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INTRODUCTION

Sea ducks (tribe Mergini) that forage for much of
the year in marine waters often have high trace ele-
ment burdens that would cause serious reproductive
problems in freshwater birds (Ohlendorf et al. 1986,

Henny et al. 1995, Heinz 1996, Trust et al. 2000). How -
ever, the particular trace elements that are elevated
in sea ducks can vary substantially among species
and areas (Stout et al. 2002, Savinov et al. 2003, Mal-
lory et al. 2004). For example, in benthic-feeding sea
ducks of remote Arctic regions, Se and Cd may both
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ABSTRACT: During late winter (March) in the Bering Sea, levels of Se in livers and Cd in kidneys of
spectacled eiders Somateria fischeri were exceptionally high (up to 489 and 312 µg g−1 dry mass, re-
spectively). Comparison of organ and blood samples during late winter, early spring migration, and
breeding suggests that the eiders’ high Se and Cd burdens were accumulated at sea, with highest
exposure during winter. High exposure may have resulted from high metabolic demands and food
intake, as well as concentrations in food. In the eiders’ remote wintering area, their bivalve prey
contained comparable Se levels and much higher Cd levels than in industrialized areas. Patterns of
chlorophyll a in water and sediments indicated that phytoplankton detritus settling over a large
area was advected into a persistent regional eddy, where benthic prey densities were higher than
elsewhere and most eider foraging occurred. Se and Cd assimilated or adsorbed by bloom materials
apparently also accumulated in the eddy, and were incorporated into the bivalve prey of eiders. At-
mospheric deposition of dust-borne trace elements from Asia, which peaks during the ice-edge
phytoplankton bloom from March to May, may augment processes that concentrate Se and Cd in
 eider prey. Compared with freshwater birds, some sea ducks (Mergini) accumulate much higher con -
centrations of trace elements, even with the same levels in food, with no apparent ill effects. Never-
theless, the absolute and relative burdens of different elements in sea ducks vary greatly among
 areas. Our results suggest these patterns can result from (1) exceptional accumulation and tolerance
of trace elements when exposure is elevated by high food intake or levels in food, and (2) atmo -
spheric and oceanographic processes that concentrate trace elements in local benthic food webs.
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reach high levels (Trust et al. 2000), or Cd may be
very high while Se is relatively low (Wayland et al.
2001b). Compared with these sea ducks, marine
birds that feed in the water column often have simi-
larly high concentrations of Cd and much higher
 levels of Hg, but generally only low levels of Se and
Cu (Norheim 1987, Honda et al. 1990, Savinov et al.
2003). Thus, although high trace elements in these
birds do appear related to living in a marine envi -
ronment, the importance of factors causing element
accumulation in prey seems to differ between ben-
thic and epipelagic food webs. For benthivores, these
factors also result in quite different geographic pat-
terns of exposure to different trace elements.

High levels of Se in marine birds have been of par-
ticular interest. Although Se has a variety of physio-
logical functions, it is often asserted that marine
mammals accumulate Se in their livers to detoxify
high levels of Hg (Ikemoto et al. 2004). Piscivorous
and planktivorous birds often show positive correla-
tions between total Hg and Se in the liver (Norheim
1987, Kim et al. 1996b). Studies of captive quail
Coturnix coturnix and adult mallards Anas platy -
rhynchos indicate that Se accumulates in liver in
response to Hg exposure and probably protects
against Hg effects (El-Begearmi et al. 1977, Heinz &
Hoffman 1998). However, marine birds often have
much higher levels of Se relative to Hg than the 1:1
molar ratio thought appropriate for Hg detoxification,
and the magnitude (and sometimes direction) of
 correlation between Se and Hg are highly variable
(Goede & Wolterbeek 1994, Trust et al. 2000, Way-
land et al. 2001b, Ikemoto et al. 2004).

High burdens of trace elements in sea ducks raise
questions about toxicity. For example, sea ducks
often have liver Se levels far higher than those that
can impair reproduction and survival in freshwater
birds (Henny et al. 1995, Heinz 1996, Stout et al.
2002). With no overt ill effects, common eiders Soma-
teria mollissima accumulated much higher levels of
Se than did mallards fed food containing the same
Se concentrations (Franson et al. 2007). Neverthe-
less, liver Se concentrations in the eiders increased
greatly with increasing concentrations in food. Thus,
despite physiological differences that lead to greater
accumulation and tolerance of trace elements by sea
ducks, their tissue concentrations still depend strongly
on levels of exposure. Regardless of toxicity, it re -
mains unclear why trace element concentrations in
sea ducks vary so widely among areas that are far
from direct contaminant sources.

Atmospheric transport and deposition of trace ele-
ments attached to dust particles can be an important

source of anthropogenic elements in regions far from
their initial source (Yu et al. 2008). For example,
recurrent episodes of element-laden ‘Arctic haze’ in
northern Alaska, and deposition of trace elements in
surface waters of the North Pacific Ocean, have been
traced to atmospheric transport from Asia (Rahn et al.
1981, Ranville et al. 2010). In waters with substantial
atmospheric deposition (including wet deposition),
anthropogenic aerosols can be the source of most
trace elements associated with sinking particles
(AMAP 1998, Ho et al. 2010).

High demand for trace elements in the upper water
column of the ocean, especially during intense
phyto plankton blooms, has resulted in algal adapta-
tions for efficient uptake of essential elements (Fisher
& Reinfelder 1995, Zhang 2000). In addition to direct
assimilation, even larger amounts of some trace ele-
ments (including a portion of Se) can be adsorbed
extracellularly or bound via ligands to phytoplank-
ton cells, algal and zooplankton detritus, flocculated
 exudates, and fecal pellets (Cohen et al. 1992, Ho et
al. 2010, Strmečki et al. 2010). Once bloom-derived
materials sink to the bottom, bedload transport can
redistribute deposited organic matter and associated
trace elements (Yao & Zhang 2005). These processes
could lead to spatial variations in uptake of elements
by benthic food webs (Thorsson et al. 2008).

These various processes of trace element transport
and movement through marine systems have been
well documented independently. However, they have
not been integrated to link patterns of atmospheric
deposition, assimilation or adsorption to bloom mate-
rials, redistribution of settled organic detritus, and
spatial variation of elements in benthic animals. With
rapid anthropogenic change, such linkages may be -
come increasingly important for entire food webs,
and especially for top predators (Stewart et al. 2010,
Komoroske et al. 2012).

An example of such a top predator is the spectacled
eider Somateria fischeri. Of their world population of
about 370 000, ~5% breed on the Yukon-Kuskokwim
(Y-K) Delta of Alaska, ~5% on the North Slope
 (Arctic coast) of Alaska, and ~90% on the Arctic
coast of Russia (Fig. 1) (Petersen et al. 2000). These
eiders are present in their breeding areas from about
late May through August, and in their wintering
region from November through mid-April. This spe-
cies’ wintering area was first documented in 1995; in
that year and 8 subsequent years in which they have
been located (1996−1999, 2001, 2008−2010), the
eiders have been found during March−April in a
region of about 100 × 150 km that is 60 to 80 km
southwest of St. Lawrence Island in the Bering Sea
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(Fig. 2) (Larned et al. 2012). In that area, the entire
population occurs in leads (open-water areas) scat-
tered through pack ice, in water 40 to 70 m deep.
Spectacled eiders collected there in late March 2001
had been eating almost exclusively the abundant
deposit-feeding bivalve Nuculana radiata (Lovvorn
et al. 2003).

In the present study, we measured trace elements
in spectacled eiders in their wintering area. We
 compared those element concentrations with pub-
lished data for this species during early spring migra-
tion, soon after migrations of differing routes and
durations, and through the breeding period. We
found levels of Se and Cd in wintering spectacled
eiders to be remarkably high, and that these ele-
ments ap peared to be accumulated while the eiders
were in their wintering area. In that area, we exam-
ined spatial patterns of chlorophyll in the water col-
umn and sediments, and of trace elements in sedi-
ments and benthic prey. These data suggest that
oceanographic concentrating mechanisms, and per-
haps atmospheric deposition of trace elements, are
key facilitators of high physiological uptake by these
eiders.

MATERIALS AND METHODS

Trace elements in spectacled eiders, bivalve prey,
and other sea ducks

Wintering spectacled eiders were located from hel-
icopters deployed from an icebreaker, and were
 collected over decoys with shotguns and steel shot
(Lovvorn et al. 2003). On 19 March 2001 we col-
lected 39 eiders in this manner at 1 site (62° 40.9’ N,
173° 22.7’ W), and near this site on 22 March 2001 we
salvaged 1 adult male and 2 adult females after they
collided with the ship at night. One adult male was
shot near a lead without decoys on 19 April 1999, and
was included with the March 2001 sample. Eiders
were frozen until analyzed.

In the laboratory, samples (2 to 5 g fresh mass) of
liver, kidney, and pectoral muscle were removed
from thawed birds and analyzed for 17 trace ele-
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Fig. 1. Somateria fischeri. Breeding, molting, and wintering
areas of spectacled eiders (after Petersen et al. 2000). Since
first being located in 1995, the main wintering concentration
has been in the unshaded area within the larger shaded 

region south of St. Lawrence Island (see Fig. 2)

Fig. 2. The Bering Sea shelf showing overall water flows including
the Anadyr Current carrying upwelled water from the shelf break
along the western coast, the branch of the Anadyr Current flowing
eastward south of St. Lawrence Island (SLI), our main study area
(gray shading), and the primary wintering region of spectacled ei-
ders (unshaded subarea ‘E’), where it appears that settling bloom
material from over a larger area is advected and concentrated.
The area near the village of Gambell at the northwest tip of St.
Lawrence Island where additional eiders were collected (Trust et
al. 2000) is indicated by a star. Hydrographic flow patterns (width of
arrows indicates relative flow magnitude) are after Stabeno et al. 

(2001) and Clement et al. (2005)
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ments with an Elan 6100 inductively coupled plasma
(ICP) mass spectrometer (PE Sciex) at the Wyoming
State Veterinary Laboratory. Detailed laboratory pro-
cedures are described in the Supplement (www.int-
res.com/articles/suppl/m489p245_supp.pdf).

After removing gut contents and tissue samples
for elemental analyses, the eiders were measured
and then ground for determination of total body
water (oven drying), lipid (Soxhlet extraction), and
ash (incineration in a muffle furnace). Total body pro-
tein was calculated as the difference between lipid-
free dry mass and ash, and body protein was cor-
rected for structural body size (Lovvorn et al. 2003).

For approximate comparison with liver Se levels of
eiders collected on and near wintering areas, we esti-
mated liver concentrations from Se measured in the
blood of eiders captured on breeding areas on the
Y-K Delta (Grand et al. 2002) and the North Slope of
Alaska (Wilson et al. 2004) (Fig. 1). An equation relat-
ing Se levels in blood (SeB; µg g−1) to levels in liver
(SeL; µg g−1 dry mass) for common eiders during the
breeding season in Arctic Canada (Fig. 1 in Wayland
et al. 2001a), ln SeB = −0.67 + 0.69 ln SeL (r2 = 0.28,
p < 0.01), was rearranged to yield:

SeL = (SeB / 0.5117)1.449 (1)

Given the relatively low coefficient of determina-
tion (r2) and possible seasonal and annual varia-
tions, resulting predicted values of liver Se should
not be interpreted quantitatively, but only as indica-
ting qualitative trends (Wayland et al. 2001a). Never-
theless, on the North Slope, liver Se levels predicted
from blood samples of 14 prebreeding adult males in
1996 (Wilson et al. 2004) did not differ from actual
liver Se concentrations in 4 prebreeding adult males
salvaged from 2003 to 2006 (t-test, p = 0.53, see
‘Results’). Although these blood and liver samples
were from different years, element levels in eiders
soon after arrival at nesting sites reflect exposure
during winter and migration in offshore marine
areas, where trace elements in benthic prey are not
expected to exhibit synchronous between-year varia-
tions in the same direction over such large regions.
(Note that the small breeding population on the
North Slope, about 5% of the total population, is
closely protected and sampling of liver and blood
from the same individuals is not possible.)

From 9 May to 2 June 2006, and 18 May to 12 June
2007, the eiders’ main bivalve prey when they were
collected, Nuculana radiata (Lovvorn et al. 2003),
was sampled by an otter trawl with a 7 m footrope
(2006) or by a 4-m beam trawl (2007) at stations
throughout the study area south of St. Lawrence

Island (Fig. 2). Cruises in May 2006 and 2007 were
our first opportunity to take an icebreaker back
into this area after collecting spectacled eiders in
March 2001, which revealed their very high conta -
minant levels. Specimens of N. radiata were frozen
im mediately after collection. After later thawing in
the laboratory, soft tissues of N. radiata were physi-
cally separated from the shell, and combined for
trace element analysis by methods described above
for bird tissues.

Tissue concentrations of selected trace elements in
sea duck species that winter in marine environments
were compiled from the literature. In cases where
concentrations were expressed only in terms of fresh
mass, we converted values to dry mass assuming
dry mass percentages of 30% for liver and 23% for
kidney (see the Supplement).

Chlorophyll a in the water column and sediments

During 19 May to 15 June 2007 throughout the
study area, water samples (250 ml) from up to 12
depths at each station were filtered through What-
man GF/F filters and extracted in 90% acetone for
24 h in the dark at 4°C. Chlorophyll a concentrations
were measured with a 10-AU fluorometer (Turner
Designs) (see Cooper et al. 2012).

At stations sampled by trawling from 7 May to 2
June 2006 and on 7 June 2007, duplicate 1 cm3 sam-
ples of surface sediments (1.54 cm2 surface area)
were collected from the top of a van Veen grab sam-
ple before opening the grab to minimize disturbance
of the sediments. Ten milliliters of 90% acetone were
mixed with each sample, which was stored at 4°C for
12 h to ensure extraction of all chlorophyll a. Chloro-
phyll a concentration within the acetone extract was
then measured with the 10-AU fluorometer as
described above. The mean of chlorophyll a meas-
urements for the 2 samples at each station was scaled
up to mg chlorophyll a per m2 of surface sediments.

Se and organic N in sediments

Sediment samples were taken from the top of a
van Veen grab as described above. These samples
were analyzed for total Se with an oxidative digest
followed by selective hydride generation/atomic ab -
sorption spectrometry (Cutter 1985). Total N concen-
tration in sediments was measured with a Carlo Erba
1500 Elemental Analyzer by the procedures of Cutter
& Radford-Knoery (1991).
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Statistics

We tested for differences between arithmetic
means with t-tests, and with pairwise comparisons in
ANOVAs. For trace element levels in spectacled
eiders in their wintering area, geometric means
based on log10 are also reported. We used linear
regressions to examine relationships between body
condition and levels of different trace elements in
liver and kidney, and among concentrations of differ-
ent trace elements.

RESULTS

Trace elements in spectacled eiders and other
species

In adult spectacled eiders south of St. Lawrence
Island in late March 2001, concentrations of most
common trace elements were not high enough to be
considered toxic to birds (Table 1) (Eisler 2000). In
contrast, concentrations of Se in liver and Cd in kid-
ney were exceptionally high. Liver concentrations
(arithmetic mean) in males exceeded those in
females by 37% for Se (235.59 versus 171.79 µg g−1

dry mass), 207% for Cu (733.59 versus 238.68 µg g−1

dry mass), 20% for Hg (1.42 versus 1.18 µg g−1 dry
mass), and 60% for Pb (0.08 versus 0.05; t-tests, p <

0.05). In kidneys, there were no significant differ-
ences between sexes in levels of any trace element
measured.

Effects on body condition

There was no relationship in either adult males or
adult females between liver Se and total body lipid or
size-adjusted total body protein (all r2 < 0.10, p >
0.22). The same was true for liver Hg (all r2 < 0.17, p >
0.18), liver Cu (all r2 < 0.16, p > 0.15), and kidney Cd
(all r2 < 0.08, p > 0.19). Thus, variations in these trace
elements did not appear to affect the fat or protein
reserves of adult spectacled eiders on their main win-
tering area.

Relationships among elements

In the livers of males or females, there was no rela-
tionship between levels of Se and Hg (r2 < 0.04, p >
0.41), or between Se and Cu (r2 < 0.09, p > 0.16). Liver
Se was related to kidney Cd in males (r2 = 0.26, p =
0.01) but less clearly so in females (r2 = 0.26, p = 0.09).
Liver Cu was positively related to liver Hg (r2 = 0.33,
p = 0.05) and kidney Cd (r2 = 0.48, p = 0.01) in
females, while there were no correlations in males
(both r2 < 0.06, p > 0.25).
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Male Female 
Arithmetic Geometric Range Arithmetic Geometric Range
mean ± SE mean mean ± SE mean

Se Liver 235.59 ± 15.77 223.77 119.79−489.13 171.79 ± 12.23* 167.08 107.51−264.45
Kidney 96.17 ± 4.75 93.93 70.54−174.28 97.37 ± 11.45 91.27 50.85−198.31
Muscle 24.40 ± 0.75 24.14 18.96−33.40 22.63 ± 1.25 22.26 18.05−29.84

Cd Liver 36.20 ± 3.48 33.15 16.62−90.76 34.58 ± 5.65 30.75 15.35−86.54
Kidney 163.42 ± 14.25 145.30 27.86−311.93 201.81 ± 22.99 181.83 47.96−304.63
Muscle 2.05 ± 0.32 1.63 0.54−8.30 2.66 ± 0.79 1.90 0.18−11.08

Hg Liver 1.42 ± 0.06 1.39 0.75−2.09 1.18 ± 0.10* 1.13 0.64−2.17
Kidney 0.72 ± 0.03 0.70 0.32−1.03 0.71 ± 0.06 0.69 0.41−1.10
Muscle 0.21 ± 0.01 0.20 0.13−0.32 0.17 ± 0.02 0.16 0.07−0.27

Cu Liver 733.59 ± 81.05 607.43 34.50−2050.37 238.68 ± 47.35* 183.69 37.18−527.94
Kidney 69.02 ± 4.48 65.74 31.69−131.17 76.83 ± 5.65 74.63 52.68−111.64
Muscle 16.14 ± 0.60 15.88 10.44−22.77 15.47 ± 0.87 15.21 11.47−22.54

Zn Liver 129.99 ± 5.08 127.54 83.60−197.68 138.12 ± 10.86 133.46 76.22−222.72
Kidney 131.28 ± 4.04 129.40 60.89−159.93 137.68 ± 5.34 136.41 96.57−156.22
Muscle 41.28 ± 1.29 40.85 32.79−61.54 43.49 ± 1.50 43.21 36.04−53.28

Pb Liver 0.08 ± 0.01 0.07 0.03−0.29 0.05 ± 0.01* 0.04 0.03−0.11
Kidney 0.29 ± 0.06 0.23 0.12−1.45 0.18 ± 0.02 0.17 0.09−0.30
Muscle 0.06 ± 0.01 0.05 0.03−0.21 0.04 ± 0.01 0.03 0.03−0.15

Table 1. Somateria fischeri. Arithmetic means (µg g−1 dry mass, ±SE), geometric means, and ranges of trace elements in liver,
kidney, and pectoral muscle of 26 male and 12 female adult spectacled eiders in March 2001 in the north-central Bering Sea. 

*Significantly different from males, t-test, p < 0.05
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Spatiotemporal changes in Se burdens

Spectacled eiders begin leaving their main winter-
ing area in March and most have left by late April
(Lovvorn et al. 2003, Larned et al. 2012). Males col-
lected in May near the village of Gambell along the
northwest coast of St. Lawrence Island (Fig. 2), where
spectacled eiders normally do not occur in apprecia-
ble numbers during winter, had much lower mean
values of liver Se than males collected 2 mo earlier
on the main wintering area (Fig. 3). The males
 collected off Gambell in May appear to have been
belated migrants, or perhaps were from the small
breeding population on St. Lawrence Island. It is
unlikely that lower Se concentrations in the Gambell
eiders (Table 1, Fig. 3) resulted from any increase in
liver mass while total content of Se remained
unchanged: in 25 adult male spectacled eiders col-
lected south of St. Lawrence Island, there was no
 correlation between liver fresh mass and liver Se
concentration over a range of liver fresh mass from
46 to 86 g (r2 < 0.01, p = 0.72).

We compared liver concentrations of Se measured
in and near the wintering area with liver con -

centrations estimated from blood samples taken in
breeding areas. Correlations between Se levels in
liver versus blood can be variable (Wayland et al.
2001a), so predicted concentrations in liver should
be interpreted only as indicating qualitative trends.
Nevertheless, the validity of these estimates is sup-
ported by data from the North Slope, where the
mean (±SE) liver Se concentration (144 ± 8 µg g−1

dry mass) predicted from blood samples in 14 adult
males during 5 to 16 June 1996 (Wilson et al. 2004)
did not differ from direct measures of liver Se in 4
adult males that died of various causes from 27
May to 21 June 2003 to 2006 (163 ± 29 µg g−1 dry
mass; t-test, p = 0.53; M. W. Miller, C. J. Latty, and
A. C. Matz, US Fish and Wildlife Service, unpubl.
data). Although liver Se concentrations (µg g−1 dry
mass) in spectacled eiders may vary some from
year to year, the difference between late winter
(measured values) and soon after arrival on breed-
ing areas (estimated values) averaged 44 in males
and 66 in females for the Y-K Delta, and 92 in
males and 109 in females for the North Slope. We
expect that these large differences well exceed
annual variations at the same locations.

Based on liver Se concentrations esti-
mated from blood samples, Se burdens
in both males and females declined
from the time the eiders left the main
wintering area south of St. Lawrence
Island until shortly after they arrived on
breeding areas on the Y-K Delta and
North Slope (cf. Fig. 1, Fig. 3). Reason-
able estimates of periods between
departure from the wintering area and
arrival at inland breeding sites (Fig. 1)
are about 4 wk for the Y-K Delta and
8 wk for the North Slope and probably
Siberia (Lovvorn et al. 2003). Apprecia-
ble depuration of Se could occur during
those periods if exposure was reduced
(Heinz et al. 1990). Apparent declines in
liver Se during these migration periods
(Fig. 3) suggest that foods consumed
by eiders en route from wintering to
breeding areas had much lower Se
 levels than foods on the wintering area
itself. As noted previously at both nest-
ing sites (Grand et al. 2002, Wilson et al.
2004), Se in adult females decreased
throughout the breeding period to rela-
tively low levels, and ducklings raised
in those areas did not accrue appreci -
able Se (Fig. 3).
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Fig. 3. Somateria fischeri. Arithmetic mean (±1 SE) Se levels (µg g−1 dry
mass) in livers of adult spectacled eiders (1) in nonbreeding areas in the
Bering Sea south of St. Lawrence Island (SLI) and off the village of Gambell
(GAM: 15 adults and 5 subadults combined; see Fig. 2; Trust et al. 2000), (2)
during laying or early incubation (lay/inc), at hatching (hatch), and during
brood-rearing (broods) on the Yukon-Kuskokwim (Y-K) Delta (Grand et al.
2002), and (3) during prenesting (prenest), incubation (inc), and brood-rear-
ing on the North Slope (Arctic Coast) of Alaska (Wilson et al. 2004). Liver
Se values in breeding areas were estimated from Se  levels in blood, and
 represent trends rather than exact quantitative values. See ‘Materials and 

methods’ for details
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Comparisons with other sea duck species

Compared with levels in other sea duck species
that had fed mainly in marine habitats, concentra-
tions of Se and Cd in spectacled eiders during late

winter were exceptionally high (Table 2). To our
knowledge, liver Se levels in spectacled eiders in the
present study (up to 489 µg g−1 dry mass) are the
highest ever reported in free-living birds (Eisler
2000). Maximum kidney Cd (312 µg g−1 dry mass) of
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Species Location Sex Se Hg Cd Cu Zn Source

Spectacled eider North-central Bering Sea, M 224 1.4 145 607 128 1
USA (120−489) (0.8−2.1) (28−312) (35−2050) (84−198)

F 167 1.1 182 184 133
(108−264) (0.6−2.2) (48−305) (37−528) (76−223)

Near Gambell, Bering Sea, M 124a 1.1a 96a 559a 158a 2
USA (78−171) (0.8−1.7) (50−137) (123−1333) (136−210)

Common eider Spitsbergen, Norway B 30a 3.3a 61a 900a 167a 3
(11−83) (1.7−5.7) (37−113) (23−3833) (133−203)

Kattegat, Denmark M 28a 864a 4
F 44a 85a

Western Greenland B 21 2.4 53 5
Baltic Sea, Finland (br) M 14b <1.0b 21b 604b 137b 6

(10−32) (<1.0) (11−66) (148−1650) (71-170)
Baltic Sea, Finland (br) M 47a 5.1a 1540a 194a 7

(17−119) (3.2−9.3) (728−3230) (75−582)
F 15a 4.1a 209a 314a

(<1.0−42) (16−1190) (215−444)
Spitsbergen, Norway (br) B 9 1.8 226 280 8
East Canadian Arctic (br) F 15 1.5 86 71 136 9

(8−32) (0.7−3.7) (32−218) (32−218) (86−333)

King eider Western Greenland B 21 1.5 80 5
Barents Sea, Russia (br) B 11 1.1 106 149 8
East Canadian Arctic (br) M 20 3.8 174 225 188 9

(16−37) (3.4−4.4) (147−233) (93−435) (167−203)
F 19 2.1 155 87 135

(14−26) (1.5−2.5) (116−213) (57−153) (107−161)

Surf scoter San Francisco Bay, USA B 34a 12.5a 25 50a 131a 10
(16−59) (1.8−32) (19−32)c (29−110) (100−200)

Alsea Bay, Oregon, USA M 23 4.0 55 90 135 11
Commencement Bay, USA M 43 4.2 31 55 130 11
Strait of Georgia, Canada M 35 1.3 38 44 12

(15−128) (0.2−5.9) (18−172) (17−95)
F 39 1.4 18 42

(15−77) (0.7−4.9) (4−84) (24−85)

White-winged Chesapeake Bay, USA B 39a 159a 13
scoter (7−134) (48−527)

Gulf of Alaska, USA B 22 2.4 20 85 205 14

Long-tailed duck Chesapeake Bay, USA B 20a 158a 13
(4−42) (59−284)

Chesapeake Bay, USA M 18 2.0 14 15
(8−38) (1.0−3.9) (4−60)

F 17 1.6 9
(8−38) (0.8−5.0) (1−37)

East Siberian Coast (br) M 27.1a 80a 30a 106a 16

Barrow’s Fjords, SE Alaska, USA B 34a 42a 141a 17
goldeneye

Data sources: (1) Present study, (2) Trust et al. (2000), (3) Norheim (1987), (4) Karlog et al. (1983), (5) Dietz et al. (1996), (6)
Franson et al. (2000), (7) Hollmén et al. (1998), (8) Savinov et al. (2003), (9) Wayland et al. (2001b), (10) Ohlendorf et al.
(1986), (11) Henny et al. (1991), (12) Elliott et al. (2007), (13) Di Giulio & Scanlon (1984), (14) Henny et al. (1995), (15)
Mashima et al. (1998), (16) Kim et al. (1996a), (17) Franson et al. (1995)
aArithmetic mean; bMedian; c95% CI

Table 2. Geometric means (µg g−1 dry mass) and ranges of Se, Hg, Cu, and Zn in livers, and of Cd in kidneys, of mostly adult,
carnivorous diving ducks during the nonbreeding period in various marine locations. Also included are common eiders, king
eiders, and long-tailed ducks from the breeding period (br), when common eiders feed in marine habitats, and king eiders 

and long-tailed ducks in freshwater habitats. B = both sexes
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wintering spectacled eiders was also 34% higher
than the highest previously reported for sea ducks;
geometric means of 145 µg g−1 dry mass for males
and 182 for females were rivaled only by values for
king eiders Somateria spectabilis in the eastern
Canadian Arctic. Except in areas subject to high
anthropogenic loading, such as San Francisco Bay,
Hg was not elevated in sea ducks that were using
marine habitats (Table 2).

Hydrographic advection of bloom materials

Our cruise in May to early June 2007 occurred dur-
ing and after the ice-edge bloom and documented
the sinking of that material to the sea floor (Cooper et
al. 2012). As the ice pack breaks up and is moved
around by wind, phytoplankton blooms develop
irregularly in the shifting mosaic of ice and open
water. Locations where intense phytoplankton blooms
occurred in the water column, as indicated by chloro-
phyll concentrations integrated across all depths, dif-
fered from locations where most chlorophyll accumu-

lated in the sediments (Fig. 4). Rather, bloom material
produced throughout the area appeared to be
advected, presumably by bedload transport after it
settled, into a region of high chlorophyll concentra-
tion in sediments in the west-central part of the study
area. Multibeam sonar measurements show no major
bathymetric depression in that area, suggesting that
bloom materials were transported into a persistent
eddy at that location. A gyre there was also predicted
by a model of wind-driven hydrography (Overland
& Roach 1987). This ‘steady eddy’, as inferred from
consistent organic accumulation and high biomass of
benthic deposit feeders, persisted in this general area
southwest of St. Lawrence Island from at least as
early as 1990 through 2007 (Cooper et al. 2002, 2012).

These data suggest that inputs of trace elements by
currents or atmospheric deposition do not have to
occur directly above benthic feeding areas to become
locally concentrated there. Rather, assimilation or
adsorption of elements by bloom materials, and sink-
ing of those materials to the bottom, can occur over a
larger expanse with subsequent hydrographic con-
centration into a limited region (Yao & Zhang 2005).
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Fig. 4. Chlorophyll a concentrations (mg m−2) in surface sediments (isopleths) and integrated over the water column (color gra-
dients) from 18 to 29 May 2007 south of St. Lawrence Island in the Bering Sea. Red arrow indicates station CD1, where specta-

cled eiders were collected for this study on 19 to 22 March 2001
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Trace elements in bivalve prey and sediments

Esophagi of spectacled eiders collected near sta-
tion CD1 in the study area in March 2001 (Fig. 4)
 contained almost exclusively the bivalve Nuculana
 radiata (Lovvorn et al. 2003). In May and early June
2007, concentrations of Se and Cd in soft tissues of
N. radiata from the steady eddy region were substan-
tially higher than in specimens from the surrounding
area (Fig. 5). To portray the magnitude of this spatial
effect, at 7 adjacent stations that represent the core of
this region of high values, mean (±SD) tissue con -
centrations were 33% higher for both Se (2.36 ± 0.37
versus 1.78 ± 0.23 µg g−1 dry mass) and Cd (6.38 ±
0.90 versus 4.79 ± 1.06 µg g−1 dry mass) than at the
13 other stations (t-tests, p < 0.01).

Moreover, at 3 stations within the core of the steady
eddy region, and at 3 stations in peripheral areas out-
side that region (as determined by much lower sedi-
ment organic content), Nuculana radiata was sam-

pled just as bloom materials were starting to settle on
the bottom and again 2 to 3 wk later when settled
bloom materials had been redistributed into the eddy.
Within the eddy core, concentrations in N. radiata in -
creased by 53% in Se (t-test, p = 0.007) and 34% in
Cd (p = 0.087) over that period. However, outside
that core region, levels in N. radiata decreased by
8% in Se (p = 0.099) and by 16% in Cd (p = 0.036).
These changes suggest that redistribution of settled
bloom materials into the steady eddy was accompa-
nied by short-term changes in trace element avail-
ability to these bivalves. Although these short-term
changes illustrate transport processes by which ele-
ment concentration might occur in May to early June,
spectacled eiders do not feed in this area until 9 to
12 mo later (January to April). By that time, we
expect that high rates of bioturbation will have thor-
oughly mixed the fresh detritus and associated ele-
ments into the large and long-term pool of sediment
organic matter that provides food for deposit feeders
for most of the year (Lovvorn et al. 2005). Although
this mixing would not alter overall spatial patterns of
deposition among sites, it probably dampens between-
year variations within sites.

Total Se levels in surface sediments also reflected
concentration of materials within the steady eddy
(Fig. 6; sediments were analyzed for Se at fewer sta-
tions than were bivalves). At 6 of the stations within
the eddy core mentioned above, the mean (±SD) total
Se level in sediments (0.49 ± 0.13 µg g−1 dry mass,
range 0.29−0.61) was 34% higher (t-test, p = 0.01)
than at 9 stations outside that area (0.37 ± 0.07, range
0.28−0.47). Concentrations of Se in soft tissues of
Nuculana radiata increased with increasing total Se
in sediments (r2 = 0.40, p < 0.01, n = 16 stations),
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Fig. 5. Tissue concentrations (ppm; µg g−1 dry mass) of (A) Se
and (B) Cd in the bivalve Nuculana radiata at stations south
of St. Lawrence Island in the Bering Sea. Among the 7 adja-
cent stations with high element levels in the northwest cor-

ner of the sampling grid, one station is obscured

Fig. 6. Total Se concentrations (µg g−1 dry mass) in surface
sediments at stations south of St. Lawrence Island in the 

Bering Sea
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especially at sediment Se levels ≥0.3 µg g−1 (r2 = 0.81,
p < 0.01, n = 13). Moreover, atomic (molar) ratios of
C:N (mean ± SD) in surface sediments (9.08 ± 0.70,
range 8.20−10.24, n = 16) were within the range for
pure cultures of 11 phytoplankton species (Doblin et
al. 2006), suggesting a high fraction of settled phyto-
plankton.

We compared concentrations of Se and Cd in
Nuculana radiata from the steady eddy region with
values reported for bivalves and sediments at other
north-temperate and Arctic sites. Concentrations of
Se in N. radiata from the 7 stations at the core of the
steady eddy (1.86 to 2.84 µg g−1 dry mass; Fig. 5)
were in the range of values reported for other bivalve
species from industrialized areas with known Se
 contamination, such as San Francisco Bay (USA), the
Wadden Sea (Netherlands), the White Sea (Russia),
and contemporary coastal China (Table S1 in the
Supplement). Exceptions to this similarity in concen-
trations were Mytilus edulis in Trondheims fjorden,
Norway, and Potamocorbula amurensis in San Fran-
cisco Bay, both filter feeders (versus deposit feeders)
with much higher Se levels. Concentrations of Cd in
N. radiata from the steady eddy core (5.32 to 7.82 µg
g−1 dry mass) were higher than all other values
reported for bivalves, including heavily industrial-
ized sites. Thus, mechanisms that concentrated Se
and Cd in the steady eddy can result in levels in
bivalves that rival those in areas with known con -
tamination and high trophic transfer to endotherm
predators (e.g. Ohlendorf et al. 1986). In sediments,
mean (±SE) concentrations of Se within the steady
eddy (0.49 ± 0.13 µg g−1 dry mass) were within
ranges reported for a variety of estuarine and
nearshore areas in the Pacific and North Atlantic
Oceans (Table S2 in the Supplement).

DISCUSSION

Tolerance and accumulation of high trace element
levels

For spectacled eiders in March 2009, there was no
evidence that their very high burdens of Se or Cd
affected their total body fat or protein. Although tis-
sue concentrations of Se and Cd in our study were up
to an order of magnitude higher, our results are con-
sistent with findings for other diving ducks in which
correlations of these elements with body fat and pro-
tein were low or even positive (Takekawa et al. 2002,
Anteau et al. 2007). Our results also concur with
assays for spectacled eiders near Gambell in May

1995 (Fig. 2, Table 2), which showed no effects of ele-
vated trace elements on histopathology or a range of
biochemical biomarkers (Trust et al. 2000). Despite
moderately high levels of Se, Cd, and Hg in common
eiders of the Canadian Arctic, there were no effects
on immune response, corticosterone levels, or liver
glycogen concentrations (Wayland et al. 2003). For
captive common eiders fed high Se in food (20 µg g−1

fresh mass), resulting liver concentrations (mean ±
SE = 351 ± 25.1 µg g−1 dry mass, range 234−408 µg
g−1 dry mass) were in the range of those in spectacled
eiders in our study (Franson et al. 2007) (Table 1). In
these captive common eiders, there were no effects
on body mass or on most of a number of biochemical
indices of health. However, there were lesions in
liver and in feather pulp in about half of the ex -
perimental eiders, and some oxidative stress as
 evidenced by glutathione indicators.

As to impacts on reproduction, high Se in the blood
of spectacled eiders on the Y-K Delta had no
detectable effects on nest success or egg viability
(Grand et al. 2002). Similarly, moderately high liver
Se in wild white-winged scoters Melanitta fusca
(mean 33 mg g−1 dry mass, range 4−75 mg g−1 dry
mass) had no apparent effects on female body condi-
tion or breeding propensity (DeVink et al. 2008).
In interior Alaska, liver Se of adult white-winged
scoters averaged 54 µg g−1 dry mass; however, eggs
taken from oviducts contained <4.7 µg g−1 dry mass,
suggesting that transfer of Se from the mother’s liver
to eggs can be far less than inferred for freshwater
ducks and other waterbirds (Henny et al. 1995).
In contrast to these large sea ducks, liver Se above
20 µg g−1 dry mass has an array of toxic effects
on behavior, reproduction, and long-term survival of
mallards and other freshwater birds (Heinz 1996).
Taken together, these data indicate that marine
ducks can tolerate ex ceptionally high levels of some
trace elements and  especially Se, with minimal
effects on adult health or reproduction.

Accumulation of Se may be beneficial if Se acts to
detoxify Hg (Heinz & Hoffman 1998). It appears that
Se detoxifies inorganic Hg (derived from methyl -
mercury ingestion) by forming HgSe (Ikemoto et al.
2004). However, in a number of marine birds, Se
 levels are often well in excess of a 1:1 molar ratio
with Hg, and the magnitude (and sometimes direc-
tion) of correlation is highly variable (Norheim 1987,
Goede & Wolterbeek 1994, Trust et al. 2000, Wayland
et al. 2001b, Ikemoto et al. 2004). In the livers of win-
tering male spectacled eiders, the ratio of Se:Hg
(arithmetic means) was 166:1 (Table 1). In their main
bivalve prey (Nuculana radiata), Hg concentrations
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were below detection limits in 13 of 18 station sam-
ples, and at the other 5 stations averaged only 0.55 µg
g−1 dry mass (range 0.14 to 1.32 µg g−1 dry mass).
Assessment of Hg−Se interactions may be aided by
discriminating inorganic from organic forms of both
elements in tissues (Scheuhammer et al. 1998), which
was not done in our study. Nevertheless, in wintering
spectacled eiders, the very high levels of Se and
quite low levels of Hg in tissues and foods indicate
that the high Se was not accumulated to detoxify Hg.

Other potential physiological interactions among
trace elements are multiple and complex (Eisler
2000). These interactions include protective effects of
Se against Cd, a mechanism perhaps suggested by
our finding of a positive correlation (r2 = 0.26) be -
tween Se and Cd in spectacled eiders. Positive corre-
lations among concentrations of different elements
(e.g. Norheim 1987) do not necessarily indicate phys-
iological interactions, but perhaps only simultaneous
exposure. The extent to which Se in livers of winter-
ing spectacled eiders is being accumulated to protect
against Cd is unclear, but as for Hg this effect seems
unlikely to explain the very high levels of Se ob -
served.

The high concentrations in wintering spectacled
eiders likely resulted not only from inherently high
physiological accumulation, but also from high and
sustained exposure in food. When captive common
eiders were fed Se at 20 µg g−1 fresh mass of food,
their mean (±SE) liver concentration of Se was 351 ±
25.1 µg g−1 dry mass (Franson et al. 2007). When
 mallards were fed similar Se concentrations in food
(20, 25, and 29 µg g−1 fresh mass), their mean liver
Se concentrations were only 49, 30, and 32 µg g−1 dry
mass, respectively (see Franson et al. 2007). Specta-
cled eiders in our study accumulated liver Se up to
489 µg g−1 dry mass (mean 215 µg g−1) when eating
bivalves that  contained only 8 µg g−1 fresh mass Se
in soft  tissues (2.4 µg g−1 dry mass; Table S1 in the
Supplement). Thus, both experimental and field data
show that if eiders and some other sea ducks are
exposed to Se, they can accumulate high levels to
which they are quite tolerant physiologically.

How could spectacled eiders during winter have
achieved such high liver Se concentrations while
feeding on clams containing relatively low levels of
Se? It is standard practice in experimental studies to
report exposure in terms of concentrations in food.
However, exposure depends not only on concentra-
tions in food, but also on the total amount of food
eaten. Flightless eiders living at temperate latitudes
in pens where they feed on pelleted food from pans
have much lower food requirements than free-rang-

ing spectacled eiders during winter. Wintering spec-
tacled eiders experience very low temperatures and
high winds (high convective heat loss), occupy open-
ings in pack ice that often close (high costs of aerial
flight to new openings), dive 40 to 70 m deep to feed
in water at −1.8°C (high locomotor costs and heat
loss), and search by touch in the sediments for clams
with high shell fractions (high search costs and low
energy content of whole prey) (Lovvorn et al. 2009).
Thus, even when concentrations in food are not
unusually high, sustained high intake rates coupled
with a strong physiological propensity to accumulate
trace elements may result in exceptional exposure
and high tissue concentrations by late winter.

The ability of high intake rates to account for high
Se levels in spectacled eiders could seemingly be
explored with simulation models of food require-
ments and associated intake of Se (Lovvorn &
Gillingham 1996, Lovvorn et al. 2009). However,
such models need estimates of either (1) concentra-
tions in tissues once they reach equilibrium with a
specified daily intake rate, or (2) rates of accumula-
tion versus depuration for a relevant range of total
intake rates and tissue concentrations (note that the
latter relationships can be highly nonlinear; Heinz
et al. 1990). With no apparent ill effects, eiders can
accumulate liver Se levels over 200 times those that
cause adverse effects in mallards, and accumulate
much higher tissue levels at the same concentrations
in food. Thus, tissue concentrations for particular lev-
els in food, or rates of accumulation or depuration at
given concentrations in food and tissues (e.g. Heinz
et al. 1990), cannot be transferred directly from mal-
lards or other non-sea ducks to eiders. Moreover, in
experiments on captive common eiders (Franson et
al. 2007), tissue levels were expressed as a function
of concentrations in food and not total food and ele-
ment intake, so the values could not be applied in
energetics models even if concentrations in prey in
the field were the same (they were not: 20 versus 8
µg g−1 fresh mass). Lacking the needed data, we
could not confirm via modeling whether the very
high Se levels in spectacled eiders were consistent
with high intake rates sustained over winter.

High levels of Se and Cd are acquired at sea

Progressive loss of Se over the breeding period
when females feed in freshwater, and low levels of Se
in ducklings (Fig. 3), indicate that spectacled eiders
depurated Se in breeding areas and acquired very
high Se levels during the nonbreeding period at
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sea (Grand et al. 2002). Similar patterns have been
reported in other bird taxa. Among dunlins Calidris
alpina in western Europe, Se concentrations in kid-
neys were ~26 µg g−1 dry mass for birds in the marine
environment, but declined rapidly to ~7 µg g−1 dry
mass when they moved to freshwater breeding sites
(Goede et al. 1989). Emperor geese Chen canagica,
which winter in marine habitats of the Aleutian
Islands, showed similar declines in Se when they
moved into nesting areas in the Y-K Delta (Franson
et al. 1999).

In spectacled eiders, substantial declines in levels
of Se and Cd from the wintering area in March to
spring migration in May (Table 2), and apparent
 further decline in Se before arrival at nesting sites on
the Y-K Delta and North Slope (Fig. 3), indicate espe-
cially high exposure to these elements in the winter-
ing area. These patterns suggest that other marine
habitats used by the eiders during 4 to 8 wk of spring
migration have lower availability of Se than their
main wintering site.

Reasons for high Se and Cd in the eider wintering
area

In marine birds, levels of trace elements often vary
widely in benthivores among locations, and between
benthivores and water-column feeders in the same
area (Norheim 1987, Dietz et al. 1996, Kim et al.
1996a, Savinov et al. 2003, Mallory et al. 2004).
Although such data are routinely gathered, there has
been little attempt to explain those variations in terms
of atmospheric or oceanographic processes. Our
study indicates that the spectacled eider wintering
area in the north-central Bering Sea is a site of excep-
tional exposure to Se and Cd. What factors might
contribute to that situation?

Hydrographic and atmospheric supply of trace
elements

Upwelling and hydrographic transport may supply
trace elements to the eider wintering area. It is likely
that Se and Cd upwelled along the Bering Shelf
break (Kremling 1983, Cutter & Bruland 1984) are
transported northward along the western edge of the
shelf in the Anadyr Current (Fig. 2). A minor branch
of the Anadyr Current diverges eastward south of
St. Lawrence Island, perhaps injecting trace ele-
ments into that region (Fig. 2). This effect may be
enhanced by the fact that in North Pacific waters that

flow northward into the Bering Sea, dissolved and
particulate Cd concentrations are 3 to 5 times higher
than in the North Atlantic (Bruland et al. 1994), and
dissolved Se concentrations are 2 to 3 times higher
than at lower latitudes in the North Pacific (Cutter &
Bruland 1984, Ranville et al. 2010).

Beyond such hydrographic inputs, supply of solu-
ble Se and Cd to the oceans, especially in Arctic
regions, often includes substantial contributions by
atmospheric transport from distant sources (Cutter &
Cutter 1998, Ranville et al. 2010). Even on shallow
shelves where trace element availability in surface
waters is often higher than in the deep ocean, atmos-
pheric inputs can dominate the supply of elements to
meet high demands of blooming phytoplankton
(Guieu et al. 2010). In the South China Sea, often
98% or more of trace elements in sinking particles
was derived from aeolian deposition of highly soluble
anthropogenic aerosols (Ho et al. 2010).

An atmospheric supply of anthropogenic trace ele-
ments, associated with particles from dust storms at
inland deserts, flows from central Asia northward
through the Bering Sea region, where there is sub-
stantial deposition of aerosols (Arimoto et al. 2006).
Indeed, Ranville et al. (2010) documented elevated
Se in surface waters of the North Pacific just south of
the Bering Sea that were paralleled by enhanced
aerosol Se concentrations in the same region. Based
on air mass trajectories, elemental ratios, and enrich-
ment factors, they attributed the elevated atmospheric
and water-column Se concentrations to Asian fossil
fuel emissions. Atmospheric transport of Asian trace
elements is greatest in March to May (Yu et al. 2008),
so deposited aerosols may create a pulse of availa -
bility for the major spring bloom that occurs in
the receding marginal ice zone during this period.
Deposited Cd that accumulates on sea ice and is
released when the ice melts can increase Cd con -
centrations in surface waters by 2 to 3 times over pre-
melt values (AMAP 1998).

Element concentration and settling in blooming
phytoplankton

Aside from environmental inputs, biological mech-
anisms also mediate the supply of trace elements
to the benthos. Because demand for trace elements
by blooming phytoplankton is so high, available
trace elements are rapidly taken up, with algal cells
sequestering elements even to surplus levels if avail-
ability allows (Fisher et al. 1984, Baines & Fisher
2001). Se is an essential micronutrient for phyto-
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plankton, and Cd is a metalloenzyme component in
diatoms (Lane et al. 2005). Moreover, conditions of
low Zn typical of marine waters can cause phyto-
plankton to substitute Cd for Zn (Lane & Morel 2000),
and accumulation of Cd by phytoplankton can also
increase under Fe limitation (Lane et al. 2008). Bac -
teria colonizing senescing bloom phytoplankton can
similarly concentrate these elements, either within
the bacterial cells or in exopolymer secretions (Dixon
et al. 2006, Ueshima et al. 2008). If bloom particles
sink about 100 m d−1 (Fisher & Reinfelder 1995), in
the shallow waters south of St. Lawrence Island
(mostly 40 to 80 m), inputs of Se and Cd from currents
or the atmosphere may be taken up or adsorbed and
transported to the bottom within days (cf. Noriki et
al. 1985).

Both Se and Cd exhibit ‘nutrient-type’ behavior in
the water column. Such elements are often acutely
depleted in near-surface waters via assimilation by
phytoplankton or adsorption to biogenic materials,
which then sink to greater depths, where the ele-
ments are released through mineralization (Bruland
et al. 1994). Of all trace metals, Cd exhibits the
most extreme nutrient-type behavior (Bruland 1992).
Without resupply by upwelling, currents, or atmo -
spheric deposition, such elements can be stripped
from near-surface waters by high rates of biogenic
uptake (Jones & Murray 1984, Bruland 1992). Never-
theless, despite very low concentrations, it appears
that in most cases neither Se nor Cd is limiting to
phytoplankton growth relative to P or N (Jones &
Murray 1984, Cid et al. 2011).

However, neither Se nor Cd must be limiting to
phytoplankton production for additional inputs of
these elements to be removed from the water and
concentrated in settling bloom materials. Much of
Cd and some Se can reach the bottom by extracellu-
lar adsorption or ligand binding to such particles
(Bruland 1992, Cohen et al. 1992, Fisher & Reinfelder
1995). In the South China Sea, most Cd in sinking
particles was incorporated intracellularly into bio-
genic organic matter (Ho et al. 2010). However, for
other trace elements (including Cu and Zn; Se was
not studied), the intracellular fraction was an in -
significant portion of those elements in sinking parti-
cles, with most elements being adsorbed to the sur-
face of biogenic particles. On the Bering Sea shelf in
early September (3 to 4 mo after the spring bloom),
supply of Cd (Se was not studied) was not limiting to
phytoplankton production relative to N or P (Cid et
al. 2011). However, even long after the spring bloom,
assimilation or adsorption by sinking particles re -
sulted in depletion of Cd in surface waters. These

results suggest that during the brief but intense ice-
edge spring bloom, additional inputs of Se and Cd
from currents or the atmosphere could result in accu-
mulation of these elements in settled organic matter
(cf. Yuan & Zhang 2006).

Boundary-layer transport and concentration in
benthic food webs

Studies reviewed above clearly established that
inputs of nutrient-type trace elements from currents
or the atmosphere are often quickly transported to
sediments by settling bloom material. However, the
exceptional levels of Se and Cd in spectacled eiders
in their main wintering area, and localized concen-
trations in sediments and bivalves (Figs. 5 & 6), sug-
gest further concentrating mechanisms. Exposure of
eiders to Se appeared to decline once they left their
wintering location and traveled through other marine
areas (Fig. 3).

Following the main spring bloom in late May 2007,
chlorophyll in sediments indicated a major pulse of
settling phytoplankton south of St. Lawrence Island
(Cooper et al. 2012). However, chlorophyll measure-
ments showed that the dispersion of intense blooms
in the water column did not correspond to the disper-
sion of chlorophyll in sediments (Fig. 4). Instead,
most sediment chlorophyll in our 190 × 270 km study
area had been concentrated in less than a quarter of
that region, which corresponded to the main use area
of spectacled eiders (Fig. 2). Sediments in this zone
have much higher organic content and oxygen de -
mand than elsewhere in the study area, as well as
much higher biomass of benthic invertebrates (Cooper
et al. 2002, 2012).

As there is no evident bathymetric depression in
this area, it appears that this region is characterized
by a persistent eddy into which chlorophyll deposited
over a much larger region is transported by bedload
or boundary-layer advection. A gyre in this location
was in fact predicted by wind-driven hydrographic
models (Overland & Roach 1987). Local tidal currents
are relatively weak (Danielson & Kowalik 2005), so
the distribution of sediment grain sizes and particu-
late organic matter largely reflects local wind pat-
terns over this shallow region of the shelf (40 to
90 m). As a result, the exact location of eddy accumu-
lation can shift among years (Cooper et al. 2002).
Such variations in local inputs of contaminants are
dampened by the life spans of benthic organisms
(most bivalves eaten by spectacled eiders in 2001
were probably 6 to 9 yr old), and by the large, per -
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sistent pool of sediment organic matter that likely
buffers the stock of trace elements in sediments (see
Lovvorn et al. 2005). In the eider wintering area, this
transport mechanism may lead to local accumulation
of Se and Cd that settled from the water column over
a much larger region. Such effects would be less
prominent in areas such as the main migration sites
of spectacled eiders along the Chukchi Sea coast
(Fig. 1), where prevailing currents or wave action
tend to inhibit long-term accumulation of sediment
organic matter in large, persistent patches (J. R.
Lovvorn, S. C. Jewitt, and D. Dasher, unpubl. data).
When passing through that coastal area on the way
to breeding sites on the North Slope, Se levels in
eiders appeared to decline (Fig. 3).

Within the conspicuous region of high organic
accumulation in the wintering area (Fig. 4), deposit-
feeding bivalves that are the main prey of spectacled
eiders, were exceptionally abundant in 2001 when the
eiders for this study were collected there (Lovvorn et
al. 2003, 2009). Deposit feeders readily take up
Se and Cd from ingested algae, settled organic mat-
ter, and associated bacteria (Schlekat et al. 2002,
Ueshima et al. 2008, Sokolowski et al. 2005). Levels
of Se and Cd in sediments and bivalves from the per-
sistent eddy region were higher than in the sur-
rounding area (Figs. 5 & 6), suggesting that local
accumulation of element-bearing organic matter in -
creased uptake by the deposit-feeding prey of eiders
(Thorsson et al. 2008). Moreover, Se and Cd concen-
trations in bivalves in the core of the steady eddy
increased by 53% (Se) and 34% (Cd) from the time of
our first sampling to 2 to 3 wk later, although intense
blooms in the water column had occurred elsewhere
(Fig. 4). Outside the eddy core, element concentra-
tions in Nuculana radiata decreased by 8% in Se and
16% in Cd.

Physiological, atmospheric, and oceanographic
effects on element levels

Our results and those of others show that high trace
element levels in eiders and some other sea ducks
reflect an inherent physiological tendency to accu-
mulate these elements. However, wide variations in
tissue concentrations indicate that relative exposure
differs greatly among regions, and among localities
within the same region. Our data and information
reviewed here suggest that oceanographic concen-
tration of settling organic matter, enriched by trace
element inputs from currents or atmospheric deposi-
tion, can be an important determinant of geographic

variations in contaminant exposure of  bottom-feeding
marine birds.

The coupling of high physiological uptake in some
marine organisms with oceanographic mechanisms
that concentrate trace elements may increase in
importance as production of pollutants increases
worldwide. For example, in the Pacific region, China
has more than doubled its atmospheric emissions in
the last 2 decades, and the current explosive growth
of industrial and domestic pollutants is expected to
continue (Yu et al. 2008). Although effects of these
inputs on climate, incident solar radiation, crop yields,
and human health have been examined (see Yu et al.
2008), effects on ocean food webs have not. In this
region, as elsewhere, we urge that studies of trace
element levels in marine predators be combined with
atmospheric and oceanographic investigations to
help explain observed geographic patterns and pre-
dict future trends.
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