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originating from photosystem I and II decreased during 
nitrogen starvation, but no alteration in subcellular chloro-
phyll localization was found. We observed differential rod 
and core pigment responses to nitrogen deprivation, sug-
gesting that PBS complexes undergo a stepwise degrada-
tion process.

Keywords Cyanobacteria · Photosynthesis · 
Phycobilisome · Nitrogen · Hyperspectral confocal 
fluorescence microscopy · Multivariate analysis

Introduction

Cyanobacteria are unicellular photosynthetic microbes 
that played a central role in oxygenating the Earth’s early 
atmosphere (Buick 2008). Cyanobacteria are found ubiqui-
tously throughout the biosphere and are crucial contributors 
to the global carbon and nitrogen cycles (Schwarz 2005; 
Wegener et  al. 2010). These organisms have varied mor-
phologies, including spherical, rod-shaped, and filamentous 
forms, and have the metabolic flexibility to thrive in diverse 
environments throughout terrestrial, freshwater, and marine 
habitats. The ability of cyanobacteria to use light energy to 
fix carbon dioxide and produce oxygen makes these organ-
isms of critical ecological importance and of particular 
interest in biotechnological studies.

Cyanobacteria contain pigment-proteins that function 
to harvest and transfer light energy to the reaction cent-
ers in the thylakoid membranes that power photochemis-
try. The blue bilin and green chlorophyll (Chl) pigments 
impart the characteristic blue-green color to cyanobacte-
ria. The bilin-containing phycobilisome (PBS) complexes 
are the main light-harvesting antenna in cyanobacteria 
(Adir et al. 2006). Bilins are covalently bound to proteins 
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to form phycobiliproteins, which are of three major types: 
phycocyanin (PC), allophycocyanin (APC), and phyco-
erythrin (PE). These phycobiliproteins serve as the build-
ing blocks of the PBS pigment-protein complexes, which 
are giant membrane extrinsic structures of 3–5 MDa in size 
(Adir et al. 2006). In a well-studied cyanobacterium, Syn-
echocystis sp. PCC 6803 (hereafter referred to as Synecho-
cystis 6803), PBS complexes are hemidiscoidal structures 
consisting of a tricylindrical APC central core and six PC 
peripheral rods radiating from the core (MacColl 1998). 
The pigmented phycobiliproteins are interspaced with non-
pigmented linker proteins in the PBS structure (Watanabe 
and Ikeuchi 2013). PBS may account for up to 60% of the 
total soluble protein in the cell, thus serving as a large cel-
lular nitrogen reserve (Bogorad 1975).

Changes in light conditions and nutrient availability can 
lead to modifications in pigment composition, abundance, 
and location aimed to optimize light harvesting and energy 
production (Grossman et  al. 2001; Wegener et  al. 2010). 
The dynamic nature of the PBS can be observed during 
nutrient deprivation (e.g., nitrogen, sulfur, or phosphorus 
depletion), when cells bleach due to the degradation of 
PBS (Collier and Grossman 1992). PBS degradation likely 
supplies macronutrients for cellular use during nutrient 
deprivation conditions and may prevent photosystems from 
undergoing photoinhibition and production of harmful radi-
cal species (Adir et al. 2006). Consequently, PBS degrada-
tion plays an important role in cell survival.

Several proteins involved in PBS degradation have been 
identified. An essential factor for the ATP-dependent deg-
radation of PBS is non-bleaching A (NblA) (Collier and 
Grossman 1994). NblA triggers the degradation of PBS 
in cyanobacteria by serving as an adapter protein to facili-
tate the interaction of a protease with phycobiliproteins 
(Baier et al. 2014, 2001; Karradt et al. 2008; Nguyen et al. 
2017). Additional proteins including NblR, NblS, NblB, 
RpaB, and NtcA have been identified that function with 
NblA to regulate PBS degradation during nutrient dep-
rivation (Dolganov and Grossman 1999; Grossman et  al. 
1993; van Waasbergen et  al. 2002). Physiological experi-
ments conducted during nutrient starvation have shown 
that essentially all PBS complexes are degraded in wild-
type cells within 48 h (Collier and Grossman 1994; Li and 
Sherman 2002). Following long-term nitrogen deprivation 
(e.g., 2 weeks), Chl levels also decreased dramatically, 
with <1% of the original Chl remaining (Gorl et al. 1998). 
Upon addition of nutrients, cyanobacteria regain their blue-
green color due to the re-synthesis of PBS complexes. The 
process of re-synthesis is rapid, and cells can regenerate 
pigmentation after the readdition of nitrate even after pro-
longed nitrogen starvation (Gorl et al. 1998).

PBS complex degradation is an active, rapid, and spe-
cific process that occurs on a massive scale. Earlier 

studies monitored the rate of degradation by measuring 
the decrease of the pigment peaks in whole cell absorp-
tion spectra of bulk cultures during nutrient depletion. A 
model of PBS degradation developed using this approach 
describes the sequential trimming of the peripheral PC 
rods, starting at the most distal end, with complete deg-
radation of the remaining PBS occurring within 2 days of 
continued nutrient depletion in Synechococcus sp. PCC 
7942 (hereafter referred to as Synechococcus 7942) (Collier 
and Grossman 1992, 1994). To our knowledge, this sequen-
tial trimming model of the PBS has not been shown experi-
mentally for Synechocystis 6803.

The bulk approach used to examine PBS degradation 
to date has not allowed for the analysis of individual pig-
ment levels within and between cells [e.g., photosystem I 
(PSI) compared to photosystem II (PSII) or PC compared 
to APC] due to their high degree of spectral overlap, nor 
do the bulk methods provide insight into the changes in 
the subcellular localization of individual pigments dur-
ing nutrient starvation. Importantly, single-cell studies 
performed during nutrient starvation can provide detailed 
information into the stochastic response of cells within 
a culture, leading to a direct measure of cell population 
dynamics. Developments in single-cell, high-content imag-
ing technologies can be applied to answer these questions.

Here, we used hyperspectral confocal fluorescence 
microscopy (HCFM), a high-content imaging technique, 
to explore the effect of nitrogen starvation and subsequent 
PBS degradation on pigment content and localization in 
live Synechocystis 6803 cells. HCFM allows for the spectral 
resolution of pigments with similar fluorescence emission 
when combined with multivariate curve resolution (MCR) 
algorithms, yielding the independently varying fluorescent 
component spectra that comprise the emission of live cells. 
As a result, the subcellular distribution of pigments, even 
those with high spectral overlap, can be shown. HCFM has 
been previously applied to isolate spectra from highly over-
lapping pigments in photosynthetic organisms, specifically 
APC, PC, PSI, and PSII in Synechocystis 6803 (Vermaas 
et al. 2008), and to analyze and compare the distribution of 
pigments in a group of PBS mutants with increasingly trun-
cated antenna complexes (Collins et al. 2012). The exqui-
site spectral resolution of HCFM provides multiple advan-
tages for analysis of single-cell behavior in Synechocystis 
6803—quantification and localization of highly overlapped 
fluorescence signatures, assessment of cell-to-cell hetero-
geneity or lack thereof, identification of subpopulations of 
cells, as well as population dynamics. These advantages 
are easily extended to other photosynthetic organisms with 
endogenous pigment fluorescence, as well as exogenously 
labeled cells in general.

In this study, we explored the plasticity of pig-
ment response in live Synechocystis 6803 cells. In a new 
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application of HCFM, we coupled HCFM with single-cell 
analysis to quantify changes in the spectrally overlapped 
pigment components in individual wild-type Synechocystis 
6803 cells during nitrogen starvation to examine the degra-
dation and re-synthesis of PBS on a population level. Our 
results showed that PBS degradation and re-synthesis are 
well coordinated, with highly synchronized cell popula-
tions undergoing pigment modifications. In addition, Chl 
fluorescence originating from both PSI and PSII decreased 
during nitrogen starvation within 24 h, and the phycobilin-
to-Chl ratio changed dramatically (~4×) under nitrogen 
depletion conditions. However, no alteration in subcellular 
Chl of PBS localization was found. We observed, for the 
first time, differential rod and core pigment responses to 
nitrogen deprivation in Synechocystis 6803, suggesting that 
PBS complexes in Synechocystis 6803 undergo a stepwise 
degradation process similar to Synechococcus 7942. These 
data provide insights into how individual pigment-proteins 
react to changes in extracellular nitrogen at the single-cell 
and population levels.

Results

Bulk pigment response to nitrogen deprivation 
in Synechocystis 6803 cultures

Synechocystis 6803 cells were starved of nitrogen and sam-
ples were collected at 0-, 24-, and 48-h time points, and 
at 24 h after nitrogen readdition (Fig.  1a). These samples 
were used for absorbance measurements and HCFM. The 
absorbance peak originating from PBS (~625  nm) gradu-
ally declined over 24  h of nitrogen depletion and recov-
ered to slightly above original levels upon nitrogen reple-
tion (Fig. 1b). Likewise, the Chl absorbance peak (680 nm) 
declined with nitrogen depletion and recovered to slightly 
above original levels when nitrogen was added back to the 
medium (Fig. 1b).

The pigment abundance per cell can be calculated by 
dividing by the value at  OD730, which is an accepted esti-
mate of the number of cells in the culture. The phycobilin 
and Chl concentrations per  OD730 were determined from 
the absorbance measurements at the different time points 
during nitrogen depletion and repletion (Fig. 2). The phyc-
obilin content  OD730 in the control cultures (+N) gradually 
increased by a factor of 1.7 over 48 h, while the phycobilin 
content  OD730 in the nitrogen-depleted cultures (−N) dra-
matically decreased by a factor of 6.5 within 24 h (Fig. 2a). 
When nitrogen was added back to the depleted culture, 
the phycobilin concentration per cell increased 12-fold to 
near control levels. The Chl response to changing nitrogen 
levels exhibited a pattern similar to phycobilin, though to 
a lesser extent. The average Chl concentration per  OD730 

decreased by a factor of 1.8 in nitrogen-depleted medium 
and exhibited a 2.4-fold increase upon nitrogen reple-
tion (Fig. 2b). Interestingly, the average Chl concentration 
per  OD730 in the nitrogen-depleted culture did not appear 
to recover to normal levels 24 h after nitrogen was added 
back to the medium. The ratio of phycobilin to Chl gener-
ally remained constant over 48 h in the cultures with nitro-
gen in the medium (Fig. 2c). The ratio decreased fivefold 
in the nitrogen-depleted medium, following the same trend 
observed in the response of phycobilin to variable nitrogen 
levels (Fig.  2a). Upon repletion of nitrogen, the ratio of 
phycobilin to Chl increased sevenfold (Fig. 2c).

Spectral analysis

We examined changes in pigments of live, unfixed cells 
using HCFM. This technique captures an entire emis-
sion spectrum from every 3D pixel (voxel) in the image, 
resulting in data that encompass three spatial dimensions 
and one spectral dimension. MCR analysis was used to 

Fig. 1  a Schematic of experimental design. b Bulk absorbance 
measurements of Synechocystis 6803 cultures under varying nitrogen 
conditions. The average of three biological replicates is represented 
at 0, 24, and 48 h +N and 0 and 24 h −N. The average of two bio-
logical replicates is shown for 24 h post nitrogen repletion. One bio-
logical replicate is represented for the 48-h nitrogen-depleted sample. 
Absorbance spectra are shown normalized to A730. Cross indicates 
the phycobilin peak and star indicates the chlorophyll peak
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computationally isolate the pure spectral components that 
contributed to the fluorescence data and to develop a spec-
tral model describing the results (Fig.  3a). Based on this 
spectral model, independent images that represent the rela-
tive abundance and localization of the spectral components 
assigned to PSII, PSI, PC, and APC are calculated. The 
images corresponding to the four photosynthetic pigments 
have been pseudocolored and overlaid for visualization 
purposes (Fig. 3b–e). The pseudocoloring is based on the 
colors shown in Fig. 3a: Chl–PSI is red, Chl–PSII is green, 

and PC and APC are blue. While the color scale has been 
optimized on a per-component basis to aid in visibility, the 
color scale is the same for all the images permitting direct 
comparison of the colors and intensities to assess relative 
abundance and spatial localization qualitatively.

It should be noted that the HCFM method can also iden-
tify dead or dying cells and thus remove their contributions 
from statistical calculations. The MCR analysis identified a 
fifth spectral component around 600 nm not directly arising 
from a photosynthetic pigment (Fig. 3a). This broad cellu-
lar autofluorescence peak has been shown to be quite prom-
inent in dead cells and is presumed to arise from the vari-
ous breakdown products of the photosynthetic pigments 
including flavonoids, flavins, cinnamic acids, betaxan-
thine, and pyridine nucleotides (Schulze et al. 2011; Tang 
and Dobbs 2007). A higher prevalence of dead cells was 
observed following centrifugation and rinse steps due to the 
mechanical stress, as expected (data not shown). Addition-
ally, extremely high levels of PBS fluorescence often char-
acterize dying cells. This is because the cells lose the abil-
ity to perform energy transfer to reaction centers, resulting 
in a strong increase in phycobilin fluorescence. Cells with 
autofluorescence contributions three times the standard 
deviation of the average population or PC content greater 
than three times the population average were identified as 
dead, dying, or severely compromised and excluded from 
further analysis. On average, this excluded an additional 
3–5 cells per condition regardless of time point or nitrogen 
condition. The ability to include or exclude anomalous cells 
can improve the validity of the single cell analysis results 
by providing more accurate average values.

Single-cell imaging and quantification

Representative, two-dimensional image sections from con-
trol (+N) and experimental (–N) cells after 24-h starvation, 
48-h starvation, and 24-h repletion are shown in Fig. 3b–e. 
The (+N) control cells and the 24-h replete cells appeared 
similar in terms of pigment composition (Fig. 3b, e). The 
pigments were localized mainly in regions near the cell 
periphery, consistent with the previously observed loca-
tion of thylakoid membranes in the cells. Bright punctate 
regions of heterogeneous fluorescence were observed cor-
responding to regions where PSI, PSII, and PBS were more 
concentrated. Examples of these regions are indicated by I, 
II, and P in the images, respectively.

In contrast, the 24-h (−N) and 48-h (−N) cultures dis-
played much lower overall fluorescence. In particular, 
the fluorescence from PC and APC (blue) was greatly 
diminished after nitrogen starvation, so that the contri-
butions from Chl–PSI (red) and Chl–PSII (green) were 
more prominent. Bright punctate regions of PSI and PSII 
localization were still observed at both 24 and 48  h of 

Fig. 2  Changes in the concentration of pigments at different time 
points under varying nitrogen conditions. The average and standard 
deviation of three biological replicates are represented at 0, 24, and 
48 h +N and 0 and 24 h −N. The average and standard deviation of 
two biological replicates are shown for 24 h post nitrogen repletion. 
One biological replicate is represented for the 48-h nitrogen-depleted 
sample. a PC content per cell. b Chl content per cell. c Ratio of phy-
cobilin to chlorophyll content per cell
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nitrogen deprivation, indicated by I and II in the images, 
respectively.

The average per-cell fluorescence intensities of photo-
synthetic pigments quantified from the HCFM images are 
shown in Fig. 4. In the nitrogen-starved cells, the intensi-
ties of PC (Fig. 4a) and APC (Fig. 4b) were dramatically 
decreased at 24 and 48  h. The fluorescence intensity for 
both phycobilin pigments recovered after 24 h of nitrogen 
readdition, but remained slightly below the levels observed 
in the 0-h time point. Chl levels for Chl–PSI (Fig. 4c) and 
Chl–PSII (Fig. 4d) both showed a decline at 24 h followed 
by a slight increase at 48 h. The replete sample showed a 
recovery of Chl that remained slightly below the 0-h time 
point levels. Similiarly to the absorbance measurements, 
the levels of all pigments in the (+N) control cells showed 
a slight increase over the course of the experiment from 0 
to 48 h. The data in Fig. 4 are summarized in Table 1 as the 
percent of the initial abundances (t = 0).

Single-cell scatter plots comparing the pigment abun-
dances in individual cells are shown in Fig.  5. When 
Chl–PSII was compared to PC (Fig.  5a), the decrease in 
the levels of both pigments in the nitrogen-starved cells 
was apparent, especially for PC. When only the nitrogen-
depleted cells were examined at the 0-, 24-, and 48-h time 
points (Fig.  5b), the differences between the time points 
were seen, as were a few outliers in the 24-h time point that 
did not show the same pigment changes. When APC versus 
PC was examined (Fig. 5c), a larger decrease in PC com-
pared to APC was observed upon depletion.

Discussion

Cyanobacteria harvest light using large PBS antenna sys-
tems composed of pigment-proteins. These light-harvesting 
complexes are degraded during nutrient starvation and are 
thought to provide a source of nutrients for the cells (Col-
lier and Grossman 1992; Kiyota et  al. 2014). While prior 
research has identified the bulk Chl and PBS abundances 
during nitrogen starvation in Synechococcus 7942 (Collier 

and Grossman 1992, 1994) and Synechocystis 6803 (Baier 
et al. 2014), subcellular localization and abundance of the 
individual Chl and PBS pigments remained unknown.

Bulk absorption measurements are the most com-
mon method for analyzing pigment content in intact 
cells. Thus, we compared the single-cell analysis to 
bulk absorption measurements. We found that the PBS 

Fig. 3  MCR results from hyperspectral confocal fluorescence images 
of single Synechocystis 6803 cells under a time course of varying 
nitrogen conditions. a Spectral model. Fluorescence emission spectra 
corresponding to four photosynthetic pigments and a broad autofluo-
rescence emission spectrum were mathematically isolated. A sixth 
spectrum, a flat offset, has been omitted for simplicity. Spectra are 
normalized to unit length. b–e RGB images corresponding to the rel-
ative abundance of the four photosynthetic pigments. Red Chl (PSI), 
green Chl (PSII), blue PC + APC. Scale bars 5 µm in large images, 
2.5 µm in the zoomed inset images. Color scales are identical for all 
images to facilitate comparison between images. Labels I, II, and P 
indicate regions of the cells representative of high concentrations of 
Chl (PSI), Chl (PSII), and phycobilisomes, respectively. The D labels 
a dead cell consisting primarily of broad autofluorescence

▸
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content and Chl levels as measured by bulk absorption 
increased steadily over 48 h in the control cultures, likely 
in response to the self-shading occurring during normal 
cell growth (Shigesada and Okubo 1981). The decreas-
ing PBS and Chl content in response to nitrogen depriva-
tion shown in Fig. 2 are consistent with previous reports 
(Collier and Grossman 1992) and confirm the experimen-
tal conditions for the single-cell measurements. Inter-
estingly, when depletion was rescued by the addition 
of nitrogen, an increase in the PBS/Chl ratio occurred. 
This might be due to differences in recovery rates dur-
ing the 24-h repletion period, with PBS recovery occur-
ring more rapidly. The details of metabolic recovery from 
nitrogen starvation have begun to be explored in a recent 
report (Klotz et  al. 2016), which outlined the phases of 
transition from nitrogen starvation to active growth. The 

second phase of recovery is characterized by repigmenta-
tion and resumption of photosynthetic activity.

While these measurements based on absorbance esti-
mate the abundance of Chl and PBS per cell in living cul-
tures, such estimates carry the assumption that all cells 
have an identical pigment composition. The high degree of 
spectral overlap among the pigments has prevented direct 
measurement of the abundance and localization of indi-
vidual antenna rod (PC) and core (APC) proteins, and PSI 
with respect to PSII, in single cells. HCFM combined with 
MCR analysis resolved the overlapping spectra into four 
pigment components (PSII, PSI, PC, and APC) as shown 
in Fig.  3a. Figure  3b shows representative images from 
four conditions measured in this study. The control cells 
in Fig. 3b show a pigment localization and abundance pat-
tern typical for wild-type Synechocystis 6803 cells (Collins 
et al. 2012; Vermaas et al. 2008). The majority of pigment 
signal is found in the cell periphery corresponding to the 
presence of thylakoid membranes, with brighter white foci 
(500–700  nm  in diameter), which suggest that areas of 
dense thylakoid packing increase the concentration of all 
pigments (labeled with a ‘P’ in Fig. 3) and the occasional 
red or green membrane patch, indicating a region of Chl 
heterogeneity (i.e., either higher or lower Chl–PSI relative 
to Chl–PSII, labeled with ‘I’ or ‘II’ respectively). Supple-
mentary Figs.  1 and 2 show the spectral data and MCR 
model for the individual pixels labeled in the insets of 
Fig. 3b–e. When the cells are depleted of nitrogen, the blue 
component (PC and APC) simply goes away and the locali-
zation of the two Chl components appears unaltered. Both 
the 24- and 48-h nitrogen-depleted cells clearly show areas 

Fig. 4  Average per-cell fluores-
cence intensities of photosyn-
thetic pigments from hyper-
spectral confocal fluorescence 
images of Synechocystis 6803 
under a time course of varying 
nitrogen conditions. a PC, b 
APC, c Chl (PSI), and d Chl 
(PSII). Error bars represent the 
standard error of the single-cell 
measurements

Table 1  Average % of original abundance of photosynthetic pig-
ments following nitrogen depletion (24 h) and repletion (24 h) calcu-
lated from the single-cell hyperspectral confocal fluorescence images

Pigment % of original abundance

following N depletion following 
N reple-
tion

PC 3 ± 3 88 ± 9
APC 9 ± 1 87 ± 10
Chl–PSI 43 ± 4 80 ± 7
Chl–PSII 38 ± 3 95 ± 8
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of Chl heterogeneity characterized by green (PSII-rich) and 
red (PSI) patches. Upon repletion, the cells appear indis-
tinguishable from the control cells in terms of pigment 
localization.

To provide a quantitative assessment of single-cell pig-
ment abundance, the individual cells in the hyperspectral 
images were segmented and the average abundance of each 
pigment calculated from individual component images 
(Fig.  4 and summarized in Table  1). While these results 
appear similar to the values estimated from the bulk meas-
urements shown in Fig.  2, there are some notable differ-
ences that contrast the per-cell pigment abundances esti-
mated by the absorbance measurements (Fig. 2; Table 1). 
The relative pigment-protein levels per cell in Fig. 2 were 
calculated using an estimate of the number of cells based 
on optical density at 730  nm. This is standard practice; 
however, it should be considered a rough estimate at best 
because optical density cannot discern whether all cells 
in the population measured are in the same physiological 
state. Furthermore, the light scattering properties of cells 
depend upon cellular ultrastructure, which varies based on 
the physiological state of the cell (Collier and Grossman 
1992).

While Fig.  4 provides quantitation of the spectrally 
overlapped pigments in individual cells, it is still an aver-
age over multiple cells and, thus, does not represent the 
distribution of cells within the population. The question 
remains—are all the cells responding in a correlated way or 
are some cells significantly different from others? Relative 

pigment abundance was compared at the single-cell level. 
The data shown in Fig.  5 reveal subtle details about the 
kinetics of pigment response and cell-to-cell heterogeneity 
that cannot be uncovered from bulk analysis or even cal-
culating the average pigment abundances in each cell from 
the high-content hyperspectral images. These points are 
detailed below.

Response to nitrogen depletion is coordinated 
within cell population

From the color groupings in Fig. 5, it is apparent that cells 
exhibit a high degree of plasticity, with the majority of the 
cells responding in a concerted way to both nitrogen deple-
tion and repletion. This coordinated response, based on sin-
gle-cell data, has never been shown experimentally for any 
pigment, much less highly overlapped pigments like PC, 
APC, Chl–PSI, and Chl–PSII. Although the majority of the 
population exhibits a similar physiology, there is evidence 
of heterogeneity of pigment content in the (+N) control 
population that has not been previously observed. There are 
clusters of cells with high PC and low Chl–PSII content as 
shown in Fig. 5a. This could be indicative of a self-shading 
response (Shigesada and Okubo 1981). Like Figs. 4, 5b and 
Supplementary Fig. 3 indicate an increase in the Chl–PSII 
and Chl–PSI content at 48 h relative to 24-h nitrogen deple-
tion, which is consistent through the entire population of 
cells (i.e., tight cluster of purple data points). Interest-
ingly, while the majority of the cells respond quickly to 

Fig. 5  Scatter plots for compar-
ing single-cell abundances of 
photosynthetic pigments. a, b 
PC versus Chl-PSII content. 
c, d PC versus APC content in 
individual cells. a, c All time 
points are represented in control 
(blue crosses), nitrogen deplete 
(open red circles), and nitrogen 
replete conditions (open green 
triangles). b, d Data from a and 
c showing only deplete condi-
tions and color coding for 0, 
24, and 48 h in nitrogen deplete 
environment
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(−N) conditions by lowering their PC, APC, Chl–PSII, 
and Chl–PSI, a subpopulation of cells in (−N) medium at 
t = 24 h respond by raising their PC and APC levels (i.e., 
red circles apart from the tight red clusters in Fig. 5b, d). 
These cells may be extremely compromised and no longer 
capable of performing energy transfer from the PBS to Chl, 
resulting in an increase in phycobilin fluorescence. By the 
48-h time point, these are no longer observed.

Population heterogeneity is evident in nitrogen replete 
conditions

Figure  5 also reveals two subpopulations of replete cells 
(i.e., two separate clusters of green triangles in Fig. 5a, c; 
Supplementary Fig.  1). While both populations return to 
the same relative ratio of APC/PC fluorescence (i.e., same 
slope in Fig.  5c), one has significantly less PC pigments 
overall and the other has a substantially different Chl–PSII 
abundance relative to PC. The kinetics of PBS degrada-
tion and recovery have been shown to vary within the same 
population of cells in cyanobacteria (Collier and Grossman 
1992). For example, previous studies of nitrogen depletion 
and repletion in Synechococcus 7942 revealed two viabil-
ity states within the same culture in response to the read-
dition of nitrogen (Görl et al. 1998). Although population 
dynamics in response to nutrient availability are known to 
be heterogeneous in cyanobacteria, the specific divergent 
cellular processes in these populations have been difficult 
to resolve. Our results demonstrate a difference in the rate 
of PC synthesis and PSII activity that is quantified at the 
single-cell level.

Initial cell response to nitrogen deplete conditions 
occurs within minutes

In all the pigment scatter plots, the 0 h nitrogen deplete 
cells (i.e., cluster of red circles amidst the main blue cluster 
in Fig. 5a, c and the light pink circles in 5b, d) are centered 
at slightly lower values than their (+N) counterparts (blue 
×’s in Fig. 5a, c). These cells were in the (−N) medium for 
approximately 5–7  min prior to imaging and the imaging 
duration was no more than 20 min. These results confirm 
the rapid cellular response to nitrogen starvation and fur-
ther quantifies that cells begin to modify their pigment con-
tent within 30 min after nitrogen depletion.

Kinetics of PBS degradation at the single-cell level—
the PC rods are degraded prior to the APC core 
in Synechocystis 6803

It can be seen from Fig. 5c that the ratio of APC/PC flu-
orescence is about equal in the control (indicated as +N) 
and replete cells; however, after 24 h of nitrogen depletion 

(Fig. 5c, d, indicated as −N), the APC/PC ratio increased to 
approximately 2:1, which is interpreted as a loss of PC rela-
tive to APC. This supports the proposed model for sequen-
tial PBS degradation in Synechococcus 7942 from the 
periphery of the antenna inward to the central core (Baier 
et al. 2014; Karradt et al. 2008).

Experimental procedures

Cyanobacterial strains and culture conditions

Synechocystis 6803 was grown photoautotrophically in 
BG11 medium with 1.76  M  NaNO3 as a nitrogen source 
(Allen 1968). The nitrogen source was replaced with 
1.76 M NaCl to generate nitrogen-depleted medium. Cul-
tures were incubated at 30 °C while continuously shak-
ing at 150  rpm (VWR Orbital Shaker) under constant, 
cool-white light (30  μmol photons  m− 2  s− 1). To perform 
the experiment, three replicate flasks containing 25 mL 
BG11 medium were inoculated with Synechocystis 6803 
 (107 cells/mL) and incubated under standard culture condi-
tions. After 3 days, each culture was subdivided into two 
equal volumes, harvested by gentle centrifugation (500×g 
for 10 min), and washed twice with either nitrogen replete 
BG11 medium (+N) or nitrogen-depleted medium (−N). 
After washing, the cells were resuspended in 50 mL BG11 
(+N) or BG11 (−N) medium and cultured in a 500-mL 
Erlenmeyer flask for 24  h. At 24  h, the nitrogen-depleted 
cultures were harvested by centrifugation as described 
above and resuspended in either BG11 (+N) or BG11 (−N) 
medium so that one culture set continues toward chloro-
sis, while the other set was repleted with nitrogen-enriched 
medium, respectively. The nitrogen-enriched control cul-
tures were also harvested by centrifugation and resus-
pended in BG11 (+N) medium to mock the experimental 
conditions of the test cultures. Samples were obtained for 
image analysis at 0, 24, and 48 h as shown in Fig. 1a.

Absorbance analysis

Bulk culture absorbance spectra (400–800  nm) were 
obtained from all cultures/time points using a plate reader 
(BioTek Eon). Absorbance spectra were background cor-
rected using the absorbance spectrum from the correspond-
ing cell-free BG-11 (+N or −N) medium. The spectra are 
shown in Fig.  1b (normalized to 730  nm for visualiza-
tion and comparison purposes). The absolute concentra-
tions of phycobilin and chlorophyll pigments were calcu-
lated using the following equations: 0.139(A620 − A730) 
− 0.0355(A678 − A730) = mg/mL and 14.96(A678 
− A730) − 0.616(A625 − A730) = μg/mL, respectively 
(Arnon et  al. 1974; Collier and Grossman 1992). These 
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values were converted into molarity (mM) by dividing the 
concentrations obtained with molecular mass of phycobi-
lin (586.67802 g/mol) and chlorophyll (893.48898 g/mol), 
respectively.

Single-cell HCFM

Samples for HCFM were prepared by withdrawing 25 µL 
of the first concentrated cell pellet (prior to any washing 
steps). This aliquot was resuspended in 100 µL of medium 
(+N or −N) and 8 µL of the resulting culture was placed on 
an agar-coated slide. Cells were allowed to settle for 60 s 
and a coverslip was applied (#1.5), excess culture wicked 
from the edges, and sealed with nail polish. Imaging was 
performed immediately.

Hyperspectral confocal fluorescence images were 
acquired using a custom HCFM described previously (Sin-
clair et al. 2006). In brief, 3 µW of 488 nm laser excitation 
was focused onto the sample through a 60x oil immersion 
objective (Nikon Plan Apochromat; NA = 1.4) to a diffrac-
tion-limited spot. Fluorescence emission was collected 
through the same objective and dispersed by a custom-
designed prism spectrometer (Sinclair et  al. 2006) onto 
the focal plane of an electron-multiplied CCD array (iXon 
DU897U, Andor Technologies). The per-pixel dwell time 
was 240 ms. The image was formed by raster scanning the 
beam over the sample with a step size of 0.12  µm. This 
generates images with diffraction-limited lateral spatial 
resolution (240 nm). A total of 256 images, each containing 
44,100 spectra, were collected.

Spectral image analysis

Hyperspectral images were preprocessed and subsequently 
analyzed using multivariate image analysis methods to 
extract the underlying spectral components and calculate 
their relative contributions to each image pixel as described 
(Jones et al. 2012). Representative images from each time 
point and sample were combined into one image dataset 
and MCR was executed with non-negativity constraints on 
all image pixels above the background. This resulted in a 
six-component spectral model consisting of an instrument 
offset, PC, APC, Chl in PSII, Chl in PSI, and autofluores-
cence that explained a total of >99.4% of the spectral vari-
ance. The autofluorescent component was included in the 
analysis to account for dead or dying cells. Concentration 
maps indicating the abundance and location of each com-
ponent were generated using a classical least squares analy-
sis with the pure spectra identified from the MCR analysis. 
The resulting concentration maps were segmented using a 
modified watershed transformation algorithm to identify 
individual cells. Automated cell segmentation was verified 
and edited manually. Single-cell statistics were calculated 

for individual cells. Dead and dying cells were identified by 
their extremely high autofluorescent abundance and/or high 
PBS fluorescence (>3× the average values) and excluded 
from calculation of single-cell statistics. This resulted in 
the following number of cells recorded at each condition: 
T0 + N: 55 cells; T24 + N: 240 cells; T48 + N: 197 cells; 
T0 –N: 61 cells; T24 –N: 220 cells; T48 –N: 62 cells; T24 
replete: 251 cells.
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