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Abstract

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syn-
drome. This study reports that p53 “orchestrates” the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1
and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-acti-
vated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in con-
trast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of
phospho-cofilin. 17AAG treatment resulted in reduced levels of active cofilin. Silencing of cofilin pyridoxal phosphate phosphatase (PDXP)
blocked the LPS-induced hyper-permeability, and P53 inhibition reversed the 17AAG-induced PDXP down-regulation. P190RHOGAP suppres-
sion enhanced the LPS-triggered barrier dysfunction in endothelial monolayers. 17AAG treatment resulted in P190RHOGAP induction and
blocked the LPS-induced pMLC2 up-regulation in wild-type mice. Pulmonary endothelial cells from “super p53” mice, which carry additional
p53-tg alleles, exhibited a lower response to LPS than the controls. Collectively, our findings help elucidate the mechanisms by which p53 oper-
ates to enhance barrier function.

Keywords: P53� inflammation� barrier function

Introduction

P53 is involved in the regulation of various intracellular cascades
which orchestrate molecular responses to numerous environmental
stimuli. It governs cellular fate, by promoting cell cycle arrest, apop-
tosis or senescence. This transcription factor was discovered
30 years ago as the cellular partner of simian virus 40 large T antigen.
A decade later it became clear that it is a potent tumour suppressor,
which is frequently mutated in humans tumours [1].

Apart from its role in cancer, P53 is strongly involved in the
defence of vascular endothelium against inflammatory insults.
Inflammation is a major cause of endothelial barrier dysfunction
and hyper-permeability, leading to acute lung injury (ALI) and acute
respiratory distress syndrome (ARDS) [2]. The development of new
therapeutic strategies against these devastating pathologies has
been slow, and mortality of patients suffering from ARDS remains
around 40% [3].

We have recently demonstrated that the induction of p53, by
either HSP90 inhibition (by 17AAG) or Nutlin, inhibits the inflamma-
tory RhoA pathway [4] which leads to MLC2 phosphorylation and
subsequent actin stress fibre formation [5]. 17AAG induced p53 by
suppressing the expression of MDM2 and MDM4, the two major p53
negative regulators. Moreover, HSP90 inhibition suppressed the LPS-
induced p53 and MDM2 phosphorylation, modifications that increase
the rate of p53 proteasomal degradation [6]. In vitro studies on the
effect of p53 silencing on endothelial monolayer permeability have
confirmed that p53 is an essential element for the maintenance of
vascular barrier function [4].

This study aimed to further investigate the mechanisms which
orchestrate the protective effects of p53 against vascular dysfunction,
focusing on the role of the two major small GTPases which exert
prominent antagonistic roles on endothelial barrier function, namely
Rac1 and RhoA [7].

Pharmacologic or genetic activation of Rac1 results in vascular
barrier enhancement. Rac1 induces p21-activated kinase (PAK1)
phosphorylation that leads to PAK1 autophosphorylation and activa-
tion. Activated PAK1 phosphorylates LIMK1/2, which, in turn, phos-
phorylates the actin-severing protein cofilin at Ser3 and inactivates it
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[8], leading to barrier protection. Further, in this study, P53 inhibition
reversed the 17AAG-induced down-regulation of the cofilin PDXP.
Conversely, activation of RhoA by numerous inflammatory mediators,
including LPS, activates ROCK1/2 which in turn phosphorylates myo-
sin light-chain kinase II leading to actomyosin contraction, actin
stress fibre formation and disruption of endothelial barrier integrity
[7]. Control of RhoA activation is complex and includes P190RhoGAP,
a well-known inhibitor of RhoA [5].

Here, we demonstrate that p53 is a key mediator of Rac1 sig-
nalling and, at the same time, inhibits RhoA signalling by inducing
P190RhoGAP activation. Additionally, these findings shed light on
previous observations [9] about the importance of HSP90 inhibitors
as pluripotent anti-inflammatory agents and suggest that p53 may act
as a major intracellular defender inflammation-triggered vascular bar-
rier abnormalities.

Materials and methods

Reagents

17-Allyl-amino-demethoxy-geldanamycin (17-AAG) was obtained from the

National Cancer Institute (Bethesda, MD, USA). AUY-922 was purchased

from Selleckchem (Houston, TX, USA). P53 siRNA (sc-29435), PAK siRNA
(sc-29700), P190RHOGAP siRNA (sc-44077), PDXP siRNA (sc-61425),

control siRNA (sc-37007) and MDM2 antibody (sc-965) were purchased

from Santa Cruz Biotechnology (Santa Cruz, CA, USA). p53 (9282s), p-

myosin light-chain 2, cofilin (3318), phospho-cofilin (3311), PAK1 (2602),
LIMK1 (3842) and phospho-LIMK1 (3841) antibodies were obtained from

Cell Signaling (Danvers, MA, USA). Β-actin antibody (P8999) and CelyticM
lysis reagent (C2978) were purchased from Sigma-Aldrich (St Louis, MO,

USA). Secondary mouse and rabbit antibodies were purchased from Licor
(Lincoln, NE, USA). Oligofectamine (12252011), Pierce BCA protein assay

and nitrocellulose membranes were obtained from Fisher Scientific (Pitts-

burgh, PA, USA). Ad-p53-GFP (1260) and ad-GFP (1060) were obtained
from Vector Biolabs (Malvern, PA USA).

Animals

Seven- to 8-week-old male C57BL/6 mice from Jackson Laboratories

were used in all experiments. Global transgenic p53 (“super p53”) was

generated according to previously published procedures [10]. Mice were

maintained under pathogen-free conditions in a 12:12-hr light: dark
cycle. All animal care and experimental procedures were approved by

the Old Dominion University IACUC and were in line with the principles

of humane animal care adopted by the American Physiological Society.

Cell culture

In-house harvested human lung microvascular endothelial cells were
isolated and maintained in M199 media supplemented with 20% FBS

and antibiotics/anti-mycotics, as described previously [11]. Mouse

endothelial cells were grown in Lonza EGM-2 medium (CC-3202).

Isolation of mouse pulmonary endothelial cells

Lungs derived from mice were perfused with PBS, dissected into small
pieces and transferred to a gentleMACS C tube (130-093-237) which

contained enzyme mix from the MACS Mouse Lung Dissociation kit

(130-095-927). The cells were filtered through a 70 uM MACS Smart-

strainer (130-098-462), and the pellet was processed with the MACS
Debris Removal Solution (130-109-398). The cellular suspension was

incubated with mouse MACS CD45 Microbeads (130-052-301), washed

and resuspended in PEB buffer and processed on the autoMACS PRO

using the DEPLETES program. The negative fraction from this was then
incubated with mouse MACS CD31 microbeads (130-097-418) and pro-

cessed on the autoMACS PRO using the POSSELS program. The result-

ing positive fraction was dual-labelled with MACS CD45-APC-Vio770
(130-110-773) and MACS CD31-PE (130-110-807). MACSQuant Ana-

lyzer 10 was employed to verify a pure CD31 positive fraction.

Measurement of endothelial barrier function

The barrier function of endothelial cell monolayers was estimated by

electric cell-substrate impedance sensing (ECIS) as previously published
[12], utilizing an ECIS model 1600R (Applied Biophysics, Troy, NY,

USA). All the experiments were conducted on confluent cells which had

reached a steady-state resistance of at least 800 Ω.

Rac1 activity assay

Rac1 activation was detected by the Rac1 pull-down activation assay

(#BK035; Cytoskeleton, Denver, CO, USA). Briefly, 500 lg of cell lysates
was incubated with GST-Rhotekin-RBD fusion protein and was coupled

to glutathione resin. After precipitation, the complexes were washed

with the lysis buffer, eluted in SDS-PAGE sample buffer, immunoblotted
and probed with Rac1 antibody. Aliquots were taken from supernatants

prior to precipitation and were used to quantify total Rac1.

Protein isolation, Western blot analysis and
transfections

The procedure took place as previously described [4]. The signal for the
immunoreactive proteins was developed using the appropriate secondary

antibody and was visualized in a LICOR Odyssey CLx imaging system.

Transfections were performed according to a standard protocol [13].

In vivo experiments

Stock solutions of Escherichia Coli LPS were prepared in saline. Mice

received either vehicle (saline) or LPS (3000 unit/g of body weight,

intratracheally) 24 h before receiving vehicle (10% DMSO in saline) or

the Ηsp90 inhibitor, AUY922 (10 lg/g of body weight dissolved in 10%
DMSO), intraperitoneally. Mice were killed 48 h later (i.e. 72 h after

LPS) by cervical dislocation, and the lungs were flushed with 5 ml of

ice-cold PBS (5 mM EDTA), excised, dipped in saline, blotted dry,
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quickly snap-frozen in liquid nitrogen, crushed to powder in a prechilled
mortar and stored at �800.

Densitometry/statistical analysis

ImageJ software (National Institute of Health) was used to perform densito-

metry of immunoblots. All data are expressed as mean values � S.E.M.

(standard error of mean). A value of P < 0.05 was considered significant.
GraphPad Prism 4 (version 4.03, Graph Pad Software, Inc., CA, USA) was

used for data analysis. n represents the number of experimental repeats.

Results

Mouse lung microvascular endothelial cells
(MLMVEC) from “super p53” mice overexpress
p53 compared to wild type, but exhibit
comparable sensitivity to LPS challenge, in vitro

MLMVEC isolated from wild-type mice were treated in vitro for 16 h
with either 0.1% DMSO (vehicle) or 17AAG before a 1-hr treatment
with PBS (vehicle) or LPS (10 EU/ml). The cells from the super p53
mice were only exposed to vehicle or LPS (10 EU/ml). MLMVEC from
super 53 mice expressed significantly higher p53 levels. LPS reduced
the expression of p53, and this was reversed in wild-type cells treated
with the HSP90 inhibitor, 17AAG. MLMVEC from super p53 mice
exhibited a comparable decrease in p53 expression (Fig. 1A).

In vivo treatment with LPS reduces MLMVEC p53
expression and induces MDM2 expression

Wild-type mice received either vehicle (10% DMSO) or the HSP90 inhi-
bitor, 17AAG intraperitoneally 24 hrs after vehicle (PBS) or LPS (intra-
tracheally; it). Super P53 mice received only vehicle (PBS) or LPS it.
72 hrs after LPS, the animals were killed and MLMVEC were isolated
and analysed by Western blotting. In cells from wild-type mice treated
with 17AAG, p53 expression was increased (Fig. 1B) and expression
of the p53 suppressor MDM2 was decreased (Fig. 1C), in the presence
or absence of LPS. LPS exerted minimal effect on p53 expression but
dramatically up-regulated MDM2 expression. Compared to cells from
wild-type mice, cells from super p53 mice exhibited again higher levels
of p53, but unaltered levels of MDM2. Furthermore, in vivo treatment
with LPS caused a strong decrease in p53 expression, but a less pro-
nounced increase in MDM2 levels (Fig. 1B and C).

MLMVEC derived from super p53 mice resist the
LPS-induced decrease in barrier function

MLMVEC were seeded on gold electrode arrays and were exposed to
vehicle (PBS) or LPS (10 EU/ml), and transendothelial electrical resis-
tance (TEER) was monitored continuously for the indicated times.

MLMVEC from super p53 mice were more resilient to LPS, compared
to cells from wild-type mice (Fig. 1D).

MLMVEC derived from super p53 mice reach
confluence sooner that cells from wild-type mice

Equal numbers (50,000) of MLMVEC derived from super p53 and
wild-type mice were seeded on golden plated electrodes and were left
to grow till confluence. Figure 1E demonstrates that cells expressing
higher levels of p53 exhibited a greater proliferative/spreading ability
compared to wild-type MLMVEC.

Activation of Rac1 in human lung microvascular
cells (HLMVEC) treated with 17AAG or AUY922

HLMVEC were treated with either vehicle (0.1% DMSO), or the
HSP90 inhibitors, 17AAG or AUY922 for 16 hrs. As shown in Fig-
ure 2A, both HSP90 inhibitors significantly induced Rac 1 activation
and p53 expression.

P21-activated kinase (PAK) is essential for
vascular barrier function and mediates the
AUY922-induced barrier strengthening

Rac1 activation is known to induce PAK. HLMVEC seeded on golden
plated electrodes were transfected with siRNA which specifically tar-
gets PAK expression. The suppression of PAK, which is demonstrated
in Figure 2B (lower right panel), resulted in compromised barrier
function, as reflected in TEER values (upper panel, Fig. 2B). More-
over, PAK appears to be strongly involved in the AUY922-triggered
endothelial barrier enhancement, as silencing of PAK expression abol-
ished the beneficial effect of HSP90 inhibition on HLMVEC barrier
enhancement (Fig. 2B, lower left panel).

PAK is essential for AUY922-induced p53
expression

HLMVEC were exposed to siRNA specifically designed for the silenc-
ing of PAK gene expression (siPAK) as well as to an irrelevant siRNA
(siCTR). 48 hrs after transfection, the cells were exposed to either
vehicle (0.1% DMSO) or AUY922 (1 lΜ) for 16 hrs. In contrast to
siCTR-transfected cells, cells that expressed reduced PAK protein
levels were unable to increase p53 expression in response to AUY922
(Fig. 2C). Thus, PAK appears to be downstream of AUY922 and p53
downstream of PAK.

P53 induces the phosphorylation of LIMK

HLMVEC were transfected with ad-GFP, si RNA which targets p53
gene expression (siP53), and ad-p53-GFP for 48 hrs. The efficiency
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of transfection is demonstrated in Figure 3A (left panel), where p53
was down-regulated by siP53 and was dramatically induced by ad-
p53-GFP. As shown on the right panel of Figure 3A, p53 overexpres-
sion resulted in the induction of phosphorylated (activated) LIMK
(pLIMK). To confirm this finding, HLMVEC were treated for 48 hrs
with either vehicle (0.1% DMSO) or Nutlin (10 lM), which we and
others have shown to induce p53 expression ([4] and Fig. 4B, lower
right panel). Nutlin triggered the phosphorylation of LIMK, without
affecting the levels of non-phosphorylated LIMK (Fig. 3B).

Effects of LPS and 17AAG on LIMK
phosphorylation

HLMVEC were treated for 16 hrs with either vehicle (0.1% DMSO) or
17AAG (1 lM) before LPS or vehicle (PBS) treatment (1 hr). LPS
suppressed LIMK phosphorylation and that effect was opposed by
17AAG, which, by itself, profoundly increased levels of pLIMK in
HLMVEC.

Fig. 1 (A) Western blot analysis of p53 levels in mouse microvascular endothelial cells (MMVEC) isolated from lungs of wild-type (WT) and super

p53 mice. Cells were treated in vitro with LPS or vehicle and pre-treated with 17AAG or vehicle (10% DMSO) for 16 h. Blot shown is representative

of 3 experiments. Signal intensity was analysed by densitometry. Protein levels were normalized to b-actin. *P < 0.05 versus vehicle, **P < 0.01

versus vehicle. Means � S.E.M. (B) Western blot analysis of p53 levels in MMVEC derived from lungs of WT and super p53 mice 24 hrs after treat-
ment with LPS or vehicle and pre-treated for 16 h with 17AAG or vehicle (10% DMSO). Blot shown is representative of 3 experiments per group.

Signal intensity was analysed by densitometry. Protein levels were normalized to b-actin. *P < 0.05 versus vehicle, **P < 0.01 versus vehicle,

*****P < 0.0001 versus vehicle. Means � S.E.M. (C) Western blot analysis of MDM2 levels in MMVEC isolated from lungs of WT and super p53
mice. The endothelial cells were treated in vitro with LPS or vehicle and pre-treated for 16 hrs with 17AAG or vehicle (10% DMSO). Blot shown is

representative of 3 experiments. Signal intensity was analysed by densitometry. Protein levels were normalized to b-actin. *P < 0.05 versus vehicle,

**P < 0.01 versus vehicle. Means � S.E.M. (D) LPS was added to the media of MMVEC derived from the lungs of WT or super p53 mice. A grad-

ual increase in endothelial permeability (reduced TEER) was observed in both LPS-treated groups. However, WT cells were much more susceptible
to LPS than those derived from super p53 mice. n = 4 per group. Means � S.E. (E) Equal numbers of MMVEC derived from WT or super p53 mice

were seeded on ECIS golden plated arrays and were allowed to form confluent monolayers. Cells derived from super p53 mice demonstrated an

increased potential to reach confluence compared to WT cells. n = 4 per group. Means � S.E.

4 ª 2018 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



Effects of LPS and 17AAG on cofilin
phosphorylation

HLMVEC were treated for 16 hrs with either vehicle (0.1%
DMSO) or 17AAG (1 lM) before LPS or vehicle (PBS)

treatment (1 hr). LPS suppressed cofilin phosphorylation and
that effect was opposed by 17AAG (Fig. 4A). As shown by den-
sitometric analysis of the blots, 17AAG treatment resulted in a
nearly twofold increase in the deactivated cofilin (pCofilin) in
HLMVEC.

Fig. 2 (A) Western blot analysis of active Rac1, P53, Rac1 and b-actin after 8 hrs of treatment with either vehicle (DMSO; VEH) or 1 lΜ 17ΑΑG,
or 1 lΜ ΑUY922 of human lung microvascular endothelial cells (HLMVEC). Blot is representative of 3 independent experiments. Signal intensity of
active Rac1, P53, Rac1 was analysed by densitometry. Protein levels were normalized to Rac1 or b-actin, as indicated. *P < 0.05 versus vehicle,

*****P < 0.0001 versus vehicle. Means � S.E. (B) HLMVEC were transfected with control (irrelevant) siRNA (si CTR) or PAK siRNA (si PAK) at

t = 0. PAK siRNA-treated cells exhibited reduced TEER values; n = 4 per group. Means � S.E. In additional experiments, similarly treated HLMVEC
were exposed to vehicle (0.1% DMS0) or AUY 922. Bars indicate normalized TEER values 50 hrs after transfection. n = 4 per group. ***P < 0.001

versus vehicle-treated cells; Means � S.E. (lower left panel). Western blot analysis of PAK expression in HLMVEC 24 h an 48 h after siCTR or

siPAK transfection. Blot shown is representative of 3 independent experiments. Signal intensity of PAK was analysed by densitometry. Protein levels

were normalized to b-actin.***P < 0.001 versus control siRNA. Means � S.E. (lower right panel). (C) HLMVEC were transfected with siCTR or
siPAK and were consequently exposed to vehicle or AUY 922 for 16 hrs. Western blot analysis demonstrates p53 expression levels of transfected

cells after 8 hrs of treatment with either vehicle or 17ΑΑG. Blot shown is representative of 3 independent experiments. Signal intensity of p53 was

analysed by densitometry. Protein levels were normalized to b-actin. *P < 0.05 versus vehicle. Means � S.E. (left panel).
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Nutlin-induced p53 overexpression causes cofilin
phosphorylation

HLMVEC were treated with 10 lM Nutlin or vehicle (0.1% DMSO) for
48 hrs. The Nutlin-mediated p53 overexpression (Fig. 4B) increased
the phosphorylated levels of cofilin (pCofilin), whereas total cofilin
levels were not affected. We confirmed that this effect was due to p53
and not another irrelevant action of Nutlin by two approaches.
HLMVEC were transfected with irrelevant siRNA (siCTR) or siRNA
which targets p53 (siP53). 48 hrs after transfection, cells were trea-
ted with either vehicle (0.1% DMSO) or 17AAG (1 lΜ) for 16 hrs.
Silencing of p53 expression blocked the 17AAG-induced cofilin phos-
phorylation (pCofilin) (Fig. 4C). Additionally, HLMVEC were

transfected with either scramble siRNA (siCTR), siRNA for p53 or ad-
p53-GFP for 48 hrs. The induction of p53 expression resulted in pro-
foundly increased phosphorylated levels of cofilin (Fig. 4D).

Effect of LPS and HSP90 inhibition on phospho-
cofilin and P190RHOGAP levels in mouse lung
microvascular endothelial cells (MLMVEC) of
wild-type and super p53 mice

MLMVEC isolated from wild-type or super p53 mice were treated
in vitro for 16 h with either 0.1% DMSO (vehicle) or 17AAG before a
1-hr treatment with PBS (vehicle) or LPS (10 EU/ml). Cells exposed

Fig. 3 (A) Western blot analysis of p53 and b-actin expression in HLMVEC after 48-h treatment with ad-GFP, siRNA for p53 (siP53), or ad-p53-GFP.

Blot shown is representative of 3 independent experiments. Signal intensity of p53 was analysed by densitometry. Protein levels were normalized to

b-actin. *P < 0.05 versus ad-GFP, ***P < 0.001 versus ad-GFP. Means � S.E. (left panel). Western blot analysis of pLIMK and LIMK levels in
HLMVEC after 48-h treatment with ad-GFP, siP53 or ad-p53-GFP. Blot shown is representative of 3 independent experiments. Signal intensity of

pLIMK was analysed by densitometry. Protein levels were normalized to LIMK. ***P < 0.001 versus ad-GFP. Means � S.E. (right panel). (B) Wes-

tern blot analysis of pLIMK, LIMK and b-actin levels in HLMVEC after 48-h treatment with vehicle (veh) (0.1% DMSO) or Nutlin. Blot shown is rep-

resentative of 3 independent experiments. Signal intensity of pLIMK was analysed by densitometry. Protein levels were normalized to LIMK.
*P < 0.05 versus VEH. Means � S.E. (C) Western blot analysis of pLIMK, LIMK and b-actin levels in HLMVEC 1 hr after treatment with LPS or

vehicle and pre-treated for 16 h with 17AAG or vehicle. Blot shown is representative of 3 independent experiments. Signal intensity of pLIMK was

analysed by densitometry. Protein levels were normalized to LIMK. *P < 0.05 versus LPS. Means � S.E.
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to LPS exhibited decreased expression of phospho-cofilin (pCofilin)
compared to the corresponding vehicle-treated cells. Cells that were
pre-treated or treated with 17AAG expressed higher levels of pCofilin,
compared to the corresponding controls (Fig. 5A). In additional
experiments, lung lysates from wild-type and super p53 mice were

analysed for the detection of pCofilin, cofilin and p53 protein levels.
Results shown in Figure 5B indicate that super p53 mice express
higher p53 expression levels in their lungs compared to wild-type ani-
mals. Furthermore, these mutants express elevated levels of pCofilin
and P190RHOGAP in their lungs compared to wild-type mice.

Fig. 4 (A) Western blot analysis of pCofilin, cofilin and b-actin levels in HLMVEC treated with LPS or vehicle and pre-treated with 17AAG or vehicle

(0.01% DMSO). Blot shown is representative of 3 independent experiments. Signal intensity of pCofilin was analysed by densitometry. Protein levels

were normalized to cofilin. *P < 0.05 versus LPS, **P < 0.01 versus LPS, #P < 0.05 versus vehicle. Means � S.E. (B) Western blot analysis of
pcofilin, cofilin, p53 and b-actin levels in HLMVEC treated with vehicle or Nutlin. Blot shown is representative of 3 independent experiments. Signal

intensity of pCofilin and p53 was analysed by densitometry. Protein levels were normalized to cofilin or b-actin. *P < 0.05 versus vehicle,

***P < 0.001 versus vehicle. Means � S.E. (C) Western blot analysis of pcofilin, cofilin and b-actin levels in HLMVEC transfected with either irrele-

vant siRNA (siCTR) or siRNA for p53 (siP53) and consequently treated with vehicle (0.01% DMSO) or 17AAG. The blot shown is representative of 3
independent experiments. Signal intensity of pCofilin was analysed by densitometry. Protein levels were normalized to cofilin. ***P < 0.001 versus

vehicle, #P < 0.05 versus siCTR. Means � S.E. (D) Western blot analysis of pcofilin and cofilin in HLMVEC transfected with irrelevant siCTR, siP53

or ad-p53-GFP. Blot shown is representative of 3 independent experiments. Signal intensity of pCofilin was analysed by densitometry. Protein levels

were normalized to cofilin. ***P < 0.001 versus siCTR. Means � S.E.
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P53 inhibition reverses the 17AAG-induced PDXP
down-regulation

HLMVEC were transfected with irrelevant siRNA (siCTR) and p53
siRNA (siP53) for 48 hrs. Transfected cells were exposed to either
vehicle (0.1% DMSO) or 17AAG (1 lM) for 16 hrs. Silencing of p53
blocked the 17AAG-induced suppression of PDXP (Fig. 6A), an
enzyme that catalyses the dephosphorylation of pCofilin [14].

PDXP silencing blocks the LPS-induced barrier
dysfunction in HLMVEC

HLMVEC seeded on golden plated electrodes were transfected with
siRNA which specifically targets PDXP expression (siPDXP) or irrele-
vant RNA (siCTR). In cells treated with siCTR, LPS caused an
expected profound decrease in TER, indicative of endothelial barrier
dysfunction. The silencing of the PDXP (shown in Fig. 6B, insert)
completely blocked the LPS-induced hyper-permeability (Fig. 6B).

Nutlin-induced p53 expression counteracts the
LPS-triggered PDXP induction

One-hour treatment with LPS (1 EU/ml) greatly increased PDXP
expression levels in HLMVEC (Fig. 7C, left panel). To investigate the

role of p53 in this process, HLMVEC were exposed to Nutlin (10 lΜ)
for 48 hrs prior to vehicle (PBS) or LPS (1 EU/ml) treatment. Nutlin
completely suppressed the LPS-induced PDXP induction (Fig. 6C,
right panel).

P190RHOGAP silencing enhances LPS-induced
barrier dysfunction

HLMVEC seeded on golden plated electrodes were transfected with
siRNA which specifically targets P190RHOGAP expression (siP190R-
HOGAP) or irrelevant RNA (siCTR). The silencing of P190RHOGAP
(Fig. 7A, right panel) further decreased TEER values and rendered the
cells more sensitive to LPS (Fig. 7A, left panel).

Effects of LPS and 17AAG on P190RHOGAP
expression

HLMVEC were treated for 16 hrs with either vehicle (0.1% DMSO)
or AUY922 (1 lM) before LPS (1 EU/ml) or vehicle (PBS) treat-
ment (1 hr). LPS suppressed the P190RHOGAP expression and
that this effect was strongly opposed by AUY922 treatment.
Indeed, cells which were treated or pre-treated with the HSP90
inhibitor exhibited higher levels of P190RHOGAP compared than
vehicle-treated cells.

Fig. 5 (A) Phospho-cofilin expression
levels in MMVEC isolated from lungs of

wild-type (WT) and super p53 mice. Cells

were treated in vitro with LPS or vehicle

and pre-treated with 17AAG or vehicle
(0.01% DMSO) for 16 h. Blot shown is

representative of 3 experiments. Signal

intensity was analysed by densitometry.

Protein levels were normalized to cofilin.
****P < 0.001 versus vehicle.

Means � S.E.M. (B) Western blot analysis

of p cofilin, cofilin, p53, P190RHOGAP

and b-actin levels in lungs retrieved from
WT and super p53 mice. Signal intensity

was analysed by densitometry. Protein

levels were normalized to cofilin or
b-actin. **P < 0.01 vs controls (wild

type). Means � S.E.
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Effect of LPS on phospho-MLC2 expression
levels in mouse lung microvascular endothelial
cells (MLMVEC) harvested from wild-type and
super p53 mice

MLMVEC isolated from wild-type mice were treated in vitro for
16 h with either 0.1% DMSO (vehicle) or 17AAG before a 1-hr
treatment with PBS (vehicle) or LPS (10 EU/ml). Cells from super
p53 mice were exposed to vehicle or LPS (10 EU/ml). All cells
exposed to LPS exerted an increased expression of phospho-
MLC2 (pMLC2) compared to the corresponding vehicle-treated
cells (Fig. 7C), suggesting actin stress fibre formation. However,
cells derived from super p53 mice exhibited a dramatically lower

response to LPS than those from wild-type mice. In wild-type
mice, 17AAG pre-treatment completely blocked the LPS-induced
pMLC2 up-regulation.

Discussion

HSP90 regulates signalling cascades and protein trafficking by assist-
ing the folding and maturation of proteins involved in the maintenance
of cellular integrity and survival [12]. Deregulation of this function in
malignant cells contributes to the potentiation of metastatic growth.
Thus, inhibition of HSP90 function by pharmaceutical agents was
found to be a very attractive approach towards the development of
new anti - neoplastic agents [7].

Fig. 6 (A) Western blot analysis of PDXP, p53 and b-actin protein expression in HLMVEC transfected with irrelevant siRNA (siCTR) or si RNA which

targets p53 gene expression (siP53). Cells were then treated with vehicle (0.01% DMSO) or 17AAG. Blot shown is representative of 3 experiments.
Signal intensity was analysed by densitometry. Protein levels of P53 and PDXP were normalized to b-actin. *P < 0.01 vs vehicle, **P < 0.01 vs

vehicle. Means � S.E. (B) Cells were transfected with siCTR) or siPDXP and were then exposed to LPS. A gradual increase in endothelial permeabil-

ity (reduced TEER) was observed in the LPS-treated cells which were transfected with siCTR. Cells exposed to the si PDXP were not sensitive to

LPS. n = 4 per group. Western blot analysis of PDXP and b-actin protein expression in HLMVEC transfected with siCTR or siPDXP. Blot shown is
representative of 3 experiments. Signal intensity of PDXP was analysed by densitometry. Protein levels were normalized to b-actin. **P < 0.01 vs

siCTR. Means � S.E. (C) Western blot analysis of PDXP and b-actin protein expression in HLMVEC treated with LPS or vehicle (left), or pre-treated

with Nutlin prior to LPS or vehicle treatment (right). Blot shown is representative of 3 experiments. Signal intensity was analysed by densitometry.
Protein levels of PDXP were normalized to b-actin. *P < 0.05 vs vehicle. Means � S.E.
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There exists a strong association between cancer, inflammation
and relevant organismal responses to bacterial toxins [15–17]. Inves-
tigations on the association between the anti-cancer activity of HSP90
inhibitors and their anti-inflammatory properties have forged a strong
body of evidence which not only supports the anti-inflammatory activ-
ity of HSP90 inhibitors in the vasculature, but has specifically
revealed a protective action against bacterial-induced vascular hyper-
permeability [18]. One of the many client proteins of HSP90 which
are involved in cellular stability is the transcription factor and “guar-
dian of the genome,” P53 [19]. In a series of independent studies [20,
21], p53 has been demonstrated to exert both anti-cancer and anti-
inflammatory responses. Chronic inflammation promotes the devel-
opment and progression of various epithelial tumours [22] Wild-type
p53 suppresses inflammation, and this effect is clearly linked to its
tumour suppression function, as it was demonstrated in a mouse
model of myeloid lineage-specific p53 deletion or activation [23].

Remarkably, some bacteria have evolved to inhibit p53, a key
component of the stress response machinery [24]. Bacteria inhibit
p53 through multiple mechanisms, including protein degradation,
transcriptional inhibition and posttranslational modifications [24]. Our

laboratory has recently discovered the protective role of p53 on LPS-
induced vascular barrier dysfunction and that this novel property of
P53 was associated with an LPS-induced p53 suppression [4]. This
p53-mediated protective effect is not strictly limited to LPS challenge.
Want et al. [25] suggested that p53 protects mice against Listeria
monocytogenes (LM) infection. p53 knockout (p53KO) mice were
more susceptible to LM infection and showed significant impairments
in LM eradication, presumably because of the abnormal production of
the proinflammatory cytokines TNF-a, IL-6, IL-12 and IL-18. Silencing
of p53 in RAW264.7 and HeLa cells resulted in increased invasion
and intracellular survival of LM. These effects were inhibited in p53-
overexpressing RAW264.7 and HeLa cells. These results indicate that
p53 serves as an important regulator of host innate immunity that
protects against LM infection [25].

In the present study, we demonstrate that the cells which overex-
press p53 (Fig. 1A and C) are less susceptible to LPS (Fig. 1D) and
exhibit a greater proliferative capacity (Fig. 1D) compared to cells
derived from wild-type mice. In line with these observations, a recent
study by Ticket et al. suggests that the suppression of p53 is associ-
ated with increased vascular permeability, which in turn causes

Fig. 7 (A) Cells were transfected with irrelevant siRNA (siCTR) or siRNA targeting the p190RHOGAP gene expression and were then exposed to

LPS. A gradual increase in endothelial permeability (reduced TEER) was observed in both LPS-treated groups. However, cells exposed to si
P190RHOGAP were more susceptible to LPS than those transfected with siCTR, n = 4 per group. Western blot analysis of P190RhoGAP and b-actin
protein expression in HLMVEC transfected with siCTR or si P190RHOGAP. Blot shown is representative of 3 experiments. Signal intensity of

P190RHOGAP was analysed by densitometry. Protein levels were normalized to b-actin. ###P < 0.001 vs siCTR. Means � S.E. (right panel). (B)
Western blot analysis of P190RHOGAP and b-actin in HLMVEC treated with LPS or vehicle and pre-treated with AUY922 (AUY) or vehicle (0.1%
DMSO). Blot shown is representative of 3 independent experiments. Signal intensity of P190RHOGAP was analysed by densitometry. Protein levels

were normalized to b-actin. *P < 0.05 versus LPS, ***P < 0.001 versus LPS. Means � S.E. (C) Phospho-MLC2 expression levels in MMVEC iso-

lated from the lungs of wild-type and super p53 mice. Cells were treated in vitro with LPS or vehicle and pre-treated with 17AAG or vehicle (0.01%
DMSO) for 16 hrs. Blot shown is representative of 3 experiments. Signal intensity was analysed by densitometry. Protein levels were normalized to

cofilin. *P < 0.05 versus vehicle. Means � S.E. (D) Schematic presentation of the proposed mechanism by which p53 regulates pulmonary barrier

function by mediating Rac1 protective signalling and inhibiting barrier disruptive RhoA activation.
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aggressive tumour metastasis. The p53 suppression/inactivation was
due to an AKT-mediated MDM2 phosphorylation [26]. We have previ-
ously demonstrated a similar MDM2 activation due to LPS treatment
of HLMVEC [4].

We have previously described that HSP90 inhibition induces p53
expression by increasing the abundance of the HSP90/P53 com-
plexes, by reducing p53 phosphorylation levels and by suppressing
the expression of the P53 negative regulator, MDM2 [4]. We now
report that HSP90 inhibition by two chemically distinct compounds,
17AAG and AUY922, resulted in p53 up-regulation and activated Rac
1 induction (Fig. 2A). The former effect has been previously reported
by our group and others [4, 27]. In MCF7 breast cancer cells, acti-
vated Rac1/Cdc42 promotes ubiquitin-mediated degradation of p53
to increase VEGF production [28]. On the other hand, p53 prevents
the initiating steps of filopodia formation, as its overexpression
reduces protrusions [29]. These protrusions are initiated by RhoA
and opposed by Rac1 [30]. It was recently reported that the GTP-
bound RhoA induces Rac1 abundance [31] and that Rac1 inhibits
RhoA [32]. Thus, the crosstalk between these GTPases is regulated
by a double-negative feedback loop [31].

APE1 is the main apurinic/apyrimidinic endonuclease in eukaryotic
cells, playing a central role in the DNA base excision repair pathway.
In addition, it controls the intracellular redox state by inhibiting reac-
tive oxygen species (ROS) production [33, 34]. It was recently
reported that APE1 overexpression decreases Rac1 [35] activation,
and it has already been established that p53 is a negative regulator of
APE1 [36]. Thus, 17AAG- or AUY922-induced P53 overexpression
may suppress APE1 which in turn would up-regulate Rac1 activation.
Further, the reduced oxidative stress due to HSP90 inhibition [37]
may also result in decreased APE1 levels, which in turn would induce
Rac 1 activation.

The p21-activated kinase (PAK) family of serine/threonine
kinases is engaged in multiple cellular processes, including
cytoskeletal reorganization [7]. Rac1 induces the membrane
translocation of downstream effectors and triggers their activation.
Membrane-bound Rac1-GTP recruits p21-activated kinases (PAKs)
by binding to their Cdc42-Rac interactive binding (CRIB) domain
[31]. In resting cells, PAK is localized in the cytoplasm as inactive
dimers, with the regulatory domain shielding the kinase domain.
Rac1 binding induces a subsequent activation of PAK, which in
turn phosphorylate downstream substrates. PAK activity converts
the local activation of Rho-type GTPases into cell-wide responses
[38]. The silencing of PAK in HLMVEC resulted in increased vas-
cular permeability, an effect which is consistent with the strength-
ening role of PAK in barrier function (Fig. 2B). However,
suppression of PAK protein expression partially prevented the
AUY922-induced p53 induction (Fig 2C). Rac1 closely collaborates
with P53 to regulate major cellular functions such as cellular pro-
liferation, transformation and motility. It has been reported that
gain of Rac1 activity increases ROS production [39], which in turn
has been found to induce P53 expression [17, 40]. Further, it was
suggested that Rac1 inhibition can elicit ERK1-mediated P53 phos-
phorylation, which in turn results in p53 degradation [6]. However,
the exact mechanisms responsible for this regulation remain elu-
sive [39].

LIMKs are downstream targets of PAK. Activated LIMK phospho-
rylates and inactivates the filamentous actin (F-actin)-severing protein
cofilin. Spatially and temporally regulated cycles of cofilin inactivation
and activation enable dynamic actin rearrangements required for cell
motility [41]. Croft et. al. have recently reported that in MCF7 cells,
LIMKs are directly phosphorylated by P53 upon genotoxic stress and
that LIMKs are a p53 target gene. Treatment with the antitumour drug
doxorubicin reduces the activity of cofilin by increasing the expres-
sion of LIMK in a p53-dependent manner [42]. In line with these data,
we now report that a similar regulation occurs in HLMVEC, as the
manipulation of p53 expression levels by siRNA or ad-p53 revealed a
positive regulation between p53 and LIMK (Fig. 3A). Further, both
Nutlin- and 17AAG-induced p53 overexpression cause LIMK phos-
phorylation (Fig. 3B).

As cofilin is the downstream target of LIMK, we also tested
whether p53 and HSP90 inhibitors affect cofilin. Figure 4A and B
demonstrates that both P53 inducers deactivate cofilin by phosphory-
lation. Further, “silencing” of p53 by siRNA results in the suppression
of 17AAG-induced cofilin phosphorylation (Fig. 4C). P53 has been
linked to actin polymerization [14]. It was revealed that actin polymer-
ization, which serves as a factor participating in the process of
orchestrating p53 function in response to DNA damage, leads to the
destabilization of p53 [43]. Binding of p53 to actin filaments is cal-
cium dependent, and the interaction between these two entities is
enhanced by DNA damage [44]. Further, p53 interacts with G-actin,
shows perinuclear colocalization in response to genotoxic stress and
translocates to the nucleus [45].

Mice lung microvascular endothelial cells isolated from wild-
type and super p53 mice were responsive to 17AAG and LPS treat-
ment in vitro. Mice treated with the HSP90 inhibitor exerted
increased levels of phospho-cofilin, even when treated with LPS
prior the 17AAG treatment (Fig. 5A). The induction of cofilin phos-
phorylation by agents that overexpress p53 did not occur only dur-
ing in vitro experimentations. Super p53 mice that over express
p53 [10] also exhibit increased phosphorylated levels of cofilin
(Fig. 5B).

Chronophin (CIN, PDXP) is a haloacid dehalogenase phosphatase
that also dephosphorylates cofilin. Alteration of CIN activity, through
overexpression of either the wild-type or phosphatase-inactive mutant
CIN, interferes with actin dynamics, cell morphology and cytokinesis
[46]. In Hela cells, PDXP mediates an ATP-sensing mechanism for
cofilin dephosphorylation. HSP90 binds PDXP, and our results sug-
gest a model whereby attenuated interaction between PDXP and
HSP90 during ATP depletion enhances PDXP-dependent cofilin
dephosphorylation and consequent rod assembly. This agrees with
the proposed mechanism for the formation of pathological actin/cofi-
lin aggregates during neurodegenerative energy flux [47]. Further-
more, Lee et al. suggest that in cancer, doxorubicin-triggered RhoA
activation is associated with phospho-cofilin dephosphorylation due
to PDXP activation [48], and LPS was reported to dephosphorylate
cofilin via PDXP induction [49]. These data support our observations
on LPS-induced cofilin dephosphorylation, as depicted in Figure 4.
The important role of PDXP on endothelial barrier function is high-
lighted by the observations that (i) silencing PDXP protects HLMVEC
against the LPS insult (Fig. 6B), (ii) that p53 silencing prevents
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17AAG-induced PDXP suppression (Fig. 6A) and (iii) that Nutlin-
induced p53 up-regulation prevents the LPS-triggered PDXP induc-
tion (Fig. 6C).

We have previously demonstrated that p53 induction can dis-
rupt the inflammatory RhoA signalling. To further elucidate this
phenomenon, we investigated the effect of P53 on the regulation of
p190RhoGAP, a RhoA-negative regulator [5, 50]. “Super P53” mice
express elevated levels of P190RhoGAP (Fig. 5B). Silencing of
p190RhoGAP in HLMVEC resulted in a partial protection against
LPS-induced barrier dysfunction (Fig. 7A). Furthermore, LPS was
able to strongly suppress the expression levels of p190RhoGAP
and AUY922 pre-treatment opposed that effect (Fig. 7B). The role
of p190RhoGAP in endothelial barrier function has been previously
established; angiopoietin-1 attenuation of LPS-induced endothelial
barrier dysfunction in vitro and lung oedema in vivo was shown to
be blocked by p190RhoGAP suppression [51]. Induction of
P190RhoGAP by P53 may be due to reduced levels of MDM2, an
E3 ligase and p53-negative regulator. MDM2 and P53 are the com-
ponents of a tightly regulated loop; P53 induction signals MDM2
reduction; and vice versa [52]. The downstream effector of RhoA,
MLC2, was activated by LPS in both wild-type and super p53 mice.
17AAG pre-treatment prevented that effect (Fig. 6C). The effect of
LPS in super p53 mice was less robust than in wild-type mice,
likely due to the elevated p53 levels in the super p53 mouse lungs
(Fig. 5B).

In conclusion, our study supports and advances our previous
observations on the protective role HSP90 inhibitors and P53 on
endothelial barrier regulation [4, 12, 53] and provides a new model of

the role of this molecule in the mediation of inflammatory responses
in the vasculature. The scheme presented in Figure 7D summarizes
the hypothesis, based on our findings. The induction of the Rac1 cas-
cade by HSP90 inhibition results in the PAK1-mediated and p53-
dependant phosphorylation of cofilin. Additionally, P53 suppresses
the inflammatory RhoA pathway and the consequent pMLC2 forma-
tion by inducing p190RhoA, the RhoA-negative regulator. Thus, P53
acts as a molecular switch which balances the opposing effects of
Rac1 and RhoA in human and murine pulmonary microvascular
endothelial cells.
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