Double Spin Asymmetries of Inclusive Hadron Electroproduction From a Transversely Polarized He-3 Target

Y.X. Zhao

K. Allada
K. Aniol
J.R.M. Annand
T. Averett

See next page for additional authors

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs
Part of the Elementary Particles and Fields and String Theory Commons, and the Plasma and Beam Physics Commons

Repository Citation

Zhao, Y. X.; Allada, K.; Aniol, K.; Annand, J.R.M.; Averett, T.; Benmokhtar, F.; and Canan, M., "Double Spin Asymmetries of Inclusive Hadron Electroproduction From a Transversely Polarized He-3 Target" (2015). Physics Faculty Publications. 137.
https://digitalcommons.odu.edu/physics_fac_pubs/137

Original Publication Citation

Zhao, Y. X., Allada, K., Aniol, K., Annand, J. R. M., Averett, T., Benmokhtar, F., . . Jefferson Lab Hall, A. C. (2015). Double spin asymmetries of inclusive hadron electroproduction from a transversely polarized $\mathrm{He}-3$ target. Physical Review C, 92(1), 15207. doi:10.1103/PhysRevC.92.015207

Authors

Y. X. Zhao, K. Allada, K. Aniol, J.R.M. Annand, T. Averett, F. Benmokhtar, and M. Canan

Double spin asymmetries of inclusive hadron electroproduction from a transversely polarized ${ }^{3} \mathrm{He}$ target

Y. X. Zhao, ${ }^{1,{ }^{*}}$ K. Allada, ${ }^{2,3}$ K. Aniol, ${ }^{4}$ J. R. M. Annand, ${ }^{5}$ T. Averett, ${ }^{6}$ F. Benmokhtar, ${ }^{7}$ W. Bertozzi, ${ }^{2}$ P. C. Bradshaw, ${ }^{6}$ P. Bosted, ${ }^{3}$ A. Camsonne, ${ }^{3}$ M. Canan, ${ }^{8}$ G. D. Cates, ${ }^{9}$ C. Chen, ${ }^{10}$ J.-P. Chen, ${ }^{3}$ W. Chen,,${ }^{11}$ K. Chirapatpimol, ${ }^{9}$ E. Chudakov, ${ }^{3}$ E. Cisbani, ${ }^{12,13}$ J. C. Cornejo, ${ }^{4}$ F. Cusanno,,${ }^{14, \dagger}$ M. Dalton, ${ }^{9}$ W. Deconinck, ${ }^{2}$ C. W. de Jager, ${ }^{3,9}$ R. De Leo, ${ }^{15}$ X. Deng, ${ }^{9}$ A. Deur, ${ }^{3}$ H. Ding, ${ }^{9}$ P. A. M. Dolph, ${ }^{9}$ C. Dutta, ${ }^{16}$ D. Dutta, ${ }^{17}$ L. El Fassi, ${ }^{18}$ S. Frullani, ${ }^{13,14}$ H. Gao, ${ }^{11}$ F. Garibaldi, ${ }^{13,14}$ D. Gaskell, ${ }^{3}$ S. Gilad, ${ }^{2}$ R. Gilman, ${ }^{3,18}$ O. Glamazdin, ${ }^{19}$ S. Golge, ${ }^{8}$ L. Guo, ${ }^{20,21}$ D. Hamilton, ${ }^{5}$ O. Hansen, ${ }^{3}$ D. W. Higinbotham, ${ }^{3}$ T. Holmstrom, ${ }^{22}$ J. Huang,,${ }^{2,20}$ M. Huang, ${ }^{11}$ H. F. Ibrahim, ${ }^{23}$ M. Iodice, ${ }^{24}$ X. Jiang,,${ }^{18,20}$ G. Jin, ${ }^{9}$ M. K. Jones, ${ }^{3}$ J. Katich, ${ }^{6}$ A. Kelleher, ${ }^{6}$ W. Kim,,${ }^{25}$ A. Kolarkar, ${ }^{16}$ W. Korsch, ${ }^{16}$ J. J. LeRose, ${ }^{3}$ X. Li, ${ }^{26}$ Y. Li, ${ }^{26}$ R. Lindgren, ${ }^{9}$ N. Liyanage, ${ }^{9}$ E. Long, ${ }^{27}$ H.-J. Lu, ${ }^{1}$ D. J. Margaziotis, ${ }^{4}$ P. Markowitz, ${ }^{21}$ S. Marrone, ${ }^{15}$ D. McNulty, ${ }^{28}$ Z.-E. Meziani, ${ }^{29}$ R. Michaels, ${ }^{3}$ B. Moffit,,${ }^{2,3}$ C. Muñoz Camacho, ${ }^{30}$ S. Nanda, ${ }^{3}$ A. Narayan, ${ }^{17}$ V. Nelyubin, ${ }^{9}$ B. Norum, ${ }^{9}$ Y. Oh,,${ }^{31}$ M. Osipenko, ${ }^{32}$ D. Parno, ${ }^{7}$ J.-C. Peng, ${ }^{33}$ S. K. Phillips, ${ }^{34}$ M. Posik, ${ }^{29}$ A. J. R. Puckett, ${ }^{2,20}$ X. Qian, ${ }^{35}$ Y. Qiang, ${ }^{3,11}$ A. Rakhman, ${ }^{36}$ R. Ransome, ${ }^{18}$ S. Riordan, ${ }^{9}$ A. Saha, ${ }^{3, \dagger}$ B. Sawatzky, ${ }^{3,29}$ E. Schulte, ${ }^{18}$ A. Shahinyan, ${ }^{37}$ M. H. Shabestari, ${ }^{9}$ S. Širca, ${ }^{38}$ S. Stepanyan, ${ }^{39}$ R. Subedi, ${ }^{9}$ V. Sulkosky, ${ }^{2,3}$ L.-G. Tang, ${ }^{10}$ W. A. Tobias, ${ }^{9}$ G. M. Urciuoli, ${ }^{14}$ I. Vilardi, ${ }^{15}$ K. Wang, ${ }^{9}$ B. Wojtsekhowski, ${ }^{3}$ Y. Wang, ${ }^{33}$ X. Yan, ${ }^{1}$ H. Yao, ${ }^{29}$ Y. Ye, ${ }^{1}$ Z. Ye, ${ }^{10}$ L. Yuan, ${ }^{10}$ X. Zhan, ${ }^{2}$ Y. Zhang, ${ }^{40}$ Y.-W. Zhang, ${ }^{40}$ B. Zhao, ${ }^{6}$ X. Zheng, ${ }^{9}$ L. Zhu, ${ }^{10,33}$ X. Zhu, ${ }^{11}$ and X. Zong ${ }^{11}$
(Jefferson Lab Hall A Collaboration)
${ }^{1}$ University of Science and Technology of China, Hefei 230026, People's Republic of China
${ }^{2}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
${ }^{3}$ Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
${ }^{4}$ California State University, Los Angeles, Los Angeles, California 90032, USA
${ }^{5}$ University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
${ }^{6}$ College of William and Mary, Williamsburg, Virginia 23187, USA
${ }^{7}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
${ }^{8}$ Old Dominion University, Norfolk, Virginia 23529, USA
${ }^{9}$ University of Virginia, Charlottesville, Virginia 22904, USA ${ }^{10}$ Hampton University, Hampton, Virginia 23187, USA
${ }^{11}$ Duke University, Durham, North Carolina 27708, USA
${ }^{12}$ INFN, Sezione di Roma, I-00185 Rome, Italy
${ }^{13}$ Istituto Superiore di Sanità, I-00161 Rome, Italy
${ }^{14}$ INFN, Sezione di Roma, I-00161 Rome, Italy
${ }^{15}$ INFN, Sezione di Bari and University of Bari, I-70126 Bari, Italy
${ }^{16}$ University of Kentucky, Lexington, Kentucky 40506, USA
${ }^{17}$ Mississippi State University, Mississippi 39762, USA
${ }^{18}$ Rutgers, State University of New Jersey, Piscataway, New Jersey 08855, USA
${ }^{19}$ Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
${ }^{20}$ Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
${ }^{21}$ Florida International University, Miami, Florida 33199, USA
${ }^{22}$ Longwood University, Farmville, Virginia 23909, USA
${ }^{23}$ Cairo University, Giza 12613, Egypt
${ }^{24}$ INFN, Sezione di Roma Tre, I-00146 Rome, Italy
${ }^{25}$ Kyungpook National University, Taegu 702-701, Republic of Korea
${ }^{26}$ China Institute of Atomic Energy, Beijing, People's Republic of China
${ }^{27}$ Kent State University, Kent, Ohio 44242, USA
${ }^{28}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{29}$ Temple University, Philadelphia, Pennsylvania 19122, USA
${ }^{30}$ Université Blaise Pascal/IN2P3, F-63177 Aubière, France
${ }^{31}$ Seoul National University, Seoul, South Korea
${ }^{32}$ INFN, Sezione di Genova, I-16146 Genova, Italy
${ }^{33}$ University of Illinois, Urbana-Champaign, Illinois 61801, USA
${ }^{34}$ University of New Hampshire, Durham, New Hampshire 03824, USA
${ }^{35}$ Physics Department, Brookhaven National Laboratory, Upton, New York, USA
${ }^{36}$ Syracuse University, Syracuse, New York 13244, USA
${ }^{37}$ Yerevan Physics Institute, Yerevan 375036, Armenia
${ }^{38}$ University of Ljubljana, SI-1000 Ljubljana, Slovenia

${ }^{39}$ Kyungpook National University, Taegu City, South Korea
${ }^{40}$ Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China

(Received 5 February 2015; published 14 July 2015)

Abstract

We report the measurement of beam-target double spin asymmetries $\left(A_{\mathrm{LT}}\right)$ in the inclusive production of identified hadrons, $\vec{e}+{ }^{3} \mathrm{He}^{\uparrow} \rightarrow h+X$, using a longitudinally polarized $5.9-\mathrm{GeV}$ electron beam and a transversely polarized ${ }^{3} \mathrm{He}$ target. Hadrons ($\pi^{ \pm}, K^{ \pm}$, and proton) were detected at 16° with an average momentum $\left\langle P_{h}\right\rangle=$ $2.35 \mathrm{GeV} / \mathrm{c}$ and a transverse momentum $\left(p_{T}\right)$ coverage from 0.60 to $0.68 \mathrm{GeV} / \mathrm{c}$. Asymmetries from the ${ }^{3} \mathrm{He}$ target were observed to be nonzero for $\pi^{ \pm}$production when the target was polarized transversely in the horizontal plane. The π^{+}and π^{-}asymmetries have opposite signs, analogous to the behavior of A_{LT} in semi-inclusive deep-inelastic scattering.

DOI: 10.1103/PhysRevC.92.015207
PACS number(s): 14.20.Dh, 25.30.Fj, 25.30.Rw, 24.85.+p

I. INTRODUCTION

Understanding the spin structure of the nucleon remains an important goal of research in modern hadronic physics. Beam-target double spin asymmetries (DSA) have been used as a powerful tool in polarized lepton-nucleon deep-inelastic scattering (DIS) experiments to extract polarized parton distributions and quark-gluon correlations [1]. Earlier efforts have been focused mainly on the longitudinal spin structure g_{1}. Recently, with transversely polarized nucleons, DSAs were used to investigate the g_{2} structure functions, which involve twist-3 effects. More recently, a measurement of DSA with a transversely polarized nucleon $\left(A_{\mathrm{LT}}\right)$ in a semi-inclusive deepinelastic scattering (SIDIS) experiment has provided access to the transverse-momentum-dependent parton distribution functions $g_{1 T}\left(x, k_{t}^{2}\right)$, which are related to quark spin-orbit correlations [2]. In this paper, a measurement of A_{LT} in a less explored reaction, $\vec{e}+\mathrm{N}^{\uparrow} \rightarrow h+X$, in which a single hadron is detected in the final state, is presented.

The mechanism of inclusive hadron photoproduction was studied in Refs. [3,4]. The production of hadrons arises mainly from four types of processes: fragmentation processes, direct processes, resolved photon processes, and soft contributions. Fragmentation processes have quarks and gluons produced in short-range reactions followed by fragmentation at long distances of either a quark or a gluon to produce the observed hadron. Direct processes occur when the hadron is produced in a short-range reaction via a radiated gluon giving a quarkantiquark pair, one of which joins the initial quark to produce the hadron. Resolved processes are contributions in which photons fluctuate into a quark-antiquark pair, which then interact with the partons of the target. Soft contributions are described by the vector meson dominance (VMD) approximation, which is a way to represent the hadronic components of the photon as they enter into soft processes.

In the collinear factorization framework, A_{LT} in inclusive hadron production is an observable associated with twist-3 effects. It can have twist- 3 contributions from both the parton distributions inside the polarized nucleon and the parton fragmentation into final-state hadrons. By measuring A_{LT}, one has the opportunity to investigate the so-called worm-geartype function $\tilde{g}(x)[5,6]$ as well as the role of quark-gluon-

[^0]quark correlations in the nucleon and twist-3 effects in the fragmentating hadron. The $\tilde{g}(x)$ is defined as an integration [5] over k_{t}^{2} of $g_{1 T}\left(x, k_{t}^{2}\right)$, which can be accessed by A_{LT} measurements in a SIDIS process [2]. Furthermore, it has been proposed that $\tilde{g}(x)$ and quark-gluon-quark correlations are responsible for DSAs of inclusive jet (or hadron) production in polarized nucleon-nucleon reactions and lepton-nucleon reactions in Refs. [7,8].

In this paper, we report a measurement of beam-target double-spin asymmetries in inclusive charged-hadron production using a longitudinally polarized electron beam scattered from a transversely polarized ${ }^{3} \mathrm{He}$ target. The measured asymmetry is defined as

$$
\begin{equation*}
A_{\mathrm{LT}}=\frac{1}{\left|P_{B} P_{\text {target }}\right|} \frac{d \sigma^{\uparrow \rightarrow}-d \sigma^{\downarrow \rightarrow}}{d \sigma^{\uparrow \rightarrow}+d \sigma^{\downarrow \rightarrow}} \tag{1}
\end{equation*}
$$

where $d \sigma^{\uparrow(\downarrow) \rightarrow}$ is the differential cross section for beam helicity $+(-)$ in a certain target spin direction. P_{B} is the beam polarization and $P_{\text {target }}$ is the target polarization. Figure 1 shows the kinematical configuration in the laboratory coordinate system of the measurement. ϕ_{s} is the azimuthal angle between the target spin direction \vec{S} and the so-called hadron plane which is formed by the incoming electron and the outgoing hadron. The spin-dependent part of the cross section is proportional to the term $\lambda_{e} \vec{S} \cdot \vec{p}_{T}\left(p_{T}=\sqrt{p_{x}^{2}+p_{y}^{2}}\right.$, the transverse momentum of the outgoing hadron), which gives rise to $\mathrm{a} \cos \left(\phi_{s}\right)$ modulation in the definition of the asymmetry

FIG. 1. (Color online) Kinematical configuration in the laboratory coordinate system for the $\vec{e} N^{\uparrow} \rightarrow h X$ process. $\vec{l}\left(\vec{P}_{h}\right)$ represents the momentum direction of the incident electron (produced hadron), and \vec{S} is the spin vector of the nucleon. During the experiment, the target spin was oriented in $\phi_{s}=0^{\circ}(+x), 90^{\circ}(+y), 180^{\circ}(-x), 270^{\circ}(-y)$ directions.
[5]. In order to form the parity-even structure by using the spin of the nucleon and the momentum of outgoing hadron, $\cos \left(\phi_{s}\right)$ is the only modulation considered in the current theoretical framework [5]. Hence, the asymmetry can be written as

$$
\begin{equation*}
A_{\mathrm{LT}}=A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)} \cos \left(\phi_{s}\right) \tag{2}
\end{equation*}
$$

The produced hadrons were detected in a high-resolution spectrometer (HRS) [9] at a central angle of 16° on the beam left side with a central momentum of $2.35 \mathrm{GeV} / \mathrm{c}$, a momentum acceptance of $\pm 4.5 \%$, and solid angle acceptance of 6 msr . The data were collected using a singles trigger during the E06-010 experiment [2,10-12] in Hall A at Jefferson Lab.

II. EXPERIMENT

A polarized $5.9-\mathrm{GeV}$ electron beam with an average current of $12 \mu \mathrm{~A}$ was provided by the CEBAF accelerator during the experiment. Polarized electrons were excited from a strained superlattice GaAs photocathode by a circularly polarized laser [13] at the injector. The average beam polarization was $(76.8 \pm 3.5) \%$, which was measured periodically by Møller polarimeter [9]. The beam helicity was reversed at 30 Hz by flipping the laser polarization. During the E06-010 experiment, the sequence for beam helicity states followed a quartet structure, +--+ or -++- , randomly to reduce the systematic bias between the two helicity states. Due to a beamcharge feedback system [14], the beam-charge asymmetry between the two helicity states was kept at less than 150 ppm per 20 min and less than 10 ppm for the entire experiment [2].

The ground state of the ${ }^{3} \mathrm{He}$ nuclear wave function is dominated by the S state, in which the proton spins cancel each other and the nuclear spin is carried by the neutron [15]. About 10 atm of ${ }^{3} \mathrm{He}$ gas was filled in a $40-\mathrm{cm}$-long cylindrical aluminiosilicate glass cell and ${ }^{3} \mathrm{He}$ nuclei were polarized by spin-exchange optical pumping of a $\mathrm{Rb}-\mathrm{K}$ mixture $[16,17]$. Three pairs of Helmholtz coils were used in the experiment to orient the magnetic holding field transversely or vertically with respect to the electron beam. For each orientation, the spin direction of ${ }^{3} \mathrm{He}$ nuclei was flipped every 20 min through adiabatic fast passage. Nuclear magnetic resonance measurements, calibrated by the electron paramagnetic resonance method [18], were performed to monitor the target polarization while the target spin direction was flipped. An average in-beam target polarization of $(55.4 \pm 2.8) \%$ was achieved during the experiment.

The HRS detector package was configured for hadron detection. The trigger was formed by the coincidence signal between two scintillator planes which were about 2 m apart. Four detectors were used for particle identification: (1) a threshold CO_{2} gas Cerenkov detector for electron identification, (2) a threshold aerogel Cerenkov detector for pion identification, (3) a ring imaging Cerenkov (RICH) detector for $\pi^{ \pm}, K^{ \pm}$, and proton identification [11,19], and (4) two layers of lead-glass calorimeter for electron-hadron separation. Contaminations were well controlled and studied carefully in Ref. [11].

III. DATA ANALYSIS

For each target spin direction, the selected data samples were separated into two groups by beam helicity states. These
two groups were treated as a local pair. The final beam-target double spin asymmetry A_{LT} was extracted by summing over all local pair measurements.

A small amount of N_{2} gas, present in the target cell to reduce depolarization [9], diluted the measured ${ }^{3} \mathrm{He}$ asymmetry and was corrected by the nitrogen dilution factor defined as

$$
\begin{equation*}
f_{\mathrm{N}_{2}}=\frac{\rho_{\mathrm{N}_{2}} \sigma_{\mathrm{N}_{2}}}{\rho_{{ }_{3}{ }_{\mathrm{He}}} \sigma_{3 \mathrm{He}}+\rho_{\mathrm{N}_{2}} \sigma_{\mathrm{N}_{2}}} \tag{3}
\end{equation*}
$$

where ρ is the density of the gas in the production target cell and σ is the unpolarized inclusive hadron (pion, kaon, and proton) production cross section. The ratio of unpolarized cross sections $\sigma_{\mathrm{N}_{2}} / \sigma_{3} \mathrm{He}$ was measured in dedicated runs on targets filled with known amounts of unpolarized N_{2} or ${ }^{3} \mathrm{He}$ gas. The $f_{\mathrm{N}_{2}}$ in this experiment was determined to be less than 10%.

The overall systematic uncertainty in the experiment was small due to frequent target-spin and beam-helicity flips. The false asymmetry due to luminosity fluctuations was less than 0.07% and was confirmed by measuring the beam-target double spin asymmetry in the inclusive (e, e^{\prime}) DIS reaction with the target polarized in the $\pm y$ direction, in which the asymmetry vanishes due to parity and time-reversal symmetry. Systematic uncertainties due to contaminations were estimated to be less than 0.02% for pion, kaon, and proton measurements. In addition, there was an overall 5% systematic uncertainty, relative to the asymmetries, from both beam and target polarizations. For the kaon and proton measurements, as described in Ref. [11], there were two additional sources of systematic uncertainties associated with the RICH detector: (1) the value of the cut on the number of hits in the RICH detector and (2) detector inefficiencies. The first contribution was determined to be $<15 \%$ for $K^{ \pm}$and $<3 \%$ for protons, relative to the statistical uncertainties. The second contribution was determined to be $<7 \%,<3 \%$, and $<1 \%$, relative to the statistical uncertainties, for K^{+}, K^{-}, and protons, respectively.

IV. RESULTS

The final A_{LT} results from ${ }^{3} \mathrm{He}$ are shown for different hadron species in Fig. 2. The error bars represent the

FIG. 2. (Color online) Beam-target double spin asymmetries A_{LT} for $\pi^{ \pm}, K^{ \pm}$, and proton production from ${ }^{3} \mathrm{He}$ for different ϕ_{s}.

FIG. 3. (Color online) Beam-target double spin asymmetries $A_{\text {LT }}$ for $\pi^{ \pm}$production from ${ }^{3} \mathrm{He}$ as a function of p_{T} for different ϕ_{s}. The left column is for the π^{+}data; the right column is for the π^{-}data.
statistical uncertainties. Experimental systematic uncertainties, combined in quadrature from different sources, are shown as a band. For $\phi_{s}=90^{\circ}$ and 270°, the asymmetries from pions and kaons are consistent with zero within the experimental uncertainties $\left(\sim 1 \times 10^{-3}\right.$ level for the pion measurement). For $\phi_{s}=0^{\circ}$ and 180°, the sign of the asymmetry is flipped when the target spin direction is reversed. Pion data were also

FIG. 4. (Color online) Beam-target double spin asymmetries $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$ for $\pi^{ \pm}$production from ${ }^{3} \mathrm{He}$ as a function of p_{T}. The red (top, gray) band is the systematic uncertainty band for π^{-}, and the black (bottom) band is the systematic uncertainty band for π^{+}.

TABLE I. Tabulated results of p_{T}-dependent $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$ for $\pi^{ \pm}$ production from ${ }^{3} \mathrm{He}$.

$\left\langle p_{T}\right\rangle$	π^{+}	π^{-}
$(\mathrm{GeV} / \mathrm{c})$	$\left(A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)} \pm\right.$ Stat. \pm Sys. $)$	$\left(A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)} \pm\right.$ Stat. \pm Sys. $)$
0.60	$-0.0081 \pm 0.0018 \pm 0.0009$	$0.0054 \pm 0.0012 \pm 0.0008$
0.64	$-0.0067 \pm 0.0022 \pm 0.0008$	$0.0048 \pm 0.0014 \pm 0.0008$
0.68	$-0.0043 \pm 0.0020 \pm 0.0008$	$0.0046 \pm 0.0013 \pm 0.0008$

analyzed in three p_{T} bins. The results are shown in Fig. 3. The asymmetries for $\phi_{s}=0^{\circ}$ and $\phi_{s}=180^{\circ}$ were combined together to obtain $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$. The combination was weighted by the statistical uncertainties of the asymmetries. The final p_{T}-dependent $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$ asymmetries for $\pi^{ \pm}$production from ${ }^{3} \mathrm{He}$ are shown in Fig. 4 and tabulated in Table I.

Neutron asymmetries for pion production were obtained from the ${ }^{3} \mathrm{He}$ asymmetries using the effective polarizations of the proton and neutron in polarized ${ }^{3} \mathrm{He}$ using the equation [20]

$$
\begin{equation*}
A_{\mathrm{LT}}^{3} \mathrm{He}=P_{n}\left(1-f_{p}\right) A_{\mathrm{LT}}^{n}+P_{p} f_{p} A_{\mathrm{LT}}^{p}, \tag{4}
\end{equation*}
$$

where $A_{\mathrm{LT}}^{3} \mathrm{He}$ is the measured ${ }^{3} \mathrm{He}$ asymmetry. $P_{n}=0.86_{-0.02}^{+0.036}$ and $P_{p}=-0.028_{-0.004}^{+0.009}$ are the effective polarization of the neutron and proton, respectively. The proton dilutions, $f_{p}=$ $\frac{2 \sigma_{p}}{\sigma_{3} \mathrm{He}}$, in ${ }^{3} \mathrm{He}$ were measured directly by measuring yields from unpolarized hydrogen and ${ }^{3} \mathrm{He}$ targets. The averages of f_{p} were 0.844 ± 0.007 for π^{+}and 0.732 ± 0.005 for π^{-}. Since there were no A_{LT} experimental data from the proton, and the contribution to the final ${ }^{3} \mathrm{He}$ asymmetry from polarized protons in polarized ${ }^{3} \mathrm{He}$ is small due to the small P_{p}, the proton A_{LT}^{p} was treated as a systematic uncertainty while the neutron asymmetry was extracted from the ${ }^{3} \mathrm{He}$ asymmetry. The beam-target double spin asymmetry from a polarized proton target was assumed to be no more than $\pm 5 \%$ based on the calculations for a proton target in Ref. [5]. The final p_{T}-dependent asymmetries $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$ for $\pi^{ \pm}$production from the neutron are shown in Fig. 5 and tabulated in Table II. In addition, the kinematic variable x_{F} was also calculated. It is defined as $x_{F}=2 p^{c . m .} / \sqrt{s}$, where $p^{c . m}$. is the momentum of the outgoing hadron along the polarized nucleon's momentum direction in the $e+N$ center-of-mass (c.m.) frame.

TABLE II. Tabulated results of p_{T}-dependent $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$ for $\pi^{ \pm}$ production from the neutron. A negative x_{F} indicates that the produced hadron is moving backwards with respect to the nucleon momentum direction in the center-of-mass frame of the $e+N$ system.

$\left\langle p_{T}\right\rangle$ $(\mathrm{GeV} / \mathrm{c})$	$\left\langle x_{F}\right\rangle$	π^{+}
$\left(A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)} \pm\right.$ Stat. \pm Sys. $)$	$\left(A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)} \pm\right.$ Stat. \pm Sys. $)$	
0.60	-0.269	$-0.063 \pm 0.014 \pm 0.012$
0.64	$-0.024 \pm 0.005 \pm 0.006$	
0.68	$-0.049 \pm 0.016 \pm 0.011$	$0.020 \pm 0.006 \pm 0.006$

FIG. 5. (Color online) Beam-target double spin asymmetries $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$ for $\pi^{ \pm}$production from the neutron as a function of p_{T}. The systematic uncertainty is shown as a band. The red (top, gray) band is the systematic uncertainty band for π^{-}, and the black (bottom) band is the systematic uncertainty band for π^{+}. Predictions from collinear factorization by using two different scenarios [5] [Sivers function and Wandzura-Wilczek (WW)-type approximation] are shown as well. Please note that the prediction for π^{+}by using the Sivers function is scaled by a factor of $\frac{1}{10}$.

V. CONCLUSION

The observed π^{+}and π^{-}asymmetries from ${ }^{3} \mathrm{He}$ and effective neutron targets have opposite signs when the target is transversely polarized. The π^{+}and π^{-}asymmetries for a vertically polarized target are consistent with zero within the experimental uncertainties. Although the uncertainty is large, the sign of the $K^{ \pm} A_{\mathrm{LT}}$ is flipped as the target spin direction is reversed transversely (in the x direction). The K^{+}asymmetry is larger than that of π^{+}and they are different in sign. If the kaon asymmetry is of partonic origin, it might indicate that sea-quark contributions or unfavored fragmentation functions play a more important role. In addition, higher-order or higher-twist effects might also be possible reasons. For the proton A_{LT}, the sign of the asymmetry is flipped as the target spin direction is reversed vertically (in the y direction), while the asymmetry is consistent with zero within the experimental uncertainty with the target polarized transversely (in the x direction). A hypothesis testing was performed to the proton asymmetries, and the $\cos \left(\phi_{s}\right)$ dependence of the asymmetry cannot be excluded within 2- σ of significance. One of possible reasons for the interesting behavior of the proton asymmetries might be that the protons were mostly knocked out from ${ }^{3} \mathrm{He}$ with nuclear effects. In the collinear factorization approximation, A_{LT} in inclusive pion production was estimated in the JLab $6-\mathrm{GeV}$ kinematic region [5]. The estimations were done using two approximations to calculate
the $\widetilde{g}(x)$ while doing numerical predictions for A_{LT} in inclusive pion production. One is using the approximate relation, $\widetilde{g}(x) \approx-f_{1 T}^{\perp}(x)$, where $f_{1 T}^{\perp}(x)$ is the Sivers function; the other one is using Wandzura-Wilczek (WW)-type approximation, $\widetilde{g}(x) \approx x \int_{x}^{1} \frac{d y}{y} g_{1}(y)$. Calculations based on the two approximations shown in Fig. 5 give different predictions. Our data are consistent in sign with the prediction using the WW approximation, while the magnitude of the predictions is larger than that of our data. The calculation using the Sivers function is not consistent with our data. However, one needs to take into account the current uncertainty of the Sivers function and potential large next to leading order corrections, which are not included in the calculation. We point out that p_{T} in our experiment is around $0.64 \mathrm{GeV} / \mathrm{c}$, which is lower than $1 \mathrm{GeV} / \mathrm{c}$ where the theoretical predictions are believed to be reliable. In addition, the A_{LT} measurements in inclusive hadron production and SIDIS processes are linked by the definition of $\tilde{g}(x)$. The behavior of the π^{+}and π^{-} $A_{\mathrm{LT}}^{\cos \left(\phi_{s}\right)}$ with opposite sign is similar to that in the SIDIS measurement in Ref. [2], while the size of the asymmetries in inclusive and SIDIS processes are different. However, one has to be aware that the kinematic coverage for the nondetected electrons in the inclusive hadron production processes is larger than that of the electrons in the SIDIS processes and the production mechanism can also be different. To fully interpret the data, one has to understand the mechanism of inclusive hadron production in different kinematic regions and the main contributions to the double-spin asymmetry.

In summary, we have reported the measurement of A_{LT} in the inclusive hadron production reaction using longitudinally polarized electrons scattered from a transversely polarized ${ }^{3} \mathrm{He}$ target. Nonzero asymmetries were observed for charged pions from a transversely polarized target. The asymmetries in π^{+}and π^{-}production have opposite signs. The asymmetries are compared to calculations from collinear factorization, and the signs of the asymmetries are consistent with calculations using the WW approximation. To fully understand inclusive hadron production in terms of parton distributions and correlations among partons, new theoretical and experimental efforts should be carried out. Future experiments at Jefferson Lab [21,22] and a future electron-ion collider (EIC) [23] will extend the measurement to a broad p_{T} range and a much higher precision.

ACKNOWLEDGMENTS

We acknowledge the outstanding support of the JLab Hall A staff and the Accelerator Division in accomplishing this experiment. This work was supported in part by the US National Science Foundation and by Department of Energy (DOE) Contract No. DE-AC05-06OR23177, under which the Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility. This work was also supported by the National Natural Science Foundation of China under Grants No. 11135002 and No. 11120101004 and the UK Science and Technology Facilities Council under Grants No. 57071/1 and No. 50727/1.
[1] S. Kuhn, J.-P. Chen, and E. Leader, Prog. Part. Nucl. Phys. 63, 1 (2009).
[2] J. Huang et al., Phys. Rev. Lett. 108, 052001 (2012).
[3] A. Afanasev, C. E. Carlson, and C. Wahlquist, Phys. Rev. D 58, 054007 (1998).
[4] A. Afanasev, C. E. Carlson, and C. Wahlquist, Phys. Rev. D 61, 034014 (2000).
[5] K. Kanazawa, A. Metz, D. Pitonyak, and M. Schlegel, Phys. Lett. B 742, 340 (2015).
[6] J. Zhou, F. Yuan, and Z.-T. Liang, Phys. Rev. D 81, 054008 (2010).
[7] Z.-B. Kang, A. Metz, J.-W. Qiu, and J. Zhou, Phys. Rev. D 84, 034046 (2011).
[8] A. Metz, D. Pitonyak, A. Schäfer, and J. Zhou, Phys. Rev. D 86, 114020 (2012).
[9] J. Alcorn et al., Nucl. Instrum. Meth. A 522, 294 (2004).
[10] X. Qian et al., Phys. Rev. Lett. 107, 072003 (2011).
[11] Jefferson Lab Hall A Collaboration, K. Allada, Y. X. Zhao et al., Phys. Rev. C 89, 042201 (2014).
[12] Jefferson Lab Hall A Collaboration, Y. X. Zhao et al. Phys. Rev. C 90, 055201 (2014).
[13] C. K. Sinclair et al., Phys. Rev. ST Accel. Beams 10, 023501 (2007).
[14] D. Androi et al., Nucl. Instrum. Meth. A 646, 59 (2011).
[15] F. Bissey, V. Guzey, M. Strikman, and A. Thomas, Phys. Rev. C 65, 064317 (2002).
[16] E. Babcock, I. A. Nelson, S. Kadlecek, and T. G. Walker, Phys. Rev. A 71, 013414 (2005).
[17] J. Singh et al., Phys. Rev. C 91, 055205 (2015).
[18] M. V. Romalis and G. D. Cates, Phys. Rev. A 58, 3004 (1998).
[19] Y. Wang, Ph.D. thesis, UIUC, 2011 (unpublished).
[20] S. Scopetta, Phys. Rev. D 75, 054005 (2007).
[21] H. Gao et al., Eur. Phys. J. 126, 1 (2011).
[22] J.-P. Chen et al., arXiv:1409.7741.
[23] A. Accardi et al., arXiv:1212.1701.

[^0]: *Corresponding author: yxzhao@jlab.org
 ${ }^{\dagger}$ Deceased.

