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A Dielectric Rod Antenna for Picosecond Pulse Stimulation of 
Neurological Tissue

Ross A. Petrella, Karl H. Schoenbach, and Shu Xiao
Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer 
Engineering, Old Dominion University, Norfolk, VA 23529, USA

Abstract

A dielectrically loaded wideband rod antenna has been studied as a pulse delivery system to 

subcutaneous tissues. Simulation results applying 100 ps electrical pulse show that it allows us to 

generate critical electric field for biological effects, such as brain stimulation, in the range of 

several centimeters. In order to reach the critical electric field for biological effects, which is 

approximately 20 kV/cm, at a depth of 2 cm, the input voltage needs to be 175 kV. The electric 

field spot size in the brain at this position is approximately 1 cm2. Experimental studies in free 

space with a conical antenna (part of the antenna system) with aluminum nitride as the dielectric 

have confirmed the accuracy of the simulation. These results set the foundation for high voltage in 

situ experiments on the complete antenna system and the delivery of pulses to biological tissue.

Index Terms

Ultrawideband antennas; dielectric loaded antennas; picoseconds pulses

I. INTRODUCTION

Recent studies with high-voltage picosecond pulses showed that pulsed electric fields of just 

20 kV/cm amplitude have strong effects on neurons. Hundred pulses at a repetition rate of 

500 Hz caused membrane depolarization of neurons, which culminated in an action potential 

at injection currents of − 80 pA [1]. More recent studies on different cell types indicate that 

even a single pulse can cause an increase in cytosolic calcium. The results indicate that such 

picosecond pulses cause long-lasting opening of voltage gated calcium channels [2]. 

Whereas these studies were performed in vitro, with the electric fields generated between 

metal electrodes, the results indicate the feasibility of using wideband antennas for the 

delivery of such extremely short pulses to tissue, e.g. brain tissue over a distance of 

centimeters. While needle electrodes are typically used in this range, an antenna offers a 

noninvasive method to deliver pulses in vivo. The use of pulses with durations and/or rise-

times on the order of 100 ps would allow us to focus the electric fields in subcutaneous 

tissue with a resolution in the subcentimeter range.

Efforts to utilize wideband antennas for the delivery of intense pulsed electric fields into 

tissue have led to the development of focusing wideband antennas [3,4]. For example the 

prolate spheroid impulse radiating antenna (PSIRA), a reflector type antenna for short 

distance illumination designed by Baum et al. [5,6], has the potential to generate large 
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electric fields in tissue. The electric fields produced by such reflector type antennas can be 

high enough to induce biological effects. Previously, using a parabolic impulse radiating 

antenna (IRA) designed for long distance scattering and feeding, pulses with a rise time of 

200 ps and pulse width [full-width at half-maximum (FWHM)] of 400 ps, it is possible to 

generate a peak electric field of 68 kV/m at 10 m if the voltage fed into the antenna is 1 MV 

[7]. At closer distance, electrical fields in air could be much higher and close to the required 

field strength for biostimulation: 20 kV/cm. Yet, the electric field in biological targets is 

strongly reduced compared to that in air by the reflection at the interface of air and tissue, 

which is due to the large difference in permittivity. The relative permittivity of brain matter 

for example is approximately 50 at a frequency of 1 GHz [8]. As a result, the antenna-based 

delivery of subnanosecond electric pulses still has not found therapeutic applications.

An approach that can overcome the problem of losses at the interface of air and tissue is the 

use of a dielectric antenna. With such an antenna, the coupling of the radiation to the tissue 

can be strongly increased by making direct contact to the tissue. As will be shown, although 

it is not as efficient as large antennas, it permits the delivery of pulses to targets that are 1–2 

cm in depth. Also, because the antenna is dielectrically loaded, it can be much smaller than a 

prolate-spheroidal antenna.

The dielectric antenna which is described in this paper consists of three sections: 1) a hollow 

conical TEM wave guide, which is loaded with a dielectric. Such a structure is commonly 

used for launching waves to a dielectric lens [9]. In principle it is an aperture antenna but has 

a small aperture area; 2) a dielectric rod, i.e., a cylindrical wave guide, which is used to 

confine the electromagnetic waves and guide them to the emitting section; and 3) a dielectric 

cone as the wave emitting section. The conical segment acts like a convex lens, confining the 

electric field to a small area and provides for the coupling of the dielectric interface between 

antenna and tissue, reducing reflections.

Such an antenna could be used to stimulate neurological tissue. We have therefore used CST 

Microwave Studio® to simulate the electric field distribution in a partial human head voxel 

model. The model consists of seven dielectrics with dielectric properties of skin, fat, bone, 

blood, optic nerve, and brain (grey and white matter). Aluminum Nitride (AlN) with ε = 7.3 

was selected as the antenna dielectric material.

The performance of the antenna was examined with respect to: 1) the electric field 

orientation in the target tissue; 2) the electric field gradient (The electric field decreases as 

the wave penetrates, but the field at the skin covering the skull should not be excessively 

large compared to that in the target zone, so that damage can be avoided); 3) the spot size of 

the field confinement; 4) the magnitude of the electric field in the brain tissue. Since the 

critical electric field for inducing cell membrane permeabilization is approximately 20 

kV/cm [1], we will assess how practical it is to reach such condition in the biological target. 

In order to verify the accuracy of the code, we have constructed and tested a dielectric 

antenna using a commercially off-the-shelf dielectric material (Aluminum Nitride ceramic).
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II. ANTENNA DESIGN

The structure of the antenna is shown in Fig.1. It has three sections: the wave launching 

section, the dielectric wave guide, and the wave emitting section. The impulse source is 

connected to the apex of the wave launching section, so a TEM wave is formed and is 

further guided to the wave emitting section by the dielectric wave guide. Throughout the 

antenna, the same dielectric material is used. Unlike a typical antenna pointing to the free 

space, this antenna makes direct contact with a tissue through the dielectric cone in the wave 

emitting section. There is no air gap between the antenna and the tissue.

2.1 Section1: Wave Launching Section

In Section 1, two triangular metal plates are bent in a conical shape to symmetrically cover 

part of the dielectric cone. This part of the antenna is defined by two angles: the apex angle 

θ0 and the azimuth angle ϕ0. Such antenna was studied by Shen et al. [10]. The 

characteristic impedance of the wave launching section is:

(1)

where,

Zc is the free space impedance (377 Ω)and εr is the dielectric permittivity of the dielectric. 

For the dielectric we studied, Aluminum Nitride ceramic (εr = 7.3), the characteristic 

impedance is shown in Fig.2. This allows us to identify the angle of ϕ0 for a given 

impedance.

The important features of an infinitely long version of this antenna (consisting of only wave 

launching section) are: 1) frequency independence (important for wide-band pulses) 2) 

uniform azimuthal directivity and 3) TEM mode excitation. However, we have to deal with 

an antenna that has a finite length, which can be as short as a few centimeters. The scattering 

of the electromagnetic waves at the end of the conical transmission line will in this case 

cause pulse ringing or pulse broadening at the target. This corresponds to the increase in 

pulse duration at the target. This may be unfavorable for radar or communication 

applications, but for biological applications it may be useful since the threshold electric 

fields for biological effects generally is reduced as the pulse duration increases, thus easing 

the requirement of the pulsed power system.
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2.2 Section 2: Dielectric Wave Guide

Dielectric wave guides are commonly used for guiding high frequency electromagnetic 

waves, such as millimeter waves and light waves. While many modes of waves can 

propagate in the cylindrical wave guide, the fundamental mode (lowest) is HE11 mode, for 

which the cutoff frequency is very low. As such, wideband signals are favored [11]. Outside 

the waveguide, an evanescent wave propagates with the speed of light in free space, but the 

field intensity decreases exponentially in radial direction from the waveguide surface. So the 

wave energy is mostly confined in the dielectric wave guide.

When determining the diameter of the rod, a rule of thumb is that the radius R should be 

greater than the pulse spatial width:

(2)

where tp is the pulse duration. This means that the pulse reflected from the rod-air interface 

will be temporally separated from the existing pulse on the axis. The axis is the location of 

the highest power density, and consequently the pulse is defined mainly by the waves on the 

axis. For small radius rods, the reflection adds to the existing pulse temporally, creating 

distorted waveforms. This distortion is pronounced for low frequency waves or long pulses. 

Therefore, the radius essentially determines the low frequency limit of the antenna.

As far as the length of the dielectric wave guide L concerns, it should satisfy (Fig.3):

(3)

This condition ensures the pulse will not be broadened once it reaches the end of the wave 

guide. Waves scattered off at the discontinuity at the interface from the dielectric rod to the 

air also contribute to the pulse duration if they reach the end of the wave guide at the same 

time and cause a broadening of the pulse.

2.3 Coupling of Wave Launching Section with Dielectric Wave Guide

At the intersection of the conical wave launching section with the cylindrical wave guide 

(Section 2), the incident waves should ideally be reflected towards the axis of the cylindrical 

wave guide. This can be achieved using the concept of total internal reflection. The critical 

angle for total internal reflection is:

(4)

with εr being the relative permittivity of the dielectric and with β0 being the complementary 

angle to the apex angle (Fig. 4).
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When Eq. 4 is applied to dielectrics with large permittivity, the result is a relatively small β0 

and consequently a large θ0. For example, β0 = 21° for εr = 7.3. Such a configuration, where 

the wave launching section is rather short is undesirable. This is because the waves 

propagating at angles θ < θ0 in the wave launching section will arrive at Section 2 earlier 

than those where θ is close to θ0 (see Fig.4, dashed line). Consequently, at the interface of 

Section 1 and Section 2 the wave front is still spherical. In order to preserve the pulse shape 

of the incident pulse in the cylindrical wave guide, the incident waves Section 2 should 

ideally be planar waves. However this can only be achieved by using a small slope launcher 

(large β0 and small θ0), which resembles to some degree two parallel plates.

It seem that keeping the wave launching section short (large θ0) has certain advantages such 

as low losses due to scattering and high axial electric fields in the rod. However, that needs 

to be balanced against the distortion of the waves. Considering the importance of preserving 

the pulse shape in the antenna it might be still preferable to use a wave launcher with a small 

apex angle.

2.4 The Electric Field on the Axis

The electric field radiated from the wave launcher can be obtained from the aperture theory 

[12]. Given the coordinate system seen in Fig. 1, the tangential component of the electric 

field on the aperture plane is known [10], the radiated field at a point on the axis is:

(5)

where R0 is the distance of an observer on the axis from the aperture center. The input pulse 

has a time dependence of f(t), but for the observer the pulse has a propagation delay t − R0/c. 

For the near field, this delay is negligible. The field depends on both the input pulse voltage 

and the time derivative of the pulse. Specifically, for the field term near the antenna, f(t) is 

dominant and the time derivative term ∂f(t)/ ∂t is dominant for the field far from it. The 

coefficients α(1 or 2)
y,y depict the integral of the tangent electric fields over the aperture 

plane. In general, homogenous unidirectionally aligned “currents” resulting from a uniform 

illumination produce larger coefficients and hence larger electric fields. In this case, a low 

impedance conical wave launcher (correspondingly large ϕ0) is preferable for radiating 

waves at high intensity. The aperture size preferably is comparable to the observing distance, 

so the ratios of α(1 or 2)
y,y over R0 or  are not small, which means that the ratio of L/R 

should not be too large.

2.5 Section 3: The Wave Emitting Section

The purpose of the third section of the antenna is to radiate the electric field into the tissue. 

Applying the ray theory, the dielectric taper refracts the incident waves and directs them 

towards the apex. In this way the terminal taper acts like an axicon with a majority of the 

energy entering the tissue near the apex.
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The impinging ray should be reflected at the surface of the cone and then exit from the cone 

apex. This requires the angle of the cone to be α0, the critical angle for total internal 

reflection (Fig.5):

(6)

This ensures the rays that are in parallel with the axis reach the cone apex and radiate into 

the tissue. For fields scattered off at the end of the wave launcher, the incident angle, α, can 

be larger than α0. They are still totally reflected, but the reflected waves create focal points 

inside the cone, rather than reaching the cone apex. When α is less than α0 refraction occurs 

and the transmitted wave departs the cone and becomes spread around the cone apex. This 

causes a widening of the focal spot in the tissue.

III. RESULTS

3.1 Antenna Parameters

The wave launcher (Section 1) was designed to use with a commercially available dielectric 

material, AlN (εr = 7.3), and to have an impedance of 50 Ω. Using these criteria, the azimuth 

angle ϕ0 was determined to be 62.95° according to Eq.1 and Fig.2. For a pulse width of 100 

ps, the diameter of the rod, which equals to the base diameter of the wave launcher, can be 

determined from Eq. 2, as R > 1.11 cm. Consequently a radius of 1.5 cm was chosen. For θ0 

we chose an angle of 29°. The length of Section 2 was set to be twice the value of R, 3 cm. 

Finally, the angle of the cone α0 in antenna’s Section 3 was calculated to be 21°. These 

parameters were used as initial values for the CST model, but have in the following been 

optimized using CST studio’s Trust Region Framework optimization algorithm. The goal of 

the optimization was to maximize the electric field inside the brain tissue at a depth of 20 

mm.

At the apex of cone, the pulse with Gaussian waveform and an amplitude of 1 V was applied 

(0–5 GHz). The antenna was applied to a CST partial head voxel model with a resolution of 

1 × 1 × 1 mm3. The target was organized into layers comprised of 1 mm of skin, 5 mm of 

fat, 8 mm of bone, 1–10 mm of nervous opticus, and at least 50 mm of intermingled grey 

and white matter. Their respective electrical properties were provided by CST studio.

The three parameters for optimization were the rod diameter (R), rod length (L), and the 

taper angle (α). The resulting geometry can be seen in Fig. 6. The dielectric rod had a radius 

of 30 mm and a height of 35 mm. For the wave emitting section, the angle α was 10°.

3.2 Simulation Results

The wave launched from the apex is guided to the emitting section, as shown in several snap 

shots (Fig.7). The electric field travels down the wave launching section in a spherical wave 

form at 0.75 ns. The pulse is scattered at the joint between Section 1 and Section 2. Three 

scattered waves can be clearly observed at 1 ns: a reflected wave which bounces back to the 

source, an evanescent wave on the rod surface, and the waves confined in the rod. The last 
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part refracts into the brain tissue at 1.25 ns and reaches the brain tissue at 2 cm depth at 1.5 

ns.

The performance of the antenna was assessed in terms of the electric field orientation, spot 

size, and magnitude. The electric field orientation at the 2-cm deep layer can be seen in Fig.

8. The electric fields were clamped at the values greater than 90% of the maximum value in 

the brain tissue for an easy observation. In general, the field is oriented in the −y direction. It 

is confined to the area projected straight down from the apex of the dielectric rod. Inside the 

brain tissue the electric field lines are approximately linear and run parallel to the skin-wave 

launcher interface. The maximum fields are concentrated in the area directly underneath the 

center of the wave launcher. It is desirable to have such linearly oriented fields in the 

confined region. This is a similar field structure to that obtained with the parallel plate 

electrodes and allows us to compare results obtained in vitro with those expected by this 

antenna.

If we define the stimulation spot size as the area that has an electric field value greater than 

90% of the peak value, the thickness and width of the stimulation spot can be estimated to be 

5 mm by 11 mm (Fig.7). At the surface the spot size is on the order of the diameter of the 

waveguide and shrinks until reaching 11 mm in width in the brain tissue (2 cm deep). This 

field concentration is caused by the tissue attenuation. Since the electric field is highest at 

the center and it remains to be so at deeper regions in the brain. (Fig.9).

The peak values of the pulse waveforms are plotted versus depth (Fig.10). It shows that as 

the depth increases the peak electric field decreases. The electric field in the brain tissue is 

approximately 42% of that at the skin surface. In terms of absolute field, the peak field in the 

brain is 11.5 V/m for a 1 V input. This implies that skin tissue may need to tolerate a field 

level 2–3 times as that of a brain tissue. Using 20 kV/cm as a threshold for a biological 

effect [1], a 175 kV pulse power supply would be required.

3.2 Experimental Results

To experimentally verify the results of voxel model, artificial tissue stimulants of skin, bone 

and brain can be used and a receiving antenna can be embedded in the tissue for measuring 

electric fields at various positions, similar to that described in [5]. While this experiment is 

still under preparation, we report on the validity of the modeling results by constructing a 

conical antenna and measuring the electric field in free space. The antenna was designed as 

200 Ω and only has Section 1, i.e., the wave launcher. The two triangular metal plates that 

make up the wave launching section were adhesive copper foil with an azimuth angle ϕ0 = 

2.5°. The antenna has AlN (ε = 7.3) as the dielectric material and is constructed with a base 

diameter of 20 mm and height of 36 mm. The antenna was driven by a FID pulse generator 

(FID) through a 1:4 balun (50 Ω: 200 Ω). It was mounted in the upright direction. To 

measure the field on the vertical axis, a Prodyn AD-80(R) D-dot sensor was used. The setup 

is shown in Fig.11. We note that the sensor is a differential probe that has a ground plane 

which was aligned to the mid-plane of the conical antenna. The effective area of the D-dot 

sensor is in the emissive probe with an area of 3 × 10−4 m2. The probe was aligned with the 

axis of the conical antenna. By adjusting the vertical position, we were able to measure the 
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field distribution in the free space. The signal was integrated on the oscilloscope to obtain 

the electric field.

The measured electric field and the simulated result are shown in Fig.11. The two 

waveforms (Fig.11b) are almost identical at times of less than 2.7 ns, but a difference occurs 

afterwards. This is due to the wave scattering on the holder and desk, which is not included 

in the simulation. When the peak of the electric field was sampled on the axis, Fig.12 shows 

the results obtained from Eq.2 (analytical), the simulation and from the measurements. The 

three results are very close, except at the distance of less than 40 mm: here the measurement 

results are slightly lower than the modeled and calculated values. In this case, the error could 

be caused by the finite size of the effective biconical area of the probe. The field across the 

probe is not homogenous when the probe is close to the antenna aperture. As the distance 

from the antenna aperture increases, such distortion becomes diminished so the results are 

almost identical to the simulation and analytical results. Overall, the results of these 

experimental studies indicate that the results obtained for human voxel model can serve as a 

guide for the future experiments in tissue.

IV. CONCLUSIONS

In a simulation, electric pulses in the hundred picosecond range were successfully delivered 

to the subcutaneous region of the brain using a conical dielectrically loaded antenna. The 

antenna makes a direct contact to the tissue, without air gap, thus reducing the large 

reflection losses due to the difference in the permittivity of air and tissue. For the 

dielectrically loaded antenna (ε = 7.3), the electric field at a depth of 20 mm (inside brain 

tissue) was shown to be 11.5 V/m for a 1V input. In order to stimulate tissue, the critical 

electric field needs to be on the order of 20 kV/cm, as found in our previous study [1]. This 

critical field corresponds to an input voltage of 175 kV. This voltage is achievable with 

current pulsed power systems. The spot size in the brain is estimated to be 5 mm × 11 mm × 

11 mm and is better than that created by other neural stimulation modalities, specifically 

repetitive transcranial magnetic stimulation (rTMS) [13]. For this spot volume, the electric 

field at the skin is 2.4 times greater than the field in the brain tissue. The model used in this 

study was validated by comparing the modeling results with experimental results. The 

results obtained in free space suggest that the antenna simulation is reliable and can provide 

a solid ground for the necessary experiments to confirm the utility of the complete 

dielectrically loaded antenna in biological tissue. The tissue type is not limited to 

neurological tissue but can also be used for superficial targets such as skin or tissues in 

culture.
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Fig. 1. 
A conical antenna that is loaded with a dielectric. In Section 1, the wave is launched by a 

conical waveguide centered on the y axis and is characterized by two angles: θ0 and ϕ0. In 

Section 2, the waves emitted from the launching section are guided by a dielectric rod to the 

emitting section. In Section 3, the waves are detached from the antenna and propagate in the 

+z direction.
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Fig. 2. 
The characteristic impedance of a conical antenna loaded with Aluminum Nitride.
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Fig. 3. 
The radius (R) and the length of the dielectric wave guide (L) should ensure the clear 

separation of wave directly reaching the end of the wave guide from that scattered off at the 

discontinuity between the conical wave guide and the dielectric wave guide.
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Fig. 4. 
The critical angle for total internal reflection applies to the wave when it is guided by a 

conical wave guide. The dielectric constant is εr.
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Fig. 5. 
A conical antenna that has a cone as the emitting section.
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Fig. 6. 
a) The optimized CST Studio model with dimensions sitting on the voxel model target. b) A 

cross sectional view of the model and target showing the materials and their respective 

permittivity.
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Fig. 7. 
The transient propagation of the electric field shows an excitation of the brain tissue at 11.5 

V/m with a diameter of approximately 11 mm.
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F
ig. 8. 

T
he electric field is linearly oriented inside the brain tissue. T

he size of the arrow
 indicates 

the intensity of the electric field.
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Fig. 9. 
Cross sectional view of the brain tissue at three depths shows the field decreasing in 

magnitude and size with increasing depth.
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Fig. 10. 
The electric field distribution from the skin to the brain. The electric field magnitude 

decreases from 27.6 V/m at the skin surface and reaches 11.5 V/m inside the brain tissue.
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Fig. 11. 
The experimental setup in free space. a) A conical antenna with a characteristic impedance 

of 200 Ω was tested. The receiver is a D-dot sensor (Prodyn AD-80 (R)). b) The waveforms 

of the simulation and measurement.
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Fig. 12. 
The electric field distribution for a 200 Ω conical antenna. Measurement results, simulated 

results and the analytical results from Eq.2 are shown.
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