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Abstract: Metaproteomics is the characterization of all proteins being expressed by a community of
organisms in a complex biological sample at a single point in time. Applications of metaproteomics
range from the comparative analysis of environmental samples (such as ocean water and soil) to
microbiome data from multicellular organisms (such as the human gut). Metaproteomics research is
often focused on the quantitative functional makeup of the metaproteome and which organisms are
making those proteins. That is: What are the functions of the currently expressed proteins? How much
of the metaproteome is associated with those functions? And, which microorganisms are expressing
the proteins that perform those functions? However, traditional protein-centric functional analysis is
greatly complicated by the large size, redundancy, and lack of biological annotations for the protein
sequences in the database used to search the data. To help address these issues, we have developed an
algorithm and web application (dubbed “MetaGOmics”) that automates the quantitative functional
(using Gene Ontology) and taxonomic analysis of metaproteomics data and subsequent visualization
of the results. MetaGOmics is designed to overcome the shortcomings of traditional proteomics
analysis when used with metaproteomics data. It is easy to use, requires minimal input, and fully
automates most steps of the analysis—including comparing the functional makeup between samples.
MetaGOmics is freely available at https://www.yeastrc.org/metagomics/.

Keywords: metaproteomics; proteomics; bioinformatics; software; data visualization; mass
spectrometry; gene ontology

1. Introduction

Recent years have seen tremendous advancements in the availability of high-throughput “omics”
technologies for characterizing complex biological samples. These advancements have fueled
the growth of meta-omics as a field for characterizing the metagenomes, metatranscriptomes,
meta-metabolomes, and metaproteomes of environmental and microbiome samples comprising a
taxonomically diverse (often uncharacterized) community of organisms [1–3]. Metagenomics examines
questions related to taxonomic composition and genomic architecture of organisms in the sample [4,5].
Meta-metabolomics examines which metabolites are being produced and how those change in response
to environmental factors [6]. Meta-transcriptomics aims to use gene expression of mRNA transcripts
to track taxonomic and functional abundance [7]. However, transcript and actual protein levels can
be poorly correlated because of codon bias, differing rates of protein turnover, and other factors [8,9].
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Metaproteomics aims to overcome this by assaying the protein composition directly in order to
characterize the taxonomic and functional makeup of a sample at the time of collection [10].

Typically, metaproteomics is carried out by bottom-up, or shotgun, proteomics. Environmental
or microbiome samples are digested into peptides (usually with trypsin), the peptides separated by
a liquid chromatography column, and then analyzed by inline tandem mass spectrometry. Because
these peptides are ionizable and fragment in a predictable manner when using Collision Induced
Dissociation (CID), the mass spectrum that results can be interpreted and the peptide sequence can be
resolved. The identification of the peptide sequence relies on software (e.g., Comet [11], Sequest [12],
Mascot [13], and X! Tandem [14]) that searches the masses of candidate ions against a sequence
database. This sequence database may comprise gene products predicted by a metagenomic analysis,
annotated reference proteomes of organisms likely to be present (e.g., sequences from NCBI nr [15]
for human or specific bacteria), or a combination of the two [16,17]. Lists of tens of 1000’s of peptides
are generated in a single 60 minute mass spectrometry analysis. The identified peptides are used to
predict which proteins from the sequence database are present in the sample [18,19]. Once a final
protein list is predicted, the relative abundance of proteins may be estimated using spectral counting,
which counts the number of times peptides that matched each protein were observed by the mass
spectrometer. Spectral counts are then normalized using one of various methods [20–23]. For example,
the Normalized Spectrum Abundance Factor (NSAF) [22] adjusts the spectral counts based on the
total number of proteins identified in the sample and the respective lengths of those proteins. Finally,
the normalized values, functional annotations and taxonomic assignments for the predicted protein
lists are used to ascribe relative abundances to functions and taxa and these abundances are compared
between samples.

However, metaproteomics datasets present unique challenges for which traditional protein
inference and spectral counting methods, such as NSAF, were not designed. From the list of peptides, the
standard protein inference methods predict which proteins are present by considering all identified
peptides and correlating them back to the protein sequence database used to search the data.
Parsimonious protein inference follows the Occam’s razor principle, (e.g., if protein A or B can
explain the occurrence of 3 peptides but protein B can also explain the occurrence of 6 other peptides,
then it is probably true that protein B is present, not A) [24–26]. As a result of this simplification,
protein inference is contentious within the mass spectrometry community, even for single organism
studies [27,28]. In the case of microbiomes, this issue becomes far more complex because there are
hundreds, possibly thousands, of species contributing to the peptides present. In many cases, when
searching mass spectrometry data from microbiomes against a site-specific metaproteome database,
a single peptide sequence might be found in more than 1000 of the proteins in that database. Upon
close examination, it becomes apparent that that peptide, in many cases, is present in proteins that
come from a wide variety of species. So the question becomes, how do you report a protein’s presence
when the peptide evidence suggests it is from 1000 different species? Deciding to include all proteins
matched by peptides will almost certainly include too many and selecting only one to report has
inherent bias. Further, because NSAF uses the final list of proteins to normalize the NSAF values
for each protein, erroneously including too many or too few proteins may have a significant impact
on these values. And, in the case where public databases are used in lieu of metagenomic-derived
sequence databases, peptides are matched to proteins that may not be in the sample at all [16,17].
This further confounds NSAF, since the lengths of the proteins in the database are used to normalize
the abundance value and the lengths of the protein sequences in the sample may differ from the
lengths of proteins in the database. Given that (1) the mass spectrometry assay identifies peptides
rather than proteins; (2) we are interested in characterization of functions and taxa rather than proteins;
and (3) the list of inferred proteins may be unreliable, we contend that protein inference should be
avoided altogether. Instead we pursue a peptide-centric approach.

Several tools for functional and taxonomic analysis of metaproteomes are currently used by
the metaproteomics community. Though MEtaGenome ANalyzer, or MEGAN [29], was designed
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for metagenomics data, it can be used for metaproteomics analysis by substituting the expected
genomic BLAST with protein BLAST. The visualization tools for MEGAN rely on RefSeq (NCBI)
annotations and were designed for metagenomics data and utilizes full sequence information, such as
an assembled gene or gene product (i.e., protein). MetaProteomeAnalyzer (MPA) [30] is a complete
metaproteomics pipeline spanning initial database search through final visualization. To deal with
the issues associated with protein inference-based analysis of function and taxonomy, MPA collapses
highly-redundant protein hits into “metaproteins”, whose annotations are derived from its component
proteins. MPA then quantifies taxa and functions using spectral counting. Some features of MPA also
assume UniProtKB was used to match spectra to peptides, and custom metagenome-derived databases
may not be natively supported. Unipept [31], a web-based, peptide-centric metaproteomics application,
provides advanced and beautiful data visualization tools but is currently limited to taxonomic analysis
and cannot analyze peptides that are not present in UniProtKB.

The web-based MetaGOmics tool is designed to perform functional and taxonomic analysis
without the need to predict which proteins are present in the sample. MetaGOmics works at the
peptide level, by assigning functional and taxonomic annotations to each peptide based on the
annotations of proteins matched in the sequence database used to search the data. Then the relative
abundance for each of those annotations is incremented by the relative abundance for that peptide.
In the case of spectral counting, this ensures each spectrum increases the spectral count for each
functional or taxonomic annotation only once, which may not be the case if we assumed each protein
matched by the peptide was in the sample. The MetaGOmics tool requires minimal input, only the
sequence database (as a FASTA file) used to search the data and the list of identified peptide sequences
and associated relative abundances (e.g., spectral counts). All subsequent processing, including
any necessary sequence homology searching, are performed by the MetaGOmics servers. The web
application includes tools to visualize, download, and compare data between experiments, including
statistical tools for identifying GO annotations with statistically significant changes. MetaGOmics is
open-source (https://github.com/metagomics/, Apache 2.0 license) and freely available to use at
https://www.yeastrc.org/metagomics/.

2. Methods

2.1. Web Application Implementation

MetaGOmics is implemented as a database-backed web-application for submitting and visualizing
results and a series of distributed server-side programs to run sequential parts of the pipeline on
other servers as needed. The web application was developed using Java, HTML, CSS, SVG, and
Javascript; and designed to run on the Apache Tomcat (http://tomcat.apache.org/) Java servlet
container and the Struts application framework (http://struts.apache.org/). The relational database
was developed using the MySQL (https://www.mysql.com/) relational database management system.
The server-side programs are implemented in Java and execution of the programs is managed by the
JobCenter [32] platform for managing distributed computational job execution. All source code for
both the web application and server-side programs are available at https://github.com/metagomics.

2.2. MetaGOmics Algorithm

The MetaGOmics algorithm is designed to be applied to spectrum identifications resulting
from standard bottom-up shotgun proteomics analysis of metaproteomics samples. The spectrum
identifications may be derived from standard analysis workflows, such as those using Comet, Mascot,
X! Tandem, or Sequest. There are no requirements that the protein sequence database comprise entries
from any particular public database, and may be made from predictions resulting from, for example,
metagenomic sequencing. The algorithm takes as input the list of identified peptides, the relative
abundance for each peptide (e.g., spectral count), and the protein sequence database (as a FASTA file)

https://github.com/metagomics/
https://www.yeastrc.org/metagomics/
http://tomcat.apache.org/
http://struts.apache.org/
https://www.mysql.com/
https://github.com/metagomics
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used to search the data. Note that the uploaded FASTA file need only contain the proteins matched by
any of the uploaded peptides and we recommend trimming very large protein databases in this way.

The first step of the algorithm estimates the relative abundance of protein functions based
on the relative frequencies of peptides that can be ascribed to any protein with those functions
(Figure 1a). This is done by first matching peptides to unannotated proteins in the FASTA file, where
peptides must be N-terminal in the protein or C-terminal to a lysine or arginine (tryptic digestion is
assumed) and leucine and isoleucine are treated interchangeably. Those proteins are then annotated
by performing Basic Local Alignment Search Tool (BLAST) [33] on these protein sequences against
a large, well-annotated protein sequence database (such as UniProtKB [34]) to find Gene Ontology
(GO) [35,36] annotations. Then, for each peptide, a non-redundant directed acyclic graph (DAG) is
constructed from all of the GO terms for all of the proteins matched by that peptide. Because of the
hierarchical nature of GO, the peptide DAG includes both the GO terms with which proteins were
directly annotated as well as all ancestor terms (using the “is a” relationship) to the root of the GO
DAG. The spectral count for each GO term in this DAG is then incremented by the spectral count of
the peptide that gave rise to it. After all peptides are processed, the final spectral count for each GO
term is then normalized by dividing its count by the total number of peptide spectrum matches in the
search. A table can be produced containing all GO terms found in the sample, the number of times
peptides indicating those GO terms were observed (spectral count), and the proportion of all scans in
the experiment that were attributable to that GO term (Table 1).

Table 1. Small subset of GO terms, spectral counts, and relative abundance ratio in a hypothetical mass
spectrometry experiment.

GO Accession
String GO Aspect GO Name Spectral

Count Ratio

GO:0005575 cellular_component cellular_component 12,217 1
GO:0008150 biological_process biological_process 12,217 1
GO:0003674 molecular_function molecular_function 12,217 1
unknownprc biological_process unknown biological process 5472 0.45
GO:0005488 molecular_function binding 4185 0.34
GO:0097159 molecular_function organic cyclic compound binding 3579 0.29
GO:1901363 molecular_function heterocyclic compound binding 3579 0.29
GO:0005524 molecular_function ATP binding 1712 0.14
GO:1901566 biological_process organonitrogen compound biosynthetic process 1353 0.11
GO:0042026 biological_process protein refolding 1145 0.09
GO:1990351 cellular_component transporter complex 200 0.02

The second step of the algorithm estimates the relative taxonomic contribution to the number of
peptide identifications for each GO term (Figure 1b). For a given GO term (e.g., “calcium ion binding”),
this is done by first collating all the peptides that provided evidence for that GO term. Each of
these peptides is matched to proteins in the FASTA database, and the UniProtKB BLAST hits are
used to provide taxonomic classifications of the proteins. Then for each peptide, the lowest common
ancestor (LCA) is found from all proteins matched by this peptide. This is the most specific taxonomic
unit for which we can say this peptide provides unambiguous spectral evidence. For example,
if the peptide matches proteins that each were found in species belonging to different orders of
class Betaproteobacteria, we identify the class Betaproteobacteria as the LCA for which this peptide
provides spectral evidence. We then increment the spectral count for the LCA and all of its parent
taxa (e.g., Proteobacteria (phylum) and Bacteria (superkingdom) in the case of Betaproteobacteria
(class)) by the spectral count for the peptide. After processing all peptides for a given GO term, a table
is produced containing (1) all taxa that provided unambiguous evidence for that GO term; (2) the
number of times peptides were observed from that taxon for this GO term; and (3) the proportion of
all spectra for this GO term that are attributable to that taxon (Table 2).
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GO term is calculated. This provides the relative, unambiguous contribution (in spectral count) of 
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Figure 1. The MetaGOmics algorithm. (A) The first phase of the algorithm (functional analysis)
examines all peptides identified in a mass spectrometry (MS) experiment. Each peptide is matched
to proteins in the FASTA file (metaPROTEIN in figure), those are matched to UniProtKB proteins
via BLAST (uniprotPROTEIN in figure), and Gene Ontology (GO) annotations for the UniProtKB
proteins are used to create complete GO graphs for each protein containing direct annotations and
all ancestor terms. All GO graphs from all proteins matched by a peptide are merged into a single,
non-redundant GO graph (the union of the sets), and the spectral count of each term is increased by
the spectral count for the peptide. This process is repeated for all peptides in the experiment to obtain
final spectral counts for all GO terms; (B) The second phase of the algorithm, taxonomic analysis of
functions, examines all peptides that are assigned a specific GO term. Each peptide is matched to
a FASTA protein (metaPROTEIN in figure), the FASTA proteins are matched to UniProtKB proteins
via BLAST (uniprotPROTEIN in figure), and taxonomic annotations for the UniProtKB proteins are
used. A taxonomic tree is generated containing the direct taxonomic annotations and all ancestor
terms. All taxonomic trees resulting from all matched proteins are merged such that the resulting tree
contains only those terms present in all trees (the intersection of the sets). The taxonomic terms have
their spectral count increased by the spectral count of the peptide. After all peptides assigned to a GO
term are processed, the ratio of the spectral count of each taxonomic term to the total spectral count of
the GO term is calculated. This provides the relative, unambiguous contribution (in spectral count) of
each taxon to a GO term at any arbitrary level of the taxonomic tree.
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Table 2. For a given GO term, the taxa, spectral count, fraction of this GO term’s spectral count, and
fraction of all spectra in the experiment that could be unambiguously attributed to each respective
taxon. E.g., 88% of the spectra for this GO term were attributable to the Bacteroidetes phylum. 3.5% of
the spectra in the experiment were attributable to this GO term and the Bacteriodetes phylum.

Taxon Name Taxonomy Rank Spectral Count Ratio of GO Ratio of Experiment

Bacteria superkingdom 240 0.88 3.50 × 10−2

Bacteroidia class 141 0.52 2.05 × 10−2

Bacteroidetes phylum 141 0.52 2.05 × 10−2

Bacteroidales order 141 0.52 2.05 × 10−2

Prevotella genus 81 0.3 1.18 × 10−2

Prevotellaceae family 81 0.3 1.18 × 10−2

Firmicutes phylum 41 0.15 5.97 × 10−3

Lactobacillales order 33 0.12 4.81 × 10−3

Lactobacillaceae family 33 0.12 4.81 × 10−3

Lactobacillus genus 33 0.12 4.81 × 10−3

Bacilli class 33 0.12 4.81 × 10−3

Prevotella sp. CAG:873 species 23 0.08 3.35 × 10−3

Clostridiales order 6 0.02 8.74 × 10−4

Clostridia class 6 0.02 8.74 × 10−4

Actinobacteria phylum 5 0.02 7.28 × 10−4

The third step of the algorithm compares the spectral counts for GO terms between different
experiments. This is done by first calculating the log-fold difference (base 2) between the proportions
of spectra attributable to a given GO term in two experiments. Because a GO term might only be
observed in one of the two experiments and the log-fold change using zero in one of the conditions
is undefined, a Laplace correction is performed on the spectral counts for each GO term by adding
one to the spectral count for all GO terms and recalculating the proportions. The Laplace correction
is equivalent to assigning a uniform prior probability to each GO term. The log-fold change is then
calculated between these Laplace-corrected proportions. A p-value is calculated using a two-tailed test
of proportions that tests the null hypothesis that the proportion for this GO term is the same in the two
experiments against the alternative hypothesis that the ratios are different. Multiple hypothesis testing
is controlled for using either a Bonferroni correction or a Benjamini-Hochberg adjustment [37,38]
(Table 3). At this time, MetaGOmics only supports pairwise comparisons between two experiments,
though the data from multiple experiments may be downloaded and compared using any preferred
analysis method.

Table 3. For the comparison of two hypothetical MS experiments, a small subset of the GO terms,
log-fold changes, and q-values for GO terms detected in the two experiments.

GO Name Fold Change q-Value

outer membrane 1.55 5.27 × 10−106

cell outer membrane 1.55 5.61 × 10−106

external encapsulating structure part 1.5 5.64 × 10−102

membrane 1.14 3.00 × 10−101

receptor activity 1.47 5.03 × 10−93

intrinsic component of membrane 1.44 6.37 × 10−88

integral component of membrane 1.44 6.37 × 10−88

molecular transducer activity 1.35 4.14 × 10−81

membrane part 1.01 4.69 × 10−53

carbohydrate derivative binding −2.03 1.25 × 10−49

ribonucleotide binding −2.03 1.25 × 10−49

purine ribonucleoside binding −2.04 5.36 × 10−47

ribonucleoside binding −2.04 5.36 × 10−47

purine ribonucleoside triphosphate binding −2.04 5.36 × 10−47
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2.3. Specifying Relative Abundance

The required inputs to use MetaGOmics include the protein database used to search the MS data
and a peptide list with associated abundance measures (reported as integers). For the sake of simplicity,
this manuscript focuses on relative abundances reported as spectral counts. However, MetaGOmics is
not limited to spectral counting. This abundance can just as easily be the total area under the curve
from the extracted ion chromatogram for each peptide. MetaGOmics performs its analysis in terms of
relative abundances in each sample, not absolute abundances. In the case of areas under the curve, the
abundance of a given peptide would be considered as the proportion of its area under the curve to the
total areas under the curves for all peptides. It is this proportion that would be compared between
samples. Examining the changes in functional and taxonomic abundance between samples in terms
of changes in absolute abundance is a current focus of development, and functionality specifically
designed to handle this case will be added to the MetaGOmics website soon.

2.4. Running BLAST

NCBI BLAST is performed as-needed on behalf of users to find Gene Ontology and taxonomic
annotations for proteins in their protein sequence database. Users may select the BLAST database
(UniProtKB TrEMBL or Swiss-Prot [39]), E-value cutoff (currently defaults to 1 × 10−10), and whether
or not to only use the top BLAST hit (currently defaults to true). If only the top BLAST hit is used, then
all BLAST hits tied for the best score will be used (if the best score is less than or equal to the E-value
cutoff). If not only the top BLAST hit is used, then all hits with an E-value meeting the cutoff are used.
At the time of this writing, MetaGOmics runs NCBI BLAST 2.6.0+ on two Linux servers, each with
56-core Intel Xeon E5-2697 CPUs.

2.5. Expected Wait Times

The time required to process the initial FASTA upload ranges from a few minutes to a few
hours, depending on the size of the FASTA file. Subsequent uploads of the same FASTA file will be
instantaneous. To speed up processing, it is highly recommended that this FASTA file be trimmed to
include only proteins represented by peptide matches in the results. Please see our GitHub repository
for a program to aid in this trimming (https://github.com/metagomics/).

The time required to process uploaded peptide lists and associated spectral counts ranges from a
few minutes to more than a day. This time depends on the number of peptides, whether BLAST has
already been run on some proteins from this FASTA file from previous analyses, the size of the FASTA
file, whether BLAST is searching UniProtKB TrEMBL or Swiss-Prot, and whether or not results beyond
the top BLAST hit are being used. Using UniProtKB TrEMBL and retaining more than the top BLAST
hit will result in longer processing times.

In all cases, the expected run times may be significantly impacted by user demand. All requests
are processed on a first come, first served basis.

2.6. Unknown Gene Ontology Annotations

In the case where no GO annotation is found for a peptide, an “unknown” annotation is created
and added as a direct child of the root node of the relevant aspect of the GO DAG. For example, if no
annotations were associated with a peptide for the “molecular function” aspect, then an “unknown
molecular function” node is added as a child of the “molecular_function” root node. The spectral
count for this unknown annotation (and the “molecular_function” root node) is thus increased by the
spectral count for that peptide and is included in reported data.

2.7. Analysis of Ocean Metaproteomics Dataset

An example MetaGOmics result set was generated by comparing Bering Strait (BSt) surface water
(7 m) samples to Chukchi Sea (CS) bottom water (55.5 m) samples. Briefly, microbial fractions were

https://github.com/metagomics/
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collected on 0.7 µm filters after passing 15 L of seawater through both 10 µm and 1 µm filters to remove
larger eukayrotes. These samples were collected, digested, analyzed on a Q-Exactive-HF, and data
were searched according to the methods description in May et al. [40].

Separate results files were created for each of the BSt and CS conditions that contained the
combined Comet results for the two replicates from each condition. The BSt and CS results were
each post-processed using Percolator [41] version 2.10 with the -X option. Lists of identified peptides
and spectral counts were parsed from the resulting Percolator XML files using an in-house script,
filtering peptide identifications on a q-value of 0.01 and then using peptide spectrum matches (PSMs)
filtered on a q-value of 0.01 for spectral counts. The metaproteome FASTA file (described by May et al.)
was filtered using an in-house script to only include protein sequences for which there were peptide
matches. Note that this step is not required, but speeds up processing. Both of these scripts are
available at our GitHub repository at https://github.com/metagomics/. The resulting list of peptides,
associated spectral counts, and filtered FASTA file were uploaded to the MetaGOmics server, with
settings to use UniProtKB TrEMBL, an E-value cutoff of 1 × 10−10, and only keep the top hit as BLAST
settings. The results of the re-analysis are available at https://www.yeastrc.org/metagomics/ocean.

3. Results and Discussion

3.1. Web Application

The MetaGOmics web application is available at https://www.yeastrc.org/metagomics/.
The user is presented with a simple interface for creating an initial context for the analysis of
metaproteomics data (Figure 2a). To create this context the user (1) uploads a FASTA file containing
the protein sequences to which peptides identified in any of the experiments are to be matched
(e.g., the FASTA file used to search the data); (2) selects a database against which proteins will be
searched by BLAST (i.e., UniProtKB/Swiss-Prot or UniProtKB/TrEMBL); (3) chooses which BLAST
matches should be considered; and (4) enters an email address where they may be contacted when
results are ready.

Upon submitting this form, a unique URL is created where users may request analysis of peptide
lists, visualize results, and download text reports from different experiments based on the submitted
FASTA file and requested BLAST settings (Figure 2b). This URL contains an unguessable hash string
as part of the URL that serves to secure the data. Users will receive an email containing a link to the
private URL after submitting the FASTA file. This URL should be retained or recorded. The links do
not expire.

To submit data, the user selects “Upload Peptide Count List” and submits a tab-delimited text file
containing the peptide list and associated spectral counts from a given experiment. Submitting this file
initiates the sequential running of multiple server-side programs to perform the analysis. Once the
analysis is complete, the user will receive an email notification and another link to the private URL,
which allows for downloading and visualizing the result of this analysis. Users may submit the results
of as many experiments as they would like to be analyzed using this FASTA file and BLAST settings,
such as the results of each condition or replicates.

To view the results, users click the “Download GO Analysis” button next to the nickname they
gave a set of results. This opens an overlay where users may choose to download the results as a
text report or as an image of the GO DAG. The text report contains the GO term accession number,
GO aspect, GO name, spectral count, and proportion of all spectra in the experiment for each GO
term found in the experiment (spectral ratio). The image contains a graphical representation of the
GO terms in their hierarchical structure, labeled with their spectral count, spectral ratio, and shaded
according to the spectral ratio. The images may be downloaded in portable network graphics (PNG)
or scalable vector graphics (SVG) formats.

https://github.com/metagomics/
https://www.yeastrc.org/metagomics/ocean
https://www.yeastrc.org/metagomics/
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If multiple experiments have been analyzed, users may check the box next to any two and click
the “Compare Checked Runs” to download a text report or images comparing the ratios of GO terms
in the two experiments. The downloaded report includes the GO accession, GO aspect, GO name,
ratios from both experiments, PSM counts from both experiments, the log (base 2) fold difference in
the ratios, corrected p-values, and q-values (Benjamini-Hochberg adjustment) for all GO terms found
in either experiment. Instead of all GO terms from either experiment, the images contain a “trimmed”
depiction of the identified GO DAG that is color coded according to statistical significance (Figure 3).
Trimming is accomplished by iteratively removing all leaves from the DAG that have a q-value greater
than 0.01. The result is a DAG where all leaves have a q-value less than or equal to 0.01; note that
parents of these nodes may have non-significant q-values. This is done to preserve the structure of the
DAG, including the relative level of specificity of GO terms in the DAG, while still removing much of
the noise of insignificant results. GO terms with higher ratios in the second experiment are shaded
yellow, and terms with lower ratios are shaded blue, where the intensity of each color depends on the
significance of the q-value. Grey terms are not statistically significant. Each GO term is labeled with
its name, accession number, log fold change, and q-value. The images may be downloaded as PNG
or SVG.
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3.2. Example Analysis: Ocean Metaproteomics

An example dataset was generated via a MetaGOmics analysis of the ocean metaproteomics
dataset described in May et al. [40] (see methods) (Figure 4). These data compare the relative abundance
of peptides attributable to GO terms between Bering Strait surface water (7 m) samples to Chukchi
Sea bottom water (55.5 m) samples. A highly-filtered set of results from the analysis is presented
in Table 4, where only the statistically significant leaves of the resulting GO DAG are presented.
The surface samples have a higher relative abundance of peptides relating to metabolism, translation,
GTP utilization, and photosynthesis. Where, the bottom samples have a higher relative abundance
of peptides relating to metal binding, protein refolding, DNA repair, and ATP utilization. These
results are consistent with what would generally be expected in surface and sea bottom ocean samples.
These results may be viewed in their entirety at https://www.yeastrc.org/metagomics/ocean.
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water samples from May et al. All data from the analysis are available at https://www.yeastrc.org/
metagomics/ocean. (A) Volcano plot depicting the negative log (base 10) of the q-value versus the log
(base 2) fold change for all GO terms found in either sample. A horizontal reference line is added for a
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count ratio in the surface sample. Each GO term has been colored either lavender (not statistically
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Table 4. Up to the top 10 leaf GO terms with a q-value ≤ 0.01 for positive and negative log-fold changes comparing ocean water samples from BSt (Surface) to
CS (Bottom) from May et al. Shown are the name of the GO term, the log-fold change from surface to bottom samples, and the q-value resulting from the
Benjamini-Hochberg adjustment.

Biological Process

Higher in Ocean Surface Water Higher in Ocean Bottom Water

GO Term log Change q-Value GO Term log Change q-Value

D-xylose transport −6.09 3.49 × 10−73 protein refolding 1.66 1.01 × 10−167

translation −0.77 2.43 × 10−57 chromosome condensation 1.52 3.69 × 10−50

translational elongation −1.11 9.60 × 10−26 DNA repair 1.61 1.82 × 10−7

transcription anti-termination −2.79 5.66 × 10−8 dephosphorylation 2.04 6.62 × 10−7

fatty acid biosynthetic process −1.21 6.42 × 10−8 de novo’ pyrimidine nucleobase biosynthetic process 3.74 4.53 × 10−5

GTP biosynthetic process −5.12 7.30 × 10−8 RNA phosphodiester bond hydrolysis, exonucleolytic 1 5.52 × 10−5

UTP biosynthetic process −5.12 7.30 × 10−8 mRNA catabolic process 0.93 1.69 × 10−4

CTP biosynthetic process −5.12 7.30 × 10−8 7,8-dihydroneopterin 3′-triphosphate biosynthetic process 3.09 4.48 × 10−3

tricarboxylic acid cycle −3.84 4.41 × 10−8 response to cadmium ion 1.45 7.42 × 10−3

cell division −1.07 1.18 × 10−5

Molecular Function

Higher in Ocean Surface Water Higher in Ocean Bottom Water

GO Term log Change q-Value GO Term log Change q-Value

monosaccharide binding −6.07 6.71 × 10−72 histidine ammonia-lyase activity 4.54 1.93 × 10−113

receptor activity −1.03 5.77 × 10−65 unfolded protein binding 0.83 2.85 × 10−57

structural constituent of ribosome −0.68 1.12 × 10−34 nitrate reductase activity 7.35 4.13 × 10−35

DNA-directed RNA polymerase activity −1.68 4.06 × 10−34 heme binding 3.38 4.23 × 10−35

translation elongation factor activity −1.09 7.50 × 10−25 ATP binding 0.51 6.87 × 10−34

GTP binding −0.92 6.40 × 10−17 4 iron, 4 sulfur cluster binding 2.33 3.28 × 10−27

GTPase activity −0.92 8.64 × 10−7 prephenate dehydratase activity 3.94 4.38 × 10−13

nucleoside diphosphate kinase activity −5.11 1.28 × 10−7 selenium binding 2 8.97 × 10−13

tRNA binding −0.87 3.00 × 10−6 4-phytase activity 3.45 7.83 × 10−73

acetyl-CoA carboxylase activity −3.91 3.46 × 10−6 formate dehydrogenase (NAD+) activity 1.48 9.79 × 10−6
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Table 4. Cont.

Cellular Component

Higher in Ocean Surface Water Higher in Ocean Bottom Water

GO Term log Change q-Value GO Term log Change q-Value

cell outer membrane −0.98 1.17 × 10−43 cytoplasm 0.74 8.53 × 10−84

intracellular −0.71 1.09 × 10−36 bacterial-type flagellum filament 3.49 1.47 × 10−15

ribosome −0.64 1.78 × 10−33 bacterial-type flagellum 2.01 1.53 × 10−8

integral component of membrane −0.98 9.77 × 10−24 unknown cellular component 0.07 1.04 × 10−6

thylakoid −2.08 1.07 × 10−11 ATP-binding cassette (ABC) transporter complex 0.6 1.04 × 10−5

large ribosomal subunit −1.21 1.54 × 10−11 cytosolic small ribosomal subunit 3.66 9.19 × 10−3

acetyl-CoA carboxylase complex −3.84 4.22 × 10−6

plasma membrane −0.29 3.37 × 10−4

pyruvate dehydrogenase complex −3.99 7.77 × 10−4

proton-transporting ATP synthase
complex, catalytic core F(1) −0.37 1.36 × 10−3
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3.3. Interpreting Results With Many “Unknown” GO Annotations

It is important to pay close attention to the “unknown” GO terms when interpreting changes in
relative abundance for GO terms between samples, particularly more general GO terms. A peptide
will receive an “unknown” GO annotation for two reasons: there were no BLAST matches for that
peptide that met the E-value cutoff or there were no GO annotations for any of the UniProtKB proteins
matched via BLAST for the respective GO aspect (molecular function, biological process, or cellular
component). In either of these cases, the spectral count of the “unknown” GO term for the respective
GO aspect is increased by the spectral count for the peptide. However, it is important to consider that
if we did know the true annotations for the unknown peptides, it is likely that many of them would be
annotated with a molecular function, biological process, or cellular component that falls under the
most general GO terms.

For example, a peptide has a spectral count of 100, but no GO annotation for molecular function
can be found. The spectral count for the “unknown molecular function” is increased by 100. However,
if the GO annotation were known, it is quite likely it would fall under “binding”, “catalytic activity”,
“structural molecule activity”, or some other general term for molecular function. In experiments with
a large ratio of unknown molecular functions, it is likely that the ratios of the general GO terms for
molecular functions are really higher than reported. As such, interpretations of changes in relative
abundance of general GO terms should be treated with care when there is a large ratio of “unknown”
GO annotations in one of the experiments.

3.4. Interpreting Taxonomic Changes

When a taxonomic tree is calculated for a peptide, only the taxa that are unambiguously matched
by that peptide have their spectral counts incremented. For example, if a peptide matches two proteins
with the same species, the taxonomic node for that species and all of its ancestors (genus, family, order,
and so on to kingdom) have their spectral counts increased by the spectral count for that peptide. If a
peptide matches two proteins with different species, but the same genus, we consider that genus to be
the most specific taxonomic unit for which this peptide provides unambiguous evidence. Consequently,
if a peptide matches multiple proteins in different families, but with the same class, then that class is
the most specific taxonomic unit for this peptide. Only the spectral counts for the most specific, shared
taxonomic unit for a peptide (and all of its ancestors to the root) are increased by that peptide.

The ramifications of this approach are that more specific levels of the taxonomic tree (i.e., species
and genus) may have fewer total spectral counts than more general levels of the taxonomic tree.
A peptide that matches a very taxonomically homogeneous set of proteins is able to provide
unambiguous evidence for more specific taxa than a peptide that matches a very taxonomically
diverse set of proteins. This may be seen in the data by summing the fraction of a GO term’s spectral
count that is unambiguously attributable to all the taxa at different levels in the taxonomic tree.
For example, when summing the fraction at a general taxonomic level (e.g., order), the fractions
associated with all the orders may approach one. This means that nearly all the peptides provided
unambiguous taxonomic evidence to at least the order level of the taxonomic tree. On the other hand,
if we pick a more granular level (e.g., genus), then the fraction may be considerably lower, such as 0.25.
This would indicate that only 25% of the spectra could be unambiguously assigned to a specific genus.
Each step up in the taxonomic tree (to a more general term) will have a summed fraction greater than
or equal to the step below.

We recommend that when interpreting the taxonomic contributions to a GO term’s spectral count,
that the most specific taxonomic level that sums nearly to one be chosen. This is the most specific level
of unambiguous taxonomic inference that makes use of most of the spectra.
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3.5. Current Usage

An early implementation of the functional analysis and experimental comparison steps of the
MetaGOmics algorithm (implemented then as in-house scripts) was used to perform a GO-based
functional analysis for Timmins-Schiffman, et al. (2017) [17]. This study aimed to characterize the
effect of the chosen protein sequence database on the peptide yield and biological inferences that are
made from environmental metaproteomics data. It was found that using the metagenome-derived
metaproteome yielded a larger number of confident peptide identifications versus protein sequences
constructed from existing public databases. It was also found that the choice of sequence database
had a profound effect on the functional annotation of the experiment, which could lead to profoundly
different biological conclusions.

4. Conclusions

As the field of metaproteomics grows, standardized approaches to data analysis must be
established to allow comparisons between treatments (e.g., gut microbiomes) or environmental
locations (e.g., ocean transects). In addition to the research field having a desire to compare
microbiome proteomes between treatments or sites, temporal shifts in community structure and
function are paramount to creating accurate models for predicting efficacy of treatments or, in the
case of the environment, tracking the effects of global climate change or anthropogenic perturbations.
The complexity of peptide sequence assignment in mixed community proteomics cannot be simplified
by assuming protein inference yields accurate depictions of the community.

Here we present MetaGOmics, an algorithm and web application for peptide-centric functional
and taxonomic analysis of metaproteomics samples, and comparisons between those samples.
The MetaGOmics algorithm is designed to overcome drawbacks implicit in a protein-centric approach,
in which spectral counting of proteins is used as the basis for functional analysis. Because
MetaGOmics requires as input only a list of peptide sequences and associated abundances, the
method works with data from any shotgun proteomics pipeline. The web application includes
tools for submitting data, viewing results, and downloading reports. MetaGOmics is open-source
(https://github.com/metagomics/) and free to use at https://www.yeastrc.org/metagomics/.
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