/j.pocean.2010.04.012
https://doi.org/10.1111/mms.12110


2800  |     BRISCOE et al.

Lewison, R., Hobday, A. J., Maxwell, S., Hazen, E., Hartog, J. R., Dunn, D. 
C., … Barnes, M. (2015). Dynamic ocean management: Identifying the 
critical ingredients of dynamic approaches to ocean resource manage-
ment. BioScience, 65, 486–498.

Louzao, M., Pinaud, D., Peron, C., Delord, K., Wiegand, T., & Weimerskirch, 
H. (2011). Conserving pelagic habitats: Seascape modelling of an oce-
anic top predator. Journal of Applied Ecology, 48, 121–132. https://doi.
org/10.1111/j.1365-2664.2010.01910.x

Lowry, M. S., & Carretta, J. V. (1999) Market squid (Loligo opalescens) 
in the diet of California sea lions (Zalophus californianus) in south-
ern California (1981–1995). California Cooperative Oceanic Fisheries 
Investigations Report, 196–207.

Lowry, M. S., & Forney, K. A. (2005). Abundance and distribution of California 
sea lions (Zalophus californianus) in central and northern California 
during 1998 and summer 1999. Fishery Bulletin, 103, 331–343.

Lowry, M. S., Melin, S. R., & Laake, J. L. (2017). Breeding season distribution 
and population growth of California sea lions, Zalophus californianus, in 
the United States during 1964–2014. NOAA Technical Memorandum 
NMFS-SWFSC-574. La Jolla, CA: National Oceanic and Atmospheric 
Administration.

Lowry, M. S., Stewart, B. S., Heath, C. B., Yochem, P. K., & Francis, M. 
(1991). Seasonal and annual variability in the diet of California sea 
lions, Zalophus californianus, at San Nicolas Island, California, 1981–86. 
Fishery Bulletin, 89, 331–336.

Lowther, A., Harcourt, R. G., Hamer, D., & Goldsworthy, S. (2011). Creatures 
of habit: Foraging habitat fidelity of adult female Australian sea lions. 
Marine Ecology Progress Series, 443, 249–263. https://doi.org/10.3354/
meps09392

Lynn, R. J., & Simpson, J. J. (1987). The California current system: The seasonal 
variability of its physical characteristics. Journal of Geophysical Research: 
Oceans, 92, 12947–12966. https://doi.org/10.1029/JC092iC12p12947

Matthiopoulos, J., Harwood, J., & Thomas, L. (2005). Metapopulation 
consequences of site fidelity for colonially breeding mammals 
and birds. Journal of Animal Ecology, 74, 716–727. https://doi.
org/10.1111/j.1365-2656.2005.00970.x

Maxwell, S. M., Hazen, E. L., Bograd, S. J., Halpern, B. S., Breed, G. A., Nickel, 
B., … Dutton, P. H. (2013). Cumulative human impacts on marine pred-
ators. Nature Communications, 4, 2688.

Maxwell, S. M., Hazen, E. L., Lewison, R. L., Dunn, D. C., Bailey, H., Bograd, 
S. J., … Bennett, M. (2015). Dynamic ocean management: Defining and 
conceptualizing real-time management of the ocean. Marine Policy, 58, 
42–50. https://doi.org/10.1016/j.marpol.2015.03.014

McClatchie, S., Charter, R., Watson, W., Lo, N., Hill, K., Manzano-Sarabia, 
M., … Schwing, F. B. (2009). State of the California Current, Spring 
2008–2009: Cold conditions drive regional differences in coastal pro-
duction. Progress Report No. 50 (pp.43-68). California Cooperative 
Oceanic Fishes Investigations

McClatchie, S., Field, J., Thompson, A. R., Gerrodette, T., Lowry, M., Fiedler, P. 
C., … Vetter, R. D. (2016). Food limitation of sea lion pups and the decline 
of forage off central and southern California. Open Science, 3, 150628.

McDonald, B. I., & Ponganis, P. J. (2013). Insights from venous oxygen 
profiles: Oxygen utilization and management in diving California sea 
lions. Journal of Experimental Biology, 216, 3332–3341. https://doi.
org/10.1242/jeb.085985

McHuron, E. A., Block, B. A., & Costa, D. P. (2017). Movements and dive be-
haviour of juvenile California sea lions from Año Nuevo Island. Marine 
Mammal Science, 34.1, 238–249.

McHuron, E., Mangel, M., Schwarz, L., & Costa, D. (2017). Energy and prey 
requirements of California sea lions under variable environmental 
conditions. Marine Ecology Progress Series, 567, 235–247. https://doi.
org/10.3354/meps12041

McHuron, E., Robinson, P., Simmons, S., Kuhn, C., Fowler, M., & Costa, 
D. (2016). Foraging strategies of a generalist marine predator inhab-
iting a dynamic environment. Oecologia, 182, 995–1005. https://doi.
org/10.1007/s00442-016-3732-0

Melin, S., DeLong, R., & Siniff, D. (2008). The effects of El Niño on the 
foraging behavior of lactating California sea lions (Zalophus califor-
nianus californianus) during the nonbreeding season. Canadian Journal 
of Zoology, 86, 192–206. https://doi.org/10.1139/Z07-132

Melin, S. R., Delong, R. L., Thomason, J. R., & Vanblaricom, G. R. 
(2000). Attendance patterns of California sea lion (Zalophus cal-
ifornianus) females and pups during the non-breeding season at San 
Miguel Island. Marine Mammal Science, 16, 169–185. https://doi.
org/10.1111/j.1748-7692.2000.tb00911.x

Melin, S. R., Orr, A. J., Harris, J. D., Laake, J. L., & DeLong, R. L. (2012). 
California sea lions: An indicator for integrated ecosystem assessment 
of the California current system. California Cooperative Oceanic Fisheries 
Investigations Reports, 53, 140–152.

NMFS (1997). National Marine Fisheries Service. Impacts of California sea 
lions and Pacific harbor seals on salmonids and the coastal ecosystems 
of Washington, Oregon, and California. NOAA Technial Memorandum 
NMFS-NWFSC-28.

Ono, K. A., Boness, D. J., & Oftedal, O. T. (1987). The effect of a natural 
environmental disturbance on maternal investment and pup behavior 
in the California sea lion. Behavioral Ecology and Sociobiology, 21, 109–
118. https://doi.org/10.1007/BF02395438

Orians, G. H., & Pearson, N. E. (1979). On the theory of central place for-
aging. In D.J. Horn, R.D. Mitchell and G.R. Straits (Eds.), Analysis of eco-
logical systems (pp. 155–177). Columbus, OH: Ohio State University 
Press.

Orr, A., VanBlaricom, G., DeLong, R., Cruz-Escalona, V. H., & Newsome, S. 
(2011). Intraspecific comparison of diet of California sea lions (Zalophus 
californianus) assessed using fecal and stable isotope analyses. Canadian 
Journal of Zoology, 89, 109–122. https://doi.org/10.1139/Z10-101

Pinaud, D., & Weimerskirch, H. (2005). Scale-dependent habitat use in a 
long-ranging central place predator. Journal of Animal Ecology, 74, 852–
863. https://doi.org/10.1111/j.1365-2656.2005.00984.x

Polovina, J., Uchida, I., Balazs, G., Howell, E. A., Parker, D., & Dutton, P. 
(2006). The Kuroshio extension bifurcation region: A pelagic hotspot 
for juvenile loggerhead sea turtles. Deep Sea Research Part II: Topical 
Studies in Oceanography, 53, 326–339. https://doi.org/10.1016/j.
dsr2.2006.01.006

R Core Team (2016). R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing. http://ww-
w.R-project.org/

Ream, R. R., Sterling, J. T., & Loughlin, T. R. (2005). Oceanographic features 
related to northern fur seal migratory movements. Deep Sea Research 
Part II: Topical Studies in Oceanography, 52, 823–843. https://doi.
org/10.1016/j.dsr2.2004.12.021

Redfern, J., Ferguson, M., Becker, E., Hyrenbach, K., Good, C., Barlow, 
J., … Ballance, L. (2006). Techniques for cetacean–habitat modeling. 
Marine Ecology Progress Series, 310, 271–295. https://doi.org/10.3354/
meps310271

Roman, J., Altman, I., Dunphy-Daly, M. M., Campbell, C., Jasny, M., & 
Read, A. J. (2013). The marine mammal protection act at 40: Status, 
recovery, and future of US marine mammals. Annals of the New 
York Academy of Sciences, 1286, 29–49. https://doi.org/10.1111/
nyas.12040

Rosenberg, D. K., & McKelvey, K. S. (1999). Estimation of habitat selection 
for central-place foraging animals. The Journal of Wildlife Management, 
63, 1028–1038. https://doi.org/10.2307/3802818

Scales, K. L., Miller, P. I., Hawkes, L. A., Ingram, S. N., Sims, D. W., & Votier, S. 
C. (2014). On the Front Line: Frontal zones as priority at-sea conserva-
tion areas for mobile marine vertebrates. Journal of Applied Ecology, 51, 
1575–1583. https://doi.org/10.1111/1365-2664.12330

Scales, K. L., Schorr, G. S., Hazen, E. L., Bograd, S. J., Miller, P. I., Andrews, R. 
D., … Falcone, E. A. (2017). Should I stay or should I go? Modelling year-
round habitat suitability and drivers of residency for fin whales in the 
California Current. Diversity and Distributions, 23, 1204–1215. https://
doi.org/10.1111/ddi.12611

https://doi.org/10.1111/j.1365-2664.2010.01910.x
https://doi.org/10.1111/j.1365-2664.2010.01910.x
https://doi.org/10.3354/meps09392
https://doi.org/10.3354/meps09392
https://doi.org/10.1029/JC092iC12p12947
https://doi.org/10.1111/j.1365-2656.2005.00970.x
https://doi.org/10.1111/j.1365-2656.2005.00970.x
https://doi.org/10.1016/j.marpol.2015.03.014
https://doi.org/10.1242/jeb.085985
https://doi.org/10.1242/jeb.085985
https://doi.org/10.3354/meps12041
https://doi.org/10.3354/meps12041
https://doi.org/10.1007/s00442-016-3732-0
https://doi.org/10.1007/s00442-016-3732-0
https://doi.org/10.1139/Z07-132
https://doi.org/10.1111/j.1748-7692.2000.tb00911.x
https://doi.org/10.1111/j.1748-7692.2000.tb00911.x
https://doi.org/10.1007/BF02395438
https://doi.org/10.1139/Z10-101
https://doi.org/10.1111/j.1365-2656.2005.00984.x
https://doi.org/10.1016/j.dsr2.2006.01.006
https://doi.org/10.1016/j.dsr2.2006.01.006
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1016/j.dsr2.2004.12.021
https://doi.org/10.1016/j.dsr2.2004.12.021
https://doi.org/10.3354/meps310271
https://doi.org/10.3354/meps310271
https://doi.org/10.1111/nyas.12040
https://doi.org/10.1111/nyas.12040
https://doi.org/10.2307/3802818
https://doi.org/10.1111/1365-2664.12330
https://doi.org/10.1111/ddi.12611
https://doi.org/10.1111/ddi.12611


     |  2801BRISCOE et al.

Schwing, F. B., Bond, N. A., Bograd, S. J., Mitchell, T., Alexander, M. A., & 
Mantua, N. (2006). Delayed coastal upwelling along the US West Coast in 
2005: A historical perspective. Geophysical Research Letters, 33, L22S01. 
https://doi.10.1029/2006GL026911 

Schwing, F., Husby, D., Garfield, N., & Tracy, D. (1991). Mesoscale oceanic 
response to wind events off central California in spring 1989: CTD 
surveys and AVHRR imagery. California Cooperative Oceanic Fisheries 
Investigations Report, 32, 47–62.

Simmons, R. A. (2016). ERDDAP. Monterey, CA: NOAA/NMFS/SWFSC/
ERD. https://coastwatch.pfeg.noaa.gov/erddap

Sing, T., Sander, O., Beerenwinkel, N., & Lengauer, T. (2015). ROCR. R 
Package–Visualizing the Performance of Scoring Classifiers. Available on-
line: https://rdrr.io/cran/ROCR/

Skov, H., Heinänen, S., Thaxter, C. B., Williams, A. E., Lohier, S., & Banks, A. N. 
(2016). Real-time species distribution models for conservation and man-
agement of natural resources in marine environments. Marine Ecology 
Progress Series, 542, 221–234. https://doi.org/10.3354/meps11572

Stewart, B. S., & Yochem, P. K. (1987). Entanglement of pinnipeds in syn-
thetic debris and fishing net and line fragments at San Nicholas and 
San Miguel Islands, California, 1978–1986. Marine Pollution Bulletin, 
18, 336–339. https://doi.org/10.1016/S0025-326X(87)80021-8

Strub, P. T., & James, C. (2000). Altimeter-derived variability of surface veloc-
ities in the California Current System: 2. Seasonal circulation and eddy 
statistics. Deep Sea Research Part II: Topical Studies in Oceanography, 47, 
831–870. https://doi.org/10.1016/S0967-0645(99)00129-0

Studwell, A. J., Hines, E., Elliott, M. L., Howar, J., Holzman, B., Nur, N., & 
Jahncke, J. (2017). Modeling nonresident seabird foraging distributions 
to inform ocean zoning in Central California. PLoS One, 12, e0169517. 
https://doi.org/10.1371/journal.pone.0169517

Su, N.-J., Sun, C.-L., Punt, A. E., Yeh, S.-Z., & DiNardo, G. (2011). Modelling 
the impacts of environmental variation on the distribution of blue mar-
lin, Makaira nigricans, in the Pacific Ocean. ICES Journal of Marine Science: 
Journal du Conseil, 68, 1072–1080. https://doi.org/10.1093/icesjms/fsr028

Sydeman, W. J., & Allen, S. G. (1999). Pinniped population dynamics in 
central California: Correlations with sea surface temperature and up-
welling indices. Marine Mammal Science, 15, 446–461. https://doi.
org/10.1111/j.1748-7692.1999.tb00812.x

Thomas, A. C., & Brickley, P. (2006). Satellite measurements of chlorophyll 
distribution during spring 2005 in the California Current. Geophysical 
Research Letters, 33, L22S05. https://doi.org/10.1029/2006GL026588 

Trillmich, F., Ono, K., Costa, D., DeLong, R., Feldkamp, S., Francis, J., … 
Majluf, P. (1991) The effects of El Nino on pinniped populations in 
the eastern Pacific. In F. Trillmich and K. Ono (Eds.), Pinnipeds and 
El Niño Pinnipeds and El Nino: Responses to Environmental Stress (pp. 
247–270). Springer-Verlag, Berlin, Germany: Springer. https://doi.
org/10.1007/978-3-642-76398-4

Villegas-Amtmann, S., Atkinson, S., Paras-Garcia, A., & Costa, D. P. (2012). 
Seasonal variation in blood and muscle oxygen stores attributed to 
diving behavior, environmental temperature and pregnancy in a ma-
rine predator, the California sea lion. Comparative Biochemistry and 
Physiology Part A: Molecular & Integrative Physiology, 162, 413–420. 
https://doi.org/10.1016/j.cbpa.2012.04.019

Villegas-Amtmann, S., Costa, D. P., Tremblay, Y., Salazar, S., & Aurioles-
Gamboa, D. (2008). Multiple foraging strategies in a marine apex 
predator, the Galapagos sea lion Zalophus wollebaeki. Marine Ecology 
Progress Series, 363, 299–309. https://doi.org/10.3354/meps07457

Villegas-Amtmann, S., Simmons, S. E., Kuhn, C. E., Huckstadt, L. A., & 
Costa, D. P. (2011). Latitudinal range influences the seasonal variation 

in the foraging behavior of marine top predators. PLoS One, 6, e23166. 
https://doi.org/10.1371/journal.pone.0023166

Wedding, L., Maxwell, S., Hyrenbach, D., Dunn, D., Roberts, J., Briscoe, 
D., … Halpin, P. (2016). Geospatial approaches to support pelagic 
conservation planning and adaptive management. Endangered Species 
Research, 30, 1–9. https://doi.org/10.3354/esr00716

Weise, M. J., Costa, D. P., & Kudela, R. M. (2006). Movement and diving be-
havior of male California sea lion (Zalophus californianus) during anomalous 
oceanographic conditions of 2005 compared to those of 2004. Geophysical 
Research Letters, 33, L22S10. https://doi.org/10.1029/2006GL027113

Weise, M. J., & Harvey, J. T. (2005). Impact of the California sea lion 
(Zalophus californianus) on salmon fisheries in Monterey Bay, California. 
Fishery Bulletin, 103, 685–696.

Weise, M. J., & Harvey, J. T. (2008). Temporal variability in ocean climate 
and California sea lion diet and biomass consumption: Implications for 
fisheries management. Marine Ecology Progress Series, 373, 157–172. 
https://doi.org/10.3354/meps07737

Willis-Norton, E., Hazen, E. L., Fossette, S., Shillinger, G., Rykaczewski, 
R. R., Foley, D. G., … Bograd, S. J. (2015). Climate change impacts on 
leatherback turtle pelagic habitat in the Southeast Pacific. Deep Sea 
Research Part II: Topical Studies in Oceanography, 113, 260–267. https://
doi.org/10.1016/j.dsr2.2013.12.019

Wood, S. (2006) Generalized additive models: An introduction with R. 
Chapman Hall. CRC Press. Boca Raton, FL: CRC press.

Wood, S., & Scheipl, F. (2013). gamm4: Generalized additive mixed mod-
els using mgcv and lme4. In. R package version 0.2-2, http://CRAN.R-
project.org/package=gamm4

Yen, P., Sydeman, W., Bograd, S., & Hyrenbach, K. (2006). Spring-time dis-
tributions of migratory marine birds in the southern California Current: 
Oceanic eddy associations and coastal habitat hotspots over 17 years. 
Deep Sea Research Part II: Topical Studies in Oceanography, 53, 399–418. 
https://doi.org/10.1016/j.dsr2.2006.01.013

Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). 
Zero-truncated and zero-inflated models for count data. In M. Gail, 
K. Krickeberg, J.M. Samet, A. Tsiatis, and W. Wong (Eds.), Mixed ef-
fects models and extensions in ecology with R (pp. 261–293). Statistics 
for Biology and Health. Springer, New York, NY: Springer. https://doi.
org/10.1007/978-0-387-87458-6

Zydelis, R., Lewison, R. L., Shaffer, S. A., Moore, J. E., Boustany, A. M., 
Roberts, J. J., … Crowder, L. B. (2011). Dynamic habitat models: Using 
telemetry data to project fisheries bycatch. Proceedings of the Royal 
Society of London B: Biological Sciences, 278, 3191–3200. https://doi.
org/10.1098/rspb.2011.0330

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the 
supporting information tab for this article. 

How to cite this article: Briscoe DK, Fossette S, Scales KL, 
et al. Characterizing habitat suitability for a central-place 
forager in a dynamic marine environment. Ecol Evol. 
2018;8:2788–2801. https://doi.org/10.1002/ece3.3827

https://doi.10.1029/2006GL026911
https://coastwatch.pfeg.noaa.gov/erddap
https://rdrr.io/cran/ROCR/
https://doi.org/10.3354/meps11572
https://doi.org/10.1016/S0025-326X(87)80021-8
https://doi.org/10.1016/S0967-0645(99)00129-0
https://doi.org/10.1371/journal.pone.0169517
https://doi.org/10.1093/icesjms/fsr028
https://doi.org/10.1111/j.1748-7692.1999.tb00812.x
https://doi.org/10.1111/j.1748-7692.1999.tb00812.x
https://doi.org/10.1029/2006GL026588
https://doi.org/10.1007/978-3-642-76398-4
https://doi.org/10.1007/978-3-642-76398-4
https://doi.org/10.1016/j.cbpa.2012.04.019
https://doi.org/10.3354/meps07457
https://doi.org/10.1371/journal.pone.0023166
https://doi.org/10.3354/esr00716
https://doi.org/10.1029/2006GL027113
https://doi.org/10.3354/meps07737
https://doi.org/10.1016/j.dsr2.2013.12.019
https://doi.org/10.1016/j.dsr2.2013.12.019
http://CRAN.R-project.org/package=gamm4
http://CRAN.R-project.org/package=gamm4
https://doi.org/10.1016/j.dsr2.2006.01.013
https://doi.org/10.1007/978-0-387-87458-6
https://doi.org/10.1007/978-0-387-87458-6
https://doi.org/10.1098/rspb.2011.0330
https://doi.org/10.1098/rspb.2011.0330
https://doi.org/10.1002/ece3.3827

	Old Dominion University
	ODU Digital Commons
	2018

	Characterizing Habitat Suitability for a Central‐Place Forager in a Dynamic Marine Environment
	Dana K. Briscoe
	Sabrina Fossette
	Kylie L. Scales
	Elliott L. Hazen
	Steven J. Bograd
	See next page for additional authors
	Repository Citation
	Original Publication Citation
	Authors


	

